
1.  Introduction
Majority of the most powerful supercomputers on the world host hardware accelerators to sustain calcula-
tions at the petascale level and beyond. Graphical processing units (GPUs) are amongst widely employed 
hardware accelerators, initiating a revolution in high-performance computing (HPC) in the last decade. The 
three-dimensional calculations targeting billions of grid cells – technically impossible resolutions decades 
ago – became reality. This major breakthrough in HPC and supercomputing comes however with the cost of 
developing and reengineering scientific codes to efficiently utilize the available computing power. Increas-
ing the low-level parallelism is the key. In Earth sciences, HPC and GPU-accelerated applications target in 
particular forward and inverse seismic modeling and geodynamics – fields where high spatial and temporal 
resolutions as well as large spatial domains are required. We here develop a multi-GPU implementation for 
applications in seismic modeling in porous media.

Understanding seismic wave propagation in fluid-saturated porous media enables more accurate interpre-
tation of seismic signals in Earth sciences. The two phase medium is represented by an elastic solid ma-
trix (skeleton) saturated with a compressible viscous fluid. The dynamic response of such an isotropic two 
phase medium results in two longitudinal waves and one shear wave, as predicted by Frenkel (1944) (see 
also Pride and Garambois (2005)). The wave of the first kind (fast wave) is a true longitudinal wave where 
the solid matrix motion and the fluid velocity vector fields are in-phase. The wave of the second kind (slow 
wave) is a highly attenuated wave where the solid matrix motion and the fluid velocity vector fields are 
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out-of-phase. Depending on the medium's properties, the slow wave may propagate as a longitudinal wave, 
or it may diffuse and attenuate quickly. Maurice Anthony Biot performed systematic studies of solid-fluid 
deformation in porous media based on the Hamiltonian principle of least action. He first investigated a 
static loading known as the theory of consolidation (Biot, 1941; Biot & Willis, 1957). The mathematical 
description of the macroscopic coupled solid-fluid deformation in a porous medium is analogous to the 
theory of thermoelasticity (Biot, 1941; Zimmerman, 2000). Biot later developed the theory of poroelasticity 
or Biot's theory for wave propagation in fluid-saturated media (Biot, 1956a, 1956b). Biot summarized these 
results in Biot (1962a); Biot (1962b) and provided a final set of unknown fields, parameters, as well as, a 
guidance to expand poroelasticity to include viscoelasticity and non-linear effects (Biot, 1965). Fluid flow in 
porous media in Biot's theory is assumed to be laminar, described by Darcy's law (Biot, 1956b), and is usual-
ly referred to as the low frequency Biot's theory. If the fluid flow is accelerated, viscous boundary layers form 
in the pores and a slight modification of Biot's equations is needed to account for this high frequency effect 
(Biot, 1956a). We focus in this study on the low frequency Biot's theory (Biot, 1956b). A detailed analysis of 
the coupled solid-fluid deformation in a porous media can be found in various recent studies, for example 
Bourbié et al. (1987); Wang (2000); Cheng (2016). Approximations based on this theory are widely used in 
biology and medical imaging, and in Earth sciences (e.g., Carcione (2014)), they are used in seismic explo-
ration, seismic monitoring of geological CO2 sequestration and nuclear waste disposal, geothermal energy 
production and hydrogeology.

One of the main application of Biot's equations in Earth sciences is the estimation of seismic dispersion and 
attenuation in porous media due to wave-induced fluid flow. Several wave attenuation mechanisms related 
to fluid flow arise from Biot's theory (Müller et al., 2010; Pride et al., 2004). The first attenuation mechanism 
introduced by Biot is the global fluid flow, which occurs at the wavelength scale of a propagating wave. In 
this mechanism, the dissipation is caused by the relative fluid motion between the solid matrix and the 
fluid (Biot, 1956b). The second mechanism is the wave-induced fluid flow at the mesoscopic scale. This 
scale is defined as much larger than the sizes of individual pores but much smaller than the wavelength 
of a propagating wave (Pride et al., 2004; White et al., 1975). In this mechanism, the dissipation is caused 
due to fluid-pressure gradients arising between mesoscopic heterogeneities in the medium. For example, 
fluid-pressure gradients appear between highly permeable structures such as fractures and the embedding 
solid matrix of much lower permeability. Wave-induced fluid flow at microscopic scale also occurs and is 
referred to as squirt flow, in which fluid-pressure gradients take place between compliant and stiff pores 
(Dvorkin et al., 1995; Mavko & Nur, 1975). Other mechanisms involve different kinds of wave scattering 
and wave mode conversions at interfaces. Possible non-linear viscous and plastic effects are small for most 
of the applications in applied seismic and are then neglected under the linear approximation assumption.

The aforementioned analytical approaches for wave-induced fluid flow at global and mesoscopic scales 
mainly exist for simple geometries. For more complex geometries, a numerical approach is needed to es-
timate seismic dispersion and attenuation. In principle, it can be done numerically in two ways. One ap-
proach relies on direct modeling of wave propagation in porous media and estimation of dispersion and 
attenuation of a propagating wavelets (Caspari et al., 2019; Masson et al., 2006). The other approach is based 
on a quasi-static numerical modeling and estimation of effective frequency-dependent elastic properties. 
The modeled frequency-dependent properties are used to retrieve dispersion and attenuation of seismic 
waves (Hunziker et al., 2018; Masson & Pride, 2007; Quintal et al., 2011; Rubino et al., 2009).

During the last three decades a significant number of studies targeted numerical simulations of wave prop-
agation in poroelastic media. A detailed review of early studies is given in Carcione et al. (2010). Differ-
ent methods have been used, based on combined finite-volumes/differences on structured grids (Blanc 
et  al.,  2013; Carcione & Quiroga-Goode,  1995; Chiavassa et  al.,  2010; Chiavassa & Lombard,  2011; Dai 
et al., 1995; Masson et al., 2006; Özdenvar & McMechan, 1997; Wenzlau & Müller, 2009; Zeng et al., 2001; 
Zhu & McMechan, 1991), pseudo-spectral methods (Özdenvar & McMechan, 1997), discontinuous Galer-
kin methods (de la Puente et  al.,  2008; Dupuy et  al.,  2011; Shukla et  al.,  2019,  2020; Ward et  al.,  2017; 
Zhan et  al.,  2019), spectral element methods (Morency & Tromp,  2008), and finite-volume methods 
(Lemoine, 2016; Lemoine et al.,  2013). Most of these studies implemented the corresponding equations 
as a first-order hyperbolic system and used explicit time integration schemes as it is convenient for the 
elastic wave propagation, except for (Morency & Tromp,  2008; Özdenvar & McMechan,  1997), where a 
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second-order system was considered. Moczo et al. (2019) and Gregor et al. (2021) investigated the accuracy 
of the discrete characterization of material heterogeneities and subcell-resolution for the finite-difference 
modeling of Biot's equations.

A major challenge in the numerical modeling of Biot's equations relies in the treatment of the dissipation 
term in the equations of motions. This term is represented by a parabolic operator coupled to viscosity, per-
meability, and density and, affects the numerical stability of the entire system of equations. The diffusion 
process exhibits a much larger characteristic time scale then the wave propagation process, which makes 
Biot's equations “stiff,” thus challenging to solve. A straightforward explicit time integration of a “stiff” sys-
tem is possible but requires very small time steps and is computationally inefficient. Various studies discuss 
stability conditions in the scope of poroelastic wave propagation and report a series of issues (Carcione & 
Quiroga-Goode, 1995; Chiavassa & Lombard, 2011; Masson et al., 2006). A more detailed discussion regard-
ing the stability of discrete schemes of Biot's equations can be found in Alkhimenkov et al. (2020).

We here propose a multi-GPU numerical implementation of the anisotropic elastodynamic Biot's equations 
building upon three key ideas: Concise numerical implementation, high numerical resolution, and high 
computational efficiency. A concise numerical implementation means that we designed a simple and short 
numerical code ensuring it is suitable for parallel GPU devices. We use a variant of a conservative staggered 
space-time grid discretization (Virieux, 1986), which is equivalent to a finite volume approach (Dormy & 
Tarantola, 1995). High numerical spatial resolution up to six billion grid cells permits us to resolve very 
complex geometries. High computational efficiency allows our numerical model to simulate, in a few sec-
onds only, wave fields in domains involving over 1.5 billion grid cells. We further explore several aspects of 
Biot's equations, namely, wave propagation in poroelastic isotropic and anisotropic media, fluid diffusion, 
dimensional and dispersion analyses, and numerical stability. The resulting code is implemented in CUDA 
C, which is suitable for programmable Nvidia GPU devices. The choice of a rectangular grid is determined 
by the usage of GPUs, so that the numerical implementation is straightforward. We provide the Matlab, 
symbolic Maple, and GPU CUDA C routines to reproduce the main presented results. These routines are 
available for download from Bitbucket at https://bitbucket.org/yalkhimenkov/fastbiot_gpu3d_v1.0 (last ac-
cess: February 8, 2021). The routines archive (v1.0) (Alkhimenkov et al., 2021) is available from a permanent 
DOI repository (Zenodo) at http://doi.org/10.5281/zenodo.4519367 (last access: February 8, 2021).

The novelties of the present article are summarized as following:

1.	 �We present a dimensional analysis, reducing the number of needed material parameters from ten to four.
2.	 �We perform a dispersion analysis as a function of dimensionless parameters.
3.	 �We achieve a close-to-ideal parallel efficiency (98% and 96%) on a weak scaling tests up to 128 GPUs and 

an effective memory throughput efficiency of 90% for the 3D anisotropic poroelastic wave propagation 
code.

4.	 �We achieve a very fast execution time (seconds) using high-resolution models involving more than 1.5 
billion grid cells.

2.  Elastodynamic Biot's Equations in Isotropic Media
2.1.  Constitutive Equations

We describe the elastodynamic Biot's equations for an isotropic medium saturated with a single phase fluid. 
We use a classical velocity-stress formulation for the Biot's equations. The equations describing a two phase 
continuum mainly differ from the single phase continuum formulation (see Appendix A) by the presence 
of both solid and fluid velocities and, as well as both solid and fluid pressure fields. Furthermore, the scalar 
parameters linking stresses and velocities in the single phase continuum become a symmetric coefficient 
matrix in the two phase continuum. The set of equations describing a two phase continuum (solid and flu-
id) was formulated in the theory of poroelasticity (Biot, 1956b, 1962a). The symmetric coefficient matrix is 
positive definite, which directly follows from the elastic potential energy. Biot's equations can be written in a 
symmetric form by separating volumetric and deviatoric parts of the stress tensor. Lists of symbols are given 
in Tables 1 and 2. The constitutive equations are (Biot, 1962a; Pride et al., 2004; Wang, 2000; Yarushina & 
Podladchikov, 2015)
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linking the stress-strain relations for the solid and fluid phases with the 
conservation of mass (Equation 1) and representing the deviatoric stress-
strain relation for the solid phase (Equation 2). The constitutive Equa-
tions 1 and 2 are written for the total pressure p and fluid pressure fp ,  
as it was originally suggested in Biot (1962a). The porosity   in Darcy's flux  

D
iq  is constant in time but can be different spatially throughout the model 

domain.

For an isotropic material saturated with a single fluid, in which the solid frame consists of a single isotropic 
mineral, the Biot-Willis coefficient is

     1 / 1 / / ,d g d uK K K K B� (3)

where uK  is the undrained bulk modulus
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M is the fluid storage coefficient
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2.2.  Dynamic Equations

The conservation of linear momentum (Newton's second law or dynam-
ic equations) can be written in a symmetric form (Biot,  1962a; Pride 
et al., 2004; Wang, 2000; Yarushina & Podladchikov, 2015)
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where    /a f T , T  is the tortuosity and  , , 1, ,3i j k . The off-diag-
onal parameter fluid density  f  can be considered as the added mass 
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Symbol Meaning Unit

 s,  f solid and fluid stress Pa

sp , fp solid and fluid pressure Pa

 s,  f solid and fluid stress deviator Pa

sv , fv solid and fluid velocity m/s

 s,  f solid and fluid density kg/m3

gK , fK elastic solid and fluid bulk modulus Pa

gG , G elastic solid and drained shear modulus Pa

dK , uK elastic drained and undrained bulk modulus Pa
 fluid shear viscosity Pa⋅s

k Permeability m2

 Porosity -

Table 1 
List of Principal Notation

Symbol Meaning

p     1 s fp p , total pressure

 total stress

 total stress deviator

D
iq  ( )f s

i iv v , Darcy's flux

t      1 s f , total density

 Biot-Willis coefficient

B Skempton's coefficient

ij Kronecker delta

Table 2 
Shorthand Notations
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coefficient. Equation 8 is analogous to that of a single phase media (Equation (A11)), the only difference 
being the substitution of the scalar density by a coefficient matrix with same dimensions.

Equations 1–8 are the elastodynamic Biot's equations for an isotropic medium saturated with a single phase 
fluid. The experiments to obtain poroelastic parameters are given in Appendix B. We emphasize that the 
matrices of coefficients in Equations 1 and 8 are symmetric. This symmetry combined with the non-dimen-
sional analysis make it possible to derive the dispersion relations in a simple explicit form using symbolic 
calculations (Maple).

3.  Dimensional Analysis of the Elastodynamic Biot's Equations
Dimensional analysis of PDEs unveils the impact of various physical parameters on the considered physical 
system. The original Biot's Equations 1–8 contain many material parameters making it difficult to under-
stand how they affect the response of a poroelastic continuum. For enhanced clarity, we present a dimen-
sional analysis of the elastodynamic Biot's equations. This analysis reduces the number of material param-
eters from ten to four, isolating the governing independent physical quantities.

For conciseness, we present our physical system as a one dimensional example to express the total stress 
tensor as a combination of the volumetric and deviatoric stresses (the entire analysis can be applied to 
three-dimensional continuum)

   
  

  
p

t t t
� (9)

we introduce the compliance  
 

1
11 Pads  and the total density   

 
3kg/mt  to express Equations 1, 2, and 8 

in a dimensionless form. Compliance 11
ds  relates to the drained bulk modulus dK  and the shear modulus G

 11 1 / ( 4 / 3 ),d
ds K G� (10)

which has dimensions of  
 

1Pa . We first extract 11
ds  and t out of the parentheses in Equations 1, 2, and 8 

(leaving only dimensionless parameters inside). We reformulate the system using Equation 9 as




 

                          

11
1

s

d
Dfa

v
t xs p q

t x

� (11)

and
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where
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4 / 31 ,a
u
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B K
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is a dimensionless parameter (the apparent Biot-Willis coefficient).

We then substitute
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* s  is the characteristic time and the superscript ˜ refers to the 
dimensionless quantities. The resulting system of equations reads
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The four dimensionless parameters  , a,  ft, and at define the coupling between the solid and fluid phase. 
The two key dimensionless parameters 1I  and 2I  denote the ratio between advection and diffusion time 
scales and relate to hyperbolic (advection) and parabolic (diffusion) processes, respectively. The pore fluid 
pressure transport time scale

 
* 2

* ( )x
d

L
D

� (23)

refers to the characteristic time scale of diffusive processes. The elastic travel time scale

 
*

* x
a

d

L
V

� (24)

refers to the characteristic time scale of advection processes. In order to further reduce the number of pa-
rameters, we set 1 1I . From Equation 19, * *

x dL V , therefore, Equation 21 becomes
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where  * is a free parameter. We further choose  * as
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1
* .

tk
� (26)

Equation 25 becomes

  
  


 

    
 

1
*

2 1
t t t

I
k k k

� (27)

Taking into account that 1 1I  and 2 1I , we reformulate Equation 18 as




 

    
                        


 

 
 

1
.

s

ft
D

ft at fD

v
t x

pq q
xt

� (28)

Equations 17 and 28 are the dimensionless elastodynamic Biot's equations for an isotropic medium saturat-
ed with a single fluid featuring only four dimensionless parameters:  , a,  ft, and at.

3.1.  Dispersion Analysis of the Elastodynamic Biot's Equations

We perform dispersion analysis to understand the behavior of the dimensionless elastodynamic Biot's 
Equations 17 and 18. For simplicity, we only consider longitudinal waves. A single harmonic plane wave 
solution is

  ( ),i t klW Ae� (29)

where A is the amplitude, i is the imaginary unit,   2 f  is the real angular frequency ( f  is the frequency),  
k  is the complex wave number, and l is the propagation direction. This solution is substituted into the 
system (17)–(18), which gives

 
 

  

   

 
   
    
   

2 2
1 1
2 2

1 1 2

0
0

0 ( ) ( )

0 ( ) ( )

a

ft

ft at

i i ik
i i ik

ik i I i I

ik i I i I I

� (30)

The dispersion relation for longitudinal waves is

  4 2
2 0 0,k a k a� (31)

where

         2 2
2 1 21 2 ( )at a ft aa I i I� (32)

               4 2 2 4 3 2 2
0 1 1 2( ) ( )ft at a aa I i I I� (33)

Equation 31 is bi-quadratic with respect to k, the four roots (±k1 and ± 2k ) are the complex functions of the 
non-dimensional angular frequency 
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
 

 2
2 2 0

1,2
4

2
a a a

k� (34)

The non-dimensional fast and slow wave phase velocities are

   
1 1 2 2/ Re( ), / Re( )V k V k� (35)

The inverse quality factors are defined as

 
2 2
1 2
2 2

1 21 2

1 Im( ) 1 Im( ), .
Re( ) Re( )

k k
Q Qk k

� (36)

If 2 0I , the fast and slow waves become the real and non-dispersive functions of the angular frequency .  
Since 2 0I  eliminates Dq  in 18, the system of Equations 17 and 18 becomes fully hyperbolic without the 
diffusive term. 2I  and the Biot-Willis coefficients   and a control the imaginary part of the wave numbers ± 

1k  and ± 2k ; they thus control dispersion and attenuation of the coupled system of equations. Setting   0a  
and    2 0a  provides an alternative way to achieve real roots in 34.

Setting 1 1I  and 2I  = 1 and using the characteristic length ( * *
x dL V ) and time ( * /( tk )) scales per-

mits to further simplify the dispersion relations (31)–(33) to

                             4 2 2 2 2 4 3 22 1 0,ft at a a ft at a ak i k i� (37)

which results in a biquadratic equation with respect to k. The four roots (±k1 and ± 2k ) are the complex 
functions of the angular frequency . The dispersion relation (37) is the most important result of the dimen-
sional analysis and relates to the final set of non-dimensional elastodynamic Biot's equations (Equation 17 
and 28).

Figure 1a shows the non-dimensional phase velocities and inverse quality factors based on the system of 
Equations 17 and 28 for a homogeneous medium, which are typical for Biot's mechanism. The properties of 
the medium are given in Table 3. The non-dimensional phase velocity 

1V  exhibits some dispersion (less than 
10%) and attenuation. The non-dimensional phase velocity 

2V  behaves as a diffusion mode at low frequen-
cies, having zero velocity. At higher frequencies, 

2V  behaves as a true propagating wave. The low frequency 
limit of 

1V  corresponds to the non-dimensional undrained phase velocity 1
LFV ,





1

1 4 / 3 .LF u

d t

K GV
V

� (38)

The high frequency limit of 
1V  corresponds to the non-dimensional undrained phase velocity 

1
HFV  which 

is larger than 
1
LFV . We calculate 

1
HFV  from the dispersion relations under the assumption of  . The 

explicit formula is given in the following section.

Multiplying non-dimensional phase velocities ( 
1V  and 

2V ) by the drained velocity dV  (Equation 20) permits 
to recover the dimensional form of the dispersion curves (Figure 1b). We retrieve the dimensional angular 
frequency   *d , where  is the non-dimensional angular frequency (the y-axis in Figure 1a) and * is 
the transformation frequency







*

*
. 

1

k
t

� (39)

We highlight that the introduced transformation frequency * is similar to Biot's characteristic frequency




 .c
fk T� (40)
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we detail a dimensional analysis where the transformation frequency coincides with Biot's characteristic 
frequency in Appendix C.

Figure 2 illustrates the advantage of the non-dimensional equations over 
their dimensional analog. The inverse quality factor 1/ 1Q  for the non-di-
mensional elastodynamic Biot's equations (Figure 2b) collapsed into the 
one curve considering the dimensional equations (Figure 2a).

The roots 1k  and 2k  of the dispersion relation (37) are the functions of the 
four material parameters and the non-dimensional angular frequency ,  
that is, 1k f  ( , a,  ft, at) and 2k f  ( , a,  ft, at). Let us analyze 
the solutions (35) and (36) as a function of the material parameters and 
. The non-dimensional phase velocities ( 

1V  and 
2V ) and the correspond-

ing quality factors (1/ 1Q  and 1/ 2Q ) as a function of the non-dimensional 
frequency  and the Biot-Willis coefficient   are shown in Figure 3. Ac-
cording to (17),   controls the coupling between solid and fluid phas-
es, low values of   (0–0.3) correspond to weak coupling and high values 
of   (0.7–1.0) correspond to strong coupling. We vary   in the range of 
(0.05, 0.95) while the other parameters remain the same. 

1V  non-linear-
ly depends on   in the whole frequency range, as   increases, 

1V  also 
increases (Figure  3a). 1/ 1Q  linearly depends on  , as   increases, 1/Q1 
only slightly decreases (Figure 3b). 

2V  and 1/ 2Q  are almost independent 
of   (Figures 3c and 3d). At low frequencies, 

2V  is almost zero and the 
quality factor 1/ 2Q  is very high (Figures 3c and 3d), which corresponds 
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Figure 1.  Phase velocities and the corresponding inverse quality factors 1/Q obtained via the dispersion analysis. (a) 
Dispersion relations for the non-dimensional elastodynamic Biot's equations, 

1V  is the wave of the first kind (non-
dimensional), 

2V  is the wave of the second kind (non-dimensional). (b) Dispersion relations for the dimensional 
elastodynamic Biot's equations. 1V  dim and 2V  dim correspond to dimensional velocities, 1V  non-dim and 2V  non-dim 
correspond to non-dimensional velocities, which were rescaled by the dimensional characteristic velocity dV  and the 
transformation frequency *. c is the Biot's characteristic frequency. The material parameters are those from Table 3.

Rock properties Carbonate

with independent units

  dK (GPa) 26

   k /k (Pa⋅s/m2) 0.001/10−12 = 1 ⋅ 109

  s (kg/m3) 2,700

nondimentional

   0.3

  T 1.9

with dependent units

  G (GPa) 15/13 ×  dK

  fK (GPa) 0.0865 ×  dK

   f (kg/m3) 0.4 × s

  Kg (GPa) 1.42 ×  dK

Table 3 
Poroelastic Properties of Carbonate
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to the diffusive regime of 
2V . At high frequencies, 

2V  is significant and the quality factor 1/ 2Q  is almost zero, 
which corresponds to the regime where the slow wave behaves as a true longitudinal wave. The character-
istic frequency where the transition from the diffusive to propagation regimes occurs is not affected by  .

Figure 4 is similar to Figure 3 but instead of  , the variations of  ft are shown. We vary  ft in the range of 

 
 0.1, at  while the other parameters remain the same. The non-dimensional parameter  ft controls the 

coupling between solid and fluid phases in the dynamic Equation 18. 
1V  and 1/ 1Q  non-linearly depend on  ft 
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Figure 2.  The inverse quality factors 1/Q of the the wave of the first kind. (a) 1/Q for the non-dimensional 
elastodynamic Biot's equations having different viscosities and permeabilities, all collapsed into one curve. (b) 1/Q for 
the dimensional elastodynamic Biot's equations for the same data set of viscosities and permeabilities. The material 
parameters are those from Table 3, except for viscosities and permeabilities.

Figure 3.  Non-dimensional phase velocities ( 
1V  and 

2V ) and the corresponding quality factors (1/ 1Q  and 1/ 2Q ) as a 
function of the non-dimensional Biot-Willis coefficient  and the non-dimensional angular frequency . The material 
parameters are those from Table 3.
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(Figures 4a and 4b), while at low frequencies (  [10−4, 10−1]), 
1V  is independent on  ft (Figure 4a). 

2V  and 
1/ 2Q  are almost independent on  ft in the whole frequency range (Figures 4c and 4d).

4.  Numerical Implementation of the Elastodynamic Biot's Equations
We solve the first order velocity-stress formulation of the elastodynamic Biot's Equations 1–8 on a rectan-
gular time-space grid. We base our approach on a conservative staggered space-time grid discretization 
(Virieux, 1986); for Darcy's flux, we use a semi-implicit discretization (Alkhimenkov et al., 2020). A conserv-
ative staggered space-time grid discretization is equivalent to a finite volume approach (Dormy & Taranto-
la, 1995) (see also LeVeque (1992)). This approach follows from the early Marker and Cell (MAC) method 
which is a classical method in computational fluid dynamics (Harlow & Welch, 1965; McKee et al., 2008). 
Field variables are located either at the cell center or corners and, fluxes are computed at the cell bound-
aries resulting in a conservative staggered grid formulation. Other similar methods were developed such 
as the standard staggered grid scheme (Levander,  1988; Virieux,  1986; Virieux & Madariaga,  1982), the 
rotated staggered grid scheme (Saenger et al., 2000), and the Lebedev scheme (Davydycheva et al., 2003; 
Lebedev, 1964; Lisitsa & Vishnevskiy, 2010). The elastodynamic Biot's equations using the standard stag-
gered grid scheme were solved by Masson et al. (2006). Moczo et al. (2007) provides a review on staggered 
finite-difference methods for wave propagation in elastic media.

4.1.  The First Order Elastodynamic Biot's Equations with a Volumetric-Deviatoric Split

Numerically solving the elastodynamic Biot's Equations 1 and 8 requires the coefficient matrices in 1 and 8 
to be inverted. This formulation leads to a system of equations describing poroelastic wave propagation in 
three-dimensional media and can be solved explicitly:
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Figure 4.  Non-dimensional phase velocities ( 
1V  and 

2V ) and the corresponding quality factors (1/ 1Q  and 1/ 2Q ) as a 
function of the non-dimensional parameter  ft and the non-dimensional angular frequency . The material parameters 
are those from Table 3.
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where     2Θ t a f . Note that the coefficient matrices in Equations 41 and 43 are symmetric by analogy 
Equations 1 and 8. Symmetry combined to non-dimensional analysis is a requirement that allows us to 
derive a time stepping condition in the explicit form.

4.2.  Discretization

The numerical implementation consists of a time evolution operator to perform time steps within a time 
loop and space operators to relate fields at old and new times. We rely on a rectangular time-space grid. The 
time discretization is lt  =  Δl t and the spatial grid is ix  =  Δi x, jy  =  Δj y, and kz  =  Δk z. The velocity vector field 
and the Darcy's flux are defined at half-integer spatial nodes and integer time nodes:

     1/2, , , 1/2, , , 1/2 1/2, , , 1/2, , , 1/2( ) , ( ) , ( ) , ( ) , ( ) , ( ) .s l s l s l D l D l D l
x i j k y i j k z i j k x i j k y i j k z i j kv v v q q q� (44)

The total and fluid pressure scalar fields are defined at integer spatial nodes and half-integer time nodes: 
1/2
, ,( )l

i j kp , 1/2
, ,( )l

f i j kp . The stress deviator tensor fields are defined as  
 

1/2
1/2, 1/2,( )l

xy i j k, 

 

1/2
1/2, , 1/2( )l

xz i j k ,  
 
1/2

, 1/2, 1/2( )l
yz i j k .  

A schematic representation of spatial positions is shown in Figure 5. The proposed discrete scheme is second 
order accurate in space and time. The material parameters are constant inside the finite volumes and may 
be discontinuous between them. The discrete operators for Biot's Equations 41–43 are given in Appendix E.

4.3.  Stiffness of Biot's Equations

Wave propagation and fluid pressure diffusion in poroelastic media occur simultaneously but feature very 
different time scales. This phenomenon is called stiffness of the Biot's equations (e.g., Carcione and Quiro-
ga-Goode (1995)). Stiffness of an equation is a serious issue for numerical solutions because the discrete 
time step may drop to values hindering the numerical simulation to complete. A simple solution exist to 
circumvent this issue for Biot's equations (Alkhimenkov et al., 2020; Masson et al., 2006), briefly reported 
here. The one-dimensional discrete version of 43 is
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Figure 5.  A sketch representing (a) the finite volume, where the solid 
velocities preserve mass balance and (b) the spatial positions of different 
fields in the X–Z plane. Darcy's fluxes obey the same behavior.
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The weight parameter   plays the key role in the numerical solution of Biot's equations. The case   = 0 
corresponds to a fully explicit scheme; calculating 1/2[ ]D lq  (45) only requires 1/2[ ]D lq . In this case, the sta-
ble time step becomes very small due to the stiffness of Biot's equations. The opposite end-member   = 1 
corresponds to an implicit scheme where the stiffness no longer affects the time step stability; calculating 

1/2[ ]D lq  (45) requires 1/2[ ]D lq . Since Biot's equations do not contain spatial derivatives of the Darcy's flux 
D
xq  in 45, the implicit scheme   = 1 can be achieved in an iterative fashion (i.e., updates in the iteration loop 

are explicit). The one dimensional code for   = 1/2 is shown in Figure 7. The weight parameter   plays the 
key role in the stability and convergence rate of the numerical scheme which is explored in the next section.

4.4.  Von Neumann Stability Analysis

The von Neumann stability method analyzes a time evolution of a discrete numerical solution of a given 
PDE. The method provides the stability of linear schemes with constant coefficients. We here summarize 
the von Neumann stability analysis' main results (Alkhimenkov et al., 2020) for Biot's poroelastic equations' 
discrete scheme (see also Masson et al. (2006)). For that let us introduce the matrices of coefficients

  


  
   

       
   

11 12

21 22

4 / 3u
ij

K G M
M M� (46)

and

 
 

   
       
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11 12

21 22

1 ,
Θ

a f
ij

f t

 


 � (47)

the parameter Θ is already defined in 43. The determinants of these matrices are

      2 2
11 22 12 11 22 12det( ) , det( ) ,ij ij   � (48)

and the Hadamard product (element-wise multiplication) of  ij and ij  is

hij ij 








( ) .

 
    
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11 11 12 12

21 21 22 22

� (49)

The parameter A is defined as

  11 22 122A h h h� (50)

By using (48) and (50), the fast wave phase velocity in the high-frequency limit 1
HFV  can be calculated as






      
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1/2
2

1
4det( )det( )

.
2det( )det( )

ij ijHF

ij ij

A A
V




� (51)

The matrices  ij, ij , and  k /k fully describe the dimensional elastodynamic Biot's Equations 41–43. The 
main issue with the numerical modeling of the Biot's equations is the treatment of the parabolic operator in 
(Equation E14) and (Equation E15). If k = 0, then the system (41)–(43) corresponds to the two coupled hyper-
bolic equations, having two longitudinal waves. The stability analysis shows that the Courant-Friedrichs-Lewy 
(CFL) condition for such system is 1Δ Δ / HFt x V  (Alkhimenkov et  al.,  2020), where 1

HFV  is  
given by expression (51).

If k ≠ 0 and    =  0, then the parabolic operator  [ ]D
fD q  in (Equation  E14) and (Equation  E15) affects 

stability and the system of equations becomes stiff. If k reaches a certain value, the stable time step Δt 
dramatically decreases as a function of k (Figure 6a). The increase in porosity   also reduces Δt but this 
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reduction is small compared to the reduction due to the increase of k. However, for the   = 1/2 scheme or 
  = 1 scheme, the parameter k does not affect the stable time step Δt (Figure 6b). In this case, the parabolic 
operator  [ ]D

fD q  is calculated implicitly, thus, the CFL condition is not affected by k. The   = 1/2 or   = 1 
schemes are stable in one space dimension under the CFL condition

1

ΔΔ ,HF
xt

V
� (52)

where the expression for 1
HFV  is given by Equation 51, which is the same as for the inviscid case. The   = 1/2 

scheme is more preferable than the   = 1 scheme, since the   = 1/2 scheme provides a second order accu-
racy, which is explored below.

For any considered above schemes, the matrices  ij and ij  must be positive definite as well in order to 
preserve hyperbolicity of the system (Alkhimenkov et al., 2020). The positive definiteness of the matrix in 
Equation 41 and ij  also follows from physics, for example, from the classical irreversible thermodynamics 
(Jou et  al.,  2001; Yarushina & Podladchikov,  2015). Note, that the positive definiteness of the matrix in 
Equation 41 is a more restrictive condition than the positive definiteness of  ij (46) and are the same if the 
shear modulus G is zero.

The extension of the CFL condition (52) to the two, three and n-dimensions is straightforward

1 1 2

1Δ .
1

Δ
nHF
i

i

t
V

x


� (53)

If Δ ix  = Δx, then

1

ΔΔ .
HF

xt
nV

� (54)

The conditions (52)–(54) can be generalized to a fourth-order accurate in space, second-order accurate in 
time numerical scheme using the coefficients of the fourth-order approximation to the first derivative (Le-
vander, 1988; Masson et al., 2006).
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Figure 6.  The von Neumann stability analysis for the elastodynamic Biot's Equations 41–43 as a function of k = 
/k and porosity . Panel (a) corresponds to the  = 0 scheme and panel (b) corresponds to the  = 1/2 scheme. The 
stability of the  = 1 scheme is identical to that one of the  = 1/2 scheme. The material parameters are those from 
Table 3.
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4.5.  Sources, Initial and Boundary Conditions

We initialize the majority of our simulations with a Gaussian perturbation,

  
2 2 2( / ) ( / ) ( / )

0 ,x l y l z lx y z
GF A e� (55)

where x, y, and z are the arrays of spatial coordinates, xl , yl , and zl  are the parameters controlling the shape 
(width) of the Gaussian and A0 defines its amplitude. We set xl , yl , and zl  as a certain fraction of the domain 
extend.

Depending on the model configuration, we implemented two types of sources in the right-hand side of the 
total pressure (isotropic media) or total stress (anisotropic media) equation (see Appendix D for the full set 
of equations). The first type of source is the Morlet wavelet

               

2 22 ( ) ( ) / ( ) /1/2 1/20 0 0
0( ) Re ( ) ( ) 2 ( )if t t t t f t t fc b b

M b b cF t f e e f cos f t t e� (56)

and the second type of source is the Ricker wavelet

        
22 ( )0

0( ) 1 2 ( ) ,t t fc
R cF t t t f e� (57)

where cf  is the the source peak frequency, t is time, t0 is the wavelet delay, and bf  is the time-decay parameter 
of the Morlet wavelet. The Morlet wavelet features a distinct narrow bandwidth in the frequency domain 
which significantly reduce the wavelet shape changes during the pulse propagation in a lossy medium. The 
disadvantage results in a significant time spread in time domain. We use reflecting boundary conditions in 
our simulations.

The one-dimensional time loop implementation of the proposed scheme (Equation E8–E15) in MATLAB 
(R2018a) using the Gaussian initial condition (55) is shown in Figure 7.

5.  Multi-GPU Implementation
GPUs are many-core processors originally designed to refresh screen pixels at very high frame-rates for 
computer games. Nowadays, GPUs are widely used in high-resolution numerical modeling due to their 
ability to efficiently execute a large number of operations simultaneously. Several studies focused on the im-
plementation of wave propagation solvers using GPUs (Komatitsch et al., 2010; Mehra et al., 2012; Michéa 
& Komatitsch, 2010; Rubio et al., 2014; Weiss & Shragge, 2013). The CUDA extension to the C language 
(CUDA, 2020) makes it possible to write C-style codes that are executed in parallel on GPUs. A brief descrip-
tion of the GPU architecture is given in Appendix F.
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Figure 7.  The one dimensional code using the proposed scheme with  = 1/2 in MATLAB. The initial condition of the 
Gaussian form is set to the fluid pressure. zeta_ij are the matrix coefficients  ij in Equation 46, varrho_ij are the matrix 
coefficients ij  in Equation 47, etaf_k corresponds to /k, chi corresponds to , lamx stands for xl , stress_xx stands for 
 xx, Prf stands for fp , Qx stands for D

xq , and Vx stands for s
xv .
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5.1.  Computing Systems

We calculated our results on various computing systems depending mainly on the targeted numerical reso-
lution. We performed most of our simulations on an Nvidia DGX-1 - like node hosting 8 Nvidia Tesla V100 
Nvlink (32 GB) GPUs, 2 Intel Xeon Silver 4112 (2.6 GHz) CPUs, and 768 GB DDR4 RAM. The second com-
puting system hosts a single Nvidia Tesla V100 PCIe (16 GB) GPU, 2 Intel XEON E5-2620V2 4112 (2.1 GHz) 
CPUs, and 64  GB DDR3 RAM. The third computing system is composed of 32 nodes, each featuring 4 
Nvidia GeForce GTX Titan X Maxwell (12 GB) GPUs, 2 Intel XEON E5-2620V3 4112 (2.4 GHz) CPUs, and 
128 GB DDR4 RAM.

5.2.  Code Implementation on a Single GPU

The CUDA C code structure (Figure 8a) is similar to the MATLAB one (Figure 7). The time loop calls two 
kernels – or GPU functions – to sequentially update all stresses and the fluid pressure and then update the 
fluid and solid velocities. Darcy's fluxes D

xq , D
yq , D

zq  are time-dependent fields present in both Equation E14 
and Equation E15 exhibiting history or time dependence that require them to be stored from previous it-
eration. We perform the update relying on a pointer swap at every iteration to prevent race conditions and 
to avoid copying the array itself, which would significantly deprecate the performance. To reduce redun-
dant memory accesses, we locally precompute and store corresponding field variables. In the compute_
StressPrF() kernel, we store the derivatives of the velocities s

iv  and Darcy fluxes D
iq . In the Update_QV () 

kernel, we store derivatives of stresses  ij and fluid pressure fp .
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Figure 8.  Time loop computations for (a) a single GPU CUDA C code and (b) a multi-GPUs CUDA C code 
implementation. compute_StressPrf corresponds to the update of all stresses  ij and fluid pressure fp . update_QV 
corresponds to the update of velocities s

iv  and Darcy fluxes D
iq  swap (…) stands for a pointer swap of Darcy's fluxes 

between old and new values.
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5.3.  The Multi-GPU Code Implementation

The single GPU code enables thousands of threads to simultaneously 
compute physics on every grid points of the computational domain in 
a shared (GPU) memory approach. To overcome the on-GPU DRAM 
memory limitation and leverage the simultaneous utilization of multi-
ple GPUs we implemented a distributed memory parallelization using 
the message passing interface (MPI) standard. The parallelization among 
multiple GPUs requires the exchange of the internal boundary values 
of the solid velocities sv  and the Darcy's fluxes Dq  (represented by black 
lines in Figure  9). Global boundary conditions are applied if the local 
sub-domains coincide with the global domain boundaries. We rely on 
CUDA-aware non-blocking MPI messages for internal boundary condi-
tion updates among neighboring GPUs. The CUDA-awareness implies 
that GPU device pointers can directly be exchanged with MPI bypassing 
a local CPU copy on both sender and receiver side.

We implemented an overlap among computation and MPI communica-
tion to avoid a drop in performance with an increase in the number of MPI 
processes (Räss, Omlin, & Podladchikov, 2019). Only minimal changes are 
required to implement this computation/communication overlap and ful-

ly hide the MPI boundary exchange latency (Figure 8b). We divided the local computational domain on each 
GPU in two parts, a boundary points region (1 in Figure 9) and an inner points region (2 in Figure 9). We 
then use CUDA Streams to perform an asynchronous kernel call in an iterative fashion using two distinct 
execution pipelines (Räss, Omlin, & Podladchikov, 2019). The first update kernel call computes the boundary 
flagged nodes only and executes on the high priority stream. Then, the MPI boundary updates starts on the 
same high priority stream (the update_sides3 function). In the meanwhile, the update kernel call is executed 
a second time within the istep loop, now flagging and computing the remaining inner points. A wise defini-
tion of the number of grid points to include (i.e., the boundary width) enables optimal performance results.

The Nvidia visual profiler (nvvp) is an informative tool to visualize the execution timeline of a GPU process 
(Figure 10). We compare multi-GPU codes without (Figure 10a) and with (Figure 10b) computation/com-
munication overlap running on an eight GPUs (information shown only for two GPUs). The visual timeline 
depicts the Dq  and sv  boundary points update on the high priority CUDA stream 21 followed by the MPI 
message sending and receiving among GPUs (the time line is shown by red box in Figure 10b). During the 
same time, the Dq  and sv  inner points update happens on the lower priority CUDA stream 22. The update 
kernel is executed two times (green boxes in Figure 10b). The cumulative time of the sequential executions 
is identical to the unsplit execution time (Figures 10a and 10b).

5.4.  Performance Benchmark

We assess the solver's performance and realize the weak scaling tests in a similar fashion as proposed by 
Räss, Duretz, and Podladchikov (2019); Duretz et al. (2019); Räss et al. (2020). These studies highlight the 
memory-bounded nature (in opposition to compute-bounded) of a waste majority of PDE solver imple-
mentations nowadays on many-core (e.g., GPU) hardware; Memory transfers are limiting the performance 
of an application, while floating point (arithmetic) operations are not performance relevant. We therefore 
focus on the memory access efficiency in our numerical calculations. The effective memory throughput 
(MTPeffective) metric (Omlin, 2016; Omlin et al., 2020) evaluates how efficiently data is transferred between 
the memory and the computation units, in gigabytes per second (GB/s):

    



IO p

effective 9MTP ,
10

x y z t

nt

n n n n n n

t� (58)

where xn , yn , and zn  are the number of grid cells, tn  is the number of iterations, nIO is the number of 
read and write memory accesses (the least value needed to solve the problem for the chosen numerical 
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Figure 9.  Schematic representation of a domain decomposition on four 
GPUs. First, the computation of the boundary points (1) of the local 
domains using streams is performed, then the computation of the inner 
points (2) of the local domains is carried out together with the non-
blocking MPI messages to exchange the boundary values (represented 
by red boundary lines) among neighboring GPU units. GPU, Graphical 
processing units; MPI, message passing interface.
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scheme), np is the floating-point arithmetic precision (either four or eight bytes) and ntt  is the time (in 
seconds) needed to perform the tn  iterations. The closer the value of MTPeffective gets to the memory copy 
only value, the better the performance is. We carried out all the performance tests on the anisotropic Biot 
3D implementation using the   = 1/2 scheme and scalar material properties (see Appendix D for the 
full set of equations). In that case nIO = 42. We used a numerical spatial resolution of 5763 grid cells on 
a Tesla V100 32 GB Nvlink GPU, allocating 29 GB on-chip DRAM memory. We used a numerical spatial 
resolution of 511 × 511 × 127 grid cells on the Titan X (Maxwell) 12 GB GPU allocating 5 GB on-chip 
DRAM memory. The maximum global domain spatial resolution on 128 Titan X (Maxwell) 12 GB GPUs 
involved 4.5 billion grid cells.

5.4.1.  Benchmark Results for a Single GPU Implementation

Figure 11 depicts the effective memory throughput (MTP) of the Biot 3D numerical application as a func-
tion of the number of threads per blocks in x-, y-, and z-direction on a Tesla V100 32 GB Nvlink GPU. The 
MTPref corresponds to the reference MTP, that is, the best combination of threads per blocks (32, 2, 16) for 
a given resolution of 5763; the MTP of all simulations (MTPeffective) are normalized by MTPref. The maximal 
performance drop from the reference MTP is about 17%. It is interesting, that the (32, 2, 8) combination 
uses only 512 threads out of the 1,024 available but shows almost the same performance as combinations 
involving 1,024 threads. Good performance with under-utilization of the threads per block resources is 
known and may result by the increase in the number of concurrent blocks launched allowing for optimal 
scheduling.
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Figure 10.  The Nvidia visual profiler (nvvp) output for various GPU code implementations: (a) single GPU (without computation/communication overlap), (b) 
mulit-GPUs (without computation/communication overlap), and (c) multi-GPUs (with computation/communication overlap). All implementations share the 
same compute_StressPrf kernel. The update_QV kernel is (a) executed once per time step updating both boundary and inner points, (b) executed once per time 
step and followed by internal boundary exchange using MPI, and (c) executed in a serial fashion, first updating the boundary points, then internal boundary 
exchange occurs using MPI while the inner points are asynchronously computed in the second call of the update_QV kernel. The computation/communication 
overlap referred to as computational split involves 48, 16, and 16 grid cells in in x-, y-, and z-directions, respectively. GPU, Graphical processing units; MPI, 
message passing interface; nvvp, Nvidia visual profiler.
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Figure 12 shows memory access efficiently between the GPU global memory and the computation units as 
a function of on-chip RAM memory. Our 3D numerical application achieves on average 90% of the “ideal” 
memory copy only efficiency (copying two 3D arrays without performing any calculations, 740 GB/s) on a 
single Tesla V100 32 GB NVlink GPU. The average performance is 660 GB/s. A huge drop in the memory 
access performance at low on-chip RAM memory utilization reflects computations without enough data to 
saturate the memory bandwidth.

We additionally assessed the effective memory throughput of our 3D routine on a Tesla V100-SXM2 16 GB 
accessed on the Amazon Elastic Compute Cloud environment (Amazon EC2); our 3D routine performs on 
average at 740 GB/s (memory copy at 795 GB/s) validating the benchmark results obtained on our local GPU 
cluster. The discrepancy we observe may be caused by different versions of Nvidia drivers and compilers.

5.4.2.  Benchmark Results for a Multi-GPU Implementation

We further investigate the influence of the boundary width on the per-
formance (Figure 13). The split among computation domains allowing 
for overlap of computation and communication affects the performance. 
Considering too few or too many boundary points hinders optimal kernel 
execution as too few resources may be used in the first or the second 
sequential call. The code execution on a single Tesla V100 GPU with 
boundary width ratios of 0.2–0.8 returns equivalent performance as the 
execution without the computational split. The performance of the code 
on 8 Tesla V100 GPUs including MPI communication shows a 2% perfor-
mance drop compared to the single GPU process. We achieved the best 
performance using approximately a ratio of 0.3 between boundary and 
inner points. This splitting allows for enough data to keep all threads 
busy during the boundary point calculation (the first kernel execution) 
and provides sufficient time to hide the MPI message sent during the up-
date of the inner points (the second kernel execution).

We performed a weak scaling test using the 1–8 Tesla V100 32 GB NVlink 
GPUs and the 1–128 Titan X 12 GB GPUs (Figure 14). The parallel effi-
ciency of 1–8 GPUs is 98% and on average 96% on 16–128 Titan X GPUs 
with a standard deviation of 2%. A standard deviation was calculated as 
a result of ten simulations. We globally achieved a performance of about 
5,280 GB/s on 8 Tesla V100 32 GB NVlink GPUs. Such performance im-
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Figure 11.  The effective memory throughput as a function of the number of threads per blocks (in x-, y-, and 
z-direction). The MTP of all simulations (MTPeffective) are normalized by MTPref (corresponds to Block (32, 2, 16)). 
The bold color corresponds to thread-block combinations of 512 threads out of the 1,024 available. MTP, memory 
throughput.

Figure 12.  The memory access efficiently as a function of the allocated 
on-chip DRAM memory. The blue curve corresponds to the “ideal” 
memory copy efficiency (copying two 3D arrays without performing any 
calculations), red and yellow curves represent the memory copy efficiency 
involving all the physics, which is on average 90% of the “ideal” memory 
copy efficiency.
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plies that only 95 s are needed to perform 1,000 (double-precision) explic-
it time iterations of a model involving 1.5 billion grid cells (11523).

5.5.  Validation of the Numerical Solver

5.5.1.  Comparison Against an Analytical Solution

We perform a direct comparison of our numerical solver against analyt-
ically derived non-dimensional phase velocities and the inverse quality 
factors of 1D Biot's equations in homogeneous poroelastic media. Biot's 
mechanism, often called global flow, is the unique cause leading to wave 
attenuation and velocity dispersion. We validated our numerical solver 
in 1D but the plane wave analysis is multidimensional as plane wave 
characteristics are identical in 1D, 2D, and 3D. In the numerical simula-
tion, we use the proposed scheme (Equation E8–E15) with   = 1/2, the 
Morlet wavelet as a source function (56) and quantify velocity and the 
inverse of the quality factor of a propagating wavelet in the time domain. 
We obtain excellent agreement between numerical and analytical results 
(Figure 15).

5.5.2.  Convergence Analysis

We performed a grid convergence analysis to validate the numerical implementation of the solver. We eval-
uate the magnitude of the phase velocity truncation errors ( Ve ) as functions of decreasing spatial discreti-
zation steps Δx. We calculate the truncation errors by subtracting numerically calculated fields from ana-
lytical fields and characterize the magnitude of the truncation errors by their L1 norms, using the velocity 
estimation (Räss et al., 2017)

e V V
V
 a n 1

,� (59)

where V a corresponds to the analytical velocity obtained via the dispersion analysis and V n corresponds to 
the numerically estimated velocity.

Figure 16a shows the truncation error magnitudes of the estimated ve-
locity in a lossless (/k = 0) and lossy (/  0k ) media using the   = 1/2 
scheme (Equation E8–E15). The source has the form of a Ricker wavelet 
(57) and the central frequency of the source corresponds to a very low 
frequency (much lower than the frequency of 1/Q maximum). Our nu-
merical solutions for velocity exhibits second-order spatial and temporal 
accuracy. The truncation error magnitudes decrease by a factor k as the 
grid spacing is reduced by the same factor. We obtain similar results for 
a very high frequency source (much higher central frequency than the 
frequency of 1/Q maximum).

Figure 16b shows the truncation error magnitudes of the estimated ve-
locity in a lossy medium for the scheme (Equation E8–E15) with   = 1/2 
and   = 1.0. Here, the central frequency of the source corresponds to the 
frequency of 1/Q maximum. In this analysis, we use the numerically esti-
mated velocity of a very high resolution simulation. The   = 1/2 scheme 
exhibits second-order accuracy in space and in time. In contrast, the 
  = 1.0 scheme shows only about 1.8 order accuracy. Only the   = 1/2 
scheme exhibits second-order spatial and temporal accuracy across all 
frequencies while the   = 1.0 scheme exhibit second-order spatial and 
temporal accuracy only at low or high frequencies where attenuation 
(and dispersion) is very low. For schemes with   other than 1/2 (we used 
  = 0.6, 0.7, 0.8, and 0.9), tests show that the accuracy is lower than sec-
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Figure 13.  The impact of the boundary width on the memory access 
efficiency. All the performance results are normalized by MTPref of the 
non-MPI code implementation. MPI, message passing interface; MTP, 
memory throughput.

Figure 14.  The MPI weak scaling tests of the anisotropic Biot 3D 
implementation. We show the parallel efficiency of the two Nvidia 
hardware accelerators, the 1–8 Tesla V100 32 GB NVlink GPUs (Volta) and 
the 1–128 Titan X 12 GB GPUs (Maxwell). All the performance results are 
normalized by the single-MPI code performance. MPI, message passing 
interface.
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ond-order. Therefore, the scheme with   = 1/2 is used for the numerical 
solution of Biot's equations in the rest of the manuscript.

6.  Numerical Experiments
We here present a series of simulations based on Biot's equations in two 
and three dimensions. We discuss some basic aspects of poroelasticity, 
namely, wave propagation in homogeneous poroacoustic and poroelastic 
media, in isotropic and anisotropic poroelastic media, and at low- and 
high-frequency regimes.

6.1.  Wave Propagation in 2D Poroelastic Media

6.1.1.  PoroAcoustic and PoroElastic Media

We examine the difference between poroelastic and poroacoustic wave 
propagation at low- and high-frequencies in two dimensions. The 
material properties are those of an isotropic sandstone (Table 4). For 
the poroacoustic material, we set the shear modulus 55c  to zero. A 2D 
square domain of 9.35 × 9.35 m is used. We define 32 threads per blocks 
in x- and z-directions with 128 blocks in x- and z-directions, which 
result in 4,095 × 4,095 grid resolution having ≈16 × 106 grid cells. We 
apply a Gaussian distribution (55) with xl  = 0.08, yl  = 0.08, and 0A  = 1 
at the center of the model domain to the solid velocity ( zV ) as an initial 
condition for the poroacoustic and low frequency poroelastic simula-
tions. For the high frequency poroelastic simulations we also apply the 
Gaussian distribution to the fluid pressure fp .

Figure 17 shows the total pressure (p) and solid velocity ( xV ) fields for 
poroacoustic and poroelastic simulations. In total, 5,000 time steps were 

performed and the total physical simulation time was approximately t = 9 × 10−4 s. The simulations were 
performed on a single Tesla V100 PCIe GPU. The running time was approximately 55 s for each simula-
tion. For a performance comparison, a few simulations were executed on a single Tesla V100 Nvlink GPU, 
and the running time was approximately 51 s. Note, that the 2D codes performance is not optimized as it 
is done for 3D codes. For optimized 2D codes, the performance might be much higher. In the poroacous-
tic simulations (Figures 17a and 17b), the initial condition corresponds to the low frequency regime and 
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Figure 15.  A comparison between numerically calculated dimensional 
phase velocities (up) and 1/Q (down) against an analytical solution of 
Biot's equations. Each red circle corresponds to a numerical simulation. 
The phase velocity V1 is normalized by the velocity in the high frequency 
limit 1

HFV  and the dimensional angular frequency d is normalized against 
Biot's frequency c. The material parameters are those from Table 3.

Figure 16.  The truncation error magnitudes of the numerically estimated velocities. (a) The low frequency source and 
(b) cf  of the source is close to the frequency of 1/ 1Q  maximum. The material parameters are those from Table 3.
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only the fast (longitudinal) wave V 1 can be observed. Also note that the 
2D poroacoustic medium cannot unload the initial condition applied to 
the solid velocity field, which is represented by non-zero amplitudes at 
the center of the model (Figure 17b). In the poroelastic simulations (Fig-
ures 17c and 17d), the initial condition corresponds to the low frequen-
cy regime and only two waves can be observed—the fast (longitudinal) 
wave 1V  and the shear wave sV . In the poroelastic simulations (Figures 17e 
and 17f), the initial condition of a Gaussian shape with xl  = 8 × 10−4 and 
yl  = 8 × 10−4 corresponds to the high frequency regime. Three waves can 

be clearly observed—the fast (longitudinal) wave 1V , the shear wave sV  
and the slow (longitudinal) wave 2V  (Figures 17e and 17f).

6.1.2.  Anisotropic Poroelastic Media

In this section, we reproduce similar two dimensional results shown in 
de la Puente et al. (2008); Lemoine et al. (2013), so the present simula-
tions can be qualitatively compared to the previous works. The mate-
rial properties of anisotropic rocks are similar to those of de la Puente 
et al. (2008); Lemoine et al. (2013) (Table 4). We apply a Gaussian distri-
bution to  zz and fp  with xl  = 0.08, yl  = 0.08, and 0A  = 1 to the center of 
the numerical model. Other parameters are the same as in the previous 
2D simulations. The simulations were performed on a single Tesla V100 
Nvlink GPU. The running time was approximately 51 s for both (glass-
epoxy and sandstone-VTI) models, 5,000 time steps were performed. 
The total physical simulation time was t  =  6.15  ×  10−04 seconds for 
the anisotropic sandstone and t = 7.061 × 10−04 seconds for the glass-
epoxy model. The results of the solid velocity fields xV  and zV  are shown 
in Figures 18 and 19. In analogy to de la Puente et al. (2008); Lemoine 

et al. (2013), we show numerical results for inviscid models ( = 0) and viscid models (  0). Simulations 
in inviscid media mimic the high frequency regime, therefore, fast, quasi-shear, and slow waves can be 
observed (Figures 18a and 18b and Figures 19a and 19b). Simulations in viscid media correspond to the 
low frequency regime, therefore, only fast and quasi-shear waves are observed (Figures 18c and 18d and 
Figures 19c and 19d).

6.2.  Wave Propagation in 3D Anisotropic Poroelastic Media

We simulate a wave propagating in 3D for the anisotropic poroelastic material whose properties are of 
the glass-epoxy (Table  4), the properties in the x-direction are duplicated to the y-direction. The sim-
ulations were performed on eight Tesla V100 Nvlink GPUs. A three dimensional cubic domain of 
9.35 m × 9.35 m × 9.35 m is used. The total resolution is 1,022 × 1,022 × 1,022 grid cells in x-, y-, and z-di-
mensions, respectively, which results in ≈ 1 × 109 grid cells. We apply a Gaussian distribution to the fluid 
pressure fp  (fluid injection) with xl  = 0.18, yl  = 0.18, zl  = 0.18 and 0A  = 1010 at the center of the numerical 
model. The running time was approximately 73 s for all simulations, 1,050 time steps were performed. The 
total physical simulation time was 6.8 × 10−4 seconds. This model configuration corresponds to the low 
frequency regime.

Figure 20 shows the solid velocity field  xV V  +  yV  +  zV . The velocity field is projected into several slices, 
also the isosurfaces of the wave amplitudes of ±3 × 10−3 are shown. Figure 21a shows the solid velocity 
field xV  for the same model (Figure 20) while Figure 21b shows xV  of the 100 times smaller model (the size 
is 0.09353 m), which corresponds to the high frequency regime. The initial condition was scaled accord-
ingly, xl  = 0.018, yl  = 0.018, and zl  = 0.018 (A0 is the same) and the total physical simulation time was also 
scaled to 6.8 × 10−6 seconds. The behavior of fast and quasi-shear waves is similar in Figures 21a and 21b 
but the slow P-wave behavior is different. In Figure  21a, the slow P-wave degenerated into a diffusion 
mode representing viscous fluid flow in porous media while in Figure 21b the slow P-wave behaves as a 
true propagating wave.

ALKHIMENKOV ET AL.

10.1029/2020JB021175

22 of 35

Sandstone (VTI) Glass-epoxy (VTI) Sandstone (isotropic)

Rock properties

sK (GPa) 80 40 40
s (kg/m3) 2,500 1,815 2,500

11c (GPa) 71.8 39.4 36

12c (GPa) 3.2 1.2 12

13c (GPa) 1.2 1.2 12

33c (GPa) 53.4 13.1 36

55c (GPa) 26.1 3.0 12

 (−) 0.2 0.2 0.2

1k (m2) 600 × 10−15 600 × 10−15 600 × 10−15

3k (m2) 100 × 10−15 100 × 10−15 600 × 10−15

1T (−) 2 2 2

3T (−) 3.6 3.6 3.6

fK (GPa) 2.5 2.5 2.5

 f (kg/m3) 1,040 1,040 1,040
 (kg/m⋅s) 10–3 10–3 10–3

VTI corresponds to a vertical transverse isotropic medium.

Table 4 
Properties of Anisotropic Poroelastic Rocks Used for Numerical 
Simulations



Journal of Geophysical Research: Solid Earth

ALKHIMENKOV ET AL.

10.1029/2020JB021175

23 of 35

Figure 17.  Numerical simulation of a propagating waves. (a), (c), (e) show the total pressure field p; (v), (d), (f) show the velocity field Vx. Plots (a) and (b) 
correspond to the poroacoustic medium, (c) and (d) correspond to the poroelastic medium (low frequency regime), and (e) and (f) correspond to the poroelastic 
medium (high frequency regime). The total physical simulation time is approximately t = 9 × 10−4 seconds. The material properties are those of an isotropic 
sandstone (Table 4).
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7.  Conclusions
We developed a multi-GPU solver for the anisotropic elastodynamic Biot's equations in 1D, 2D, and 3D us-
ing the CUDA C programming language leveraging the parallel processing power of GPUs. We implement 
a simple approach to circumvent the stiffness of Biot's equations by using an implicit scheme for Darcy's 
flux while keeping explicit updates in the iteration loop. We achieve a close-to-ideal parallel efficiency (98% 
and 96%) on weak scaling tests up to 128 GPUs by overlapping MPI communication and computations. We 
also achieve an effective memory throughput of 90% of the memory copy throughput. Our multi-GPU im-
plementation of Biot's equations permits to tackle high spatial resolution and exhibits fast execution times. 
We perform 1,000 explicit time steps in 95 s for a model involving 1.5 billion grid cells (11523) on 8 Tesla 
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Figure 18.  Snapshots showing velocity fields xV  and zV  in the epoxy-glass medium (Table 4). Panels (a) and (b) correspond to the inviscid medium (  0), 
panels (c) and (d) correspond to the viscid medium (  0). The total physical simulation time is t = 7.061 × 10−04 seconds.
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V100 32 GB Nvlink GPUs using double-precision arithmetics. We analyze the stability and accuracy of the 
three different numerical schemes and suggest the best out of three. We benchmark the numerical solver 
against an analytical solution of Biot's equations and present a comprehensive dimensional analysis of 
Biot's equations to reduce the number of material parameters from ten to four. Our numerical application 
to resolve Biot's equations enables practical applications in geophysics, engineering, biophysics, and the 
further understanding the underlying hydromechanically coupled processes in 3D.
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Figure 19.  Snapshots showing velocity fields xV  and zV  in the sandstone-VTI medium (Table 4). Panels (a) and (b) correspond to the inviscid medium (  0),  
panels (c) and (d) correspond to the viscid medium (  0). The total physical simulation time is t = 6.15 × 10−04 seconds. VTI, vertical transverse isotropic 
medium.
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Figure 20.  Snapshots showing the total solid velocity field  xV V  +  yV  +  zV  in the medium having the properties of 
the glass-epoxy (Table 4). The velocity field is projected into X–Z and Y–Z slices. Red and blue isosurfaces denote the 
wave amplitudes of ±0.4. The anisotropic nature of the model is clearly visible due to the non-symmetric velocity field 
pattern. The total physical simulation time is 6.8 × 10−4 s.

Figure 21.  Snapshots showing the solid velocity field xV  in the medium having the properties of the glass-epoxy (Table 4). Panel (a) shows xV  of the same model 
as in Figure 20, red and blue isosurfaces denote the wave amplitudes of ±0.4, the total physical simulation time is 6.8 × 10−4 seconds. Panel (b) shows xV  of the 
100 times smaller model, which corresponds to the high frequency regime, the total physical simulation time is 6.8 × 10−6 seconds. Red and blue isosurfaces 
denote the wave amplitudes of ±3.0.
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Appendix A:  Equations Describing A Single Phase Continuum Material
A1.  Stress-Strain Relations

For a single phase linear elastic continuum material, the stress-strain relation (Hooke's Law) is

 :Cσ � (A1)

or using index (Einstein) notation

  ,ij ijkl klC � (A2)

where σ is the second rank stress tensor,  is the second rank strain tensor, C is the fourth rank stiffness ten-
sor, : denotes the double dot product and , , , 1,…,3i j k l . Bold symbols denote tensors and italic (non-bold) 
symbols denote tensor components. For small deformations, the strain tensor is defined as

        
 

T1
2

 u u� (A3)

or

    
1 ,
2kl l k k lu u� (A4)

where u is the displacement,  denotes the tensor product,  denotes the nabla operator, and the super-
script T corresponds to the transpose operator. For larger strains, an incremental formulation is preferable. 
Therefore, the relation between displacements and the time derivative of strain is

 
   


1 ,
2

ij s s
ijkl l k k lc v v

t
� (A5)

where the velocity is defined as   /s
i iv u t. Note, that in the case of small linear deformations, the defi-

nition (A1)–(A4) coincides with the definition (A5). For large deformations the definition (A1)–(A4) is 
not longer valid due to the absence of second-order terms of the finite strain tensor while the definition 
(A5) still holds. In this article, we only use the incremental formulation (A5). In isotropic media, the 
stress and strain tensors can be separated into volumetric and deviatoric parts. Equation  (A5) can be 
rewritten as

 
 

  
          

1 12 .
2 3

ij
k k ij j i i j k k ijK v G v v v

t
� (A6)

Equation (A6) can be simplified, once pressure and deviatoric stresses are introduced,

 


 
  

  
,ij ij

ij
p

t t t
� (A7)

where pressure p is


  

 k k
p K v
t

� (A8)

and the deviatoric stress tensor  ij is expressed as

 


  
        

1 12 .
2 3

ij
j i i j k k ijG v v v

t
� (A9)
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A2.  Dynamic Equations

The conservation of linear momentum for a single phase material is

 
 


.i

j ij
v
t

� (A10)

Equation (A10) can also be called equation of motion or elastodynamic force balance law. By separating the 
stress tensor into deviatoric and volumetric parts, Equation (A10) can be written as

  
   


( )i

j ij ij
v p
t

� (A11)

In summary, the constitutive Equations (A8) and (A9) and the conservation of linear momentum (A11) ful-
ly describe the behavior of a single phase material. Depending on the initial conditions (or the source terms) 
and the material parameters, the response of a single phase material may include one fast (longitudinal) 
wave and one shear wave.

Appendix B:  Poroelastic Parameters
Three experiments permit to determine the poroelastic parameters required for Biot's equations (Makhnen-
ko & Podladchikov, 2018). The drained bulk modulus dK  can be measured under drained experiments. In 
such experiments the pore fluid is allowed to leave the rock during loading and that pore fluid pressure is 
maintained at a constant level ( fp  = const, see Equation (1))






 ( const)

1
d s

k k p f

pK
tv� (B1)

The undrained bulk modulus uK  can be obtained under undrained experiments. In such experiments the 
fluid content inside the rock does not change during loading, meaning that fluid does not flow through the 
boundaries of the considered element (  0D

k kq , see Equation (1))

 




 ( 0)

1
u s

Dk k qk k

pK
tv� (B2)

The Biot-Willis parameter   can be obtained under unjacketed experiments, in which an increase in the 
total pressure p is equal to the increase in fluid pressure fp : (  fdp dp , see Equation (1)). For more infor-
mation about how to measure poroelastic constants in rock samples, we refer to R. W. Zimmerman (1990).

Appendix C:  An Alternative Dimensional Analysis of Biot's Equations
In (12), instead of the base quantity t, an alternative choice is possible, namely, a. In this case, Equa-
tion (12) reads

 
 
 


                          

,
1

sft

a a
a D fDa

t

v
xt

pq q
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� (C1)

where


 
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4 / 31 .a
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B K
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In the resulting system, Equation (17) is still the same, while Equation (18) becomes

 
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 

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where  fa f /a,  ta t/a,





*

1 11 * ,d x
a

LI s� (C4)

and


 

 
* 2 * 2

11
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k D

� (C5)




11
.d

kD
s� (C6)

The alternative four dimensionless parameters  , a,  fa and ta now define the coupling between the solid 

and fluid phases. If we similarly set 1I  = 1, then  * *
11/ d

x aL s  and 2I  becomes

 


 *
2 .

a
I

k� (C7)

Thus, we choose the new  * as

 
 

   
          

11
* ,

a fk k T
� (C8)

We end up with 2I   =  1 and the transformation frequency now is equivalent to the Biot's characteristic 
frequency (40). Indeed, the dimensional angular frequency d is calculated as   *d , where  is the 

non-dimensional angular frequency and * is the transformation frequency (analogous to (39))




 *
*

1 ,
fk T� (C9)

which is exactly the Biot's characteristic frequency c (40). This is the main advantage of the new dimen-
sional analysis. The disadvantage is that the drained wave velocity dV  formula disappears in (C4), which 
makes the interpretation of 1I  in terms of usual physical quantities less transparent. By using this new 
dimensional analysis, Figures 1–4 will remain almost the same with the only slight shift of the transition 
frequency closer to   1. This shift in  is defined by the ratio between t and ( /f T ).

Appendix D:  Elastodynamic Biot's Equations For Anisotropic Media
D1.  Arbitrary Anisotropic Media

Elastodynamic Biot's equations in arbitrary anisotropic media can be written in the first order form. The 
stress-strain relations are





   


,ij u s D

ijkl k l ij k kc v M q
t

� (D1)
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 

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

,f s D
ij i j m m

p
M v q

t
� (D2)

where u
ijklc  is the 4th order undrained stiffness tensor and ij is the Biot-Willis parameter represented by a 

second order tensor. The conservation of linear momentum reads
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where
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    2Θ t a f  and ik  denotes permeability in i− direction, respectively. In (D1)–(D5), ∂t represents a time 
derivative, iv  and D

iq  are vector fields,  ij is a tensor field, fp  is a scalar field. All the material parameters, 
namely, u

ijklc , ij, M, ij , , ik  are constant in time but may vary in space.

D2.  Orthorhombic Media

An orthorhombic medium is described by nine elastic components of the stiffness tensor. We use the short-
ened Voigt notation as a shortcut. The stress-strain relations are

  
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i represents a spatial derivative in i− direction. The relation between the drained stiffness matrix ijc  and the 
undrained stiffness matrix u

ijc  is

   ,u
ij ij i jc c M� (D13)

where     1 2 3( , , , 0, 0, 0)i  and     T
1 2 3( , , , 0, 0,0)j  are the Biot-Willis coefficients,
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for i = 1, 2, 3. For example,
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and M is the solid-fluid coupling modulus, defined as
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The modulus *K  is usually called the generalized bulk modulus, which, in fact, represents the Voigt average 
of the bulk modulus for an orthorhombic symmetry system. The conservation of linear momentum reads
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where ij  is given by (D5).
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Appendix E:  Discretization of Biot's Equations

For a given function , , ( , , , )n l
i j k i j kg g t x y z , the following operators for the time evolution are introduced
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where   [0;1] is the weight parameter. The following operators for the spatial derivatives are introduced
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The following averaging operators for the material parameters are introduced

   1 1/2, , , , 1, ,([ ] ) / 2,i j k i j k i j kg g g� (E6)

         
1

2 1/2, 1/2, , , 1, , , 1, 1, 1,([ ] ) 4 1 / 1 / 1 / 1 / .i j k i j k i j k i j k i j kg g g g g� (E7)

For simplicity, equations only in x- direction are shown in the discrete form. A few additional operators are 
introduced

         2 2 2 2 2 2[ ] [ ] [ ], [ ] [ ] [ ].s s s s D D D D
x x y y z z x x y y z zv D v D v D v q D q D q D q� (E8)

The discretized system of equations is

      1[ ] ,s D
t u uD p K v K B q� (E9)

      1[ ] / ,s D
t f u uD p K B v K B q� (E10)

     1 2[ ] 2 [ ] 1 / 3 ,s s
t xx x xD G D v v� (E11)

Discretization of  yy and  zz is in analogy to that of  xx. The stress deviator tensor field is discretized as

     1 2 2
1/2, 1/2, 2[ ] [ ] [ ] [ ] ,s s

t xy i j k x y y xD G D v D v� (E12)

Discretization of  xz and  yz is in analogy to that of  xy. The total stress tensor field   xx is

   
 

   
        

     
1/2 1/2 1/2 1/2
1/2, 1/2, 1/2, 1/2, 1/2, , 1/2 1/2, , 1/21 1 [ ] [ ] [ ] [ ]

[ ] [ ] .
Δ Δ

l l l l
xy i j k xy i j k xz i j k xz i j k

xx x xx xD D p
y z

� (E13)
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The Darcy's flux and the velocity vector fields in the discrete form are



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 
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 

12 1
1 1 1

1 1

[ ]1[ ] [ ] [ ] [ ] [ ] [ ] ,
[Θ] [ ]

fD D
t x f xx t x f t fD q D p D q

k
� (E14)
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      
 

12 1
1 1 1

1 1

[ ]1[ ] [ ] [ ] [ ] [ ] [ ] .
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fs D
t x a xx f x f f fD v D p D q

k
� (E15)

Appendix F:  The GPU Architecture
GPUs feature a hierarchic structure. The basic computational unit is the Thread. Threads are organized in 
blocks of Threads that constitute the Grid. A GPU function (CUDA kernel) executes in as many concurrent 
instances as the total amount of Threads, that is, the Threads per Block times the amount of Blocks. We 
assign each data unit (grid cell) of our computational domain to a specific Thread; the identical numerical 
operation performed on each data unit (grid cell) will thus be executed simultaneously in the entire com-
putational domain (Figure F1).

Data Availability Statement
No data were used in producing this manuscript. The routines to reproduce the main presented results are 
available for download from Bitbucket at https://bitbucket.org/yalkhimenkov/fastbiot_gpu3d_v1.0 (last ac-
cess: February 8, 2021). The routines archive (v1.0) (Alkhimenkov et al., 2021) is available from a permanent 
DOI repository (Zenodo) at http://doi.org/10.5281/zenodo.4519367 (last access: February 8, 2021).
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