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Abstract

Borrelia garinii is one of the three major Borreliae responsible for Lyme borreliosis in Europe. We have characterized a protein of B. garinii
(VS102) and a genomic fragment from the gene encoding this protein was cloned. The DNA sequence of the fragment showed high
homology with a known gene of B. burgdorferi sensu stricto. The protein encoded by this gene in B. burgdorferi sensu stricto is a
phosphocarrier protein (histidine-containing protein). A mutation T to G polymorphism at codon 57 was found to be specific to B. garinii.
A PCR-based approach that allows the rapid detection of this mutation made it possible to specifically discriminate B. garinii from other
B. burgdorferi genospecies with high sensitivity and specificity. ß 2000 Federation of European Microbiological Societies. Published by
Elsevier Science B.V. All rights reserved.
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1. Introduction

Borrelia garinii, along with B. burgdorferi sensu stricto
and B. afzelii, is one of the three major Borreliae respon-
sible for Lyme borreliosis [1]. It is associated with the
majority of neuroborreliosis cases in Europe [2^4]. B. gar-
inii appears to be a very heterogeneous group which in-
cludes several serogroups [5] exhibiting divergences at the
genetic level [1,6]. In Europe, B. garinii is the most com-
mon Borrelia species [7,8]. Its geographical distribution
appears to be restricted to Europe and Asia, although
seabirds, as a potential reservoir, may spread B. garinii
between both hemispheres via a speci¢c vector, Ixodes
uriae [9]. It has been demonstrated that birds of the genus
Turdus are reservoirs for B. garinii and B. valaisiana, based
on direct isolation of these Borrelia species and xenodiag-
nostics [10].

After two-dimensional gel electrophoresis, followed by
Western blot, two co-migrating proteins of about 11 kDa

were identi¢ed on Immobilon membrane stained with ami-
do black. One of these proteins showed a species-speci¢c
polymorphism, which we characterized at the DNA level.
Our data suggest that this single nucleotide variation can
be used as a molecular tool for the identi¢cation of
B. garinii isolates.

2. Materials and methods

2.1. Borrelia isolates and other unrelated bacteria

All Borrelia isolates were grown in BSK II medium [11]
at 34³C and were harvested during exponential-phase
growth, washed twice in phosphate-bu¡ered saline (pH
7.4) ([12], appendix B12) containing 5 mM MgCl2. Pellets
were resuspended in distilled water and frozen at 380³C
until use. The 100 Eurasian and four American Borrelia
isolates are listed in Table 1. They belong to six genospe-
cies and originated from ticks (n = 69), rodents (n = 8), hu-
mans (n = 25) and birds (n = 2). All the isolates used were
typed by restriction fragment length polymorphism
(RFLP) of rrf (5S)^rrl (23S) intergenic spacer amplicons
[6].
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Table 1
Origins of B. burgdorferi sensu lato and of other bacterial strains used in this study

Isolate Biological origin Geographical
origin

B. afzelii
934U Apodemus agrarius Korea
A100S Human (skin) The Netherlands
A26S Human (skin) The Netherlands
A39S Human (skin) The Netherlands
A42S Human (skin) The Netherlands
A45aS Human (skin) The Netherlands
A51T Ixodes ricinus The Netherlands
A58T I. ricinus The Netherlands
A76S Human (skin) The Netherlands
ACA1 Human (skin) Sweden
DK3 Human (skin) Denmark
DK8 Human (skin) Denmark
F1 I. ricinus Sweden
IP3 (Iper3) Ixodes persulcatus CIS
Iper I. persulcatus Japan
M55 I. ricinus The Netherlands
M7 I. persulcatus China
NE36 Clethrion glareolus Switzerland
NE39 C. glareolus Switzerland
Pwud I Human (skin) Germany
SMS1 Apodemus £avicollis Sweden
UM01 Human (skin) Sweden
VS25R-Or A. £avicollis Switzerland
VS42R-R Apodemus sylvaticus Switzerland
VS461a I. ricinus Switzerland
B. burgdorferi sensu stricto
A44S Human (skin) The Netherlands
B31a Ixodes dammini USA
CA-5 Ixodes paci¢cus USA
Charlie Tick I. dammini USA
Geho Human (skin) Germany
IP1 Human (CSF) France
IP2 Human (CSF) France
IP3 Human (CSF) France
IRS I. ricinus Switzerland
M14 I. ricinus The Netherlands
NE48 I. ricinus Switzerland
NE50 I. ricinus Switzerland
NE56 I. ricinus Switzerland
BE1 (P1G) Human (synovial £uid) Switzerland
VS2 I. dammini USA
VS44 I. ricinus Switzerland
VS73 I. ricinus Switzerland
VS82 I. ricinus Switzerland
VS106 I. ricinus Switzerland
VS108 I. ricinus Switzerland
VS115 I. ricinus Switzerland
VS134 I. ricinus Switzerland
VS146 I. ricinus Switzerland
VS161 I. ricinus Switzerland
VS219 I. ricinus Switzerland
B. garinii
387 Human (CSF) Germany
935Ta I. persulcatus Korea
A19Sa Human (skin) The Netherlands
A77C Human (CSF) The Netherlands
AR-1 I. ricinus The Netherlands
BITS I. ricinus Italy
FAR01 Ixodes uriae Denmark

aSequenced isolates.

Isolate Biological origin Geographical
origin

FAR02 I. uriae Denmark
FIS01 I. uriae Iceland
G25 I. ricinus Sweden
HP3 I. persulcatus Japan
Ip89a I. persulcatus CIS
Ip90 I. persulcatus CIS
M50 I. ricinus The Netherlands
M63a I. ricinus The Netherlands
N34 I. ricinus Germany
NBS16a I. ricinus Sweden
NE2 I. ricinus Switzerland
NE83 I. ricinus Switzerland
NT29a I. persulcatus Japan
P/Br Human (CSF) Germany
PD89 Human (blood) China
T25 I. ricinus Germany
TN I. ricinus Germany
VS3a I. ricinus Switzerland
VS102a I. ricinus Switzerland
VS156 I. ricinus Switzerland
VS244 I. ricinus Switzerland
VSBM Human (CSF) Switzerland
VSBP Human (CSF) Switzerland
VSDA Human (CSF) Switzerland
B. japonica
COW611c Ixodes ovatus Japan
Fi340 I. ovatus Japan
FiAE2 A. speciosus Japan
FiEE2 Eothenomys smithi Japan
HO14 I. ovatus Japan
IKA2 I. ovatus Japan
B. lusitaniae
BR41 I. ricinus Czech Republic
IR345 I. ricinus Byelorussia
POTIB1 I. ricinus Portugal
POTIB2 I. ricinus Portugal
POTIB3 I. ricinus Portugal
B. valaisiana
AG1 I. ricinus Switzerland
AR-2 I. ricinus The Netherlands
F10.8.94 I. ricinus Germany
Frank I. ricinus Germany
M19 I. ricinus The Netherlands
M52 I. ricinus The Netherlands
M53 I. ricinus The Netherlands
M57 I. ricinus The Netherlands
NE168 I. ricinus Switzerland
NE218 Turdus merula Switzerland
NE223 T. merula Switzerland
VS116 I. ricinus Switzerland
Other bacterial strains tested
Staphylococcus aureus
Staphylococcus epidermi-
dis
Escherichia coli
Salmonella sp.
Shigella sonnei
Klebsiella pneumoniae
Pseudomonas aeruginosa
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Seven other unrelated bacterial strains, shown in Table
1, were tested and used as a control of PCR speci¢city.

2.2. Protein separation

Proteins of the isolate VS102 (B. garinii) were separated
by two-dimensional gel electrophoresis. In the ¢rst dimen-
sion immobilized pH gradient strips (Pharmacia-LKB,
Uppsala, Sweden), with a gradient from pH 3 to 10,
were used. The second dimension was performed on poly-
acrylamide gel (gradient from 9 to 16%). After transfer to
Immobilon P (polyvinylidene di£uoride (PVDF) mem-
brane, Millipore, Bedford, MA, USA) the membrane
was stained with amido black. The protein was sequenced
with an automated protein microsequencer from the
PVDF membrane (SWISS-2DSERVICE, sequencing serv-
ice, Geneva, Switzerland). Molecular techniques were car-
ried out (see Section 3) as described in Maniatis et al. [12].

2.3. Mutagenic PCR

A bacterial suspension (20 or 50 Wl, protein concentra-
tion 1 mg ml31) was heated for 5 min at 95³C for lysis.
The PCR reaction was carried out in a 50-Wl reaction
mixture containing 2 Wl of bacterial lysate (Taq: 2.5 U,
nucleotides 200 WM). The upstream primer was 5P-ATG-
GTAAAAAAAGAAGC-3P and the downstream primer
was 5P-CCTCACCCTCAGCACATATCAAAAGCTTTT-
TACCAG-3P. A Biometra T-Gradient (Biometra, Go«ttin-
gen, Germany) was used and cycling conditions were as
follows: 95³C for 15 min followed by 29 cycles (94³C for
1 min, 50³C for 1 min, 72³C for 1 min) and a ¢nal elon-
gation at 72³C for 5 min. The PCR product (10 Wl) was
electrophoresed through a 3% agarose gel (Agarose STG,
Eurobio, Les Ulis, France) in 1UTBE ([12], appendix
B23), for 20 min at 100 V.

2.4. Digestion with PvuII

A total of 40 Wl PCR products were puri¢ed with QIA-
quick PCR puri¢cation kit (Qiagen, Hilden, Germany).
15 Wl of puri¢ed PCR products were incubated with 2 U
of PvuII (Gibco BRL, Life Technologies, Basel, Switzer-
land) for 1 h at 37³C, with an additional 2 U of enzyme
for another 2 h of incubation. Products of digestion (8 Wl)
were analyzed through a 3% agarose gel (Agarose STG
Eurobio) in 1UTBE for 30 min at 90 V.

2.5. Sequencing PCR

Sequencing of the mutagenic PCR fragment was per-
formed with upstream primer 5P-TGTAAAACGACGGC-
CAGTATGGTAAAAAAAGAAGC-3P and downstream
primer 5P-AAATCCTTCTAAAATTCA-3P used to ampli-
fy DNA. The ampli¢cation reactions were optimized and
carried out in Biometra T-Gradient. The cycling condi-

tions were: 95³C for 15 min followed by 5 cycles of
(95³C for 1 min, 50³C for 1 min, 72³C for 1 min) and
30 cycles of (95³C for 1 min, 43³C for 1 min, 72³C for
1 min, 72³C for 1 min).

2.6. Nucleotide sequence accession numbers

The full-length sequence of the gene encoding the phos-
phocarrier protein (histidine-containing protein) of B. gar-
inii (VS102 isolate) has been assigned the GenBank ac-
cession number AF291154 and partial sequences of the
same gene in B. garinii isolates: VS3 (AF291150), 935T
(AF291151), NT29 (AF291152), NBS16 (AF291153),
IP89 (AF293454), A19S (AF293455), M63 (AF293456)
and in B. afzelii VS461 reference strain (AF291155).

3. Results and discussion

Following two-dimensional gel electrophoresis and
transfer onto Immobilon membrane, the membranes
were stained with amido black. A cluster of two spots
was observed at 11 kDa. The larger spot with an estimated
pI of 5.7 was sequenced. The N-terminal sequence of the
¢rst 14 amino acids was determined and subsequently con-
¢rmed from a second preparation. From this sequence we
designed a degenerate oligonucleotide probe which was
used on Southern blots of several restriction digests
(EcoRI, EcoRV, BglII, PstI and HindIII) of genomic
DNA from B. garinii. An EcoRI and a HindIII fragment
each showed strong homology to the probe. Both frag-
ments were cloned in plasmids and sequenced.

Results from DNA sequencing indicated a very high
homology with a known sequence of B. burgdorferi sensu
stricto (TIGR database) [13] at positions 569 283^569 544,
referred to as BB557 HPR (histidine-containing protein).
This protein is a phosphocarrier protein (phosphoenolpyr-
uvate:phosphotransferase system) well conserved in bacte-
ria (e.g. E. coli, Klebsiella pneumoniae, Haemophilus in£u-
enzae), and involved in fructose uptake. Using primers
tailed with the M13^21 sequence, we ampli¢ed the relevant
gene segment from several Borrelia isolates. This segment's
sequence was then determined in ¢ve B. garinii, one
B. burgdorferi sensu stricto and one B. afzelii isolates.
Comparative analysis of all seven sequences showed 95%
identity between these Borrelia isolates (Fig. 1). All ¢ve
B. garinii isolates had an identical substitution at nucleo-
tide 169, where a G was found instead of a T as in the
other two species. This substitution leads to an amino acid
change at position 57, where in B. garinii an alanine re-
places the serine residue, typically found in the other iso-
lates. Because of the lack of a restriction site at positions
167^170, we designed a mutagenic PCR system as re-
ported in Fig. 1, in order to screen a larger number of
Borrelia isolates. The downstream primer contained a
base substitution creating a restriction site recognized by
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PvuII (3P-GTC/GAC-5P). Thus ampli¢cation of the se-
quence from Borrelia isolates carrying a G at position
169, subsequently digested by PvuII, generates two frag-
ments of 169 bp and 36 bp, respectively. The isolates with
undigested amplicon showed a single fragment of 205 bp.
We analyzed a total of 104 isolates by PCR belonging to
six species of B. burgdorferi sensu lato (Table 1). Using
this system we were able to con¢rm the presence of the G
polymorphism (Fig. 2) in all but two (Ip89, A19S) of the
B. garinii isolates (n = 31). These two isolates were specif-
ically chosen with respect to their particular RFLP of rrf^

rrl intergenic spacer amplicons [6]. The other isolates were
identical to B. burgdorferi sensu stricto (25 B. burgdorferi
sensu stricto, 25 B. afzelii, 12 B. valaisiana, six B. japonica
and ¢ve B. lusitaniae). Three additional B. garinii isolates
were sequenced including Ip89 and A19S, in order to con-
¢rm the unusual polymorphism of these two isolates. The
speci¢city of the PCR was con¢rmed using strains of
Staphylococcus aureus, Staphylococcus epidermidis, Esche-
richia coli, Salmonella sp., Shigella sonnei, Klebsiella pneu-
moniae and Pseudomonas aeruginosa, showing no ampli¢-
cation.

Our results have determined that DNA sequencing of
B. garinii phosphocarrier protein HPR (histidine-contain-
ing protein) showed 95% identity with the other species of
B. burgdorferi sensu lato. Moreover, a single nucleotide
substitution in the gene encoding this protein changed
amino acid 57 from a serine in B. burgdorferi sensu stricto,
B. afzelii, B. valaisiana, B. lusitaniae and B. japonica to an
alanine in B. garinii. Our data indicate that this DNA
sequence variation, occurring in a well conserved region,
may be used as a reliable marker to identify most B. gar-
inii isolates. Additional PCR systems for identi¢cation of
B. garinii, similar to the one reported here, may prove
useful to type some particular isolates or to con¢rm gen-
otyping in this frequent and particularly heterogeneous
species.
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VS3, 935T, NT29, NBS16) and B. afzelii (ACA1) are shown. Sequences followed by arrows correspond to the primers designed for mutagenic PCR.
The box represents the critical nucleotide used for mutagenic PCR.

Fig. 2. Amplicons digested with PvuII and electrophoresed in 3% aga-
rose gel. Lane M: molecular size (in bp). Lane S: DNA ladder 50^2000
bp. Lanes 1^5: B. burgdorferi sensu stricto (VS82, VS106, VS108,
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