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Natural selection may favor two very different types of social behaviors that have costs in vital rates (fecundity and/or survival)

to the actor: helping behaviors, which increase the vital rates of recipients, and harming behaviors, which reduce the vital rates

of recipients. Although social evolutionary theory has mainly dealt with helping behaviors, competition for limited resources

creates ecological conditions in which an actor may benefit from expressing behaviors that reduce the vital rates of neighbors.

This may occur if the reduction in vital rates decreases the intensity of competition experienced by the actor or that experienced

by its offspring. Here, we explore the joint evolution of neutral recognition markers and marker-based costly conditional harming

whereby actors express harming, conditional on actor and recipient bearing different conspicuous markers. We do so for two

complementary demographic scenarios: finite panmictic and infinite structured populations. We find that marker-based conditional

harming can evolve under a large range of recombination rates and group sizes under both finite panmictic and infinite structured

populations. A direct comparison with results for the evolution of marker-based conditional helping reveals that, if everything

else is equal, marker-based conditional harming is often more likely to evolve than marker-based conditional helping.

KEY WORDS: Competition, fixation probabilities, genetic diversity, genetic relationship, harming, helping, marker recognition,

spite, two-locus models.

Helping behaviors, by which individuals in a population pro-

vide fitness benefits to others, are more likely to evolve in the

presence of mechanisms that allow discrimination against de-

fectors (Hamilton 1964; Hamilton 1971; Axelrod and Hamilton

1981; Eshel and Cavalli-Sforza 1982). Discrimination may oc-

cur if helpers can recognize each other by using conspicuous

phenotypic cues, tags, or markers, and provide benefits to other

individuals carrying the gene(s) underlying helping, instead of

providing benefits to defectors. Both genetic kin-recognition and

the so-called green-beard mechanism may involve the expres-

sion of helping conditional on actor and recipient bearing identi-

cal recognition markers (Hamilton 1964; Dawkins 1982; Grafen

1990). Such conditional helping relies on a tight linkage between

the genes underlying helping and those producing the conspicuous

markers. If genes for helping and markers were loosely coupled,

defectors could acquire the markers expressed by helpers and

then receive the benefits of helping without paying the cost. This

would ultimately prevent the evolution of marker-based condi-

tional helping.

Genetic kin-recognition based on actor and recipient bear-

ing identical marker alleles might evolve in spatially structured

populations (Axelrod et al. 2004; Jansen and van Baalen 2006;

Rousset and Roze 2007). Two individuals from the same group

(or spatial location) are more likely to have inherited both help-

ing and recognition marker alleles from the same recent common

ancestor than are two individuals from different groups. Com-

mon ancestry can then lead to the buildup of genetic associations

between helping and recognition alleles between individuals that

descend from the same group, even in the presence of recom-

bination provided migration is limited and group size is not too
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large. Because individuals within groups might interact with res-

ident and immigrant individuals, recognition markers that are

identical-by-descent may allow actors to discriminate among cat-

egories of recipients defined by markers within groups. Such

marker-based discrimination then sustains the evolution of con-

ditional helping under strong population structure (Axelrod et al.

2004; Jansen and van Baalen 2006; Rousset and Roze 2007).

An increase in group size or migration rate erodes population

structure and weakens the genetic associations between individ-

uals from the same group, within and across loci. With frequent

migration, population structure is likely to vanish. In this case,

marker-based helping is no longer expected to evolve. Neverthe-

less, if the population becomes panmictic but is of finite size,

some variation may remain in the propensity of interacting indi-

viduals to share alleles identical-by-descent at many loci. Indeed,

two offspring of the same parent are always more likely to have

inherited identical helping and recognition marker alleles than are

two individuals sampled at random from the population. The vari-

ation in the ancestry of pairs of interacting individuals within a

panmictic population might then still allow actors to discriminate

among categories of recipients. This variance supports the evo-

lution of marker-based conditional helping when population size

is very small (Traulsen and Nowak 2007) because the probability

that individuals descending from the same parent interact in a

panmictic population is likely to be small, approximately equal to

the inverse of population size in the absence of searching. Thus,

whether marker-based conditional helping evolves in panmictic

or structured populations, finite population size is a crucial demo-

graphic requirement for the evolution of the behavior.

With finite local group (or total population) size individ-

uals that help each other are also more likely to compete for

the same local (or global) resources. Competition between in-

teracting individuals has been shown to partially offset the ben-

efits of helping in both finite panmictic (Hamilton 1971) and

infinite structured populations (Taylor 1992a,b). Finite popula-

tion size thus creates ecological conditions in which actors may

actually benefit from expressing behaviors that reduce the fe-

cundity of neighbors by harming them, instead of increasing it

by helping them, even when the actor suffers a fecundity cost.

This follows from the fact that in a finite population a single

individual may have a marked effect on population productiv-

ity and decrease the intensity of competition experienced by its

offspring.

From the green-beard in the red fire ant Solenopsis invicta,

which kills individuals that do not have it, to bacteria releasing

antagonistic compounds in their environment, to maternally trans-

mitted symbionts generating cytoplasmic incompatibility, several

examples have been documented where genotypes spread through

natural populations by hampering the reproduction of those that

do not carry them, thereby reducing the intensity of competition

experienced by their carriers (e.g., Werren 1997; Keller and Ross

1998; Riley and Gordon 1999; Brown et al. 2006). It is thus useful

to understand not only what are the ecological and demographic

conditions leading to the evolution of helping behaviors (coop-

eration and altruism), but also those conducive to the evolution

of harming (exploitation and spite). This might lead to a better

understanding of the type of social interactions expected to occur

in natural populations.

In this article, we try to understand the conditions under

which marker-based conditional harming, whereby an actor de-

creases the fecundity of recipients conditional on them bearing a

different phenotypic cue than the actor, is selected for. To that aim,

we analyze the joint evolution of neutral recognition markers and

marker-based conditional harming behaviors in a two-locus pop-

ulation genetic framework. The first locus controls the expression

of neutral conspicuous markers. The second locus determines the

expression of harming, conditional on actor and recipient bearing

different conspicuous markers at the first locus. We show that

under the Wright–Fisher scheme of reproduction, marker-based

conditional harming can evolve for a large range of recombina-

tion rates and group sizes, in both finite panmictic and infinite

structured populations. A direct comparison with results for the

evolution of marker-based conditional helping reveals conditions

under which, everything else being equal, the selective pressure

favoring marker-based conditional harming is stronger than that

on conditional helping. In particular, this is the case when only

two conspicuous marker alleles at the recognition locus segregate

in the population.

Model
LIFE CYCLE

We consider a population with an infinite number of groups each

of finite size N (a list of symbols is given in Table 1). Individ-

uals within groups interact with each of their N − 1 neighbors.

We assume that individuals are haploid and carry two different

loci, with two alleles segregating at each locus. The first locus

determines the expression of a conspicuous phenotypic feature,

which is the basis of recognition: individuals bearing a mutant

recognition allele, R, at this locus express a different phenotype

from those bearing the wild-type, resident allele, r. Both mutant

and resident alleles have the same effect on reproduction and can

therefore be regarded as neutral alleles. The second locus con-

trols the expression of a harming behavior. A focal actor bearing

a mutant harming allele H at this locus decreases the fecundity of

a single recipient by D/(N − 1) at a direct fecundity cost C/(N −
1) to itself, conditional on the recipient bearing a different al-

lele at the recognition locus than the actor. Those individuals that

carry the resident allele, h, at the harming locus do not express

any phenotype, but their fecundity is decreased whenever they

2 EVOLUTION 2009



EVOLUTION OF HARMING AND RECOGNITION

Table 1. List of symbols.

Symbol Definition

N Deme size
m Migration rate
r Recombination rate between gametes
C Fecundity cost to the actor of expressing the

harming (or helping) allele
D Reduction in the fecundity of recipient resulting

from expressing the harming allele
B Fecundity benefit generated by expressing the

helping allele
w ij Fitness of individual j breeding in deme i
1+fij Fecundity of individual j breeding in deme i
1+fi Average fecundity in deme i
1+f Average fecundity in the population
pA(ij) Frequency (0 or 1) of allele A in individual j

breeding in deme i
pA Average frequency of allele A in the population
Ei, j [·] Average over all i and j (pA=Ei, j [pA(ij)])
Ei, j,k �= j [·] Average over all i, j and k �=j
p(t) Vector of genotype frequencies in the population
Pr(p(t)) Probability distribution of the vector p(t) of

genotype frequencies in a finite population at
time t

E[·] Expectation over the distribution Pr(p(t)) of
genotype frequencies

HR Genetic diversity at the recognition locus in the
population

F Probability of identity-by-descent between two
genes randomly sampled at the same locus from
two different individuals from the same group

φ, γ, and δ Probability of identity-by-descent between two
pairs of genes sampled at two different loci
from, respectively, two, three, and four different
individuals

interact with individuals carrying the harming allele and a differ-

ent neutral conspicuous marker.

These phenotypic effects on fitness entail that if harm-

ing were expressed unconditionally, regardless of the recipient’s

genotype, then the act of harming would result in a net fecundity

cost C to the actor [(N − 1) acts times the cost C/(N − 1) per

act] and a total effect D on group productivity [(N − 1) acts times

the cost D/(N − 1) to each recipient]. This corresponds to the

usual parameterization of the evolution of unconditional helping

in patch-structured populations, with the difference that the ef-

fect D on group productivity is a benefit in that case (e.g., Eshel

1972; Aoki 1982; Taylor 1992a; Gardner and West 2006). The

conditional expression of the behavior will result in a situation

in which the cost to the actor (or the total effect on group pro-

ductivity) varies between zero (never expressing the act) and C

(or D).

Events in the life cycle of the population occur in the follow-

ing order. (1) Each adult individual produces a large number of

juveniles with its fecundity being determined by the interactions

with its N − 1 neighbors. (2) Juveniles disperse independently

from each other with probability m to another random group, and

all adults die. (3) Juveniles fuse randomly to produce diploid zy-

gotes (syngamy), which is immediately followed by meiosis with

a recombination rate r between the harming and recognition loci

to produce a new generation of haploid individuals. (4) Regula-

tion occurs so that only N individuals are allowed to settle in each

group.

GENE FREQUENCY CHANGE AND FIXATION

PROBABILITY

We denote by pA(ij) the frequency (0 or 1) of a mutant allele A (A

stands for H or R) in individual j from group i. Individuals j and

k from group i then bear different marker alleles with probability

pR(ij)(1 − pR(ik)) + (1 − pR(ij))pR(ik). With our assumptions that

individuals interact with each of their N − 1 group neighbors and

that actors harm only recipients bearing different marker alleles

(and are harmed by others bearing the harming allele and different

maker alleles), the fecundity of individual j from group i (relative

to that of an individual not expressing the harming allele) can be

written as

1 + fij = 1 + 1

N − 1

∑
k,k �= j

(pR(ij)(1 − pR(ik))

+ (1 − pR(ij))pR(ik))(−CpH(ij) − DpH(ik)). (1)

The expected change in the frequency pA of allele A over the

life cycle, conditional on the current distribution of genotypes in

the population (i.e., the current values of pH(ij) and pR(ij) for each

individual in the population), is then given to leading order in C

and D (weak selection) by

�pA = Ei, j [( fij − f )pA(ij)] − (1 − m)2Ei, j [( fi − f )pA(ij)], (2)

where Ei, j [·] denotes the average over all groups in the population

and all individuals within groups (pA = Ei, j [pA(ij)]); 1 + fi is the

average fecundity in group i (average over 1 + fij within group i);

and 1 + f is the average fecundity in the total population (eqs. A1

and A2 of the Appendix).

On substitution of equation (1) into equation (2), one

obtains an expression for the expected change in allele fre-

quency �pA, which is a sum of selection coefficients (e.g.,

C, D, (1 − m)2C, etc.), each weighted by moments of al-

lele frequencies involving genes from the same or different

loci, sampled from the same or different individuals (e.g.,

Ei, j,k �= j [pH(ij) pH(ik)], Ei, j,k �= j [pH(ij) pR(ik)], where Ei,j,k �=j denotes

the average over all i, j, and k �= j, see eq. A5). The moments

of alleles frequencies must be evaluated explicitly to close equa-

tion (2). Under weak selection (i.e., retaining only first-order
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effects of selection), it is sufficient to evaluate such moments un-

der neutrality only. Any effect of selection on the moments of

alleles frequencies will involve at least first-order effects, which

will result in second-order or higher order effects of selection on

allele frequency change. These second-order effects are neglected

when the change in gene frequency is evaluated to the first or-

der only (e.g., Kirkpatrick et al. 2002; Otto and Day 2007). We

will evaluate the moments of gene frequencies in two different

ways because we analyze the coevolution of recognition mark-

ers and harming alleles under two different but complementary

demographic situations:

(1) Infinite structured population: we assume that migration is

positive (m > 0) so that the evolving population is the collection

of an infinite number of groups. Because the average in equation

(2) is over all groups in the population, the change of allele fre-

quency �pA at the level of the total population is deterministic.

There is no genetic drift occurring at the level of the total popula-

tion but genetic drift occurs locally, at the level of the deme, which

generates fluctuations in gene frequencies between demes (i.e.,

relatedness). We then evaluate the moments of allele frequencies

as is usually carried out for the infinite island model of disper-

sal (see the Appendix), by assuming that genetic associations

(linkage- disequilibrium, relatedness) are fast variables that equi-

librate before any significant change in allele frequencies (slow

variables) has occurred at the level of the total population (e.g.,

separation of time-scale argument, Otto and Day 2007). This

approximation is valid when the strength of selection is much

weaker than both the recombination and the migration rates (e.g.,

Nagylaki 1993; Kirkpatrick et al. 2002; Roze and Rousset 2008).

(2) Finite panmictic population: we assume no migration (m =
0), which is the same as considering a single panmictic population

of fixed finite size N, where the fate of any allele in the absence

of mutation is either fixation or loss from the population. Our

aim is then to evaluate the probability of fixation πA of allele

A in this population. For this case, we simplify the previous

notation by dropping the group subscript i and denote by pA(j) the

frequency (0 or 1) of allele A in individual j of the population,

1 + fj the fecundity of that individual (equivalent to eq. 1 with

subscript i dropped), and by 1 + f the average fecundity in the

total population (average over N individuals only). With these

assumptions, equation (2) boils down to

�pA = E j [( f j − f )pA( j)], (3)

where E j [·] denotes the average over all individuals in the pop-

ulation. Because the number of individuals is finite, �pA is now

a random variable. That is, equation (3) is interpreted as the

expected change in allele frequency conditional on the current

realization of genotype frequencies in the population, which is

a random variable because genetic drift causes the population to

take different sample paths. By taking the expectation of �pA over

all possible sample paths one obtains the unconditional expected

change in allele frequency (see eqs. A20–A22), which allows us

to calculate directly the fixation probability πA by evaluating ex-

actly under neutrality the moments of allele frequencies that will

appear in equation (3) (no assumption of separation of time scale

here).

HARMING VERSUS HELPING

We will compare our results with those obtained previously by

Rousset and Roze (2007) for the evolution of marker-based con-

ditional helping under the same infinite-island life cycle as that

described above. For conditional helping, it was assumed that

individuals bearing allele H provide a benefit B/(N − 1) to a

neighbor [instead of harming it with intensity D/(N − 1)], when-

ever actor and recipient carry the same conspicuous feature. The

model for conditional helping can then be obtained directly from

equation (1) by substituting −D with B, and pR(ij)(1 − pR(ik)) +
(1 − pR(ij))pR(ik) with its complement pR(ij) pR(ik) + (1 − pR(ij))(1 −
pR(ik)), which is the probability that individual j and k from group

i bear identical conspicuous marker alleles. With these changes

our equation (1) is equivalent to equation (1) of Rousset and Roze

(2007).

Results
INFINITE STRUCTURED POPULATION

Invasion condition for harming
We find that the change in the expected frequency of the condi-

tional harming allele H under weak selection is given by

�pH = pH(1−pH)HR

(
−C(1− F) − D(F −φ) + (

D + C
)
(1− m)2

×
[

1

N
(1 − F) + 1

N
(F − φ) +

(
N − 2

N

)
(F − γ)

])
,

(4)

where HR = 2pR(1 − pR) is the genetic diversity in the population

at the recognition locus; F measures the probability that two

genes randomly sampled at the same locus from two different

individuals from the same group are identical-by-descent (i.e., the

two alleles stayed in the same deme and coalesced in that deme);

φ (γ) is the probability that two pairs of genes sampled at two

different loci from two (three) different individuals are identical-

by-descent (see eqs. A5–A12). The probabilities φ and γ are

measures of association between two pairs of homologous genes

and are complicated functions of the demographic and genetic

parameters N, m, and r (eqs. A15–A19).

The term 1 − F in equation (4) is the probability that a pair of

genes does not coalesce and HR(1 − F) then gives the probability

that two recognition genes sampled from two different individuals

are different. The term HR(1 − F) can thus be interpreted as the
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probability of interaction between a focal individual carrying the

mutant harming allele and a recipient carrying a different marker

allele from the focal individual, in which case the focal individual

harms the recipient at a fecundity cost C to itself. The term HR(F −
φ) can be interpreted as the probability of interaction between

the focal individual and an individual carrying a harming allele

identical-by-descent to that of the focal individual and a different

marker allele from the focal individual (F − φ is the probability

that, among two pairs of homologous genes sampled from two

distinct individuals, one coalesces within the deme, but the other,

here at the recognition locus, does not), in which case the focal

individual is harmed and loses D fitness units. Finally, HR(F −
γ) can be interpreted as the probability of interaction in the focal

deme between an individual, which is different from the focal

individual but carries a harming allele identical-by-descent to

that of the focal individual, with a third individual that carries a

different marker allele from the former individual (F − γ is the

probability that, among two pairs of homologous genes sampled

from three distinct individuals, one pair coalesces, but the other

does not), in which case the former harms the latter at a cost to

the former.

With these three interaction probabilities, the term in brack-

ets in the second line in equation (4) can be thought of as the

average frequency of interactions in the focal deme in which an

actor bearing a harming allele identical-by-descent to that of the

focal individual (including the focal individual himself ) harms a

recipient bearing a different phenotypic cue from the actor, and

which causes a decrease in average patch productivity by D + C.

This decrease in focal deme productivity decreases the intensity

of competition faced by the focal individual’s offspring, which

then have a higher chance of reaching adulthood, provided they

stay in the focal deme and compete against other offspring from

that deme (hence the term (1 − m)2 in eq. 4). The last term in

equation (4) is thus the fitness benefit of harming accruing to the

focal individual.

If pairs of alleles sampled at the harming and recognition

loci in different individuals from the same group were to coalesce

independently of each other (no associations between alleles from

different loci in different individuals), we would have φ = γ =
F2, in which case equation (4) reduces to �pH = −CpH(1 −
pH)HR(1 − F) (obtained by using eq. A15 at equilibrium). The

direction of selection on the mutant allele is then given by −C >

0, which is the classical result for the selective pressure on an

unconditional social behavior under our life-cycle assumptions

(Taylor 1992a; Taylor 1992b). With limited dispersal (m < 1)

and finite group size, alleles sampled at different loci from two

different individuals are unlikely to be independent because the

two individuals may descend from a common ancestor and may

thus carry replica chromosomes. Individuals bearing recognition

markers identical-by-descent are then also likely to bear harming

alleles identical-by-descent; therefore φ > F2 and γ > F2, in

which case harming might eventually be selected for.

Harming versus helping
Using the explicit expressions for F, φ, and γ in equation (4) (eqs.

A15–A19), we find that the mutant harming allele H might be

selected for when group size is large (neglecting terms of higher

order than 1/N) if

C

D
<

(1 − m)2(1 − r )2

N {m(1 − r ) + r}{2 − m(1 − r ) − r} , (5)

which is a monotonically decreasing function of N, m, and r.

We now compare this invasion condition with that obtained for

conditional helping. Substituting the explicit expressions for F,

φ, and γ into the condition for invasion of conditional helping (eq.

2 of Rousset and Roze 2007 or eq. A13 of the Appendix of this

article), we find that if allele H results in helping, conditional on

the recipient bearing an identical recognition marker allele to the

actor, it is selected for under large group size if

C

B
<

HR

1 − HR
× (1 − m)2(1 − r )2

N {m(1 − r ) + r}{2 − m(1 − r ) − r} . (6)

Because the ratio HR/(1 − HR) is equal to one only when the

two recognition alleles are equally frequent, is smaller otherwise,

and tends to zero when the frequency of one of the two recognition

markers is close to fixation, the selective pressure on marker-

based conditional helping is generally weaker than that on marker-

based conditional harming when there are only two recognition

alleles in the population. It can be shown that this result holds

regardless of population size, and when population size is small

the difference between the two selection pressures becomes even

more pronounced. However, if there are more than two recognition

alleles segregating in the population, the diversity HR can exceed

one half (with K neutral marker alleles, the maximal diversity

is (K − 1)/K). In this case, the selective pressure on conditional

helping may be stronger than that on conditional harming, but this

will depend on the parameter values.

Invasion condition for recognition markers
Following similar calculations to those carried out in the Appendix

for the harming allele (e.g., eqs. A5–A12), we find that the change

in the frequency of the recognition allele R is given by

�pR = pH pR(1 − pR)(2pR − 1)
(
C + D

)
Z , (7)

where Z is a function of N, m, r, which is always positive and

is exactly the same as that obtained for the change in the recog-

nition allele under conditional helping (Rousset and Roze 2007,

eq. 19 of their appendix). Hence, unless an extrinsic force main-

tains polymorphism at the recognition locus, selection will com-

pletely eliminate the diversity at the recognition locus, ultimately
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preventing the evolution of conditional harming. This is exactly

the same result as that found for marker-based conditional helping

and whose implications were discussed at length in Rousset and

Roze (2007).

Finally, we mention that we have also investigated the joint

evolution of conditional harming and recognition markers includ-

ing second-order effects of selection in exactly the same way as

has been carried out previously for conditional helping, and which

resulted in the identification of stable internal polymorphism un-

der a restricted set of parameter values (Rousset and Roze 2007).

However, for conditional harming we have not found a stable in-

ternal polymorphism for a biologically relevant set of parameter

values. This suggests that polymorphism is unlikely to be main-

tained by frequency-dependent selection in the case of conditional

harming unless introduced by mutation.

FINITE PANMICTIC POPULATION

Invasion condition for harming
We find that the fixation probability of a single mutant harming

allele H, averaged over the two marker allele backgrounds in

which the mutant allele might eventually appear, is given under

weak selection by

π̄H = 1

N
+ HR(0)

(
−CP1 − D P2

+ (D + C)

[
1

N
P1 + 1

N
P2 +

(
N − 2

N

)
P3

])
, (8)

where 1/N is the fixation probability under neutrality; HR(0) =
2pR(0){1 − pR(0)} is the genetic diversity at the recognition locus

when the mutant is initially introduced into the population; P1,

P2, and P3 are functions of N and r (eqs. A27–A35).

The term HR(0)P1 in equation (8) gives the sum over the

whole invasion time of the mutant allele of the probability that

a focal individual carries the mutant harming allele H and in-

teracts with another individual bearing a different marker allele

from the focal individual. Therefore, HR(0)P1 can be thought

off as the counterpart of pH(1 − pH)HR(1 − F) in the deter-

ministic model given by equation (4). The term HR(0)P2 gives

the sum over the whole invasion time of the probability that a

focal individual bears allele H and interacts with another indi-

vidual bearing allele H but a different marker allele (counterpart

of pH(1 − pH) HR(F − φ) in the deterministic model); that is,

the alleles sampled at the harming locus in the two individuals

have coalesced but those sampled at the recognition locus have

not. Finally, HR(0)P3 gives the sum over the whole invasion time

of the probability that a focal individual carries allele H and a

second individual carries the same allele and interacts with a

third individual that carries a different marker allele from the sec-

ond (counterpart of pH(1 − pH)HR(F − γ) in the deterministic

model).

Under weak selection in a finite population, selection favors

a mutant allele H whenever it results in a fixation probability

higher than that expected under neutrality, and this might occur

when the second term in equation (8) is positive, which can be

thought of as the gradient of selection on the mutant allele (force

of directional selection). Hence, the direction of selection on the

harming allele is independent of the initial genetic diversity HR(0)

at the marker locus. The invasion condition for the finite panmic-

tic population model is, therefore, qualitatively similar in form

to that given by the infinite structured population model (eq. 4).

Further, the interpretation of the probabilities weighting the cost

C and damage D depends on qualitatively similar coalescence

probabilities. In both cases an actor may interact with two cate-

gories of recipients: those that are more and those that are less

likely to have inherited recognition markers and behavioral alleles

from one common ancestor. This may allow an actor to discrimi-

nate between the classes of recipients if recombination is not too

frequent.

In Figure 1, we graph the threshold cost-to-benefit value

C/D obtained from equation (8) above which the harming allele is

selected against as a function of the recombination rate and pop-

ulation size (eq. A46). This figure shows that the harming allele

may be selected for under a wide range of parameter values, even

if the recombination rate is large. In the absence of recombination,

the threshold cost-to-benefit is approximately given by C/D < 1/2

(eq. A48). If recognition is perfect and the population remains of

Figure 1. Threshold values of population size, N, and recombina-

tion rate, r, separating positive and negative selective pressure on

a single harming allele for a given cost-to-benefit ratio, C/D, in a

panmictic population. The lines were obtained by solving equa-

tion (A46) for N for given values of r and C/D. For each line, the

harming allele is selected against for the combination of N, r val-

ues above it and selected for below it. From the right-most curve

to the left-most curve, the C/D ratio was set to 0.02, 0.04, 0.08,

0.16, and 0.32; that is, an increasing cost-to-benefit ratio, which

entails a lower combination of N, r values under which harming is

favored.
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finite size, it becomes very likely that a harming allele is favored

by selection.

Harming versus helping
If population size is large (neglecting terms of higher order than

1/N), conditional harming may be selected for in a finite panmictic

population when

C

D
<

1

Nr(2 − r )
(9)

(eqs. A46 and A47). We can again compare this invasion condition

for conditional harming to that obtained for conditional helping.

Results for marker-based conditional helping in a finite panmictic

population with recombination have not been derived previously,

and we also derived this case here (see eqs. A49 and A50). We find

that a single mutant conditional helping allele may be selected for

in a finite panmictic population when population size is large if

C

B
<

HR(0) − 2r (2 − r )

Nr(2 − r )(2 − HR(0))
(10)

(eq. A51). This invasion condition depends on the initial genetic

diversity HR(0) at the recognition locus, and is qualitatively the

same result as that obtained for the deterministic model for the

evolution of conditional helping in an infinite structured popula-

tion (Rousset and Roze 2007).

As was also the case for the infinite structured population

model, the selective pressure on conditional helping is gener-

ally weaker than that on conditional harming, but the differ-

ence is greater in the finite panmictic population case. Indeed,

equation (10) suggests that if the genetic diversity HR(0) at the

marker locus is not large enough relative to the recombination

rate r, conditional helping can never invade, whatever the cost-

to-benefit ratio. In Figure 2, we have plotted the exact threshold

invasion condition as a function of the recombination rate and

population size. Comparing Figure 1 and Figure 2, we see that the

parameter space that favors the evolution of conditional harming

is much larger than that for conditional helping. Finally, we have

also evaluated the fixation probability of a mutant recognition

marker, but as the resulting expression is complicated and not

more informative than that for the deterministic model, we do not

discuss this further.

Monte Carlo simulations
Because our results are accurate only to first-order effects of se-

lection (theoretically when C, D, and B are close to zero), we

compared predicted changes in fixation probabilities due to the

effect of selection with those observed using Monte Carlo sim-

ulations. Figure 3 shows a general trend for the present model:

the direction of selection is very well approximated by the first-

order conditions (even for D as large as 0.5), although the pre-

Figure 2. Same as Figure 1 but for a single mutant conditional

helping allele introduced in a population. The lines were obtained

by solving equation (A50) for N for given values of r and C/B. Help-

ing is selected for below the lines and counter-selected above.

In this figure, we assumed that the genetic diversity HR(0) =
2pR(0)(1 − pR(0)) at the recognition locus was maximal; we used

pR(0) = N/2 for N even and pR(0) = (N + 1)/2 for N odd. These

assumptions entail that the selective pressure on helping will be

strongest. With lower values of HR(0) the selective pressure on

conditional helping will be reduced, even to the point where actors

might actually benefit from harming individuals bearing identical

marker alleles (see eq. 10). From the top curve to bottom curve,

the C/B ratio was set to 0.02, 0.04, 0.08, 0.16, and 0.32.

dicted fixation probabilities themselves are not accurate for strong

selection.

THE RELATIONSHIP BETWEEN CONDITIONAL

HARMING AND HELPING

Under our life-cycle assumptions, we find that marker-based con-

ditional harming is often more likely to evolve than marker-based

conditional helping (in both finite panmictic and infinite struc-

tured populations), and that the direction of selection on condi-

tional harming is independent of the genetic diversity HR at the

recognition locus whereas the direction of selection on conditional

helping depends on HR (or initial genetic diversity for the finite

panmictic population model). Why is this so? To understand these

features it is useful to express the selective pressure on conditional

helping in terms of that on conditional harming.

Selection on helping in terms of that on harming
To compare the direction of selection on helping and harming,

we now consider that the magnitude of the phenotypic effects on

fitness under harming and helping are the same in absolute terms;

namely, |D| = |B| and we use the symbol B to denote these effects

under both cases (alternatively, we could have chosen D). The

gradient of selection Sharm on conditional harming, which is the

weight for pH(1 − pH) in equation (4) and the second term in

EVOLUTION 2009 7



LAURENT LEHMANN ET AL.

Figure 3. Comparison of the change in the fixation probability

�πH = πH − 1/N of a harming allele relative to neutrality as a

function of r predicted by the analytical model (circles) with that

observed from Monte Carlo simulations (squares) for the case in

which a single mutant harming (helping) allele appears simulta-

neously with a single mutant marker allele in the same individual

(i.e., N − 1 individuals in the population bear the resident alleles

at both loci). The match between the predicted and observed val-

ues for the direction of selection is usually good for the direction

of selection, regardless of population size and selection strength.

The two top panels are for conditional harming, and we have C =
0.01 and D = 0.1 for N = 50 (panel on the left) and N = 150 (panel

on the right). The middle row of panels is again for conditional

harming, but with stronger selection: C = 0.05 and D = 0.5 for N =
50 (panel on the left) and N = 150 (panel on the right). The bottom

two panels are for conditional helping, and we have C = 0.01 and

B = 0.1 for N = 50 (panel on the left) and N = 150 (panel on the

right).

equation (8), can then be expressed generically as

Sharm = −Cκ1 + Bκ2. (11)

The first component, Cκ1, can be thought of as the net inclusive

fitness cost of expressing conditional harming. Under our two

models, the weight κ1 (varying between zero and one) can be

interpreted as the probability that the focal individual expresses

harming (weighted probability over the whole invasion time for

the finite panmictic population model), standardized by the aver-

age probability that an individual expresses harming in the popula-

tion (including the focal individual himself) times the probability

that the resulting change in patch productivity affects the compe-

tition experienced by the focal individual’s offspring. The second

component, Bκ2, in equation (11) can be thought of as the net

inclusive fitness benefit of expressing harming. In this case, the

weight κ2 (varying between zero and one) can be interpreted as

the average probability that an individual expresses harming in

the population times the probability that the resulting change in

patch productivity affects the competition experienced by the fo-

cal individual’s offspring, standardized by the probability that the

focal individual gets harmed.

Because any neighbor is either identical to or different from

the focal individual at the recognition locus, the probabilities

that any neighbor is the recipient of actions by either a harming

or a helping focal individual add up to one. It follows that the

selective pressure S on unconditional helping (where the mutant

allele codes for an act of helping of intensity B, which is shared

equally among all neighbors, and which results in a cost C to the

actor) can be expressed as

S = Shelp + Sharm(C, −B), (12)

where Shelp is the selective pressure on conditional helping and

Sharm(C, −B) is the selective pressure on conditional harming

(eq. 11), where the argument B is replaced by −B to account for

the fact that all categories of recipients are helped. The equation

for S simply splits the interaction frequencies of a focal individual

helping patch members unconditionally into two classes: those

that involve individuals carrying identical marker alleles to it and

those that involve individuals carrying different marker alleles.

Suppose that the selective pressure on unconditional helping

is equal to zero (S = 0), but that individuals would benefit from

helping recipients carrying identical marker alleles (Shelp > 0).

Then, the net inclusive fitness benefit for providing help to one

category of individuals is exactly compensated by an inclusive fit-

ness loss for providing help to the other category. Hence, harming

the latter category of individuals would actually increase inclusive

fitness. In this special case, the inclusive fitness benefit obtained

by helping one category of individuals is exactly equal to the in-

clusive fitness benefit that would be obtained by harming the other

category. This does not imply that the interaction frequencies with

the two categories of individuals are equal. On the contrary, when

there are only two recognition marker alleles, we have HR ≤ 1/2,

so that individuals are much more likely to interact with others

bearing identical marker alleles than with those bearing different

marker alleles. By contrast, when there more than two recognition

alleles, say K, then HR ≤ (K − 1)/K, in which case it becomes

possible that individuals interact more often with others bearing

different marker alleles.

In general, the selective pressure on unconditional helping

is unlikely to be equal to zero (S �= 0), in which case it can be

expressed as

Shelp = S + Cκ1 + Bκ2, (13)
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which, by comparing with equation (11), shows that whether the

inclusive fitness benefit of conditional helping will be larger than

that under conditional harming depends on whether the inclusive

fitness benefit of unconditional helping is greater than zero. From

equations (11) and (13), the selective pressure on conditional

helping is stronger than that on conditional harming when

S > −2Cκ1. (14)

Comparing the intensities of selection
For the infinite structured population model, we have S = −(1 −
F)C (eq. A14 of the Appendix), so that the inclusive fitness benefit

under both unconditional helping and harming are exactly the

same. From equation (4), one can see that 0 ≤ κ1 ≤ (1 − F)HR;

the inclusive fitness cost will never exceed (1 − F)HR for this

model. When there are only two recognitions markers (HR ≤
1/2), the inclusive fitness cost under conditional helping is equal

to or greater than that under harming. Then, equation (14) can

never be satisfied and the total selective pressure on conditional

harming will either be equal to or stronger than that on conditional

helping (see also eqs. 5 and 6). But the situation can be reversed

when there are more than two recognition alleles. In this case, the

inclusive fitness cost under conditional helping may be weaker

than that under harming because individuals may interact more

frequently with recipients carrying different marker alleles (HR ≤
(K − 1)/K with K marker alleles), and equation (14) can now be

satisfied (see also eqs. 5 and 6).

For the finite panmictic population model, we have S =
−C − (B − C)/N (see eq. A49), so that the inclusive fitness benefit

under both unconditional helping and harming no longer cancel

each other out. This stems from the fact that when interactions

are unconditional, harming is selected for in a finite panmictic

population (Hamilton 1971) whereas the sign of the behavioral

effect on neighbors does not affect the direction of selection in the

infinite structured population model. Everything else being equal,

the dice are thus more loaded in favor of conditional harming than

in favor of conditional helping in finite panmictic populations

(e.g., compare eqs. 5 and 9).

More generally, the above arguments allowing us to con-

trast the selective pressure on helping and harming should apply

more widely. They should apply whenever a focal individual may

express conditionally helping or harming with complementary

probabilities over all the events it might face throughout the life

cycle and when the selective pressure on conditional harming

can be expressed as equation (11). For instance, this is the case

when a focal individual helps patch members only when it is a

native and harms patch members only when it is an immigrant. It

was then found in models with similar baseline life cycle as ours

(namely where S = −(1 − F)C) that the selective pressure on

conditional harming is often, but not always, stronger than that

on conditional helping (Lehmann 2003; El Mouden and Gardner

2008). In this case, one has κ1 = m{1 − (1 − m)2/N} and κ2 =
m(1 − m)2/N because an individual expresses harming only when

it disperses, in which case no other individuals carries a harming

allele identical-by-descent to that of the focal individual, which is

then not harmed more often than average (substituting these two

expressions into eq. 11 and eq. 13 allows one to recover, respec-

tively, eq. 19 and eq. 12 of El Mouden and Gardner 2008). These

expressions allows us to show that equation (14) can be satisfied

only if migration is strong because in that case kin competition

becomes negligible, while there may still be benefits from helping

relatives as long as relatedness remains positive.

In the same vein as just discussed, one may assume that a

focal individual perfectly recognizes and helps only individuals

born in its natal deme and harms all others, in which case it

can again be shown that for a large set of parameter values the

selective pressure for conditional harming is stronger than that for

conditional helping (Lehmann 2003; κ1 = {(1 − m)m + m} −
(1 − m)2[{(1 − m)m + m}/N + m(1 − m)2 FR(N − 1)/N ] and

κ2 = (1 − m)2[{(1 − m)m + m}/N + m(1 − m)2 FR(N − 1)/N ],

where (1 − m)m + m is the probability that a focal individual

interacts with another individual that is not born in its natal

deme, m(1 − m)2 is the probability that the focal individual is

a native and that another native individual interacts with a third

individuals that is a nonnative, and FR = 1/N + (N − 1)F/N is

the probability of identity between homologous genes sampled in

two native individuals). Finally, we mention that Johnstone and

Cant (2008) analyzed a patch-structured model with overlapping

generations and sex-biased dispersal of juveniles, where selection

on harming was also found to be stronger than that on helping

for a large set of parameter values, but in their case the behavior

was expressed unconditionally so that the above considerations

do not apply to their model.

The effect of HR on helping and harming
Equations (4) and (8) show that the force of selection Sharm on

marker-based conditional harming is proportional to the amount of

genetic diversity HR in the population at the recognition locus (or

initial genetic diversity for the panmictic population model). This

stems from the fact that an interaction between an actor–recipient

pair is conditional on the probability that the two individuals carry

different marker alleles. This probability is proportional to the ge-

netic diversity HR because genetic drift reduces diversity within

demes (or total population diversity for the finite panmictic pop-

ulation model) by a fractional amount in each generation, until

equilibrium is eventually reached (Crow and Kimura 1970; Hartl

and Clark 2007). Consequently, the interaction probabilities be-

tween actor and recipient determining κ1 and κ2 are proportional

to HR (e.g., eq. 4). It follows that the magnitude of population

diversity (or initial diversity for the panmictic population model)
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should not affect the direction of selection on conditional harming,

and equation (4) also holds in the case in which there is an arbi-

trary number of recognition alleles segregating in the population

(in which case HR = 1 − ∑
h p2

R,h , where pR,h is the frequency

of the hth neutral marker allele, see eq. A5; notice that we did not

demonstrate that this result also holds for the panmictic population

case).

In contrast to harming, the direction of selection on marker-

based conditional helping was found to depend on the magnitude

of genetic diversity HR at the recognition locus (Rousset and

Roze 2007, eq. 2 or eq. A13 in the Appendix, and see eq. A49

for the panmictic population model). In this case, the interaction

between an actor and a recipient within a deme is conditional on

the probability that the pair carry identical marker alleles, which

is the complement of the probability that they carry different al-

leles. This probability is typically larger but not proportional to

the total population probability of identity, given by 1 − HR (see

eq. A13), because in each generation genetic drift adds new ge-

netic identity to existing one through the action of coalescence

(Crow and Kimura 1970; Hartl and Clark 2007). Thus, the direc-

tion of selection on conditional helping will not be proportional

to 1 − HR but will rather be affine in HR (say α + βHR). This can

be seen from equations (11) and (13): if the direction of selection

on conditional harming, Sharm, is proportional to HR, the direction

of selection on Shelp will depend on the value of HR.

Discussion
Natural selection favors those genotypes that confer on their carri-

ers the highest lifetime reproductive success (fitness defined here

as the expected number of offspring that reach the stage of re-

production) because these genotypes are more likely to introduce

replicate copies of themselves into the next generation than alter-

native genotypes. There are two basic and very different means

by which a mutant allele can cause its carriers to have a higher

fitness than those individuals bearing an alternative, resident al-

lele. Either the mutant confers higher vital rates on its carriers

(higher fecundity or survival) or the mutant confers lower vital

rates to noncarriers. The latter case can be defined as harming,

and when it occurs it may decrease the intensity of competition

experienced by a carrier of the harming allele, or that experienced

by its offspring.

EVOLUTION OF MARKER-BASED CONDITIONAL

HARMING

We have analyzed the joint evolution of neutral recognition mark-

ers and marker-based conditional harming under two different but

complementary demographic scenarios: finite panmictic and in-

finite structured populations. Our results show that for a mutant

harming allele to be selected for under these two scenarios, the

costs to an actor of expressing harming and being harmed must

be offset by the benefits obtained from the reduction in compe-

tition faced by the actor’s offspring, which is due to all actors

in the population expressing conditional harming (eqs. 4 and 8).

The first cost (cost of harming) depends on the probability that an

actor interacts with another individual bearing a different marker

allele from itself; the second cost (cost of being harmed) depends

on the probability that an actor interacts with another individual

bearing the harming allele and a different marker allele from the

actor; finally, the benefit of harming depends on the probability

that in the population of a focal actor, actors (including the fo-

cal actor) interact with other individuals bearing different marker

alleles from those of the actor.

The interaction probabilities that weight the costs and bene-

fits of harming depend on population size, N, recombination rate,

r, and migration rate m (for the structured population case). To-

tal finite population size (or finite local group size with limited

dispersal) results in genetic drift, which entails that an actor may

interact with other individuals that have the same common ances-

tor as the actor (i.e., coalescence of alleles sampled in different

individuals occurs). These individuals are then likely to carry the

mutant harming allele and the same marker allele as the actor.

Interaction with such individuals will reduce the costs of being

harmed, but also the benefits, because fewer individuals are likely

to be harmed in the population (or local group). In the absence

of recombination, the benefits might exceed the costs because

an individual bearing the harming allele will never be harmed

(perfect recognition), but as long as there is genetic variation in

the population, individuals bearing the resident allele are harmed,

which results in a decrease in competition felt by the actor or

its offspring. Recombination increases the cost of being harmed,

because the descendants of an ancestor bearing the harming al-

lele may carry different marker alleles, but it also increases the

benefits of harming for the same reason, as more individuals are

harmed in the population.

Our results show that the selective pressure on marker-based

conditional harming is a decreasing function of the three param-

eters N, m, and r (eq. 6). This is qualitatively exactly what is

usually found for the selective pressure on unconditional help-

ing in a spatially subdivided population with the island model of

dispersal (e.g., Eshel 1972; Aoki 1982; Rogers 1990; Taylor and

Irwin 2000; Gardner and West 2006), and is also what was found

for the invasion of marker-based conditional helping (Rousset

and Roze 2007). But our results also suggest that the selective

pressure on conditional harming can be stronger than that on con-

ditional helping under otherwise similar life-cycle assumptions.

This result holds for both our finite panmictic and infinite struc-

tured population scenarios (compare eqs. 5 and 6, and eqs. 9

and 10). The difference between the selective pressure on con-

ditional harming and helping is actually expected to be greatest
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in finite panmictic populations (see section “The relationship be-

tween conditional harming and helping”). We then observe that

a single mutant harming allele can be selected for under a wide

range of parameter values, even in the presence of recombination

(Fig. 1).

Under our life-cycle assumptions, the selective pressure on

conditional harming is often stronger than that on conditional

helping because the inclusive fitness benefits obtained through

conditional harming and helping (total effect through B and D,

assuming they are of similar magnitude) are identical in the infi-

nite structured population case, and larger under harming for the

panmictic population case (see section “The relationship between

conditional harming and helping”). But at the same time, the in-

clusive fitness cost of expressing harming (total effect through

C, eq. 11) can be lower than that of expressing helping. In par-

ticular, when there are only two recognition markers segregating

in the population, individuals tend to interact more often with

others having identical marker alleles (HR ≤ 1/2) and thus pay

the direct cost of expressing conditionally helping more often

than they would if they expressed harming conditionally. When

there are more marker alleles segregating at the recognition locus

(HR ≤ (K − 1)/K with K marker alleles), the selective pressure on

conditional helping can become stronger than that on conditional

harming as individuals tend to pay the direct cost of harming more

often than that of helping (e.g., eqs. 5 and 6).

Different life-cycle assumptions might also lead to differ-

ent selective regimes on conditional harming. For instance, in

patch-structured populations with maternally transmitted sym-

bionts spreading through host populations by hampering the re-

production of uninfected females (cytoplasmic incompatibility),

the condition for invasion of harming was found to be a non-

monotonic, dome-shaped function of group size in a model with

similar basic structure to ours (Reuter et al. 2008). It is also well

known that introducing overlapping generations with only juve-

nile dispersal into the type of models considered here can increase

the selective pressure on unconditional helping (S > 0 in eq. 13,

Taylor and Irwin 2000; Irwin and Taylor 2001), which may tip

the balance in favor of conditional helping instead of conditional

harming, although this is likely to depend on the life-cycle pa-

rameter values (Johnstone and Cant 2008).

HARMING VERSUS SPITE

The selective pressure on a mutant harming allele depends on

how its expression benefits its carrier and the carrier’s relatives

by reducing the fecundity of individuals bearing the alternative

allele. Hamilton (1970) called “spiteful” a behavior decreasing

the fitness of the actor and that of the recipient of the act of harm-

ing. We mention that harming might qualify as spiteful (sensu

Hamilton (1970)) in both our finite panmictic and infinite struc-

tured population models. This can be seen by noting that the net

change in the fitness of a carrier due to it expressing the harming

allele (and holding everything else constant) can be obtained for

the infinite structured population model by setting HR(F − φ)

and HR(F − γ) equal to zero in equation (4) and for the finite

panmictic population model by setting P2 and P3 equal to zero

equation (8). In both cases, there is a wide range of a parameter

values (D, C, m, N, and r) where the resulting change in fitness

can be negative (hence expressing the mutant allele results in a net

fitness cost to the carrier when everything else is held constant)

but the harming allele will still be favored by selection because

these direct costs are offset by the reduction in competition felt

by the offspring of relatives of the focal individual. However, the

conditions under which harming qualifies as spiteful in the sense

of Hamilton (1970) are complicated and do not help us here to

further understand the ecological and demographic conditions un-

der which conditional harming is selected for, so that we did not

present such computations.

MARKER-BASED RECOGNITION, GREEN-BEARDS,

AND MATE CHOICE

Marker-based recognition in panmictic populations is sometimes

referred to as the green-beard mechanism: a conspicuous pheno-

typic effect of a gene is recognized by other individuals bearing

that gene, and where that gene also has a pleiotropic effect on

the behavior of individuals expressing the conspicuous pheno-

type (Dawkins 1982). Strictly speaking our marker-based con-

ditional harming and helping models for both finite panmictic

and infinite structured populations correspond to kin-recognition

mechanisms. This is so because in both cases the marker alleles

are exchangeable (whether the harming or helping alleles arise

on an R or r marker allele background does not affect discrimina-

tion). By contrast, under the green-beard mechanism, a particular

marker allele is postulated to be associated with a specific behav-

ioral phenotype so that conspicuous markers are not exchangeable

(see below for an empirical example).

Independently of the exact nature of the marker-based recog-

nition mechanism (e.g., kin recognition or green beard), our

results suggest that the evolution of marker-based helping in pan-

mictic populations may be selected for only under small popu-

lation size whereas marker-based harming might evolve under a

much larger set of parameter values. In the light of this obser-

vation it is interesting that the compelling documented examples

of green-beards in natural populations are of the harming type.

Indeed, the green-beard found in the red fire ant S. invicta is of

this type (Keller and Ross 1998), where workers homozygous

for allele b at the Gp-9 locus kill those individuals that do not

contain it (BB queens) while not inducing killing of individuals

that do (Bb queens). Note that here allele B cannot be exchanged

with allele b without affecting discrimination. Other examples of

marker-based conditional harming may be found among bacterial
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strains. Some bacteria release into their environment intraspecific

antagonistic compounds such as bacteriocins and bacteriophages,

which allows them to suppress the growth of competing strains

(Riley and Gordon 1999; Gardner et al. 2004). Recognition in this

case is molecular with the bacteriocin gene tightly linked to spe-

cific immunity genes that block the effect of the bacteriocins; and

molecular discrimination may even occur between carriers and

noncarriers of isogenic phages (Brown et al. 2006). For bacteria

with recurrent cycles of colonization and population growth, the

number of founding clones will probably be more relevant than

the stationary population size to describe the change in genotype

frequency in the population; in that case our parameter N can be

thought of as the number of founding clones.

Another situation in which marker-based recognition can be

used to discriminate between categories of recipients is in the con-

text of assortative mating (Crow and Kimura 1970; Kirkpatrick

1982; Seger 1985). Females (or males) could prefer to mate with

those individuals of the opposite sex that carry identical marker

alleles to them at an arbitrary recognition locus that has no direct

effects on fitness (Castro and Toro 2006). There are several simi-

larities between our models and the mate choice model of Castro

and Toro (2006). These authors also consider that individuals

carry two loci: one where arbitrary recognition alleles segregate

and another that codes for mating expressed conditionally on pairs

of individuals bearing identical marker alleles at the recognition

locus; the result is that individuals are more likely to interact

with relatives. Castro and Toro then show by simulations that the

spread of a choice allele resulting in females mating only with

males carrying identical markers is enhanced by finite population

size effects (whether the population is panmictic or structured),

which corroborates our own results. However, our formalization

does not apply directly as it stands to mate choice. By contrast to

the model of Castro and Toro, we do not consider a process by

which individuals search for others carrying identical (or differ-

ent) recognition markers. Such a search process could be included

in our models by introducing different acceptance probabilities for

individuals bearing identical or different marker alleles, so that

individuals would stop searching once they have found a partner

they accept to interact with (or mate with in the context of mate

choice). This deserves further formalization, especially because

mate choice is also likely to depend on inbreeding, an inevitable

consequence of finite patch or population size.

CONCLUSIONS

Harming behaviors may not be uncommon in nature. For instance,

segregation distorter alleles may produce toxins during meiosis to

which they but not their alternatives are resistant; the distorter thus

increases in frequency by reducing competition for fertilization

(e.g., Lyttle 1991; Ridley 2003; Burt and Trivers 2006). Mater-

nally transmitted symbionts can spread through host populations

by hampering the reproduction of uninfected females, thereby

reducing competition for symbiont carriers (e.g., Werren 1997;

Ridley 2003; Burt and Trivers 2006). In all these cases a mutant

allele spreads by harming others and this functions because the

interaction neighborhood is small enough that the reduction of

vital rates of others due to the behavior of the actor, or that of its

relatives, decreases the intensity of competition experienced by

the actor or its offspring (the interaction neighborhood is actually

very small for segregation distorters).

In addition to the results reported here, several models have

already identified ecological and demographic conditions for the

evolution of harming behaviors in structured populations, where

localized migration generates small interaction neighborhoods

(Gardner et al. 2004; Lehmann et al. 2006; Gardner et al. 2007;

Lehmann et al. 2007a; Johnstone and Cant 2008; El Mouden and

Gardner 2008). All these results broaden the scope of biological

situations where harming may occur. They show not only that

harming might evolve in both finite panmictic and structured

populations, but suggest that, under certain situations, harming is

actually more likely to evolve than helping. This should encourage

behavioral ecologists to seek evidence for conditional harming

rather than conditional helping.
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Appendix
INFINITE STRUCTURED POPULATION

Gene frequency change
The expected change in the average frequency pA of allele A over

one generation can be written under our life cycle as

�pA = Ei, j [wij pA(ij)] − pA, (A1)

where w ij is the expected number of offspring of individual j from

group i that will reach the next adult generation. This is the Price

equation (Price 1970; Hamilton 1970), but as the population is

assumed to be of constant size, the mean fitness is equal to one

(Ei, j [wij] = 1). With our notations introduced in the main text,

the fitness of individual j from group i can be written as

wij = (1 − m)(1 + fij)

(1 − m)(1 + fi ) + m(1 + f )
+ m(1 + fij)

(1 + f )
. (A2)

(Roze and Rousset 2005; Lehmann et al. 2007b; Rousset and

Roze 2007). Assuming that C and D are of small order δ, a

Taylor expansion of w ij substituted into equation (A1) produces

equation (2) of the main text.

Mutant harming allele
We derive here the change in the expected allele frequency �pH

of the harming allele when evolution occurs in the infinite island
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model of dispersal. The derivation of the change in the expected

frequency of a recognition allele is carried out in exactly the same

way.

Our analysis closely follows that of Rousset and Roze (2007)

for marker-based conditional helping. We also assume that K

alleles, denoted R1, R2, . . . RK , may segregate at the recognition

locus (K = 2 in the main text). We denote by xR(ij) ≡ (pR,1(ij),

pR,2(ij), . . . , pR,K(ij)) the vector with pR,l(ij) being the frequency (0

or 1) of recognition marker l in individual j from group i. Hence,

the element l of this vector is equal to one if individual j from

group i bears allele Rl, zero otherwise. With this, the effect of

social interactions on the relative fecundity of individual j from

group i (i.e., relative fecundity without the baseline fecundity unit)

can be written as

fij = 1

N − 1

∑
k,k �= j

(1 − xR(ij) · xR(ik))(−CpH(ij) − DpH(ik)), (A3)

where · denotes the dot product, and with only two alleles segre-

gating in the population this equation reduces to equation (1) of

the main text. The average of this equation over all individuals in

group i is then given by

fi = 1

N (N − 1)

∑
j

∑
k,k �= j

(1 − xR(ij) · xR(ik))(−CpH(ij) − DpH(ik)),

(A4)

whose average over all i gives f ( f = Ei [ fi ]).

Inserting equations (A3) and (A4) into equation (2) allows

us to write

�pH

= −C(Ei, j,k �= j [pH(ij)(1 − xR(ij) · xR(ik))] − pH M)

− D(Ei, j,k �= j [pH(ij) pH(ik)(1 − xR(ij) · xR(ik))] − pH M)

+ (1 − m)2C(Ei, j,k �= j [pH(ij) pH(i)(1 − xR(ij) · xR(ik))] − pH M)

+ (1 − m)2 D(Ei, j,k �= j [pH(ik) pH(i)(1 − xR(ij) · xR(ik))] − pH M),

(A5)

where pH(i) is the average of pH(ij) over all individuals within group

i, and

M = Ei, j,k �= j [pH(ij)(1 − xR(ij) · xR(ik))], (A6)

where Ei, j,k �= j [·] denotes the average over all i, j, and k �= j. By

substituting B for −D and xR(ij) · xR(ik) for (1 − xR(ij) · xR(ik)) in

equations (A5) and (A6), one obtains the equation for conditional

helping (Rousset and Roze 2007, eqs. 6 and 7 of their appendix).

To close the equation for �pH, we need to evaluate under

neutrality all the moments of the form Ei, j,k �= j [·] appearing in

equation (A5). This derivation has already been detailed in the

earlier work on conditional helping (Rousset and Roze 2007, p. 3–

6 of their appendix). For this reason, we present only the results we

need here, without providing the derivations. To evaluate equation

(A5), we first need

Ei, j,k �= j [pH(ij) pH(ik)] = FpH + (1 − F)p2
H, (A7)

where F is the probability that two genes randomly sampled at

the same locus from two different individuals are identical-by-

descent (e.g., they stayed in the same deme and coalesced in that

deme). We also need

Ei, j,k �= j [pH(ij) pH(i)] = 1

N
pH +

(
N − 1

N

)
Ei, j,k �= j [pH(ij) pH(ik)]

(A8)

and

Ei, j,k �= j [pH(ij)(xR(ij) · xR(ik))] = pH[F + (1 − F)HR], (A9)

where HR = 1 − ∑K
h=1 p2

R,h is total genetic diversity in the pop-

ulation. We further need

Ei, j,k �= j [pH(ij) pH(ik)(xR(ij) · xR(ik))]

= pH[φ + (F − φ)(pH + HR) + (1 − 2F + φ)pH HR],
(A10)

where φ is the probability that two pairs of genes sampled at

two different loci from two different individuals are identical-by-

descent. Finally, we need

Ei, j,k �= j [pH(ij) pH(i)(xR(ij) · xR(ik))]

= 1

N
Ei, j,k �= j [pH(ij)(xR(ij) · xR(ik))]

+ 1

N
Ei, j,k �= j [pH(ij) pH(ik)(xR(ij) · xR(ik))]

+
(

1 − 2

N

)
pH[γ + (F − γ)(pH + HR)

+ (1 − 2F + γ)pH HR], (A11)

where γ is the probability that two pairs of genes sampled at two

different loci from three different individuals are identical-by-

descent.

On substitution of equations (A7)–(A11) into equation (A5),

we find after simplification that the change in frequency of the

mutant harming allele can be written as

�pH = pH(1 − pH)HR

(
−C(1 − F) − D(F − φ)

+ (D + C)(1 − m)2

[
1

N
(1 − F)

+ 1

N
(F − φ) +

(
N − 2

N

)
(F − γ)

])
, (A12)

which is equation (4) of the main text.

Mutant helping allele
For comparative analysis, we recall the results obtained for the

change in frequency of the mutant allele H when it results in con-

ditional helping (Rousset and Roze 2007, p. 11 of the appendix).

1 4 EVOLUTION 2009



EVOLUTION OF HARMING AND RECOGNITION

Substituting B for −D and xR(ij) · xR(ik) for (1 − xR(ij) · xR(ik))

in equation (A5) and equation (A6), and using again equations

(A7)–(A11), the change in the frequency of allele H for condi-

tional helping can be written as

�pH = pH(1 − pH)

(
−C{1 − HR(1 − F)}

+ B{F − HR(F − φ)} − (
B − C

)
(1 − m)2

×
[

1

N
{1 − HR(1 − F)} + 1

N
{F − HR(F − φ)}

+
(

N − 2

N

)
{F − HR(F − γ)}

])
(A13)

which is equation (1) of Rousset and Roze (2007) written a bit

differently. The term 1 − HR(1 − F) in this equation can be

interpreted as the probability of interactions between a focal indi-

vidual carrying the mutant helping allele and a recipient carrying

an identical marker allele to that of the focal individual. The term

F − HR(F − φ) can be interpreted as the probability of interaction

between the focal individual and an individual carrying a helping

allele identical-by-descent to that of the focal individual and an

identical marker allele. Finally, F − HR(F − γ) can be inter-

preted as the probability of interaction in the focal deme between

an actor, which is different from the focal individual but carries a

helping allele identical-by-descent to that of the focal individual,

with a third individual who carries an identical marker allele to

that of the actor.

When the diversity at the recognition locus in a deme is zero

(HR = 0), equation (A13) reduces to

�pH = pH(1 − pH)

(
−C + B F

− (B − C)(1 − m)2

[
1

N
+

(
N − 1

N

)
F

])
, (A14)

where the term in parentheses is the classical selective pressure on

unconditional helping derived by Taylor (1992a), and after simpli-

fication (using eq. A15 at equilibrium) further reduces to �pH =
−pH(1 − pH)C(1 − F). Comparing equations (A12)–(A14) il-

lustrates that the gradient of selection on conditional helping is

equal to the gradient of selection on unconditional helping mi-

nus the gradient of selection on conditional harming when D is

replaced with −B in equation (A12). This result holds regardless

of the specificities of the life cycle and follows from equation (1)

(or eq. A5) because the frequency of interaction, xR(ij) · xR(ik),

with individuals bearing similar recognition alleles (conditional

helping) is exactly one minus the frequency of interaction, 1 −
xR(ij) · xR(ik), with individuals bearing dissimilar recognition alle-

les (conditional harming), so that the sum of interactions over the

two cases is equal to that occurring when the trait is expressed

unconditionally.

Probabilities of identity-by-descent
To evaluate the change of allele frequency �pH explicitly (either

the harming our the helping allele), it remains to evaluate F, φ,

and γ, which can be obtained by writing down recursion equations

for these variables (e.g., Kimura 1963; Karlin 1968; Rousset and

Roze 2007, p. 10 of their appendix). The recursion for F is given by

F ′ = (1 − m)2

[
1

N
+

(
1 − 1

N

)
F

]
. (A15)

The recursions for φ and γ depend on δ, which is the probability

that two pairs of genes sampled at two different loci from four

different individuals are identical-by-descent, and they satisfy

φ′ = (1 − r )2 K1 + 2r (1 − r )K2 + r2 K3

γ′ = (1 − r )K2 + r K3

δ′ = K3, (A16)

where

K1 = (1 − m)2

[
1

N
+

(
1 − 1

N

)
φ

]
(A17)

K2 = (1 − m)3

[
1

N 2
+ 1

N

(
1 − 1

N

)
(2F + φ)

+
(

1 − 1

N

)(
1 − 2

N

)
γ

]
(A18)

K3 = (1 − m)4

[
1

N 3
+ 1

N 2

(
1 − 1

N

)
(1 + 4F + 2φ)

+ 2

N

(
1 − 1

N

)(
1 − 2

N

)
(F + 2γ)

+
(

1 − 1

N

) (
1 − 2

N

)(
1 − 3

N

)
δ

]
. (A19)

Solving these recursions gives complicated expressions for φ,

γ, and δ, in terms of N, m, and r. Substitution of the resulting

expressions into equations (A12) and (A13), and assuming large

population size produces equations (5) and (6) of the main text.

FINITE PANMICTIC POPULATION

Probability of fixation
In this section, we give a very brief summary of the argument

developed in earlier work to compute the probability of fixation

of a mutant allele under weak selection in a one-locus setting

(Rousset 2003; Lessard and Ladret 2007), and which can directly

be applied to a multilocus setting (Lehmann and Rousset 2009).

From equation (3) the change of allele frequency at time t is

given under weak selection by

�pA(t) = E j [( f j − f )pA( j)(t) | p(t)], (A20)

where we have now made explicit that the change in allele fre-

quency is conditional on the vector p(t) of genotypes frequencies
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in the population at time t. Call Pr(p(t)) the distribution of p(t) at

time t, conditional on the initial state p(0) of the population.

We will use the expectation operator E[·] without subscripts

to denote an expectation over the distribution Pr(p(t)) in the

population, e.g., E[pA(t)] = ∑
p(t) Pr(p(t))pA(t). With this and

equation (A20), the expected unconditional change of allele fre-

quency at time t can be written as

�E[pA(t)] =
∑
p(t)

Pr(p(t))E j [( f j − f )pA( j)(t) | p(t)], (A21)

from which the fixation probability πA of allele A can be obtained

as

πA = EpA(∞) = pA(0) +
∞∑

t=0

�E[pA(t)], (A22)

where pA(0) is the initial frequency of the mutant in the population

(Rousset 2003; Lessard and Ladret 2007; Lehmann and Rousset

2009).

The problem is thus to obtain a closed-form solution to

equation (A21). This can be obtained by noting that the term

E j [( f j − f )pA( j)(t) | p(t)] can be expressed, as in the previ-

ous infinite structured population model, as a sum of selec-

tion coefficients (e.g., C, D, etc.), each weighted by aver-

ages of products of allele frequencies sampled from the same

or different loci, from the same or different individuals (e.g.,

E j,k �= j [pH( j) pH(k)], E j,k �= j [pH( j) pR(k)], see eq. A5). These mo-

ments must then be integrated over the distribution Pr(p(t)). But

as any effect of selection on the distribution Pr(p(t)) will be at

least of first order, any effect of selection on this distribution will

result in second-order or higher order effects of selection on al-

lele frequency change. Hence, to evaluate the first-order effect of

selection on allele frequency change, it is sufficient to consider

this distribution under neutrality only. Practically, this consists of

evaluating expectations of products of allele frequencies under

neutrality in the same way as was carried out in the last section,

and more generally in population genetics (e.g., Kimura 1963;

Karlin 1968; Crow and Kimura 1970).

To evaluate these moments we use the notation for multilocus

models in infinite populations from earlier work (Kirkpatrick et al.

2002; Roze and Rousset 2008) with some specificities to account

for total finite population size (Lehmann and Rousset 2009). We

will use the expectation operator notation without brackets (e.g.,

Ep◦
A(t) ≡ E◦[pA(t)]), where the superscript ◦ signifies that the

expectation is evaluated in the neutral process. Because alleles can

be sampled from different individuals, we denote the expectation

of an average of products of sets of allele frequencies sampled in

different individuals by Ep◦
S with S ≡ S1/S2/ . . . /S|S|, where each Sj

is a set of alleles sampled from the same individual, the “/” symbol

separates sets of alleles sampled from distinct individuals, and |S|
is the total number of different individuals from which sets of loci

have been sampled. For instance,

Ep◦
HR = E◦[E j [pH( j) pR( j)]] (A23)

is the probability that a randomly sampled individual from the

population carries allele H at the helping locus and allele R at the

recognition locus (expectation of the frequency of gamete HR);

and

Ep◦
HR/R = E◦[E j,k �= j [pH( j) pR( j) pR(k)]] (A24)

is the probability that, among two distinct randomly sampled

individuals in the population, one has chromosome HR whereas

the other individual carries allele R.

Mutant harming allele
In this section, we derive the average fixation probability of the

harming allele H. Because the analysis for finite populations turns

out to be more complicated than for infinite populations we as-

sume, for simplicity, that only two alleles segregate at the recog-

nition locus. Dropping subscript i in equation (1) gives

f j = 1

N − 1

∑
k,k �= j

(pR( j) − pR(k))
2(−CpH( j) − DpH(k)) (A25)

and

f = 1

N (N − 1)

∑
j

∑
k,k �= j

(pR( j) − pR(k))
2(−CpH( j) − DpH(k)).

(A26)

On substitution of these equations into equation (A20) we have

�pH = −CE j,k �= j
[

pH( j)(pR( j) − pR(k))2
]

− DE j,k �= j
[

pH( j) pH(k)(pR( j) − pR(k))2
]

+ CE j,k �= j
[

pH( j) pH(pR( j) − pR(k))2
]

+ DE j,k �= j
[

pH(k) pH(pR( j) − pR(k))2
]
. (A27)

By taking the expectation of this unconditional change in allele

frequency and using the notations introduced above, one obtains

the conditional change of allele frequency as

�EpH = −C
(
Ep◦

HR − 2Ep◦
HR/R + Ep◦

H/R

)
− D

(
2Ep◦

HR/H − 2Ep◦
HR/HR

)
+ (D + C)

(
Ep◦

H
�
/ HR

− 2Ep◦
H

�
/ (HR/R)

+ Ep◦
H

�
/ (H/R)

)
,

(A28)

where

Ep◦
U

�
/ V

= 1

N
Ep◦

UV +
(

N − 1

N

)
Ep◦

U/V , (A29)

and

Ep◦
U

�
/ (V/W )

= 1

N
Ep◦

UV/W + 1

N
Ep◦

U W/V +
(

N − 2

N

)
Ep◦

U/V/W .

(A30)

1 6 EVOLUTION 2009



EVOLUTION OF HARMING AND RECOGNITION

Inserting the last two equations into equation (A28) produces

�EpH = −C
(
Ep◦

HR − 2Ep◦
HR/R + Ep◦

H/R

)
− D

(
2Ep◦

HR/H − 2Ep◦
HR/HR

)
+ (D + C)

[
1

N

(
Ep◦

HR − 2Ep◦
HR/R + Ep◦

H/R

)

+ 1

N

(
2Ep◦

HR/H − 2Ep◦
HR/HR

)

+
(

N − 2

N

) (
Ep◦

HR/H − 2Ep◦
HR/H/R + Ep◦

H/H/R

)]
.

(A31)

On substitution of this equation into equation (A22), one can

then evaluate the first-order Taylor polynomial for the fixation

probability of a mutant harming allele conditional on some initial

genotype distribution given by p(0) = (pHR(0), pHr(0), phR(0),

phr(0)), where pV (0) is the initial frequency of gamete V .

A single mutant harming allele (pH(0) = 1/N) can initially

arise on either of the two marker-allele backgrounds at the recog-

nition locus, and our aim is to evaluate the average π̄A fixation

probability of a single mutant harming allele H, averaged over the

two marker allele backgrounds in which the mutant allele could

appear. A single initial copy of the harming allele appears on

an R background with probability pR(0) in which case the ini-

tial gamete frequencies in the population are given by pR(0) =
(pHR(0) = 1/N, pHr(0) = 0, phR(0) = pR(0) − 1/N, phr(0) = 1 −
pR(0)). The same copy of the mutant appears on the alternative

background with probability 1 − pR(0) in which case the initial

gamete frequencies in the population is given by pr(0) =
(pHR(0) = 0, pHr(0) = 1/N, phR(0) = pR(0), phr(0) = 1 − pR(0) −
1/N). With this, the first-order Taylor polynomial of the average

π̄A fixation probability of a single mutant harming allele can be

written as

π̄A = 1

N
+ HR(0)

(
−CP1 − DP2

+ (D + C)

[
1

N
P1 + 1

N
P2 +

(
N − 2

N

)
P3

])
, (A32)

where

P1 = 1

HR(0)

∞∑
t=0

(
pR(0)

[
Ep◦

HR(t) − 2Ep◦
HR/R(t)

+ Ep◦
H/R(t) | pR(0)

] + (1 − pR(0))
[
Ep◦

HR(t)

− 2Ep◦
HR/R(t) + Ep◦

H/R(t) | pr(0)
])

(A33)

P2 = 1

HR(0)

∞∑
t=0

2
(

pR(0)
[
Ep◦

HR/H(t) − Ep◦
HR/HR(t) | pR(0)

]

+ (1 − pR(0))
[
Ep◦

HR/H(t) − Ep◦
HR/HR(t) | pr(0)

])
(A34)

P3 = 1

HR(0)

∞∑
t=0

(
pR(0)

[
Ep◦

HR/H(t) − 2Ep◦
HR/H/R(t)

+ Ep◦
H/H/R(t) | pR(0)

] + (1 − pR(0))
[
Ep◦

HR/H(t)

− 2Ep◦
HR/H/R(t) + Ep◦

H/H/R(t) | pr(0)
])

. (A35)

Probabilities of identity-by-descent
To evaluate the average fixation probability π̄A explicitly, it now

remains to evaluate the neutral moments Ep◦
HR, Ep◦

H/R, Ep◦
HR/H,

Ep◦
HR/R, Ep◦

H/H/R, Ep◦
HR/HR, Ep◦

HR/H/R, and Ep◦
H/H/R/R. These mo-

ments will be affected by reproduction and recombination, and

we evaluate them again by using standard methods (e.g., Kimura

1963; Karlin 1968; Crow and Kimura 1970). Only moments in-

volving alleles sampled from the same individual at the two dif-

ferent loci will be affected by recombination because these alleles

may descend from different individuals before recombination, and

only moments involving genes sampled from different individu-

als may be affected by reproduction because coalescence of these

genes may occur. Over the recombination phase Ep◦
H/R, Ep◦

H/H/R,

and Ep◦
H/H/R/R remain constant, and the remaining expectations

change according to the recursions

Ep◦
HR

′′ = (1 − r )Ep◦
HR

′ + rEp◦
H/R

′

Ep◦
HR/H

′′ = (1 − r )Ep◦
HR/H

′ + rEp◦
H/R/H

′

Ep◦
HR/R

′′ = (1 − r )Ep◦
HR/R

′ + rEp◦
H/R/R

′

Ep◦
HR/HR

′′ = (1 − r )2Ep◦
HR/HR

′ + 2(1 − r )rEp◦
HR/H/R

′

+ r2Ep◦
H/R/H/R

′

Ep◦
HR/H/R

′′ = (1 − r )Ep◦
HR/H/R

′ + rEp◦
H/R/H/R

′, (A36)

whereas over the reproduction phase, one has

Ep◦
U/V

′ = 1

N
Ep◦

UV +
(

N − 1

N

)
Ep◦

U/V , (A37)

Ep◦
U/V/W

′ = 1

N 2
Ep◦

UVW

+ 1

N

(
N − 1

N

) (
Ep◦

UV/W + Ep◦
U/VW + Ep◦

UW/V

)

+
(

N − 1

N

) (
N − 2

N

)
Ep◦

U/V/W . (A38)

Ep◦
U/V/U/V

′ = 1

N 3
Ep◦

UVUV + 1

N

(
N − 1

N

)

×(
Ep◦

V/U + 2Ep◦
UV/V + 2Ep◦

UV/U + 2Ep◦
UV/UV

)

+ 1

N

(
N − 1

N

)(
N − 2

N

)

×
(

Ep◦
U/U/V + Ep◦

U/V/V + 4Ep◦
UV/U/V

)

+
(

N − 1

N

)(
N − 2

N

)(
N − 3

N

)
Ep◦

U/V/U/V .

(A39)
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By solving the above equations with the initial genotype

distribution given by p(0), we can then evaluate P1, P2, P3. We

find that P1 = N/(N − 1), whereas P2, and P3 are complicated

functions of N and r but they are independent of the frequency of

the marker alleles; that is HR(0) factors out of the numerator in

equations (A33)–(A35) and is thus cancelled by the denominator.

To the leading order in 1/N we have P1 = 1,

P2 = 1

2
− (2 − r (2 − r ))

4Nr(2 − r )
(A40)

and

P3 = 1

2
+ 1

4N
> P2. (A41)

Invasion condition for the mutant harming allele
The expressions for P1, P2, P3 allow us to evaluate equation (A32)

explicitly. After simplification carried out with Mathematica

(Wolfram 2003), we find that the average fixation probability

of the mutant harming allele can be expressed as

π̄A = 1

N
+ HR(0)

(
DX1 − CX2

X3

)
, (A42)

where

X1 = 2N 3[6 − 11N + 6N 2 + (N − 4)(N − 2)(N − 1)r

+ (N − 2)(N − 1)r2], (A43)

X2 = 2(N − 1)N 2(1 − r )

[
(2 − r )r2 N 4

1 − r
− r (8r − 13)N 3

+ (12 − (43 − 23r )r )N 2

− 2(r (14r − 27) + 11)N + 12(1 − r )2

]
, (A44)

and

X3 = 2(N − 1)N [(3N − 2)(6 + N (6N − 11))

+ (N − 1)(N (N (26N − 83) + 96) − 36)r

+ (N − 1)(36 − 104N + 103N 2 + 4(N − 10)N 3)r2

− (N − 2)(N − 1)2(6 + N (2N − 9))r3]. (A45)

From equation (A42), the threshold cost-to-benefit ratio

above which a mutant harming allele is selected against is then

given by

C

D
= X1

X2
. (A46)

When group size N is large, equation (A46) simplifies to

C

D
= 1

Nr(2 − r )
, (A47)

which gives equation (9) of the main text. In the absence of

recombination (r = 0), the threshold cost-to-benefit ratio above

which the harming allele is selected against is given by

C

D
= N

2(N − 1)
. (A48)

Invasion condition for the mutant helping allele
Substituting −D with B and (pR(ij) − pR(ik))2 with 1 − (pR(ij) −
pR(ik))2 in equation (A27), and using an analogous argument to

that above, one can evaluate the average fixation probability of a

single mutant allele expressing helping conditionally on both in-

dividuals bearing identical phenotypic markers. But the change of

fixation probability can also be obtained by using equation (A42)

and equation (12) of the main text. Replacing D with B in equation

(A42), one has Sharm = HR(0)(BX1 − CX2)/X3. For this model,

one also has S = −C − (B − C)/N, which is the perturbation

of the fixation probability of a mutant allele expressing uncondi-

tional helping toward neighbors in a finite panmictic population

(Rousset 2004; Lehmann et al. 2007a), and was anticipated by

Hamilton (1971). With this and using Shelp = S − Sharm(C, −B),

the average fixation probability of a single mutant allele express-

ing helping conditionally can then be expressed as

π̄A = 1

N
+ Shelp

= 1

N
+

(
−C − B − C

N

)
+ HR(0)

(
BX1 + CX2

X3

)
. (A49)

The average fixation probability given by equation (A49)

then allows us to evaluate the threshold cost-to-benefit ratio above

which the helping allele is selected against as

C

B
= NHR(0)X1

N (X3 − HR(0)X2) − X3
, (A50)

which is more complicated than the invasion condition on condi-

tional harming because it involves the function X3. When group

size N is large, the threshold reduces to

C

B
= HR(0) − 2r (2 − r )

Nr(2 − r )(2 − HR(0))
, (A51)

which is equation (10) of the main text. In the absence of recom-

bination (r = 0), the threshold cost-to-benefit ratio above which

the helping allele is selected against is given by

C

B
= N

{
N 2 HR(0) − 3N + 5

} − 2

(N − 1)
{
2 + (3N − 5)N − 2N 2 HR(0)

} . (A52)
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