Gut microbiota analysis reveals a marked shift to bifidobacteria by a starter infant formula containing a symbiotic of bovine milk-derived oligosaccharides and Bifidobacterium animalis subsp. lactis CNCM I-3446

Umberto Simeoni,1† Bernard Berger,2† Jana Junick,3 Michael Blaut,3 Sophie Pecquet,4 Enea Rezzonico,2 Dominik Grathwohl,2 Norbert Sprenger,2 Harald Brüssow,2** The Study Team,† Hania Szażewska,5 J.-M. Bartoli,6 V. Brevaut-Malaty,7 M. Borszewska-Kornacka,5 W. Feleszko,5 P. François,6 C. Gire,7 M. Leclaire,8 J.-M. Maurin,6 S. Schmidt,6 A. Skórka,5 C. Squizzo6 and J.-J. Verdó6

1Pédiatrie (PED), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
2Nestlé Research Center, Nestec Ltd, Lausanne, Switzerland.
3Gastrointestinal Microbiology, German Institute of Human Nutrition Postdam-Rehbrücke, Nuthetal, Germany.
4Nestlé Nutrition, Clinical Development Unit, Nestec Ltd, Vevey, Switzerland.
5Department of Paediatrics, Medical University of Warsaw, Warsaw, Poland.
6Hôpital Saint Joseph, Marseille, France
7Hôpital Nord, Marseille, France
8Hôpital de la Conception, Marseille, France

Summary

Non-digestible milk oligosaccharides were proposed as receptor decoys for pathogens and as nutrients for beneficial gut commensals like bifidobacteria. Bovine milk contains oligosaccharides, some of which are structurally identical or similar to those found in human milk. In a controlled, randomized double-blind clinical trial we tested the effect of feeding a formula supplemented with a mixture of bovine milk-derived oligosaccharides (BMOS) generated from whey permeate, containing galacto-oligosaccharides and 3’- and 6’-sialyllactose, and the probiotic Bifidobacterium animalis subsp. lactis (B. lactis) strain CNCM I-3446. Breastfed infants served as reference group. Compared with a non-supplemented control formula, the test formula showed a similar tolerability and supported a similar growth in healthy newborns followed for 12 weeks. The control, but not the test group, differed from the breast-fed reference group by a higher faecal pH and a significantly higher diversity of the faecal microbiota. In the test group the probiotic B. lactis increased by 100-fold in the stool and was detected in all supplemented infants. BMOS stimulated a marked shift to a bifidobacterium-dominated faecal microbiota via increases in endogenous bifidobacteria (B. longum, B. breve, B. bifidum, B. pseudocatenulatum).

Introduction

After deciphering the sequence of the human genome, the scientific community ‘discovered’ our second genome: that of microbes colonizing our body (Ding and Schloss, 2014; Human Microbiome Project Consortium, 2012a,b). Advances in sequencing technologies have allowed a deep look into this world of microbial symbionts. Most research went into the gut microbiota revealing its compositional complexity (Arumugam et al., 2011), its maturation in infants (Yatsunenko et al., 2012) and its association with human health and disease states (Gordon et al., 2012; Saavedra and Dattilo, 2012; Buccigrossi et al., 2013; Subramanian et al., 2014). What is far less clear are ways how to change a microbiota composition from a disease- to a health-associated state (Brüssow, 2015a,b). Recent data document substantial success with the transplantation of processed whole faeces from healthy donors into the gut of patients who suffer from Clostridium difficile infection (van Nood et al., 2013; McCune et al., 2014). Because the standardization of such preparations as ‘bacteriotherapy’ is problematic from a regulatory viewpoint, more research has been conducted to develop defined oral supplements such as...
probiotics and prebiotics, which beneficially influence the gut microbiota composition (Preidis and Versalovic, 2009; Kumar et al., 2014).

Probiotics are defined as ‘live microorganisms that, when administered in adequate amounts, confer a health benefit on the host’. Although this definition does not specify the microorganisms, most data come from bifidobacteria and lactobacilli used against gastrointestinal inflammations, infections and allergic conditions. Prebiotics on the other hand are defined as ‘nonviable food components that confer a health benefit on the host associated with the modulation of the microbiota’. Although the chemical nature of the food component is again not specified in this definition, most research has been done with fructo-oligosaccharides (FOS) and galacto-oligosaccharides (GOS) in the context of gastrointestinal and allergic diseases (Mugambi et al., 2012a; Osborn and Sinn, 2013; van Hoffen et al., 2009). Human milk oligosaccharides (HMOs) are natural prebiotics because they represent the bifidogenic factors that favour the growth of bifidobacteria, which typically dominate the gut microbiota of breastfed infants (Garrido et al., 2013; Smilowitz et al., 2014). Current research suggests that HMOs may represent a ‘glycan code’, which the mother uses to influence the colonization of the gut in breastfed infants with beneficial microbes (Zivkovic et al., 2011). Because HMOs synthesis at large scale is still challenging, milk oligosaccharides from cow’s milk – although present at lower concentration and with distinct chemical specificity – represent an alternative source for a milk-derived prebiotic in infant formula (Chichlowski et al., 2011; Zivkovic and Barile, 2011; Barile and Rastall, 2013).

Probiotic and prebiotic approaches have their problems. Introducing probiotics into the gut already populated by a large number of indigenous bacteria meets colonization resistance from the resident gut microbiota. Prebiotics, on the other hand, can only affect the growth and metabolic activities of bacteria that are already present in the gut, not those that are missing. A possible solution for these problems is a combination of probiotics and prebiotics, called a ‘synbiotic’, where the chosen prebiotic selectively increases the chance of the ingested probiotic to gain a foothold in the gut (Mugambi et al., 2012b).

In the study presented here we investigated the impact of a synbiotic formula on gut microbiota composition in healthy infants in a double-blinded placebo-controlled clinical trial. The test formula consisted of BMOS combined with Bifidobacterium animalis subsp. lactis (B. lactis) strain CNCM I-3446 (Steenhout et al., 2009; Philippe et al., 2011). The same formula without addition of the prebiotic–probiotic blend was used in the control group. Breastfed infants served as reference group. The test formula with the pre- and probiotic was well tolerated, and a strong bifidogenic effect was observed, mainly driven by the prebiotic effect on the indigenous bifidobacteria.

Results

Nutritional intervention trial

At a mean age of 5 days, 115 healthy full-term infants were enrolled into a nutritional intervention trial. Infants from mothers who decided not to breastfeed were randomized to either a starter infant formula (control formula C, \(n = 37\), 1.8 g protein/100 kcal; whey/casein ratio 70:30) or the same formula supplemented with a prebiotic (BMOS) at a total oligosaccharide concentration of 5.7 ± 1.0 g/100 g of powder formula (8 g l\(^{-1}\) in the reconstituted formula) and a probiotic (B. lactis strain CNCM I-3446 with \(1 \times 10^7\) cfu g\(^{-1}\) of powder formula) (test formula T, \(n = 39\)) for a 12-week feeding period. Infants from mothers who decided to exclusively breastfeed were enrolled in the breastfed group (group B, \(n = 39\)), which served as physiological reference group. Figure 1 presents the flowchart for infants who were enrolled, lost to follow-up and analysed for the different outcomes. At baseline and over the 12-week observation period of the intention to treat (ITT) population (\(n = 115\) infants), no significant difference was seen between the three groups for anthropometric measurements (Tables S1 and S2).

Stool characteristics and infant behaviour

In the per protocol analysis, the number of stools decreased from 4.9 to 2.4 stools per day over the observation period, with no difference between the groups (\(P > 0.4\)). During the feeding trial, infants from the T, but not the C group, showed a proportion of yellowish versus greenish stools equivalent to B infants (Fig. S1). Infants in the T group showed during intervention more liquid stools than infants in the C group; liquid stools were the dominant observation in B infants (Fig. S2). At 6 weeks, infants in the T and B groups showed a similar stool pH, whereas C infants showed a significantly higher stool pH (Tables S3 and S4). Infants from the T and C groups did not differ in ‘spitting up’, vomiting, crying, colic, flatulence and irritability (data not shown).

Stool microbiology analysis: quantitative real-time polymerase chain reaction (PCR)

Stool samples were collected from infants before first product application and at 6 and 12 weeks of age when on the allotted feeding regime. In the per protocol analysis, stools from 18 to 23 infants were available per group and
time point. When using a universal 16S rRNA gene primer pair, the nutritional intervention slightly increased the total bacterial count (Fig. 2 top, left). In average, we obtained median numbers of 5×10^{10} to 10^{11} bacterial cells g$^{-1}$ stool for all feeding groups and all time points. Subsequently we used 16S rRNA gene primers allowing taxonomic differentiation. Total counts of bifidobacteria increased in all three groups between enrolment and 6 weeks of age,
after which it remained constant until 12 weeks (Fig. 2 top, middle). Compared with infants in the C group, infants in the T group showed a more pronounced increase in the *Bifidobacterium* titre by 0.8 log. In the T group, the final faecal titre of bifidobacteria was with 0.8×10^{10} bacteria g$^{-1}$ stool significantly higher than in the C and in the B group. *Bacteroides* and lactobacilli showed a 10-fold higher and 10-fold lower stool number, respectively, in infants from the C group compared with those from the T group (data not shown and Fig. 2 top, right).

To achieve further resolution in the *Bifidobacterium* genus, we used a qPCR set of primers based on the *groEL* gene that allowed the detection of 12 *Bifidobacterium* species (Junick and Blaut, 2012). *Bifidobacterium adolescentis*, *B. animalis*, *B. bifidum*, *B. breve*, *B. catenulatum*, *B.dentium*, *B. longum* and *B. pseudocatenulatum* were detected (Fig. 2 bottom, and data not shown). *Bifidobacterium longum* and *B. bifidum* were the dominant bifidobacteria in the test group, whereas *B. bifidum* and *B. breve* dominated the microbiota in the breastfed and in the control group.

Detection of the added probiotic

Stools positive for *B. animalis* (to which the subspecies *lactis* belongs) by qPCR increased from 6% to 95% after feeding the test formula and titres increased from 10^7 to 10^9 cells g$^{-1}$ stool, yet *B. lactis* remained a minor fraction of the total bifidobacteria. In contrast, only 13% of the control formula recipients and 5% of breastfed infants showed *B. lactis* in their stools.

Microbiota composition: diversity index

The qPCR analysis allows estimating absolute bacterial counts in the stool for a defined bacterium but does not give an untargeted view on the faecal microbiota. Therefore, the microbiota analysis was complemented by 16S rRNA gene pyrosequencing. After analysis and exclusion of subjects with incomplete data sets, we obtained faecal microbiota compositions for all three time points from at least 13 infants per group. Figure 3 compares the α-diversity for the three groups at baseline and after 6 and 12 weeks of feeding. At baseline the three feeding groups did not differ significantly in microbial diversity (Shannon index). At 6 weeks of age, infants in the C group showed a higher diversity index, due to an increase in both richness and evenness when compared with infants in the T group and the B group. At 12 weeks of age, the C group but not the T group differed from the B group with respect to diversity and richness (Fig. 3).

Microbiota composition: biplot

The bacterial communities of the three groups were analysed by ordination based on the weighted UniFrac distance (Fig. 4). The coordinates of the six most abundant bacterial genera (weighted average of the relative abun-

© 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd., *Environmental Microbiology, 18, 2185–2195*
dance in all samples) is indicated by grey bubbles. All infants in the T group showed from baseline to 6 weeks of age a shift to the position of bifidobacteria and remained there until at least 12 weeks of age. No clear development towards a *Bifidobacterium*-dominated faecal microbiota was seen in the C group at 6 weeks of age. Even at 12 weeks of age not all these children had moved to the *Bifidobacterium* coordinates. In the B group, about one third of the infants did not shift to a *Bifidobacterium*-dominated faecal microbiota.

Microbiota composition: taxonomic affiliation of bacteria

Based on 16S rRNA gene sequencing, the microbiota composition of the stool samples for all individual infants in each feeding group is displayed in a bubble plot (Fig. 5, Fig. S3). Bifidobacteria are increased in all three feeding groups, most prominently in the T and B groups and substantially less so in the C group. *Bifidobacterium pseudocatenulatum* became dominant in B and T, but not in C group. Two other bifidobacterial species, which were prominent in all three feeding groups, are *B. longum* and *B. breve*. However, only one *Bifidobacterium* species dominated the stool of infants at a given time point. *Bifidobacterium animalis* was nearly absent in the B and C stools, whereas it was detected in practically all faecal samples of the T group, although with low abundance (median = 0.7%) (*P* < 0.001). *Escherichia* is prominent at baseline in all three feeding groups and decreases substantially at 6 weeks and 12 weeks. The decrease is less prominent in the C group (*P* < 0.01 compared with other groups). In the T group *Streptococcus* is prominent at baseline and disappears practically at 6 weeks and 12 weeks, whereas it is maintained in C and B infants. *Ruminococcus gnavus*, a typical human gut commensal, dominates some C infants at 6 and 12 weeks of age. *Clostridium perfringens* is found with high titres in three B infants at 6 weeks of age, but not in the two formula groups, whereas *Peptostreptococcaceae* were significantly more abundant in group C than in group B and T infants (*P* < 0.05).

Discussion

The synbiotic intervention had a marked effect on the development of the gut microbiota. Compared with the control formula, the supplemented formula induced a shift in all treated infants towards a *Bifidobacterium*-dominated faecal microbiota, which was already apparent after 6 weeks of feeding the test formula. The treatment effect became also evident when using other common parameters in microbiota analyses. For example, at 6 weeks of age the treated infants showed a significantly lower diversity index than infants fed the control formula. For these microbiota parameters infants from the synbiotic treatment group resembled the breastfed infants who likewise – albeit less markedly – showed a shift to a *Bifidobacterium*-dominated gut microbiota as is commonly observed in breastfed infants. This comparison should be interpreted with caution because the breastfed group was self-selected, and only the subjects from the two formula groups were randomized at enrolment, thus allowing direct comparisons only between them. However, overall the infants from the three feeding groups matched well in many parameters except that breastfed infants had a higher gestational age, less caesarean sections and more siblings than formula-fed infants (data not shown).

What might be the reason for the higher microbiota diversity in the control group? In recent publications (Bäckhed et al., 2015; Dogra et al., 2015a) and a review (Dogra et al., 2015b) three stages of gut colonization were distinguished in infants during the first year of life: a relatively diverse *Proteobacteria*-dominated microbiota in the neonatal period, followed by an *Actinobacteria*-dominated more uniform microbiota induced by breastfeeding, which is then replaced by a more diverse, more adult-like *Firmicutes* and *Bacteroidetes*-dominated microbiota induced more by the cessation of breastfeeding than by the introduction of formula feeding or solid-food supplementation. Breastfeeding and as demonstrated in the current communication also milk oligosaccharide feeding shifts the gut microbiota to the less diverse *Actinobacteria*/*Bifidobacterium*-dominated stage, whereas infants fed with a formula initially prolong the more diverse *Proteobacteria*-dominated profile and then develop earlier into an adult-type, more diverse microbiota.

As we compared a formula containing a combined pre- and probiotic supplement with an un-supplemented control formula, we cannot deduce what compound of the supplement mediated the strong *Bifidobacterium*-stimulating effect in the test group. However, the microbiota analysis provided a clear answer. When using a species-specific PCR for *B. animalis* (to which the supplemented probiotic belongs), we observed a robust increase in the faecal representation of the probiotic, which was not observed in the control and the breastfed group indicating a successful introduction of the probiotic in the gut of the infants in the test group. Mean titres of *B. lactis* were with 10^8.4 cells g⁻¹ stool relatively high. However, compared with the overall stimulation of bifidobacteria observed with the synbiotic supplement, the added probiotic could only account for a small percentage of the *Bifidobacterium*-stimulating effect. The major contributor to this stimulatory effect was clearly the prebiotic supplement and its effect on the indigenous bifidobacteria. Our observation concurs with other data on probiotic supplementation. Larsen and colleagues (2011)
Fig. 5. Distribution of OTUs in all stool samples in the specified feeding groups (B: breastfed reference; C: control formula; T: test formula). Each column describes one sample. Numbers correspond to individual infants in each feeding group at the three specified ages. The size of the squares depicts the percentage abundance (bottom left code). OTUs are shown for each row at the right as best classified at family (f), genus (g) or species (s) level, with terminal ID number. Only OTUs present at > 5% in at least one sample are shown.
tested another *B. animalis* subsp. *lactis* strain in infants at a daily dose of 10^10 bacteria, and did not observe an increase in total faecal bifidobacteria compared with that in controls and pre-intervention, but the probiotic strain increased from non-detection to 10^7 cells g^-1 stool by qPCR. No impact on bacterial population diversity was seen. Infants supplemented with 10^8 bifidobacteria g^-1 formula showed an increase in prevalence, but not in titre of bifidobacteria compared with that in placebo recipients (Langhendries et al., 1995). Likewise feeding *B. animalis* subsp. *lactis* at 6 x 10^10 cells l^-1 formula to full-term infants did not lead to an increased *Bifidobacterium* cell count over the control formula (Bakker-Zierikzee et al., 2005).

How does the stimulatory effect of BMOS prebiotic compare with other bifidogenic prebiotics? In the literature only GOS/FOS prebiotics have so far been investigated in infants for stimulatory effects on faecal bifidobacteria (Veereman, 2007; Piirainen et al., 2008). Although a stimulation of faecal bifidobacteria by these prebiotics has consistently been observed, the degree of stimulation differs substantially, with some groups reporting only small or only transient effects. Preterm infants receiving a formula containing 10 g l^-1 GOS/FOS (90:10%) showed a 50-fold higher *Bifidobacterium* viable stool titre over preterm infants receiving the same formula without prebiotic supplements. The difference was significant after 4 weeks, but not 2 weeks of feeding (Boehm et al., 2002). A 50-fold increase in the titre of viable *Bifidobacterium* was seen in term infants fed with a formula supplemented with 4 and 8 g l^-1 GOS/FOS compared with that in control formula (Moro et al., 2002). However, another group observed with the same GOS/FOS mixture only a moderate increase in bifidobacteria, namely from 50% to 60% of total faecal bacteria, but no increase in faecal *Bifidobacterium* counts compared with that in standard formula (Knol et al., 2005). A transient increase of bifidobacteria was seen in children between 4 and 8 weeks of age with formula supplemented with 6 g of GOS/FOS l^-1 compared with that in standard formula (70% vs 50% bifidobacteria of total faecal bacteria) (Bakker-Zierikzee et al., 2005).

BMOS thus shows a robust bifidobacteria-stimulating effect that is as high or even higher than FOS/GOS. The test formula was faster and more efficient (absence of non-responder) in bringing the infant microbiota to a bifidobacteria-dominated community, even when compared with the breastfed group. Recent data suggest that in addition to the composition of the gut microbiota, its rate of acquisition is important (Bäckhed et al., 2015; Dogra et al., 2015a). Therefore, the strong and rapid stimulation of bifidobacteria by the test formula may have a positive effect on infants. Some authors have suggested that a general bifidobacteria-stimulating effect is not enough to achieve health benefits, but that a species-specific *Bifidobacterium* stimulation is needed for alleviating for example allergy-related symptoms (Ouwehand et al., 2001). The prebiotic supplement stimulated *B. pseudocatenulatum*, which was not observed in the control group. Interestingly, *B. pseudocatenulatum* is also a prominent *Bifidobacterium* species in breastfed infants strengthening its link to potential health effects. The fact that specific indigenous bifidobacterial species can be stimulated by BMOS in vivo offers interesting possibilities for targeted gut microbiota ‘engineering’ by nutritional interventions in the future. However, we need to know more about the relative health-promoting properties of the different bifidobacterial species to fully exploit the bifidogenic properties of oligosaccharides. As some probiotic effects are strain-specific, the symbiotic approach might allow the targeted stimulation of a given strain by a specific prebiotic. Because of the design of our clinical trial we cannot decide whether the increase in *B. lactis* is the result of its oral supplementation or whether its presence was further boosted by the probiotic supplement. From a biotechnological perspective, it will be important to explore whether specific prebiotics can be designed that favour the outgrowth of a specific bifidobacterial strain tested in competition with other gut-derived bifidobacteria by *in vitro* tests and whether this specific stimulatory activity is translated into the *in vivo* situation.

Our study was powered to demonstrate non-inferiority for the test formula compared with the control formula for growth. This goal was achieved. All anthropometric parameters (weight gain, length and head circumference) did not differ between groups from inclusion until 3 months of age. The study was not powered to detect differences in health outcomes. In fact, only three infections were observed and distributed evenly across the three groups. Were there observations suggesting potential health benefits of the formula supplementation? A major contribution of *Bacteroides* (40% of total), staphylococci and *E. coli* was described in bottle-fed babies (Harmsen et al., 2000). We observed indeed 10-fold higher *Bacteroides* titres in infants in control than on test formula or in breastfed infants. Likewise *Ruminococcus gnavus*, a common faecal isolate from humans and ruminants, was increased in control infants. *Escherichia coli* was high at enrolment but decreased significantly in abundance in all feeding groups. Similar to the breastfed group, the test formula compared with the control formula showed a lower abundance of *Peptostreptococcaceae*, a family to which the undesired *C. difficile* belongs (Yutin and Galperin, 2013). The test formula induced a significant decrease in faecal streptococci, which could be interesting because the specific group of *S. lutetiensis* identified in our study was associated in Chinese children...
with diarrhoea for which no known aetiological agent could be identified (Jin et al., 2013).

Differences were seen in stool properties. Infants in the test group produced stool with a consistency and stool colour more comparable with that of the breastfed infants than to the control group. Although the first property is an important parameter of gut comfort of the infant, the physiological importance of the second parameter is less clear. One might suspect an impact of gut microbes on the catabolism of tetrapyrrolic bile pigments as an end-product of haem catabolism (stercobilin, biliverdin), but not much is known about potential health implications of these changes in stool colour. More interesting is the difference in stool pH. At 6 weeks of age, infants who received the test formula had a significantly lower stool pH than those receiving the control formula. Apparently, the intestinal microbiota from infants on the test formula produced – like breastfed infants – more acidic metabolites than the microbiota of the control groups. Whether this observation is associated with the higher faecal titre of bifidobacteria cannot be decided from the available data. One might suspect that the lower pH is due to the production of lactic acid and short chain fatty acids. These are formed by intestinal bacteria from non-digestible polysaccharides and oligosaccharides and may have numerous physiological effects (Brüssow and Parkinson, 2014). Further investigations into the chemical identity of these compounds conferring a lower faecal pH are clearly indicated in future studies.

Whatever the health implications of these observations are, the current study demonstrates that the gut microbiota can be modulated by a nutritional intervention in such a way that the diversity and composition of the microbiota becomes closer to those of breastfed infants. More intervention studies exploring the diversity of milk oligosaccharide chemistry (Tannock et al., 2013) will help transform microbiota research from a descriptive branch of microbiology into one of applied nutrition to the benefit of human health.

Material and methods

Trial design and population

This study was registered at ClinicalTrials.gov under the number NCT01983072 where eligibility criteria and locations, among other information, are referred. The two study formulae contained proteins, carbohydrates, fats, vitamins and minerals in amounts intended for full nutritional support of infants from birth to 4 months of age. Both were whey-predominant (whey/casein ratio of 70/30) low-protein (1.8 g/100 kcal) formulas. The study formulae were manufactured at the Nestlé Product Technology Center (Konolfingen, Switzerland) and were packaged in identical cans. Neither parents/caregivers nor investigators and clinical project managers knew the identity of the formulas. Infants were exclusively fed their assigned formula or were fully breastfed ad libitum from enrolment until 3 months of age.

Faecal DNA extraction

Stool samples were collected for each time point, refrigerated at 4°C for a maximum of 10 h after defecation and kept frozen at −80°C until the microbiota analysis was carried out. Total DNA was extracted using the QIAamp DNA Stool Mini Kit (QIAGEN), following the manufacturer’s instructions, except for the addition of a series of mechanical disruption steps (11 × 45 s) using a FastPrep apparatus and Lysing Matrix B tubes (MP Biochemicals) (Junick and Blaut, 2012).

Quantitative PCR

Total bacterial cell counts (Nadkarni et al., 2002), Bifidobacterium (Matsuki et al., 2002), Lactobacillus (Walter et al., 2001; Heilig et al., 2002) and counts for individual species of bifidobacteria (Junick and Blaut, 2012) were determined per gram of faeces as previously described. Bacterial counts were log transformed, and summary statistics as well as the frequencies of undetectable bacterial counts were recorded. Values below the detection limit were replaced by 5 log g⁻¹ for B. longum and B. breve, and by 6 log g⁻¹ for the others. The Wilcoxon rank-sum test was used to compare the groups.

Pyrosequencing and analysis of 16S genes

The 16S variable regions V1–V3 was PCR amplified and sequenced on Roche 454 GS-FLX-Titanium Sequencer as previously described (Sanchez et al., 2014). Raw sequence data were deposited in the GenBank Short Read Archive (Accession number: SRP064888) and analysed using MOTHUR v.1.33.0 (Schloss et al., 2009) and QIIME v.1.8 (Caporaso et al., 2010b) software packages. Pyrosequencing reads were denoised with the MOTHUR implementation of PyroNoise (Quince et al., 2009) according to the 454 SOP described in Schloss and Westcott (2011). Chimeras were identified using usearch61 in QIIME (Edgar et al., 2011). The sequences were then trimmed as described in the MOTHUR 454 SOP to keep sequences overlapping the same 16S region. Subsequent analytical steps were performed in QIIME. Operational taxonomic units (OTUs) de novo picking at 97% identity was performed using UCLUST (Edgar, 2010). Taxonomy assignment of OTU representative sequences used the RDP Classifier with confidence threshold of 0.6 (Wang et al., 2007) on the Greengenes reference database v.13.8 (McDonald et al., 2012). The same sequences were
aligned using PyNAST (Caporaso et al., 2010a) on the Greengenes core reference alignment (DeSantis et al., 2006). The resulting multiple alignments was then filtered and used to build a phylogenetic tree with FastTree (Price et al., 2010). After quality filtering (Bokulich et al., 2013), phylogenetic distances between all samples were computed as UniFrac distances (Lozupone and Knight, 2005). Diversity analyses based on the UniFrac distances were performed in QIIME, whereas the analyses based on taxonomy assignments used the websites Calypso at http://bioinfo.qimr.edu.au/calypso.

Acknowledgements

We would like to thank N. de Groot, J. Tanguy, L. Krause, C. Ngom-Bru and T. Neville for their contribution to this work. This study was funded by Nestlé Nutrition. Bernard Berger, Sophie Pecquet, Enea Rezzonico, Dominik Grathwohl, Norbert Sprenger and Harald Brüssow are employees of Nestec, Ltd.

References

Brüssow, H. (2015b) Human microbiota: ‘The philosophers have only interpreted the world in various ways. The point, however, is to change it’. Microb Biotechnol 8: 11–12.

Dogra, S., Sakwinska, O., Soh, S., Ngom-Bru, C., Brück, W.M., Berger, B., et al. (2015a) Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity. mBio 6: e02419–14.

© 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology, 18, 2185–2195

Supporting information
Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Fig. S1. Proportion of infants in the three feeding groups specified at the bottom showing stools with the colour defined on the abscissa at < 2 weeks (left), 6 weeks (centre) and 12 weeks of age (right panel).
Fig. S2. Proportion of infants in the three feeding groups specified at the bottom showing stools with the consistency defined on the abscissa at < 2 weeks (left), 6 weeks (centre) and 12 weeks of age (right panel).
Fig. S3. Heat map representation of the bubble plot data represented in Fig. 5.
Table S1. Anthropometric measurements at 12 weeks. sd, standard deviation.
Table S2. Comparison of anthropometric measurements at 12 weeks. CI, confidence interval.
Table S3. Stool pH. sd, standard deviation.
Table S4. Comparison of stool pH. CI, confidence interval; P-values corrected according to Tukey.