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Abstract

Providing quantitative constraints on late Pleistax glacier fluctuations remains an important
challenge for understanding glacier response tbgras$future climate changes. In most mountainous
settings, paleo-glacier reconstructions are limbiedause they often lack precise temporal constrain
Different geochronological methods have been deeslo and applied to date specific
geomorphological or sedimentological markers fdepalacier dynamics. Recently, OSL (optically
stimulated luminescence) surface exposure datirgy been introduced and provides us with an
opportunity to improve paleo-glacier reconstrucsiofhis method is based on the sensitivity of the
OSL signal from rock minerals to light, resultingbleaching of the OSL signal within the uppertfirs
millimeters of the exposed rock surface, a protiessdepends on the exposure age, the rock type and
the local setting (e.g. topographic shielding, belrorientation etc.). Here, we investigate the
potential of OSL surface exposure along a vertazaks-section of polished bedrock surfaces with
known post-LIA (Little Ice Age) exposure ages (fr@to 137 years) along the Mer de Glace glacier
(Mont Blanc massif, France). The infra-red stimethtuminescence (IRSL) signals from rock slices
exhibit increasingly deep bleaching profiles witbvation and thus exposure age, which is consistent
with progressive glacier thinning since the LIA. rQasults show that OSL surface exposure dating
can be applied to periglacial environments, ana gomising tool for high-resolution reconstruction

of ice-extent fluctuations, both in space and time.

Keywords: Optically stimulated luminescence (OSL), surfasgosure dating, luminescence depth

profile, paleo-glacier reconstruction, Mont Blanassif

1. Introduction

During the last ca. 5 Ma of the Earth’s historyglgll climate cooled and evolved towards oscillating
climatic conditions that intensified towards thegent (e.g. Zachos et al., 2001; Herbert et al.6R0
This climate shift left a strong imprint on moumaopography (e.g. Penck, 1905; Broecker and
Denton, 1990; Molnar and Engand, 1990; Peizhenl.et2801; Egholm et al., 2009). However,
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understanding paleo-climatic conditions in mourtdas areas over the Plio-Pleistocene epochs
remains difficult. Local records of successive glimterglacial cycles are scarce or poorly presdr
over such long timescales (Ehlers and Gibbard, R@lar ice-sheets and marine cores are useful for
providing long-term global climatic records but ameable to describe regional continental climate. |
contrast, glaciers and their fluctuations througietprovide invaluable information on past mountain
climatic conditions. Through mapping and dating anoe deposits and erratic boulders, it is possible
to reconstruct the history of ice-extent (e.g. tfue European Alps: Ivy-Ochs et al., 2006; Bini ket a
2009; Preusser et al., 2011; Schimmelpfennig &(dl4; Ivy-Ochs et al., 2015; Wirsig et al., 2016).

Past glacier extents in the European Alps are eailktrained since the Little Ice Age (LIA:
15" to 19" centuries). Using historical maps, survey repantsl aerial photogrammetry, glacier
fluctuations have been precisely reconstructed theiast two centuries (e.g. Vincent et al., 2014)
To go further back in time into the Pleistocend&edént geochronological methods can be used such
as lichenometry (Winkler et al., 2004), varve clulogies (Stewart et al., 2011), dendrochronology
(Baillie, 1995) and radiocarbon dating (Hajdas, 8&0MHowever, organic matter can be scarce for
glacial/periglacial deposits because of extremeljva geomorphic systems associated with glacial
environments. In addition to these methods, suragesure dating of polished bedrock or erratic
boulders using terrestrial situcosmogenic nuclides has been developed over thddaades (Lal et
al., 1991; Gosse and Philips, 2001; Balco, 201¢:(e¢hs and Briner, 2014), and has been widely
used in the European Alps (see lvy-Ochs et al.62R009 for reviews). The combination of different
cosmogenic nuclide pairs (e/gBe and*‘C: e.g. Goehring et al., 2012; Hippe et al., 2Qdrdyides us
with important information on Alpine glacier palemggraphy since the Last Glacial Maximum (LGM,;
Ivy-Ochs et al., 2006; Wirsig et al., 2016). Howeuwae cosmogenic nuclide production rate and the
integration of production over the first 1-2 metbow a rock surface may limit the resolution of
such methods for recent and/or complex exposutertes.

Here we investigate whether optically stimulatemiescence (OSL) surface exposure dating
can be used to reconstruct recent glacier fluauoatiuminescence dating is based on the
accumulation of trapped electrons through timénandrystalline lattice of certain minerals (e.gadn
or feldspar). Some of these trapped electronsearsit/e to daylight exposure (Aitken, 1985; Humptle
et al., 1985). Luminescence dating is commonly useddate sediment burial in a range of
geomorphological environments (e.g. Duller, 2008pékes, 2011; Fuchs and Owen, 2008) but can
also be used to determine rates of bedrock cofugalnik et al., 2015; King et al., 2016; Brown et
al., 2017), and the exposure age of archaeologichl surfaces (Polikreti et al., 2003; Sohbatilet a
2011). This latter application is based on thegipie that when a rock surface is exposed to litji,
luminescence signal, which is initially homogenaeuithin the rock sample (at a given level or indiel
steady-state; e.g. Valla et al., 2016), will pregreely decrease at depth until being completely
zeroed, a phenomenon called “bleaching” (Aitker88)9The assumption used in this study is that the

longer a surface has been exposed to daylightjebper the signal bleaching will be (Polikreti let a
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2002). In granitic and gneissic rocks, bleachingugh time has been shown to occur over the first
few centimetres depth of the rock surface (Vafiadbal., 2007; Sohbati et al., 2011; Freiesleben et
al., 2015). In alpine environments, glacier advaraéring the late Pleistocene to Holocene have been
associated with subglacial erosion of bedrock atcégntimetre-scale (e.g. Goehring et al., 2011y Th
means that only the most recent exposure histotiieobedrock will be recorded, as earlier exposure
histories and OSL bleaching evidence will have beerded by subsequent glacier advances. OSL
surface exposure dating would thus in theory enpbbt glacier extents to be reconstructed with a
high temporal resolution for both recent and com@gposure histories. Furthermore, this method is
attractive because of the short time required &n@e preparation (Sohbati et al., 2011), although
one current disadvantage is the requirement fabregion of this chronometer on rock surfaces with
independently known exposure ages (Sohbati 2@12a).

In the following, we first introduce the study siiee., the Mer de Glace, and our sampling
strategy. We have targeted several independentigddglacially eroded bedrock surfaces, which
represent past elevations of the glacier surfaoeesihe LIA. We then review the basic principles of
the method and present the luminescence signalsiXodifferent surfaces along a vertical cross
section above the present-day Mer de Glace. Oultseshow a strong correlation between sample
elevation, exposure age and bleaching depth. Fjnale use this dataset to show that model
calibration requires multiple samples of known ageake full advantage of OSL surface exposure

dating inboth glaciated and formerly glaciated environments.

2. Setting and sampling strategy

2.1. Geomor phological setting

The Mer de Glace glacier (Fig. 1) is about 11.5l&my and is located in the Mont Blanc massif. The
modern glacier covers an area of 30.4 Kaxcluding former tributary Taléfre Glacier) arghas an
elevation range from 4205 m to 1531 m.a.s.|. (deden 2008; Gardent et al., 2014). The mean
equilibrium line altitude (ELA), reconstructed ugiremote sensing methods, was about 2880 m.a.s.l.
between 1961 and 1990 for five of the main northifig Mont Blanc massif glaciers, including the
Leschaux Glacier for the period 1984-2010 (Rakettal., 2013).

The Mer de Glace is an appropriate laboratorywfdidating the application of OSL surface
exposure dating for paleo-glacier reconstructionumidrous studies have provided detailed
reconstructions of Mer de Glace fluctuations frdma t GM towards the Holocene and present day
(Coutterand and Buoncristiani, 2006; Nussbaumeal,ef007; Vincent et al., 2014; LeRoy et al,,
2015). The Montenvers site (Fig. 1) was chosemaspéimal study site as the evolution of the glacie
thickness since the LIA has been reconstructed ibgewt et al. (2014) using historical maps, aerial
photogrammetry and satellite-derived digital elewat models (see Section 2.3 for details).

Furthermore, the rock type is generally homogeradoisg the valley flank (i.e. orthogneiss; Dobmeier
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et al., 1998), avoiding any lithological dependemfythe OSL surface exposure dating approach
although occasional granitic lenses are exposeatarlower part of the profile (see Section 2.2 for
details).

Our sampling strategy was to collect glacially ploéd bedrock surfaces with the best-
preserved erosion patterns (glacial striationsheecmoutonnées; Fig. 3) to ensure that sample
bleaching profiles reflect the period of time sinpest-LIA deglaciation. The samples were also
selected to have low topographic shielding and taige cover (e.g. lichen). Steep slopes were
selected (i.e. above 30°) to limit any potentiabwrcover effects. In particular, we focused on rock
surfaces exhibiting striations parallel to the Mier Glace flow line in order to avoid the potential

influence of tributary glaciers.
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Figure 1. Sampling map of the Montenvers site, Mer de Gladte orthorectified aerial photograph

of the Mer de Glace was acquired in 2016 (soureevgeoportail.gouv.fr). The black lines show the
two cross-sections produced by Vincent et al. (204dich we interpolated to reconstruct glacier
surface elevations at two different locations (ieds 1 and 2, see Section 2.3 and Supplementgry Fi
Al) where samples were collected (yellow dots witlhmbers). Upper right inset represents the
collected samples projected along cross-secti@oftom right inset shows location of the study area

within the western Alps.
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2.2 Sample description

We collected six samples along the Montenvers lgrafuring several field campaigns (2015-2016),
ranging in elevation from 1841 to 1696 m.a.s.Ig(F and Table 1). Samples MBMV1, MBMV?7,

MBMV8, MBMV10 and MBMV11 consist of coarse-grainethogneiss, typical for the Aiguilles

Rouges massif (Dobmeier et al., 1998). These rocémly comprise coarse K-feldspar crystals,
guartz, biotite and muscovite. Only MBMV6 was cotled from a granitic lens, which consists of
bigger quartz and feldspar crystals than the ortb@s (Fig. 3b). Because differences in crystals
properties may influence light penetration, i.ee do both crystal size and distribution, sample
MBMV®6 is used to explore any potential lithologicaifect on the OSL surface exposure dating

approach.

a . 2 % : --‘ 7. ¥ vl ’ ‘ ‘) ‘ % 3 d - (d) |
Figure 2: Sampling sites and sample details at the Montersitgs(a-b) Sampling sites for MBMV7
and MBMV6. (c-d) Outcrops and samples MBMV7 and M6/

Table 1. Sample characteristics from the Montenvers crosBese Estimated exposure ages were
reconstructed using differential GPS and ice-thésen reconstruction as shown in section 2.3.
Shielding factors were calculated with the georethielding calculator (CRONUS-Earth project).

Note that all estimated exposure ages are refeddnma 2015 (date of the first field campaign).

Latitude Longitude Elevation Estimated Exposure Age Topographic Surface
Sample ID Lithology
WGS 84 [m.a.s.l] [Year before 2015] shielding factor orientation
MBMV1 45°55'54.0" 06°55'07.7" 1841 Gneiss 137 0.81 N8 55°E
MBMV6 45°55'48.9" 06°55'17.7" 1696 Granite 2 0.92 NO 30°E
MBMV7 45°55'52.7" 06°55'09.9" 1804 Gneiss 69 0.79 N374 60°E
MBMV8 45°55'47.7" 06°55'18.5" 1699 Gneiss 3 0.81 N13 54°E
MBMV10 45°55'54.0" 06°55'14.1" 1735 Gneiss 18 0.79 NO 60°E
MBMV11 45°55'54.3" 06°55'11.5" 1760 Gneiss 30 0.88 N355 75°E
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Figure 3. Pictures of selected rock slices (see section & ldétails), showing the difference in
composition and texture between orthogneiss (MBM\WMBMV7, MBMV8, MBMV10, and
MBMV11) and granite (MBMV®6).

2.3 Independent age calibration from glacier thickness reconstruction

We use the historical post-LIA reconstruction o thler de Glace thickness (Vincent et al., 2014)
available for two cross-sections: Montenvers antielgts (Fig. 1). Samples MBMV1, MBMV?7,
MBMV10 and MBMV11 were collected from the same jleoflocated 290 m upstream of the
Montenvers cross-section and 690 m downstreameoEtthelets cross-section (cross-section 1, Figs.
1 and 4). Samples MBMV6 and MBMV8 were taken alangrofile (cross-section 2, Fig. 1) located
200 m upstream of the cross-section 1. Becausébthmning would progressively expose bedrock
surfaces at lower elevations, we can use the oekttip between exposure age and sample elevation
to constrain the temporal evolution of glacial Kmess (Fig. 1 and 4).

Post-LIA thickness reconstructions of the Mer dad@lfor cross-sections 1 and 2 have been
interpolated from the Montenvers and Echelets esestions. Exposure ages from 2 to 137 years
were obtained for the different samples, usingegitoss-section 1 (MBMV1, MBV7, MBMV10 and
MBMV11) or cross-section 2 (MBMV6 and MBMVS8) (seeupplementary Material Al). All

exposure ages are relative to the first samplimgpaégn in summer 2015.



165
166

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

3. Methodology: OSL surface exposur e dating

3.1. Theoretical approach

Minerals such as quartz and feldspar naturally ainntiefects or impurities in their crystal lattice.
Energy released by ambient radiation (i.e. cosmic rand the flux of high-energy solar particles
or/and radioactive decay in the rock-matrix) excigtectrons from their equilibrium state (valence
band), and these can become trapped at higheryeless within the crystal. Because of the finite
number of traps, electron filling occurs until gation is reached. By giving energy to the systam i
the form of light or heat (natural bleaching preeses, electrons are released and return to their
equilibrium state, producing photons. This phenaoneis called luminescence and the intensity of a
given luminescence signal is thus proportionalhte humber of trapped electrons (Aitken, 1985;
1998). In a rock surface continuously exposed tgliglat, the progressive bleaching of the
luminescence signal is expected to propagate daeefmethe surface with time (Habermann et al.,
2000; Polikreti et al., 2002; Laskaris and Liri{Z2911).

Rock surface dating was first used in archaeolagy] was based on thermally-stimulated
measurements, i.e. thermoluminescence (TL; Liritial., 1994; Richards et al., 1994; Theocaris et
al., 1997; Polikreti et al., 2002; 2003). More mathg optically stimulated luminescence dating (QSL
e.g. Habermann et al. 2000; Vafiadou et al., 2088 been introduced to date surface exposure,
which benefits from improved measurement reprodiitgiland more rapid signal bleaching following
exposure to daylight than typically-used TL sign@sg. the 325°C TL peak in quartz). The potential
of OSL for dating exposure events in geomorpholgiEreiesleben et al., 2015; Sohbati et al., 2015)
and archaeological (Liritzis, 2011) contexts hagntly been investigated, and a range of applisatio
including relative sea-level changes and coastaigephology (Simms et al., 2011; Simkims et al.,
2013) have been published. However, OSL surfacesxp dating has not yet been applied to
glacially polished bedrock surfaces.

In mountainous environments, OSL dating can be ueeevaluate the exposure age of a
polished bedrock surface as described in Figusg the initial condition (f in Fig. 4), the glacier has
reached its maximum thickness. Ice and periglastaliments cover the bedrock surface, and the
luminescence signals of bedrock minerals are ild S¢eady-state and uniform in the rock column.
When the glacier retreats, freshly-eroded surfactesxposed to daylight (poiatat time %, Fig. 4).
The initial luminescence signals start to bleadhtlese exposed surfaces, while the sample at lower
elevation is still covered by the glacier and itsrinescence signals remain uniform in the rockr(poi
b at time &, Fig. 4). As the glacier continues to thin, thevdo part of the bedrock flanks are uncovered
(t3, Fig. 4) and the luminescence signals start tadiidor the lower-elevation surfaces. Therefore, in
setting affected by progressive glacier retreat tthing, there is a direct correlation betweea th

elevation of the studied site and the exposure @b, the assumption that the longer a surface is
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exposed to daylight, the deeper into the rock tinkeinescence signal is bleached (Freiesleben et al.,
2015; Sohbati et al., 2011).

Bedrock

Depth

Figure 4: Sketch linking glacier thinning and OSL signal extan for two bedrock surfaces located

at different elevations along the valley flank.&8§ht arrows (grey) represent cosmic rays and high-
energy solar particle flux; this radiation, togetheéth radioactive decay in the rock matrix build u
the latent luminescence signal. Other arrows (Dlaegresent low energy electromagnetic radiation
from the sun; this radiation bleaches the latemit@scence signal. At the initial timg the glacier is

at its maximum extent and the OSL signals for bmilfaces are in field steady-state and uniform
within the rocks/,. At time %, the glacier has retreated and exposed the suf@cthe OSL signal
begins to bleach whilst surface (b) remains covevigl its luminescence signal unchanged. In the
final step %, the glacier size has shrunk, surface (a) ren@ipssed and its OSL signal is bleached at
greater depth while surface (b) has just been eptisdaylight and its OSL signal has been bleached
just below the exposed surface.

3.2. Modelling approach

To assess rock surface exposure durations to tié&ytigm a luminescence depth profile, we use the
model proposed by Sohbati et al. (2011; 2012a,lw)) provide an in-depth review of each parameter.
When a rock surface is exposed to daylight, botragping (due to the release of energy by daylight)
and trapping (due to absorption of energy from @mibradiation) occur simultaneously. The trapped-
charge concentration during light exposure is givgthe following differential equation:

% = —E(x) n(x,t) + F(x) [N(x) — n(x,t)] @
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Wheren(x, t) is the trapped charge concentratiori’[rat time t [s] and depthk [m], N(x) is the
concentration of sites [fh available for trapping at dept E (x) is the charge detrapping raté']js

andF (x) is the trap filling rate [§. The charge detrapping raf&(x), is itself given by:
E(x) = 0@y e (2)

whereg, (1, x) is the photon flux [cfi s*] describing the rate of incoming photons that bach the
trap of interests(1) is the photoionization cross section fgrdescribing the probability of this
specific trap to be excited by light stimulationid averaged over the wavelengths present indlag s
spectrum at the surfae = 0). Here, we assume that the photon flux does notuaie through time,
and we are only concerned with the product of Weparameters, which is given by, [s”] (i.e. the
effective decay rate of luminescence; Sohbati.ePall1). Equation (2) also includes a decay tenm f
light attenuation with depth. The light attenuatmrefficientu [m™] describes how deep into the rock
a photon will penetrate and affect the luminescesigmal. u is assumed to be independent of
wavelength in the spectral range of interest (Solabal., 2011).

For surface exposure dating of terrestrial surfattes effect of trap filling during daylight expasu
over short timescales (i.e. centuries) is oftenligifde (i.e. F(x) = 0) (see Supplementary Material

A2). The trapped charge population at a given déptttan then be approximated by:
n(x) = nge FW" 3

wheren, is the initial charge population [fhassumed to be constant with depth within the rock
column prior to bleaching. Assuming that the lursitence signdlL) is proportional to:, Eq. (3)

becomes:

L=2=Loe oPote™ 4)
where Lx/Tx is the normalized natural luminescence signal medsatralepthx [m] after exposure
aget [s]. L, is the normalized natural luminescence signalreelideaching (Fig. 4), which is sample
dependent and can be constrained in the laboratory.

Equation 4 can predict the rock luminescence mofibr different exposure ages, however the
mean photon flux,, the photoionization cross-sectionand the attenuation coefficigmtmust first
be quantifiedg, is mainly controlled by the latitude and the climess; and it is broadly correlated to
elevation (Blumthaler et al., 1997). The solardiaace is fluctuating over decadal timescales (L.ean

1987) making the independent determination of thetgn flux impossible without knowing the time
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of exposure. The photoionization cross-sectiois depending on both the mineral and the trap
targeted (Bailey, 2004). For samples coming frommgame region and from a similar lithology,

is assumed to be uniform apds expected to be of the same order of magnitutiedss samples, but
not necessarily equal.

The OSL-depth profile of exposed rock surfaces viittlependently constrained exposure
durations can be used to calibrate @fa® and p parameters by fitting the luminescence signal
bleaching with depth (Singarayer, 2002; Sohbatile2012a). These constrained parameters can then
be used to determine the exposure histories ofamkrage surfaces from the same region.

Here, our objective is to demonstrate the validityhe proposed model (Eq. 4) on polished
bedrock surfaces and to calibrate the model pasmen surfaces with known exposure age. To do
so, the unknowmg, and p parameters are inverted for each sample usingobapility density
function of the model parameters, given the obsk@®&L-depth profile data. This includes a least

absolute deviation regressi@y,,,. (EQ. 5), in which we randomly prescribed a rangelitierent

@, andy values. From the residual likelihodd,,,,,. obtained, we select the maximum likelihood

values ofep, andu. The modelled luminescence signé;%) are calculated for each rock slice of a
m

given sample using the known exposure age of esplig site, giving:

1 ¢n

e = exp (220 |(2),, - ())

) ©)

: . (OX . : .
wheren is the number of rock slices per samé%) is the luminescence signal calculated using
m

@ : . . : .
Eq. (4),(%) ) is experimentally measured for each rock sliemda is the uncertainty. Given that
obs

the scatter of the plateau signb})(for every independent sample is larger than tiedyécal error,
we use the standard deviation around the plate&ue \a to estimatea. Then, we compute the

combined likelihood for a number of samptessing:

Leombinea = H;’=1Lsample(j) (6)
This approach provides the most likely common waloésg, andp. Once the parameters of the
model are determined as shown above, it is poswililevert the exposure age for other rock surfaces

using the constrainesgip, andu values (cf. Eq. (5)).

Table 2: Summary of symbols.
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Symbol Unit Definition

n m3 Concentration of trapped charge

x m Depth

t s Time

N m-3 Concentration of sites available too trap charge
E sl Charge detrapping rate due to solar radiation
F sl Charge trapping due to ionising radiation

4 cm? Photionisation cross-section

7] cm2 sl Photon flux

TP st Charge detrapping rate

H m-! Attenuation coefficient

Lx Counts Regenerated luminescence signal
Tx Counts Test dose signal

L Counts Luminescence

In order to verify our modelling approach, we shawsynthetic inversion. We produce a
synthetic luminescence signalk(Tx for depths in between 0 and 14 mm) using Eq. (4)) sample-
specificop, andp parameters (obtained from initially fitting evesgmple using their independent
age control, see Section 5.2 for details) and asgua constanft value (i.e. homogenous lithology
with rock depth). The first step of the synthetsttis to invert parametes®, andp knowing the
exposure agd for each individual sample as presented above.n,Theing thes&g, and u
parameters, we subsequently invert for the expaageeusing Eq. (4). In order to study the effect of
potential uncertainties from the experimental daiiathe exposure age determination, we reproduce
this synthetic test with white noise on the lumoexe signal, with four different amplitudes betwee
0 and 100 % (Fig. 5). Our synthetic results shoat tur inversion approach can recover the exposure
age with 0 to 50% noise. The synthetic test wit@%oise on the luminescence signal provided age
outcomes with larger uncertainties (>20%). The bestlts are obtained using the best-fi5@f, and
p and the median value of the predicted exposurs. agee resulting uncertainties are correlated with
the magnitude of the noise, however any potentlability in the luminescence signal does not

appear to produce a significant bias on the indegtgposure age.

11
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(a) Synthetic test - without noise (b) Synthetic test - 25 % of noise
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Figure 5: Results (median value) of inverted exposure age tiee synthetic test, (a) without noise on
the luminescence signal, (b) with 25%, (c) 50%, @)dL00% noise. Error bars represent £ the
inverted age.

4, Sample preparation and analysis

The bedrock samples were cored to 30 mm depth wsiktpsqvarna DM220 drill, with 10-mm
diameter. Cores were then sliced into 0.7-mm thadk slices with a BUEHLER IsoMet low speed
saw equipped with a 0.3-mm thick diamond blade. $amples were drilled and sliced under wet
conditions (water and lubricant, respectively) Yoid any heating that could potentially reset ti&LO
signal. Sample preparation was done under subdrgbtight conditions. The thickness of each rock
slice was measured to determine the precise dégtch luminescence measurement.

All luminescence measurements were performed uRisg TL-DA 20 TL/OSL luminescence
readers (Bgtter-Jensen et al., 2010) equipped R#hbeta sources at the University of Lausanne
(Switzerland). The readers have dose rates ofatfd1~0.2 Gy $ and measurement reproducibility of
1.14 % and 1.26 % respectively. We first performraeheat at 250 °C before giving infrared (IR)

stimulation (870 nm, FWHM 40 nm) at 50 °C. Lumineisce signals are detected through a filter
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combination of a Schott BG-3 and Schott BG-39. Aarm test dose was used (27.2 Gy) to measure
the subsequent luminescence responsg @éhd to normalize the natural infrared stimulated
luminescence (IRSL) signal {Lfor every rock slice. Infrared stimulated lumioesce was measured
for 200 s and signals were integrated over the @rseconds whereas the background signal was
integrated between 70-100 seconds. Measurements aelysed using Analyst v.3.22b (Duller,
2005). All thermal treatments and stimulationseahperatures greater than 200°C (i.e. preheat step)
were carried out in nitrogen atmosphere. The erpartal approach was validated using a dose
recovery and preheat plateau test (see SupplempeMtgerial A3; Murray and Wintle, 2000; Wintle
and Murray, 2006).

5. Results

5.1. Experimental results

Figure 6 shows the luminescence measurements goesentative samples MBMV1 and MBMV10
(results of the others samples are presented in8&yigThree replicates (i.e. individual cores) per
sample were sliced in a way that a depth and ar I8#§al can be attributed to each rock slice
(unigue colour/symbol for each individual rock slim Fig. 6). The results show similar behaviour
between the different cores for a given sample.(6jgThe IRSL signal is bleached near the surface
and reaches a plateau at depth. Furthermore, ame importantly, the transition from a bleached
signal to the plateau varies with the exposure @be.three core measurements reproduce well for
both samples illustrated in Figure 6, with the metamdard deviation between the three cores ranging
from 7 to 27% for all the studied samples. Thesellte confirm experimentally that cores extracted

from one individual sample record the same expolistery, supporting the proposed approach.

(a) MBMV10 - 18 years (b) MBMV1 - 137 years
1.2 T T T T T T T 1.2 T T T T T T T T
y.3 \ /®\ % P
> 1r ﬁ/ s b\/ﬁ > 1r S/ -/é}/ ) /@/@\@x\ .
c // x c &
£ os %/ 2 osf / 1
e @ =l /
8 / 8 // i
N / Noel §
E 0.6 // ‘_g 0.6 }D
S s S
Z 0.4 ® Z 04
| | @ ¥
&£ 2 I
= 0.2 -2~ core 1 = 02r f —©- core 1
~#— core 2 [/ / ~%- core 2
. e core 3 B R Bk c:
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Depth [mm] Depth [mm]

Figure 6: Infrared stimulated luminescence (IRSL) signal wigpth for samples (a) MBMV10 and
(b) MBMV1. Each coloured data point represents adividual rock slice. IRSL signals were

normalized by b which was determined by taking the average of theinescence measurements
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along the plateau. The plateau was defined whenuthenescence signal is fluctuating by less than
20%.

5.2. Independent parameter determination

In this section, we determine the, andu parameters individually for each sample in ordestudy
their potential variability from one rock surfaae another (Table 3). As explained in Section 3.2,
bedrock surfaces from the same location shouldeshatommormp, parameter (i.e. same order of
magnitude; Blumthaler et al., 1997). Similarly, wepect that theq parameter should be similar for
samples from a uniform lithology. The determinedapaeters are then used in the inversion of the
exposure ages for each sample individually (sedid®eb.5). All inversion outcomes are summarized
in Table 3. Samples MBMV1, MBMV8, MBMV10 and MBMV14hare similar effective decay rates
(6®,) with the same order of magnitude (from 1.£10 2. 10’ s) and show attenuation coefficients
(1) between 1.07 and 1.89 riinSamples MBMV6 and MBMV7 behave differently withuah lower
effective decay ratesa{p, of 2.0 10° and 4.2 18 s*, respectively), and different attenuation
coefficients (1 of 0.92 and 2.50 mi respectively).

5.3. Parameter determination from joint probability estimates

We evaluate now the parameter determination from jobability estimates in order to illustrateth
benefit of having several known-age calibration glas Figure 7a presents modelled results for
sample MBMV10, which is representative of the oteamples (except MBMV6 and MBMV7, see
Section 5.2). The results show that lagpg) and p co-vary, which we attribute to measurement
uncertainties and variability between the differeates. Figure 7b shows the area of acceptable fits

when all the gneissic samples are included (i.elueling the granitic sample MBMV6).

(a) Sample MBMV10 0t (b) All samples together ~ x10°
{4 5
i . . {45
obn = T & S
o= 15x10"s |3 0Po= 1.0x 107 s N
135
~ .5 25 =6 l ;
=4 g P
g =4
c 2 3 25
: Ly T %% W= 1.48 mm" 2
1 15
-8 -8 1
0.5 0.5
9 9 3 M N
b B 0 i 2 3 2
y [mm-] M [mm-]
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Figure 7: Relationship between tlagp, andp parameters (a) for sample MBMV10, and (b) forcéll
the gneiss samples (i.e. excluding MBMV®6) enabliuhetermination of the sharegip, and p
parameters (1.0 10s and 1.48 mn respectively). For both figures, the colour scs®ews the
likelihood between modelled and experimental d&tp 6, note the differences in scaling between the

two panels), and the star is the best-fit parametieres. Zero probability is not shown for clarity.

We then contrasted individual estimatesoqf, and p for each sample, using different
combinations of samples to estimate these parasndtiee results are summarized in Tables 3 and A3.
When inverting the model parameters with any comuoims of three samples, all estimates of the
effective decay rates are between 6.6° BHhd 1.4 10 s*, and all estimates of the attenuation
coefficients are between 1.33 and 1.57 mr@ombinations of four samples provid®, values
ranging from 7.2 18to 1.2 10 s* andp values between 1.38 and 1.53 thmccording to Table 3
and Figure 7b, a common likelihood exists for B# gneissic samples calibrated together, giving an
effective decay rate of 1.0 18" and an attenuation coefficient of 1.47 thm

Figure 8 depicts the normalized IRSL signals messéor all samples and their individually-
constrained best-fit models (red lines) as desdripeeviously and illustrated in Figure 7a. The
obtained outcomes show that the proposed modelraetyr describes the luminescence bleaching
process through depth and time. The best-fit mod@brated with all of the gneissic samples togethe
(black dashed lines, parameters in Table 3) fitsecko the best-fit model determined for each sampl
individually (except MBMV6). These results confiren key objective of the study, which is the
possibility to calibrate the model parameters usliffigrent surfaces along a vertical profile, witte

same lithology and different (independently-detewdi) exposure ages.

Table 3: Best-fit values ofrg, andp determined for every sample individually and frsamples
excluding MBMV6. Combinations of three or four sdagpare presented in Table A3 (Supplementary

Material).

Parameter TP [s7] u [mm?)

Samples Best-fit +1o -lo Best-fit +1o -lo
Individually

MBMV1 1.410% 1510%® 1.310° 1.07 1.08 1.05
MBMV6 2010°% 2210° 1.810° 0.92 0.95 0.92
MBMV7 4010° 5010° 3.610° 2.52 2.56 2.46
MBMV8 22107 24107 15107 1.89 1.98 1.70
MBMV10 15107 15107 1.1107 1.82 1.87 1.75
MBMV11 4210% 5310°% 3910° 1.21 1.22 1.13

All samples together

7 7 8
excluding MBMV6 1.010 1110 9.510 1.48 1.50 1.44
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Figure 8. Normalized infrared stimulated luminescence (IR$itdfiles with depth and best-fit

models. Coloured data point represents individoek islice (each symbol/colour represents one core).
The red lines show the best-fit model for each danigken individually. The dashed black lines
represent the best-fit model from a common calibnadf the parameters using all gneiss samples
together §¢g, = 1.0 10’ s* andp =1.48 mnit, cf. Fig. 7b and Table 3). Raw IRSL data are prese

in Table A3(Supplementary Material).

5.4. Evolution of the luminescence signal through time

Compiling the best-fit models determined for eaaimgle individually, a positive correlation between
the exposure age and the depth at which the ndR&l signal is zeroed can be clearly observed for
samples within the same lithology (Fig. 9a). If wensider the inflection point of each individual

model {x/Tx = 0.5 on Fig. 9a) as a proxy for the bleaching kleghtis value ranges between 1.7 and
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414 4.2 mm for 3 and 137 years of daylight exposurspeetively (Fig. 9b). The granitic sample MBMV6
415 does not follow this correlation, its bleaching tfepeing at 7 mm after 2-yr exposure to daylight.
416

(a) Compilation of all luminescence signals
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418 Figure9: (a) Compilation of the best-fit models for eachiwdlal sample (cf. red lines in Fig. 8). (b)
419 Correlation between the IRSL bleaching depth the.inflection point of the models presented i) (a)
420 and the exposure age of each individual sample. Tteymbol indicates the granitic sample

421 (MBMV6); all the other samples are gneiss.
422  55.Inversion for exposure age

423  Once the model parameters have been determinedfésedt sample combinations, it is possible to
424  subsequently invert the exposure age as explaibedea Figure 10 compares the exposure ages
425 inverted from the different sample combinationsthwihe observed exposure age (all results are
426  compiled in the Supplementary Table A4 and Figu.Arigure 10a shows that our modelling
427  approach is able to recover the observed exposges asing parameters determined for each
428 individual sample (<10% difference). When the expesages are inverted using the parameters
429  determined for all of the gneissic samples togetasrshown in Fig. 7b), there are slight difference
430 between the inverted exposure age and independentamtrol (Fig. 10b, Table A4 and Figure A3).
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The inverted ages are almost all within 20% ofdhserved ages except for sample MBMV11, which

IS overestimated by 90%.

Taking different calibration combinations with fo{ifig. 10c) or three (Fig. 10d) samples also

results in different performance regarding age igtexhs. For all gneissic samples, except MBMV11,

the inverted exposure ages atae still within 20% of the observed ages. Not# th our approach

the inverted exposure ages with four and three Engalibrations are only shown when the specific

sample is not part of the calibration combinatigney shadow in the Supplementary Table A4).

Although the match between the inverted and obseages, as well as the trend between samples, is

preserved independent of the calibration approaah,results show that the higher the number of

calibration sites is, the better the inversionxgasure ages would be.

(a) Calibration individually

(b) Calibration with all the samples together
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Figure 10: Correlation between inverted (median values) arsboled exposure ages resulting from

different calibration combinations to constrain thedel parameters. The error bars on the inverted

exposure ages areadas presented in Table 3 (all results presentditeiBupplementary Table A4).
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6. Discussion

Our results from the Mer de Glace glacier havenadlb to validate, over post-LIA timescales (i.e.ove
2-137 years), the assumption that the longer a soctace has been exposed to daylight, the deeper
the luminescence signal has been bleached (Polédtret., 2002; 2003; Sohbati et al., 2011; 2012).
Using the mathematical model propose by Sohbatl.e{2011), we accurately describe the time
evolution of luminescence within a rock column. Ttiéerent combinations of samples used to
calibrate the model give parameter valuep(andp) that are on the same order of magnitude for
samples within similar regions and lithology, anlielh agree with literature values (Sohbati et al.,
2011; 2012a,b).

We also observe that the evolution of luminesceasigeals with both time and depth within
bedrock is mainly controlled by rock characterstigithology, texture, weathering and mineral
composition). These rock properties will govern tight attenuation and penetration into rocks
(parameteit in Eq. 4), and thus the net bleaching effect onltinenescence signal. At the regional
scale, the lithology should preferably be uniformmetnable model calibration on some known-age
surfaces (through independent dating) before agumic to reconstruct the exposure history of other
bedrock surfaces with unknown exposure age. Wehseéén a granitic rock, comprising coarse quartz
and feldspar grains (translucent minerals), theinestence-bleaching front will propagate much
faster than in gneiss bedrock.

Our inversion approach to constrain rock surfageaosure ages from OSL data, reveals that
the number of calibration samples is critical fonstraining the model parameters and thus obtaining
accurate exposure ages. Fortunately, calibratiok sarfaces in periglacial environments can often b
found from historical or remote-sensing paleo-gaceconstructions. Other types of bedrock surfaces
can be used for independent constraint, e.g. gmblyenic structures such as road-cut outcrops (e.qg.
Sohbati et al., 2012a) or landslide scars. The awebinvestigation of OSL systems with other
surface exposure dating methods such as terrestisitl cosmogenic nuclides will also enable us to
gquantitatively assess the method’s accuracy ovayetimescales such as the late Pleistocene.

Experimental luminescence data presented in Figu@nfirms that each individual sample’s
exposure history has been recorded in its lumimescelepth profile. For the six bedrock surfaces
studied here, each luminescence profile exhibitdhgbleached signal at shallow depth (i.e. frortol
7 mm depending on both the exposure age and lgkoleig. 9), followed by a sharp transition to a
plateau of intensity deeper into the rock. Thesgk and homogeneous luminescence profiles can be
compared with complex profiles previously observielowing multi-stage exposure histories
obtained from buried cobbles (Freiesleben et @152 Sohbati et al., 2015). This confirms that the
glacially-polished surfaces we sampled along thentélovers cross-sections have experienced a
simple exposure history. Furthermore, field evidemor surface preservation with glacial features

(striations, flutes) indicate that the bedrock aces have been eroded and polished by subglacial
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processes before deglaciation. Weathering or méediagrosion may lead to an underestimation of
the true exposure age. Thereby, the inferred expdsatory from these well-preserved rock surfaces
can be used to reconstruct the paleo-glacier tegkiand extent since the LIA.

Bleaching of the OSL signal has occurred at leas thcm depth below the exposed surface
after more than 137 years of daylight exposurejliggting the high temporal resolution of this nbve
method for paleo-glacier reconstruction. In moumdas locations such as the Mont Blanc massif,
where the glacial history has been complex wittess\glacier fluctuations during the late Pleistuee
to Holocene (recurrent retreat/advance cycles; leeRoy et al., 2015), the application of absolute
dating methods such as terrestimsitu cosmogenic nuclides are difficult due to potenitiieritance
from previous exposure events (e.g. Goehring et28l11). One of the main advantages of OSL
surface exposure dating is that daylight bleactohghe OSL signal occurs within the first few
millimetres below the exposed rock surface. Shtatigr re-advances over the late Holocene (e.g.
LeRoy et al., 2015) would have easily eroded thst tientimetres of bedrock, consequently resetting
the OSL system before the post-LIA glacier retr&se have thus shown in this study that well-
preserved polished bedrock surfaces can be usdldef@pplication of OSL surface exposure dating in
order to constrain the timing of the last glaciefreat from the LIA to present day, improving our
temporal resolution for glacier reconstruction. Osech timescales, the contribution of the trapfl
rate E(x) in Section 2.3) from radioactive decay in gneiszigyranitic rock can be assumed to be
negligible (see Supplementary material A2). Howeveis contribution may have to be taken into
account when extending paleo-glacier reconstruatising OSL surface exposure dating to longer
timescales, e.g. since the Last Glacial Maximunfudiher back into the Quaternary. Over the same

timescales, weathering and erosion of the surfexélely to play a significant role.

7. Conclusions

In this study, we have investigated the potentfaD8L surface exposure dating for quantitatively
reconstructing post-LIA glacier retreat. We workadng an altitudinal cross-section of the Mer de
Glace glacier (Mont Blanc massif, France), andeatéd glacially-polished bedrock surfaces with
known exposure ages (from 3 to 137 years) alongvibetenvers profile from around 1841 m.a.s.|.
elevation to the present-day glacier position (1696.s.1.). We have developed a statistical apjbroac
to calibrate the bleaching model parameters fromwkniage samples. Experimental IRSL depth-
profile data for five different polished bedrockfaeces show an increase of the luminescence signal
bleaching depth with exposure age. We conclude@$it surface exposure dating can be applied to
glacial and periglacial environments, and is a psong tool for high-resolution reconstruction of
recent ice-extent and thickness fluctuations, biotepace and time. However, we find that several
calibration samples must be used to calibrate théeinparameters before inferring exposure ages on

bedrock surfaces within a specific area, taking iaccount the potential variation in bedrock
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lithology. We also find that measurement unceriestintrinsic data noise or both can result igéar

uncertainties on inverted ages, especially whetyagpthis method over £a10° yr timescales.
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684  Figure Al: (a) Reconstruction of averaged ice-surface elendtn.a.s.l.] through time along the Mer
685 de Glace glacier (see locations of cross-section$-ig.1). Averaged ice-surface elevations at the

686  Montenvers (crosses) and Echelets (circles) cresems. The cross-sections 1 and 2 (red dashed
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lines) have been interpolated from the MontenvatsEEchelets cross-sections, and used to project the
studied samples (yellow circles). (b) Ice-surfalewation with respect to the horizontal distanaerfr

the glacier terminus used for the interpolationh& Montenvers and Echelets cross-sections. The ice
surface elevations have been reconstructed frontorlual maps, survey reports and aerial
photogrammetry (modified from Vincent et al., 2018)e dataset was kindly provided by the French
glacier observatory GLACIOCLIM_(http://www-Igge.ugirenoble.fr/ServiceObs/index.htm).

A2. Doserate sensitivity

The sensitivity of luminescence signal evolutiortite dose rate is tested after four different agogli
exposure times (1, 10, 100 and 1000 years of exepswith a null dose rate and an extremely high
dose ratelf ~ 14 Gy k&, King et al., 2016). We used an equation develdpe8ohbati et al. (2012)
describing the luminescence evolutibfx) as a function of the exposure timgs], depthx [mm],
charge detrapping ra@p, [s'], attenuation facton [mm?], a sample-dependent constant that

characterises filling ratd, [Gy] and the natural dose radie[Gy s7].

o e-nxs D)
5P e~ H¥e t[aq)oe ux gy Do ]"'%? (Al)

L(x) =

— A& D(x)
ux 2
ag@Pg e + Do

The resulting comparison shows that the lumineseesignal is not sensitive to dose rate over
millenial timescales. We thus consider the dose aatnegligible for our applications of OSL surface

exposure dating, and do not take it into accouthhéluminescence evolution equation.

(a) Null dose rate ; (c) Comparison
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Figure A2: Evolution of the nomalised luminescence signeduigh time and depth for 1, 10, 100 and
1000 years of daylight exposure, taking into actdajh a null dose rate and (b) an extremely high
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dose rate of ~14 Gy/ka (King et al., 2016). Insgtshows the comparison between the result with two

different dose rates.

A3. Luminescence measur ement tests

The purpose of the following tests is to find thestappropriate infrared stimulated luminescence
(IRSL) measurement conditions for analysis of tbected samples from the Montenvers site. We
first performed a residual dose determination. Umadgural daylight conditions, luminescence signals
of feldspar may not be completely reset, leavingesidual dose. The residual test allows the
evaluation of this remaining natural dose (whichyraéso originate from other sources e.g. thermal
transfer). We first reset the luminescence sigyatxposing rock slices (3 slices for a represevgati
sample of Montenvers site) to daylight for aboutddirs before analysing both slide sides. We then
measured the residual dose using infrared stinamadt 50°C (IRSky) following different preheat
temperatures (during 60 s). The residual dose affgeheat temperature of 250°C is 0.25 + 0.45 Gy.
With preheat temperature equal to 275°C, the residiose is 0.85 + 0.43 Gy. For preheat temperature
equal to 300°C and 325°C, the residual doses iger¢éa 2.94 + 0.41 Gy and 2.10 + 0.52 Gy

respectively.

We then proceeded to a dose recovery test witheptghlateau to determine the most
appropriate preheat temperature. Thereby we giethtiie recovered doses with IRgEor the same
range of preheat temperatures explored in the uaksidtest. We analyzed 3 rock slices with a
laboratory beta dose of 27.25 Gy after completealbleaching (both disk sides exposed to dayligh
for about 3 hours). The samples were not heatexnt fhie daylight bleaching. Preheat temperatures
250°C, 275°C, 300°C, 325°C were investigated, asdlts are corrected for the residual dose values
reported in Table Al. For preheat temperaturess6f@, 275°, 300°C and 325°C, we obtained dose
recovery ratios of 0.90 £ 0.10, 0.87 £ 0.17, 0.70.23 and 0.85 + 0.15, respectively (Table Al). The
optimal preheat temperature for both the residoakdand dose recovery is thus 250°C, and was used

in all subsequent experiments.

Table Al: Results of the residual test and the dose recoweslyeat plateau test after a given beta
dose of 27.25 Gy.

Preheat Temperature (°C) 250 275 300 325
Residual dose (Gy) 0.25+0.45 0.85+0.43 294 +041 2.1+0.52
Dose recovery ratio 0.9+0.10 0.87 £0.17 0.77£0.23 0.85+0.15

Table A2: Sensitivity corrected luminescence signal inteesitwith depth. The deptk (cm) is

measured during core slicing with a high-precisimmmerical micrometre. IRSL measurements
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743  (Lx/Tx)are the results of the luminescence analysis (alsieed in Section 4) and the analytical error
744  on the measurement)/Tx err.)is calculated in Analyst v.4.31.7 including a measwent error of
745  1.5%. Note: Each line corresponds to the measureofieme single rock slice.

MBMV1 MBMVE MBMV7 MBMV8 MBMV10 MBMV11
x [em] Lx/Lx  Lx/Txerr. x [cm] Lx/Lx  Lx/Txerr. x [em] Lx/Lx  Lx/Txerr. x [em] Lx/Lx  Lx/Txerr. x [em] Lx/Lx  Lx/Txerr. X [cm] Lx/Lx  Lx/Txerr.
16 0.00 0.000 13 0.00 0.000 23 0.01 0.000 15 0.31 0.007 24 0.42 0.009 22 0.00 0.000
26 0.01 0.000 2.4 0.00 0.000 3.3 0.1 0.002 238 0.62 0.013 3.6 0.76 0.016 3.3 0.01 0.000
3.6 0.34 0.007 3.4 0.00 0.000 4.4 0.99 0.021 3.9 0.92 0.020 4.7 1.05 0.022 4.2 0.27 0.006
4.7 0.60 0.013 45 0.04 0.001 5.4 1.06 0.023 5.0 1.04 0.022 5.6 091 0.019 5.2 0.62 0.013
57 0.86 0.018 55 0.15 0.003 6.4 1.06 0.022 6.1 0.96 0.020 6.7 1.05 0.022 6.1 0.86 0.019
6.7 0.92 0.020 6.5 0.70 0.015 7.4 1.08 0.022 71 0.99 0.021 7.8 112 0.024 71 1.05 0.022
77 1.04 0.022 75 0.91 0.019 8.4 0.95 0.020 82 1.00 0.021 8.7 0.88 0.019 8.0 0.97 0.021
8.6 0.97 0.021 8.5 0.92 0.020 9.3 0.94 0.020 9.2 1.08 0.023 9.8 0.98 0.021 9.0 0.80 0.017
9.5 0.97 0.021 9.5 0.99 0.021 10.3 0.95 0.020 10.3 1.10 0.023 109 1.14 0.024 9.9 0.93 0.020
10.4 1.00 0.021 10.5 1.01 0.021 1.4 0.92 0.020 1.4 112 0.024 1.9 0.96 0.020 10.8 0.89 0.019
1.4 1.05 0.022 1.5 1.03 0.022 124 0.94 0.020 124 1.01 0.021 13.0 0.93 0.020 1.8 0.84 0.018
124 1.12 0.024 125 1.13 0.024 127 0.88 0.019
135 0.95 0.020 13.5 1.10 0.023 17 0.01 0.000 2.0 0.39 0.008 3.1 0.80 0.017
14.5 0.98 0.021 145 1.03 0.022 28 0.03 0.001 3.0 0.96 0.020 4.2 0.96 0.020 241 0.10 0.002
15.4 1.01 0.021 37 0.42 0.009 4.0 0.89 0.037 5.3 1.06 0.023 32 0.80 0.017
16.4 0.98 0.021 24 0.01 0.000 4.5 0.79 0.017 7.0 1.05 0.022 6.4 1.10 0.023 4.2 0.82 0.018
17.6 0.94 0.020 3.3 0.02 0.000 55 0.84 0.018 8.0 0.95 0.020 74 0.97 0.021 5.1 0.88 0.019
4.4 0.12 0.002 6.5 0.97 0.021 9.0 1.04 0.022 8.4 0.94 0.020 6.1 1.04 0.022
1.7 0.01 0.000 5.4 0.45 0.009 75 1.15 0.024 10.1 1.15 0.024 9.4 0.91 0.019 7.0 0.96 0.021
2.8 0.01 0.000 6.4 0.75 0.016 8.6 0.94 0.020 1.1 1.07 0.023 10.6 0.98 0.021 8.0 0.99 0.021
3.8 0.05 0.001 74 0.88 0.019 9.6 1.08 0.023 122 0.91 0.019 1m.7 0.87 0.018 8.9 0.92 0.020
4.8 0.34 0.007 8.4 1.10 0.023 10.7 1.12 0.024 13.2 1.01 0.021 127 1.04 0.022 9.8 0.98 0.021
5.8 0.64 0.014 9.4 1.06 0.022 1.8 0.97 0.021 137 1.04 0.022 1.7 0.92 0.020
6.8 0.97 0.021 10.4 0.92 0.020 1.8 0.85 0.018 12.7 0.91 0.020
7.8 1.02 0.022 1.4 0.96 0.020 1.6 0.00 0.000 29 0.93 0.020 1.8 0.02 0.000
8.9 0.94 0.020 12.4 0.86 0.018 2.8 0.04 0.001 4.2 1.01 0.022 3.1 0.23 0.005 1.8 0.01 0.000
10.0 1.07 0.023 13.4 0.90 0.019 3.8 0.42 0.009 5.4 0.90 0.019 4.2 0.73 0.015 2.8 0.21 0.005
14.3 1.09 0.023 4.8 0.95 0.020 6.6 0.94 0.020 53 1.09 0.023 3.8 0.60 0.013
2.3 0.03 0.001 15.2 1.09 0.023 5.9 1.06 0.022 76 1.06 0.023 6.4 0.93 0.020 4.7 0.86 0.018
3.4 0.21 0.005 6.9 1.08 0.023 8.6 0.93 0.020 74 1.00 0.021 57 0.96 0.021
4.4 0.66 0.014 1.4 0.01 0.000 8.0 0.92 0.020 9.7 1.00 0.021 8.5 0.93 0.020 6.7 0.97 0.021
5.4 0.86 0.018 22 0.01 0.000 8.9 1.07 0.023 10.7 1.06 0.023 9.7 1.07 0.023 77 0.90 0.019
6.4 0.96 0.020 3.0 0.15 0.003 10.0 0.94 0.020 121 1.04 0.022 10.8 0.96 0.021 8.7 0.94 0.020
73 1.08 0.023 3.9 0.31 0.007 1.3 0.94 0.020 13.4 0.84 0.018 96 1.04 0.022
8.3 1.01 0.021 47 0.70 0.015 124 1.00 0.021 10.6 1.21 0.026
9.2 1.10 0.023 6.3 0.93 0.020 1.5 1.00 0.021
10.2 1.00 0.021 71 0.82 0.017 124 0.93 0.020
1.2 0.96 0.020 79 0.89 0.019
123 0.88 0.019 8.6 0.89 0.019 1.9 0.03 0.001
132 0.88 0.019 9.4 0.79 0.017 3.2 0.15 0.003
14.2 0.97 0.021 41 0.53 0.011
15.2 0.90 0.019 5.1 0.99 0.021
6.1 1.05 0.022
7.0 1.1 0.024
79 1.2 0.026
8.8 1.0 0.022
9.8 11 0.024
10.7 1.2 0.026
1.6 11 0.024
0.9 0.019

749

748
749  Table A3: Best-fit values otp, andu determined for each sample, calculated from coatliins of

750  three and four samples.

Calibration 7P, s u[mm™
combination Best-fit +1o0 -lo Best-fit +1o0 -lo
with 3 samples, MBMV...

1 7 8 12107 12107 11107 151 1.52 1.50
1 7 10 6.610% 7610° 6.410° 1.42 1.43 1.38
1 7 11 9410% 9610°® 7.810° 1.42 1.45 1.39
1 8 11 7410% 7510%® 6.110° 1.39 1.39 1.34
1 8 10 10107 10107 10107 1.42 1.43 1.41
1 10 11 6.610% 8310° 6.010° 1.39 1.39 1.33
7 8 10 13107 13107 13107 1.58 1.58 1.56
7 8 11 12107 12107 12107 151 1.52 1.50
7 10 11 14107 15107 13107 1.58 1.60 1.55
8 10 11 8.110% 9.110® 7.310° 1.34 1.37 1.31
with 4 samples, MBMV ...

1 7 8 10 9510% 9910® 8510° 1.48 1.48 1.45
1 7 8 11 11107 11107 11107 1.48 1.49 1.47
1 7 10 11 7410% 8110° 6510° 1.38 1.41 1.36
1 8 1 10 9.010%® 9.410%® 8710° 1.42 1.42 1.40
7 10 11 8 12107 12107 12107 153 1.53 1.52

751
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752

753  Table A4: Inversion results for exposure age using the diffecalibration combinations of bedrock
754  samples. Grey shading shows the inverted resufts fepecific sample when not included in the
755  calibration combination (i.e. the exposure agenhefdpecific sample has not used for the calibraifon

756  the model). These results are used to producedsdiiic-d.
757

Calibration MBMV1 - 137 yrs MBMV?7 - 69 yrs MBMV8 - 3 yrs MBMV10 - 18 yrs MBMV11 - 30 yrs
combination Best fit Median +20 -20 BestfitMedian +20 -20 Bestfit Median +20 -20 Bestfit Median +20 -20 Bestfit Median +20 -20
Individually 146 152 172 126 89 79 88 67 2 3 3 2 19 19 23 14 50 42 50 34
with all the sample excluding 164 167 185 132 61 63 6 5 3 3 4 3 17 14 18 9 62 57 70 41
MBMV6

with 3 samples, MBMV...

1 7 8 184 166 190 136 56 62 67 56 3 3 3 2 9 13 17 9 53 54 69 40
1 7 10 194 183 213 146 77 80 88 71 5 5 5 4 21 18 23 13 90 69 88 50
1 7 11 118 126 149 103 56 56 61 50 3 3 4 3 15 12 16 9 57 50 61 35
1 8 11 122 135 159 104 61 63 70 56 3 4 4 3 13 15 18 10 55 53 68 39
1 8 10 106 113 134 92 50 50 55 45 3 3 3 2 14 12 15 8 50 43 55 31
1 10 11 174 150 181 119 67 71 80 63 4 4 5 4 17 17 21 12 44 61 77 44
7 8 10 181 211 242 173 78 74 82 64 3 3 3 2 16 13 17 9 78 65 78 48
7 8 11 165 162 189 136 66 62 67 56 3 3 3 2, 14 13 17 9 40 54 68 40
7 10 11 206 189 216 155 65 65 73 57 & & & 2 15 12 15 8 65 58 70 43
8 10 11 116 93 116 71 46 50 55 43 3 3 4 3 11 12 15 9 52 42 52 29
with 4 samples, MBMV ...
1 7 8 10 176 170 194 139 63 67 73 61 4 4 4 3 10 15 19 10 68 61 75 43
1 7 8 11 177 152 174 125 63 59 64 54 3 3 3 3 15 13 17 9 63 52 66 38
1 7 10 11 129 129 154 98 58 62 69 54 4 4 4 & 13 14 18 10 38 52 66 38
1 8 11 10 117 134 155 106 58 58 64 52 4 3 4 3 16 13 17 9 42 52 64 36

159 168 196 141 63 63 69 56 2 3 3 2 16 13 16 9 52 55 69 41

758 7 10 11 8
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Figure A3: Natural infrared stimulated signal (solid line,)Land test dose (27.25 Gy) subsequent

luminescence response (dashed line, Tx) for a béshsignal (surface disc) (a) and (b) and for non-
bleached signal (inside core disc) (b) and (c).afa) (b) are IRSL signal representative for gneissi
lithology (sample MBMV1). (c) and (d) for granitiithology (sample MBMV6).
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