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Abstract

Birth weight (BW) is influenced by both foetal and maternal factors and in observational studies is 

reproducibly associated with future risk of adult metabolic diseases including type 2 diabetes 

(T2D) and cardiovascular disease1. These lifecourse associations have often been attributed to the 

impact of an adverse early life environment. We performed a multi-ancestry genome-wide 

association study (GWAS) meta-analysis of BW in 153,781 individuals, identifying 60 loci where 

foetal genotype was associated with BW (P <5x10-8). Overall, ˜15% of variance in BW could be 

captured by assays of foetal genetic variation. Using genetic association alone, we found strong 

inverse genetic correlations between BW and systolic blood pressure (rg=-0.22, P =5.5x10-13), 

T2D (rg=-0.27, P =1.1x10-6) and coronary artery disease (rg=-0.30, P =6.5x10-9) and, in large 

cohort data sets, demonstrated that genetic factors were the major contributor to the negative 

covariance between BW and future cardiometabolic risk. Pathway analyses indicated that the 

protein products of genes within BW-associated regions were enriched for diverse processes 

including insulin signalling, glucose homeostasis, glycogen biosynthesis and chromatin 

remodelling. There was also enrichment of associations with BW in known imprinted regions (P 
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=1.9x10-4). We have demonstrated that lifecourse associations between early growth phenotypes 

and adult cardiometabolic disease are in part the result of shared genetic effects and have 

highlighted some of the pathways through which these causal genetic effects are mediated.

We combined GWAS data for BW in 153,781 individuals representing multiple ancestries 

from 37 studies across three components (Extended Data Fig. 1 and Supplementary Table 1): 

(i) 75,891 individuals of European ancestry from 30 studies; (ii) 67,786 individuals of 

European ancestry from the UK Biobank; and (iii) 10,104 individuals of diverse ancestries 

(African American, Chinese, Filipino, Surinamese, Turkish and Moroccan) from six studies. 

Within each study, BW was z-score transformed separately in males and females after 

excluding non-singletons and premature births and adjusting for gestational age where 

available. Genotypes were imputed using reference panels from the 1000 Genomes 

(1000G)2 or combined 1000G and UK10K Project3 (Supplementary Table 2). We 

performed quality control assessments to confirm that the distribution of BW was consistent 

across studies, irrespective of the data collection protocol, and confirmed that self-reported 

BW in UK Biobank showed genetic and phenotypic associations consistent with those seen 

for measured BW in other studies4 (Methods).

We identified 60 loci (59 autosomal) associated with BW at genome-wide significance 

(P<5x10-8) in either the European ancestry or trans-ancestry meta-analyses (Extended Data 

Fig. 2a, Extended Data Table 1a and Supplementary Data; Methods). At lead SNPs, we 

observed no heterogeneity in allelic effects between the three study components (Cochran’s 

Q statistic P>0.00083) (Supplementary Table 3). Fifty-three of these loci were novel in that 

the lead SNP mapped >2Mb away from, and was statistically independent (EUR r2<0.05) of, 

the seven previously-reported BW signals5, all of which were confirmed in this larger 

analysis (Supplementary Table 4). Approximate conditional analysis in the European 

ancestry data indicated that three of these novel loci (near ZBTB7B, HMGA1 and PTCH1) 

harboured multiple distinct association signals attaining genome-wide significance 

(Methods; Supplementary Table 5 and Extended Data Fig. 3).

The lead variants for most signals mapped to non-coding sequence, and at only two loci, 

ADRB1 (rs7076938; r2=0.99 with ADRB1 G389R) and NRIP1 (rs2229742, R448G) did the 

association data point to likely causal non-synonymous coding variants (Supplementary 

Table 6; Methods). Lead SNPs for all but two loci (those mapping near YKT6-GCK and 

SUZ12P1-CRLF3) were common (minor allele frequency (MAF) ≥5%) with individually 

modest effects on BW (β=0.020-0.053 standard deviations (SD) per allele, equivalent to 

10-26g). This was despite much improved coverage of low-frequency variants in this study 

(compared to previous HapMap 2 imputed meta-analyses5) reflecting imputation from 

larger, and more complete, reference panels (Extended Data Table 1b). Indeed, all but five of 

the common variant association signals were tagged by variants (EUR r2>0.6) in the 

HapMap 2 reference panel (Supplementary Tables 4, 5), indicating that most of the novel 

discovery in the present study was driven by increased sample size5. Fine-mapping analysis 

yielded 14 regions within which fewer than ten variants contributed to the locus-specific 

credible set that accounted for >99% of the posterior probability of association (Methods; 

Supplementary Table 7). The greatest refinement was at YKT6-GCK, where the credible set 
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included only the low frequency variant rs138715366, which maps intronic to YKT6. These 

credible set variants collectively showed enrichment for overlap with DNaseI 

hypersensitivity sites, particularly those generated, by ENCODE, from foetal (4.2-fold, 95% 

CI [1.8-10.7]) and neonatal tissues (4.9 [1.8-11.0]) (Supplementary Fig. 1 and 

Supplementary Table 8; Methods).

In combination, the 62 distinct genome-wide significant signals at the 59 autosomal loci 

explained 2.0% (standard error (SE) 1.1%) of variance in BW (Supplementary Table 9; 

Methods), similar in magnitude to that attributable to sex or maternal body mass index 

(BMI)5. However, the variance in BW captured collectively by all autosomal genotyped 

variants on the array was considerably larger, estimated at 15.1% (SE=0.9) in UK Biobank 

(Methods). These figures are consistent with a long tail of genetic variants of smaller effects 

contributing to variation in BW.

Associations between foetal genotype and BW could result from indirect effects of the 

maternal genotype influencing BW via the intrauterine environment given the correlation (r 
≈ 0.5) between maternal and foetal genotype. However, two lines of evidence indicated that 

variation in the foetal genome was the predominant driver of the BW associations. First, an 

analysis of the global contribution of maternal vs. foetal genetic variation, using a maternal-

GCTA model6 (Methods) applied to 4,382 mother-child pairs, estimated that the child’s 

genotype (σC
2=0.24, SE=0.11) makes a larger contribution to BW variance than either the 

mother’s genotype (σM
2=0.04, SE=0.10), or the covariance between the two (σCM=0.04, 

SE=0.08). Second, when we compared the point estimates of the BW effect size dependent 

on maternal genotype at each of the 60 loci (as measured in up to 68,254 women7) with 

those dependent on foetal genotype (using European ancestry data from 143,677 individuals 

in the present study), foetal variation had greater impact than maternal at 93% of loci (55/60; 

binomial P=1x10-11) (Supplementary Table 10, Extended Data Figs 4, 5; Methods). Power 

to further disentangle maternal and foetal contributions using analyses of foetal genotype 

conditional on maternal genotype was constrained by the limited sample size available 

(n=12,909 mother-child pairs) (Supplementary Table 11).

Collectively, these analyses provide compelling evidence that foetal genotype has a 

substantial impact on early growth, as measured by BW. We sought to use these genetic 

associations to understand the causal relationships underlying observed associations between 

BW and disease, and to characterise the processes responsible.

To quantify the shared genetic contribution to BW and other health-related traits, we 

estimated their genetic correlations using LD Score regression8 (Methods). BW (in 

European ancestry samples) showed strong positive genetic correlations with anthropometric 

and obesity-related traits including birth length (rg=0.81, P=2.0x10-44), and in adults, height 

(rg=0.41, P=4.8x10-52), waist circumference (rg=0.18, P=3.9x10-10) and BMI (rg=0.11, 

P=7.3x10-6). In contrast, BW showed inverse genetic correlations with indicators of adverse 

metabolic and cardiovascular health including coronary artery disease (CAD, rg=-0.30, 

P=6.5x10-9), systolic blood pressure (SBP, rg=-0.22, P=5.5x10-13) and T2D (rg=-0.27, 

P=1.1x10-6) (Fig. 1, Supplementary Table 12 and Supplementary Fig. 2). These correlations 

between BW and adult cardiometabolic phenotypes are of similar magnitude, although 
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directionally-opposite, to the reported genetic correlations between adult BMI and those 

same cardiometabolic outcomes8. These findings support observational associations 

between a history of paternal T2D and lower BW4, and establish more generally that the 

observed lifecourse associations between early growth and adult disease, at least in part, 

reflect the impact of shared genetic variants that influence both sets of phenotypes. In an 

effort to estimate the extent of genetic contribution to these lifecourse associations, we first 

focused on data from UK Biobank (n=57,715). For many of the traits for which data were 

available, genetic variation contributed substantially to the lifecourse relationship between 

BW and adult phenotypes, and in some cases appeared to be the major source of covariance 

between the traits. For example, we estimated that 85% (95% CI=70%-99%) of the negative 

covariance between BW and SBP was explained by shared genetic associations captured by 

directly genotyped SNPs (Supplementary Table 13; Methods). For continuous 

cardiometabolic measures, including lipids and fasting glycaemia, for which measures are 

not currently available in UK Biobank, we turned to the Northern Finland Birth Cohort 

(n=5,009), and obtained similar results (Supplementary Table 13). However, these estimates 

are limited, not only by wide confidence intervals, but also by the assumption of a linear 

relationship between BW and each of the phenotypes and by the inability to explicitly model 

maternal genotypic effects. In other words, the inverse genetic correlations between BW and 

cardiometabolic traits may not exclusively reflect genetic effects mediated directly through 

the offspring, but also effects mediated by maternal genotype acting indirectly via 

perturbation of the in utero environment. Nevertheless, these estimates indicate that a 

substantial proportion of the variance in cardiometabolic risk that covaries with BW can be 

attributed to the effects of common genetic variation.

To elucidate the biological pathways and processes underlying regulation of foetal growth, 

we first performed gene set enrichment analysis of our BW GWAS analysis using 

MAGENTA9 (Methods). Twelve pathways reached study-wide significance (FDR<0.05), 

including pathways involved in metabolism (insulin signalling, glycogen biosynthesis, 

cholesterol biosynthesis), growth (IGF-signalling, growth hormone pathway) and 

development (chromatin remodelling) (Extended Data Table 2a). Similar pathways were 

detected in a complementary analysis where we interrogated empirical protein-protein 

interaction (PPI) data identifying 13 PPI network modules with marked (z-score >5) 

enrichment for BW-association scores (Extended Data Table 2b and Extended Data Figs 6a, 

b; Methods). The proteins within these modules were themselves enriched for diverse 

processes related to metabolism, growth and development (Extended Data Figs 6a, b).

We also observed enrichment of BW association signals across the set of 77 imprinted genes 

defined by the Genotype-Tissue Expression (GTEx) project10 (P=1.9x10-4; Extended Data 

Table 2a and Supplementary Table 14). Such enrichment is consistent with the “parental 

conflict” hypothesis regarding the allocation of maternal resources to the foetus11. Although 

the role of imprinted genes in foetal growth is described in animal models and rare human 

disorders12, our result is the first large-scale, systematic demonstration of their contribution 

to normal variation in BW. Of the 60 genome-wide significant loci, two (INS-IGF2, RB1) 

fall within (or near) imprinted regions (Extended Data Fig. 2b), with a noteworthy third 

signal at DLK1 (previously foetal antigen-1; P=5.6x10-8). Parent-of-origin specific analyses 

to further investigate these individual loci (comparing heterozygote vs. homozygote BW 
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variance in 57,715 unrelated individuals, and testing BW associations with paternal vs. 

maternal alleles in 4,908 mother-child pairs; see Methods) proved, despite these sample 

sizes, to be underpowered (Extended Data Fig. 7 and Supplementary Tables 15, 16).

Many of the genome-wide signals for BW detected here are also established genome-wide 

association signals for a wide variety of cardiometabolic traits (Fig. 2). These include the 

BW signals near CDKAL1, ADCY5, HHEX/IDE and ANK1 (also genome-wide significant 

for T2D), NT5C2 (for blood pressure (BP), CAD and BMI) and ADRB1 (for BP). We used 

two approaches to understand whether this pattern of adult trait association represented a 

generic property of BW-associated loci, or reflected heterogeneous mechanisms linking BW 

to adult disease.

First, we applied unsupervised hierarchical clustering (Methods) to the non-BW trait 

association statistics for the 60 significant BW loci.The resultant heatmap indicates the 

heterogeneity of locus-specific effect sizes across the range of adult traits (Fig. 2 and 

Supplementary Table 17). For example, it shows that the associations between BW-raising 

alleles and increased adult height are concentrated amongst a subset of loci including HHIP 
and GNA12, and highlights particularly strong associations with lipid traits for variants at 

the TRIB1 and MAFB loci.

Second, we constructed trait-specific “point-of-contact” (PoC) PPI networks from proteins 

represented in both the global BW PPI network and equivalent PPI networks generated for 

each of the adult traits (Methods; Extended Data Figs 6c-e). We reasoned that these PoC PPI 

networks would be enriched for the specific proteins mediating the observed links between 

BW and adult traits, generating hypotheses that are amenable to subsequent empirical 

validation. To highlight processes implicated in specific BW-trait associations, we overlaid 

these PoC PPI with the 50 pathways over-represented in the global BW PPI network. These 

analyses revealed, for example, that proteins in the Wnt canonical signalling pathway were 

only detected in the PoC PPI network for BP traits. We can use these PPI overlaps to 

highlight the specific transcripts within BW GWAS loci that are likely to mediate the 

mechanistic links. For example, the overlap between the Wnt signalling pathway and the 

PoC PPI network for the intersection of BW and BP-related traits implicates FZD9 as the 

likely effector gene at the MLXIPL BW locus (Extended Data Fig. 6d and Supplementary 

Table 6).

We focused our more detailed investigation of the mechanistic links between early growth 

and adult traits on two phenotypic areas: arterial BP and T2D/glycaemia. Across both the 

overall GWAS and specifically among the 60 significant BW loci, most BW-raising alleles 

were associated with reduced BP (Figs 1, 2): the strongest inverse associations were seen for 

the loci near NT5C2, FES, NRIP1, EBF1 and PTH1R. However, we also observed locus-

specific heterogeneity in the genetic relationships between BP and BW: the SBP-raising 

allele at ADRB113 is associated with higher, rather than lower, BW (Extended Data Fig. 

8a). When we considered the reciprocal relationship, i.e. the effects on BW of BP-raising 

alleles at 30 reported loci for SBP13,14, there was an excess of associations (5/30 with lower 

BW at P<0.05; P=0.0026; Extended Data Fig. 8a). To dissect maternal and foetal genotype 

effects at these loci, we tested the impact on BW of a risk score generated from the 30 SBP 
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SNPs, restricted to the untransmitted maternal haplotype score15 in a set of 5,201 mother-

child pairs. Analysis of these loci indicated that maternal genotype effects on the intrauterine 

environment are likely to contribute to the inverse genetic correlation between SBP and BW 

(Methods; Supplementary Table 18), and was consistent with the results of a wider study of 

>30,000 women which demonstrated associations between a maternal genetic score for SBP 

(conditional on foetal genotype) and lower offspring BW16.

The BP-raising allele with the largest BW-lowering effect maps to the NT5C2 locus (index 

variant for BW, rs74233809, r2=0.98 with index variant for BP, rs1119154814) and is also 

associated with lower adult BMI (r2=0.99 with rs1119156017). The BW-lowering allele at 

rs74233809 is a proxy for a recently-described functional variant in the nearby CYP17A1 
gene (r2=0.92 with rs138009835)18. The CYP17A1 gene encodes the cytochrome 

P450c17α enzyme, CYP1719, which catalyses key steps in steroidogenesis that determine 

the balance between mineralocorticoid, glucocorticoid and androgen synthesis. This variant 

is known to alter transcriptional efficiency in vitro and is associated with higher urinary 

tetrahydroaldosterone excretion18. CYP17A1 is expressed in foetal adrenal glands and 

testes from early gestation20 as well as in the placenta21. These data implicate variation in 

CYP17A1 expression as a contributor to the observational association between low BW and 

adult hypertension22.

When we examined 45 loci associated with CAD23, the inverse genetic correlation between 

CAD and BW was concentrated amongst the five CAD loci with primary BP associations. 

This suggests that genetic determinants of BP play a leading role in mediating the lifecourse 

associations between BW and CAD (Extended Data Figs 8b, e).

LD score regression analyses demonstrated overall inverse genetic correlation between lower 

BW and elevated risk of T2D (Fig. 1). However, the locus specific heatmap indicates a 

heterogeneous pattern across individual loci (Fig. 2). To explore this further, we tested the 84 

reported T2D loci24 for association with BW. Some T2D risk alleles (such as at ADCY5, 

CDKAL1 and HHEX-IDE) were strongly associated with lower BW, whilst others (e.g. 

ANK1 and MTNR1B) were associated with higher BW (Extended Data Fig. 8c). This was 

in contrast with the BW effects of 422 known height loci25 (Extended Data Fig. 8d), which 

showed a strong positive correlation consistent with the overall genetic correlation between 

height and BW, indicating that the growth effects of many height loci start prenatally and 

persist into adulthood.

The contrasting associations of T2D risk-alleles with both higher and lower BW are likely to 

reflect the differential impacts across loci of variation in the maternal and foetal genomes. 

Observational data link paternal diabetes with lower offspring BW4 indicating that the 

inheritance of T2D risk alleles by the foetus tends, in line with the LD score regression 

analysis, to reduce growth. These relationships are consistent with the precepts of the “foetal 

insulin hypothesis”26 and reflect the potential for reduced insulin secretion and/or signalling 

to lead to both reduced foetal growth and, many decades later, enhanced predisposition to 

T2D. In line with this, the inferred paternal transmitted haplotype score generated from the 

84 T2D risk variants was associated with lower BW (P=0.045) in 5,201 mother-child pairs 

(Methods; Supplementary Table 18). In contrast, maternal diabetes is observationally 
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associated with higher offspring BW4, reflecting the impact of maternal hyperglycaemia to 

stimulate foetal insulin secretion. The contribution of genotype-dependent maternal 

hyperglycaemia to BW is in line with the evidence, from a recent study, that maternal 

genotype scores for fasting glucose and T2D (conditional on foetal genotype) were causally 

associated with higher offspring BW16. It is also consistent with the observation that a 

subset of glucose-raising alleles is associated with higher BW7. For example, the T2D-risk 

variant at MTNR1B (which also has a particularly marked effect on fasting glucose levels in 

non-diabetic indivudals27,28) was amongst the subset of BW loci (5/60) for which the BW 

effect attributable to maternal genotype exceeded that associated with the foetal genotype 

(maternal: β=0.048, P=5.1x10-15; foetal: β=0.023, P=2.9x10-8) (Supplementary Table 10, 

Extended Data Figs 4, 5). Thus, both maternal and foetal genetic effects connect BW to later 

T2D risk, albeit acting in opposing directions. When we categorised T2D loci using a 

classification of physiological function derived from their effects on related glycaemic and 

anthropometric traits27, we found that T2D-risk alleles associated with lower BW were 

those typically characterised by reduced insulin processing and secretion without detectable 

changes in fasting glucose (the “Beta Cell” cluster in Extended Data Fig. 8f).

The YTK6 signal at rs138715366 is notable, not only because the genetic data indicates that 

a single low-frequency non-coding variant is driving the association signal (see above) but 

because of the proximity of this signal to GCK. Rare coding variants in glucokinase are 

causal for a form of monogenic hyperglycaemia and lead to large reductions in BW when 

parental alleles are passed to their offspring29. In addition, common non-coding variants 

nearby are implicated in T2D-risk and fasting hyperglycaemia28. However, the latter 

variants are conditionally independent of rs138715366 (Supplementary Table 19) and show 

no comparable association with lower BW. Either rs138715366 acts through effector 

transcripts other than GCK, or the impact of the low-frequency SNP near YKT6 on GCK 
expression involves tissue- and/or temporal-specific variation in regulatory impact.

In conclusion, we have identified 60 genetic loci associated with BW and used these to gain 

insights into the aetiology of foetal growth and into well-established, but until now poorly 

understood, lifecourse disease associations. The evidence that the relationship between early 

growth and later metabolic disease has an appreciable genetic component contrasts with, but 

is not necessarily incompatible with, the emphasis on adverse early environmental events 

highlighted by the Foetal Origins Hypothesis1. As we have shown, these genetic effects 

reflect variation in both the foetal and the maternal genome: the impact of the latter on the 

offspring’s predisposition to adult disease could be mediated, at least in part, through 

perturbation of the antenatal and early life environment. Future mechanistic and genetic 

studies should support reconciliation between these alternative, but complementary, 

explanations for the far-reaching lifecourse associations that exist between events in early 

life and predisposition to cardiometabolic disease several decades later.

Methods

Ethics statement

All human research was approved by the relevant institutional review boards and conducted 

according to the Declaration of Helsinki. All participants provided written informed consent. 
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Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee 

and the Local Research Ethics Committees.

Study-level analyses

Within each study, BW was collected from a variety of sources, including measurements at 

birth by medical practitioners, obstetric records, medical registers, interviews with the 

mother and self-report as adults (Supplementary Table 1). BW was z-score transformed, 

separately in males and females. Individuals with extreme BW (>5 SD from the sex-specific 

study mean), monozygotic or polyzygotic siblings, or preterm births (gestational age <37 

weeks, where this information was available) were excluded from downstream association 

analyses (Supplementary Table 1).

Within each study, stringent quality control of the GWAS genotype scaffold was undertaken, 

prior to imputation (Supplementary Table 2). Each scaffold was then pre-phased and 

imputed30,31 up to reference panels from the 1000G2 or 1000G and UK10K Project3 

(Supplementary Table 2). Association of BW with each variant passing established GWAS 

quality control filters32 was tested in a linear regression framework, under an additive model 

for the allelic effect, after adjustment for study-specific covariates, including gestational age, 

where available (Supplementary Table 2). Where necessary, population structure was 

accounted for by adjustment for axes of genetic variation from principal components 

analysis33 and subsequent genomic control correction34, or inclusion of a genetic 

relationship matrix in a mixed model35 (Supplementary Table 2). We calculated the 

genomic control inflation factor (λ) in each study to confirm that study-level population 

structure was accounted for prior to meta-analysis.

Preparation, quality control and genetic analysis in UK Biobank samples

UK Biobank phenotype data were available for 502,655 participants36. All participants in 

the UK Biobank were asked to recall their BW, of which 279,971 did so at either the 

baseline or follow-up assessment visit. Of these, 7,686 participants reported being part of 

multiple births and were excluded from downstream analyses. Ancestry checks, based on 

self-reported ancestry, resulted in the exclusion of 8,998 additional participants reported not 

to be white European. Of those individuals reporting BW at baseline and follow-up 

assessments, 393 were excluded because the two reported values differed by more than 0.5 

kg. For those reporting different values (≤0.5 kg) between baseline and follow-up, we took 

the baseline measure forward for downstream analyses. We then excluded 36,716 individuals 

reporting values <2.5 kg or >4.5 kg as implausible for live term births before 1970. In total 

226,178 participants had data relating to BW that matched these inclusion criteria.

Genotype data from the May 2015 release were available for a subset of 152,249 participants 

from UK Biobank. In addition to the quality control metrics performed centrally by UK 

Biobank, we defined a subset of “white European” ancestry samples using a K-means (K=4) 

clustering approach based on the first four genetically determined principal components. A 

maximum of 67,786 individuals (40,425 females and 27,361 males) with genotype and valid 

BW measures were available for downstream analyses. We tested for association with BW, 

assuming an additive allelic effect, in a linear mixed model implemented in BOLT-LMM37 
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to account for cryptic population structure and relatedness. Genotyping array was included 

as a binary covariate in all models. Total chip heritability (i.e. the variance explained by all 

autosomal polymorphic genotyped SNPs passing quality control) was calculated using 

Restricted Maximum Likelihood (REML) implemented in BOLT-LMM37. We additionally 

analysed the association between BW and directly genotyped SNPs on the X chromosome: 

for this analysis, we used 57,715 unrelated individuals with BW available and identified by 

UK Biobank as white British. We excluded SNPs with evidence of deviation from Hardy-

Weinberg Equilibrium (P<1x10-6), MAF<0.01 or overall missing rate >0.015, resulting in 

19,423 SNPs for analysis in Plink v1.07 (http://pngu.mgh.harvard.edu/purcell/plink/)38, 

with the first five ancestry principal components as covariates.

In both the full UK Biobank sample and our refined sample, we observed that BW was 

associated with sex, year of birth and maternal smoking (P<0.0015, all in the expected 

directions), confirming more comprehensive previous validation of self-reported BW4. We 

additionally verified that BW associations with lead SNPs at seven established loci5 based 

on self-report in UK Biobank were consistent with those previously published.

European ancestry meta-analysis

The European ancestry meta-analysis consisted of two components: (i) 75,891 individuals 

from 30 GWAS from Europe, USA and Australia; and (ii) 67,786 individuals of white 

European origin from UK Biobank. In the first component, we combined sex-specific BW 

association summary statistics across studies in a fixed-effects meta-analysis, implemented 

in GWAMA39 and applied a second round of genomic control34 (λGC= 1.001). 

Subsequently, we combined association summary statistics from this component with UK 

Biobank in a European ancestry fixed-effects meta-analysis, implemented in GWAMA39. 

Variants failing GWAS quality control filters in UK Biobank, reported in less than 50% of 

the total sample size in the first component, or with MAF<0.1%, were excluded from the 

European ancestry meta-analysis. We aggregated X-Chromosome association summary 

statistics from UK Biobank (19,423 SNPs) with corresponding statistics from the European 

GWAS component using fixed effects P-value based meta-analysis in METAL40 (max 

N=99,152).

We were concerned that self-reported BW as adults in UK Biobank would not be 

comparable with that obtained from more stringent collection methods used in other 

European ancestry GWAS. In addition, UK Biobank lacked information on gestational age 

for adjustment, which could have an impact on difference in strength of association 

compared to the results obtained from other European ancestry GWAS. However, we 

observed no evidence of heterogeneity in BW allelic effects at lead SNPs between the two 

components of European ancestry meta-analysis, using Cochran’s Q statistic41, 

implemented in GWAMA39, after Bonferroni correction (P>0.00083) (Supplementary Table 

3). We tested for heterogeneity in allelic effects between studies within the European 

component using Cochran’s Q. At loci demonstrating evidence of heterogeneity, we 

confirmed that association signals were not being driven by outlying studies by visual 

inspection of forest plots. We performed sensitivity analyses to assess the impact of 

covariate adjustment (gestational age and population structure) on heterogeneity.
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We were also concerned that overlap of individuals (duplicated or related) between the two 

components of the European ancestry meta-analysis might lead to false positive association 

signals. We performed bivariate LD Score regression8 using the two components of the 

European ancestry meta-analysis and observed a genetic covariance intercept of 0.0156 (SE 

0.0058), indicating a maximum of 1,119 duplicate individuals. Univariate LD Score 

regression8 of the European ancestry meta-analysis estimated the intercept as 1.0426, which 

may indicate population structure or relatedness that is not adequately accounted for in the 

analysis. To assess the impact of this inflation on the European ancestry meta-analysis, we 

expanded the standard errors of BW allelic effect size estimates and re-calculated 

association P-values. On the basis of this adjusted analysis, the lead SNP only at MTNR1B 
dropped below genome-wide significance (rs10830963, P=5.5x10-8).

Trans-ancestry meta-analysis

The trans-ancestry meta-analysis combined the two European ancestry components with an 

additional 10,104 individuals from six GWAS from diverse ancestry groups: African 

American, Chinese, Filipino, Surinamese, Turkish and Moroccan. Within each GWAS, we 

first combined sex-specific BW association summary statistics in a fixed-effects meta-

analysis, implemented in GWAMA39 and applied a second round of genomic control34. 

Subsequently, we combined association summary statistics from the six non-European 

GWAS and the two European ancestry components in a trans-ancestry fixed-effects meta-

analysis, implemented in GWAMA39. Variants failing GWAS quality control filters in UK 

Biobank, reported in less than 50% of the total sample size in the first component, or with 

MAF<0.1%, were excluded from the trans-ancestry meta-analysis. We tested for 

heterogeneity in allelic effects between ancestries using Cochran’s Q41.

Approximate conditional analysis

We searched for multiple distinct BW association signals in each of the established and 

novel loci, defined as 1Mb up- and down-stream of the lead SNP from the trans-ancestry 

meta-analysis, through approximate conditional analysis. We applied GCTA42 to identify 

“index SNPs” for distinct association signals attaining genome-wide significance (P<5x10-8) 

in the European ancestry meta-analysis using a reference sample of 5,000 individuals of 

white British origin, randomly selected from UK Biobank, to approximate patterns of 

linkage disequilibrium (LD) between variants in these regions. Note that we performed 

approximate conditioning on the basis of only the European ancestry meta-analysis because 

GCTA cannot accommodate LD variation between diverse populations.

Prioritising candidate genes in each BW locus

We combined a number of approaches to prioritise the most likely candidate gene(s) in each 

BW locus. Expression quantitative trait loci (eQTLs) were obtained from the Genotype 

Tissue Expression (GTEx) Project43, the GEUVADIS Project44 and eleven other studies45–

55 using HaploReg v456. We interrogated coding variants for each BW lead SNP and its 

proxies (EUR r2>0.8) using Ensembl57 and HaploReg. Their likely functional consequences 

were predicted by SIFT58 and PolyPhen259. Biological candidacy was assessed by presence 

in significantly enriched gene set pathways from MAGENTA analyses (see below for 

details). We extracted all genes within 300 kb of all lead BW SNPs and searched for 
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connectivity between any genes using STRING60. If two or more genes between two 

separate BW loci were connected, they were given an increased prior for both being 

plausible candidates. We also applied protein-protein interaction (PPI) analysis (see below 

for details) to all genes within 300 kb of each lead BW SNPs and ranked the genes based on 

the score for connectivity with the surrounding genes.

Evaluation of imputation quality of low-frequency variant at the YKT6-GCK locus

At the YKT6-GCK locus, the lead SNP (rs138715366) is of low-frequency in European 

ancestry populations (MAF=0.92%) and even rarer in other ancestry groups (MAF=0.23% 

in African Americans, otherwise monomorphic) and is not present in the HapMap reference 

panel61. To assess the accuracy of imputation for this low-frequent variant, we genotyped 

rs138715366 in the Northern Finland Birth Cohort (NFBC) 1966 (Supplementary Table 1). 

Of the 5,009 samples in the study, 4,704 were successfully imputed and genotyped (or 

sequenced) for rs138715366. The overall concordance rate between imputed and directly 

assayed genotypes was 99.8% and for directly assayed heterozygote calls was 75.0%.

Fine-mapping analyses

We sought to leverage LD differences between populations contributing to the trans-ancestry 

meta-analysis and to take advantage of the improved coverage of common and low-

frequency variation offered by 1000G or 1000G and UK10K combined imputation to 

localise variants driving each distinct association signal achieving locus-wide significance. 

For each distinct signal, we used MANTRA62 to construct 99% credible sets of variants63 

that together account for 99% of the posterior probability of driving the association. 

MANTRA incorporates a prior model of relatedness between studies, based on mean pair-

wise allele frequency differences across loci, to account for heterogeneity in allelic effects 

(Supplementary Table 3). MANTRA has been demonstrated, by simulation, to improve 

localisation of causal variants compared with either a fixed- or random-effects trans-ancestry 

meta-analysis62,64.

For loci with only one signal of association, we used MANTRA to combine summary 

statistics from the six non-European GWAS and the two European ancestry components. 

However, for loci with multiple distinct association signals, we used MANTRA to combine 

summary statistics from approximate conditioning for the two European components, 

separately for each signal.

For each distinct signal, we calculated the posterior probability that the jth variant, πCj, is 

driving the association, given by

where the summation is over all variants mapping within the (conditional) meta-analysis 

across the locus. In this expression, Λj is the Bayes’ factor (BF) in favour of association 

from the MANTRA analysis. A 99% credible set63 was then constructed by: (i) ranking all 
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variants according to their BF, Λj; and (ii) including ranked variants until their cumulative 

posterior probability exceeds 0.99.

Genomic annotation

We used genomic annotations of DNaseI hypersensitive sites (DHS) from the ENCODE65 

project and protein coding genes from GENCODE66. We filtered cell types that are cancer 

cell lines (karyotype ‘cancer’ from https://genome.ucsc.edu/ENCODE/cellTypes.html), and 

merged data from multiple samples from the same cell type. This resulted in 128 DHS cell-

type annotations, as well as 4 gene-based annotations (coding exon, 5UTR, 3UTR and 1kb 

upstream of TSS). First, we tested for the effect of each cell type DHS and gene annotation 

individually using the Bayes’ factors for all variants in the 62 credible sets using fgwas67. 

Second, we categorised the annotations into ‘genic’, ‘foetal DHS’, ‘embryonic DHS’, ‘stem 

cell DHS’, ‘neonatal DHS’ and ‘adult DHS’ based on the description fields from ENCODE, 

and tested for the effect of each category individually as described above using fgwas. Third, 

we then tested the effect of each category by including all categories in a joint model using 

fgwas. For each of the three analyses, we obtained the estimated effects and 95% confidence 

intervals (CI) for each annotation, and considered an annotation enriched if the 95% CI did 

not overlap zero.

Estimation of genetic variance explained

Variance explained was calculated using the REML method implemented in GCTA68. We 

considered the variance explained by two sets of SNPs: (i) lead SNPs of all 62 distinct 

association signals at the 59 established and novel autosomal BW loci identified in the 

European-specific or trans-ancestry meta-analyses; (ii) lead SNPs of 55 distinct association 

signals at the 52 novel autosomal BW loci (Extended Data Table 1a and Supplementary 

Table 7). Variance explained was calculated in samples of European ancestry in the 

Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study69 (independent of the 

meta-analysis) and two studies that were part of the European ancestry meta-analysis: 

NFBC1966 and Generation R (Supplementary Table 1). In each study, the genetic 

relationship matrix was estimated for each set of SNPs and was tested individually against 

BW (males and females combined) with study specific covariates. These analyses provided 

an estimate and standard error for the variance explained by each of the given sets of SNPs.

Examining the relative effects on BW of maternal and foetal genotype at the 60 identified 
loci

We performed four sets of analyses.

First, we used GWAS data from 4,382 mother-child pairs in the Avon Longitudinal Study of 

Parents and Children (ALSPAC) study to fit a “maternal-GCTA model”6 to estimate the 

extent to which the maternal genome might influence offspring BW independent of the 

foetal genome. The m-GCTA model uses genome-wide genetic similarity between mothers 

and offspring to partition the phenotypic variance in BW into components due to the 

maternal genotype, the child’s genotype, the covariance between the two and environmental 

sources of variation.
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Second, we compared associations with BW of the foetal versus maternal genotype at each 

of the 60 BW loci. The maternal allelic effect on offspring BW was obtained from a 

maternal GWAS meta-analysis of 68,254 European mothers from the EGG Consortium 

(n=19,626)7 and the UK Biobank (n=48,628). In the UK Biobank, mothers were asked to 

report the BW of their first child. Women of European ancestry with genotype data available 

in the May 2015 data release were included, and those with reported BW equivalent to <2.5 

kg or >4.5 kg were excluded. No information on gestational age or gender of child was 

available. BW of first child was associated with maternal factors such as smoking status, 

BMI and height in the expected directions. Of the 68,254 women included in the maternal 

GWAS, 13% were mothers of individuals included in the current foetal European ancestry 

GWAS, and a further approximately 45% were themselves (with their own BW) included in 

the foetal GWAS.

Third, we additionally conducted analyses in 12,909 mother-child pairs from nine 

contributing studies: at each of the 60 loci, we compared the effect of the foetal genotype on 

BW adjusted for sex and gestational age, with and without adjustment for maternal 

genotype. We reciprocally compared the association between the maternal genotype and BW 

with and without adjustment for foetal genotype.

Fourth, we used the method of Zhang et al15 to test associations between BW and the 

maternal untransmitted, maternal transmitted and inferred paternal transmitted haplotype 

score of 422 height SNPs25, 30 SBP SNPs13,14 and 84 T2D SNPs24 in 5,201 mother-child 

pairs from the ALSPAC study.

LD Score Regression

The use of LD Score regression to estimate the genetic correlation between two traits/

diseases has been described in detail elsewhere70. Briefly, “LD Score” is a measure of how 

much genetic variation each variant tags; if a variant has a high LD Score then it is in high 

LD with many nearby polymorphisms. Variants with high LD Scores are more likely to 

contain more true signals and hence provide more chance of overlap with genuine signals 

between GWAS. The LD score regression method uses summary statistics from the GWAS 

meta-analysis of BW and the other traits of interest, calculates the cross-product of test 

statistics at each SNP, and then regresses the cross-product on the LD Score. Bulik-Sullivan 

et al70 show that the slope of the regression is a function of the genetic covariance between 

traits:

where Ni is the sample size for study i, ρg is the genetic covariance, M is the number of 

SNPs in the reference panel with MAF between 5% and 50%, lj is the LD score for SNP j, 
Ns quantifies the number of individuals that overlap both studies, and ρ is the phenotypic 

correlation amongst the Ns overlapping samples. Thus, if there is sample overlap (or cryptic 

relatedness between samples), it will only affect the intercept from the regression (i.e. the 
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term ) and not the slope, and hence estimates of the genetic covariance will not be 

biased by sample overlap. Likewise, population stratification will affect the intercept but will 

have minimal impact on the slope (i.e. intuitively since population stratification does not 

correlate with linkage disequilibrium between nearby markers).

Summary statistics from the GWAS meta-analysis for traits and diseases of interest were 

downloaded from the relevant consortium website. The summary statistics files were 

reformatted for LD Score regression analysis using the munge_sumstats.py python script 

provided on the developer’s website (https://github.com/bulik/ldsc). For each trait, we 

filtered the summary statistics to the subset of HapMap 3 SNPs71, as advised by the 

developers, to ensure that no bias was introduced due to poor imputation quality. Summary 

statistics from the European-specific BW meta-analysis were used because of the variable 

LD structure between ancestry groups. Where the sample size for each SNP was included in 

the results file this was flagged using --N-col; if no sample size was available then the 

maximum sample size reported in the reference for the GWAS meta-analysis was used. 

SNPs were excluded for the following reasons: MAF<0.01; ambiguous strand; duplicate 

rsID; non-autosomal SNPs; reported sample size less than 60% of the total available. Once 

all files were reformatted, we used the ldsc.py python script, also on the developers’ website, 

to calculate the genetic correlation between BW and each of the traits and diseases. The 

European LD Score files that were calculated from the 1000G reference panel and provided 

by the developers were used for the analysis. Where multiple GWAS meta-analyses had 

been conducted on the same phenotype (i.e. over a period of years), the genetic correlation 

with BW was estimated using each set of summary statistics and presented in 

Supplementary Table 12. The phenotypes with multiple GWAS included height, BMI, waist-

hip ratio (adjusted for BMI), total cholesterol, triglycerides, high density lipoprotein (HDL) 

and low density lipoprotein (LDL). The estimate of the genetic correlation between the 

multiple GWAS meta-analyses on the same phenotype were comparable and the later GWAS 

had a smaller standard error due to the increased sample size, so only the genetic correlation 

between BW and the most recent meta-analyses were presented in Fig. 2.

In the published GWAS for BP14 the phenotype was adjusted for BMI. Caution is needed 

when interpreting the genetic correlation between BW and BMI-adjusted SBP due to the 

potential for collider bias72. Since BMI is associated with both BP and BW, it is possible 

that the use of a BP genetic score adjusted for BMI might bias the genetic correlation 

estimate towards a more negative value. To verify that the inverse genetic correlation with 

BW (rg=-0.26, SE=0.05, P=6.5x10-9) was not due to collider bias caused by the BMI 

adjustment of the phenotype, we obtained an alternative estimate using UK Biobank GWAS 

data for SBP that was unadjusted for BMI and obtained a similar result (rg=-0.22, SE=0.03, 

P=5.5x10-13). The SBP phenotype in UK Biobank was prepared as follows. Two BP 

readings were taken at assessment, approximately 5 minutes apart. We included all 

individuals with an automated BP reading (taken using an automated Omron BP monitor). 

Two valid measurements were available for most participants (averaged to create a BP 

variable, or alternatively a single reading was used if only one was available). Individuals 

were excluded if the two readings differed by more than 4.56 SD. BP measurements more 
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than 4.56 SD away from the mean were excluded. We accounted for BP medication use by 

adding 15 mmHg to the SBP measure. BP was adjusted for age, sex and centre location and 

then inverse rank normalised. We performed the GWAS on 127,698 individuals of British 

descent using BOLT-LMM37, with genotyping array as covariate.

Estimating the proportion of the BW-adult traits covariance attributable to genotyped SNPs

We estimated the phenotypic, genetic and residual correlations as well as the genetic and 

residual covariance between BW and several quantitative traits/disease outcomes in UK 

Biobank using directly genotyped SNPs and the REML method implemented in BOLT-

LMM37. The traits examined included T2D, SBP, diastolic BP, CAD, height, BMI, weight, 

waist-hip ratio, hip circumference, waist circumference, obesity, overweight, age at 

menarche, asthma, and smoking. Where phenotypes were not available (e.g. serum blood 

measures are not currently available in UK Biobank), we obtained estimates using the 

NFBC1966 study (for correlations/covariance between BW and triglycerides, total 

cholesterol, HDL, LDL, fasting glucose and fasting insulin). In the UK Biobank analysis, we 

used 57,715 unrelated individuals with BW available and identified by UK Biobank as white 

British. SNPs with evidence of deviation from Hardy-Weinberg Equilibrium (P<1x10-6), 

MAF<0.05 or overall missing rate >0.015 were excluded, resulting in 328,928 SNPs for 

analysis. We included the first five ancestry principal components as covariates. In the 

NFBC1966 analysis, 5,009 individuals with BW were enrolled. Genotyped SNPs that passed 

quality control (Supplementary Table 2) were included, resulting in 324,895 SNPs for 

analysis. The first three ancestry principal components and sex were included as covariates.

Gene set enrichment analysis

Meta-Analysis Gene-set Enrichment of variaNT Associations (MAGENTA) was used to 

explore pathway-based associations using summary statistics from the trans-ancestry meta-

analysis. MAGENTA implements a gene set enrichment analysis (GSEA) based approach, 

as previously described9. Briefly, each gene in the genome is mapped to a single index SNP 

with the lowest P-value within a 110 kb upstream and 40 kb downstream window. This P-

value, representing a gene score, is then corrected for confounding factors such as gene size, 

SNP density and LD-related properties in a regression model. Genes within the HLA-region 

were excluded from analysis due to difficulties in accounting for gene density and LD 

patterns. Each mapped gene in the genome is then ranked by its adjusted gene score. At a 

given significance threshold (95th and 75th percentiles of all gene scores), the observed 

number of gene scores in a given pathway, with a ranked score above the specified threshold 

percentile, is calculated. This observed statistic is then compared to 1,000,000 randomly 

permuted pathways of identical size. This generates an empirical GSEA P-value for each 

pathway. Significance was attained when an individual pathway reached a false discovery 

rate (FDR) <0.05 in either analysis. In total, 3,216 pre-defined biological pathways from 

Gene Ontology, PANTHER, KEGG and Ingenuity were tested for enrichment of multiple 

modest associations with BW. The MAGENTA software was also used for enrichment 

testing of custom gene sets.
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Protein-Protein interaction network analyses

We used the integrative Protein-Interaction-Network-Based Pathway Analysis (iPINBPA) 

method73. Briefly, we generated gene-wise P-values from the trans-ancestry meta-analysis 

using VEGAS274, which map the SNPs to genes and account for possible cofounders, such 

as LD between markers. The empirical gene-wise P-values are calculated using simulations 

from the multivariate normal distribution. Those that were nominally significant (P≤0.01) 

were selected as “seed genes”, and were collated within high confidence version of 

inweb375, to weight the nodes in the network following a guilt-by-association approach. In 

a second step, a network score was defined by the combination of the z-scores derived from 

the gene-wise P-values with node weights using the Liptak-Stouffer method76. A heuristic 

algorithm was then applied to extensively search for modules enriched in genes with low P-

values. The modules were further normalised using a null distribution of 10,000 random 

networks. Only those modules with z-score >5 were selected. Finally, the union of all 

modules constructed a BW-overall PPI network. Both the proteins on the individual modules 

and on the overall BW-PPI were interrogated for enrichment in Gene Ontology Terms 

(Biological Processes) using a Hypergeometric test. Terms were considered as significant 

when adjusted P-value, following Benjamini-Hochberg procedure, was below 0.05.

Point of contact (PoC) analyses

The same methodology described above was applied to 16 different adult traits resulting in a 

number of enriched modules per trait. Different modules for each trait were combined in a 

single component and the intersection between these trait-specific components and the BW 

component was calculated. This intersection is defined as the PoC network. We used the 

resulting PoC networks in downstream analyses to interrogate which set of proteins connects 

BW variation and adult trait variation via pathways enriched in the overall BW analysis.

Parent-of-origin specific associations

We first searched for evidence of parent of origin effects in the UK Biobank samples by 

comparing variance between heterozygotes and homozygotes using Quicktest77. In this 

analysis, we used only unrelated individuals identified genetically as of white British origin 

(n=57,715). Principal components were generated using these individuals and the first five 

were used to adjust for population structure as covariates in the analysis, in addition to a 

binary indicator for genotyping array.

We also examined 4,908 mother-child pairs in ALSPAC and determined the parental origin 

of the alleles where possible78. Briefly, the method uses mother-child pairs to determine the 

parent of origin of each allele. For example, if the mother/child genotypes are AA/Aa, the 

child’s maternal/paternal allele combination is A/a. For the situation where both mother and 

child are heterozygous, the child’s maternal/paternal alleles cannot be directly specified. 

However, the parental origin of the alleles can be determined by phasing the genotype data 

and comparing maternal and child haplotypes. We then tested these alleles for association 

with BW adjusting for sex and gestational age.

Statistical power in these currently available sample sizes is insufficient to rule out 

widespread parent-of-origin effects across the regions tested. Using the mean beta (0.034 
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SD) and MAF (0.28) of the identified loci, we estimate that we would need at least 200,000 

unrelated individuals or 70,000 mother-child pairs for 80% power to detect parent-of-origin 

effects at P<0.00085.

Hierarchical clustering of BW loci

To explore the different patterns of association between BW and other anthropometric/

metabolic/endocrine traits and diseases, we performed hierarchical clustering analysis. The 

lead SNP (or proxy, EUR r2>0.6) at the 60 BW loci was queried in publicly available GWAS 

meta-analysis datasets or in GWAS result obtained through collaboration79. Results were 

available for 53 of those loci and the extracted z-score (allelic effect/SE, Supplementary 

Table 17) was aligned to the BW-raising allele. We performed two dimensional clustering by 

trait and by locus. We computed the Euclidean distance amongst z-scores of the extracted 

traits/loci and performed complete hierarchical clustering implemented in the pvclust 

package (http://www.sigmath.es.osaka-u.ac.jp/shimo-lab/prog/pvclust/) in R v3.2.0 (http://

www.R-project.org/). Clustering uncertainty was measured by multiscale bootstrap 

resampling estimated from 1,000 replicates. We used α=0.05 to define distinct clusters and, 

based on the bootstrap analysis, calculated the Calinski index to identify the number of well-

supported clusters (cascadeKM function, Vegan package, http://CRAN.R-project.org/

package=vegan). Clustering was visualised by constructing dendrograms and a heatmap.

Separately from the hierarchical clustering analysis, we queried the lead SNP at EPAS1 in a 

GWAS of haematological traits80 because variation at that locus has previously been 

implicated in BW and adaptation to hypoxia at high altitudes in Tibetans81,82 

(Supplementary Table 17).
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Extended Data

Extended Data Figure 1. Flow chart of the study design.
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Extended Data Figure 2. Manhattan and quantile-quantile (QQ) plots of the trans-ancestry 
meta-analysis for birth weight.
a, Manhattan (main panel) and QQ (top right) plots of genome-wide association results for 

BW from trans-ancestry meta-analysis of up to 153,781 individuals. The association P-value 

(on -log10 scale) for each of up to 22,434,434 SNPs (y axis) is plotted against the genomic 

position (NCBI Build 37; x axis). Association signals that reached genome-wide 

significance (P<5x10-8) are shown in green if novel and pink if previously reported. In the 

QQ plot, the black dots represent observed P-values and the grey line represents expected P-
values under the null distribution. The red dots represent observed P-values after excluding 
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the previously identified signals5. b, Manhattan (main panel) and QQ (top right) plots of 

trans-ethnic GWAS meta-analysis for BW highlighting the reported imprinted regions 

described in Supplementary Table 14. Novel association signals that reached genome-wide 

significance (P<5x10-8) and mapped to imprinted regions are shown in green. Genomic 

regions outside imprinted regions are shaded in grey. SNPs in the imprinted regions are 

shown in light blue or dark blue, depending on chromosome number (odd or even). In the 

QQ plot, the black dots represent observed P values and the grey lines represent expected P-
values and their 95% confidence intervals under the null distribution for the SNPs within the 

imprinted regions.
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Extended Data Figure 3. Regional plots for multiple distinct signals at three birth weight loci, 
ZBTB7B (a), HMGA1 (b) and PTCH1 (c).
Regional plots for each locus are displayed from: the unconditional European-specific meta-

analysis of up to 143,677 individuals (left); the approximate conditional meta-analysis for 

the primary signal after adjustment for the index variant for the secondary signal (middle); 

and the approximate conditional meta-analysis for the secondary signal after adjustment for 

the index variant for the primary signal (right). Directly genotyped or imputed SNPs are 

plotted with their association P-values (on a -log10 scale) as a function of genomic position 

(NCBI Build 37). Estimated recombination rates (blue lines) are plotted to reflect the local 
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LD structure around the index SNPs and their correlated proxies. SNPs are coloured in 

reference to LD with the particular index SNP according to a blue to red scale from r2 = 0 to 

1, based on pairwise r2 values estimated from a reference of 5,000 individuals of white 

British origin, randomly selected from the UK Biobank.

Extended Data Figure 4. Comparison of foetal effect sizes and maternal effect sizes at 60 known 
and novel birth weight loci (continues to Extended Data Figure 5).
For each BW locus, the following six effect sizes (with 95% CI) are shown, all aligned to the 

same BW-raising allele: foetal_GWAS = foetal allelic effect on BW (from European 

ancestry meta-analysis of up to n=143,677 individuals); foetal_unadjusted = foetal allelic 

effect on BW (unconditioned in n=12,909 mother-child pairs); foetal_adjusted = foetal 

Horikoshi et al. Page 22

Nature. Author manuscript; available in PMC 2017 April 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



effect (conditioned on maternal genotype, n=12,909); maternal_GWAS = maternal allelic 

effect on offspring BW (from meta-analysis of up to n=68,254 European mothers)7; 

maternal_unadjusted = maternal allelic effect on offspring BW (unconditioned, n=12,909); 

maternal_adjusted = maternal effect (conditioned on foetal genotype, n=12,909). The 60 

BW loci are ordered by chromosome and position (Supplementary Tables 10, 11). These 

plots illustrate that in large GWAS of BW, foetal effect size estimates are larger than those of 

maternal at 55/60 identified loci (binomial P=1x10-11), suggesting that most of the 

associations are driven by the foetal genotype. In conditional analyses that modelled the 

effects of both maternal and foetal genotypes (n=12,909 mother-child pairs), confidence 

intervals around the estimates were wide, precluding inference about the likely contribution 

of maternal vs. foetal genotype at individual loci.
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Extended Data Figure 5. Comparison of foetal effect sizes and maternal effect sizes at 60 known 
and novel birth weight loci.
a, Continued from Extended Data Figure 4. b, The scatterplot illustrates the difference 

between the foetal (x axis) and maternal (y axis) effect sizes in the overall maternal vs. foetal 

GWAS results.
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Extended Data Figure 6. Protein-Protein Interaction (PPI) Network analysis.
a, Illustrates the largest global component of birth weight (BW) PPI network containing 13 

modules. b, The histogram shows the null distribution of z-scores of BW PPI networks 

based on 10,000 random networks, and where the z-scores for the 13 BW modules (M1-13) 

lie. For each module, the two most significant GO terms are depicted. c, Illustrates a 

heatmap which takes the top 50 biological processes over-represented in the global BW PPI 

network (listed at the right of the plot), and displays extent of enrichment for the various 

trait-specific “point of contact“ (PoC) PPI networks. d-e, Trait-specific PoC PPI networks 
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composed of proteins that are shared in both the global BW PPI network and networks 

generated using the same pipeline for each of the adult traits: d, canonical Wnt signalling 

pathway enriched for PoC PPI between BW and blood pressure (BP)-related phenotypes; 

and e, regulation of insulin secretion pathway enriched for PoC between BW and type 2 

diabetes (T2D)/fasting glucose (FG). Red nodes are those that are present in PoC for BW 

and traits of interest; blue nodes correspond to the pathway nodes; purple nodes are those 

present in both the pathway and PoC; orange nodes are genes in BW loci that overlap with 

both the pathway and PoC. Large nodes correspond to genes in BW loci (within 300kb from 

the lead SNP), and have black border if they, amongst all BW loci, have a stronger (top 5) 

association with at least one of the pairing adult traits.

Extended Data Figure 7. Quantile-Quantile (QQ) plots of (a) variance comparison between 
heterozygotes and homozygotes analysis in 57,715 UK Biobank samples and (b) parent-of-origin 
specific analysis in 4,908 ALSPAC mother-child pairs at 59 autosomal birth weight loci plus 
DLK1.
a, QQ plot from the Quicktest77 analysis comparing the BW variance of heterozygotes with 

homozygotes in 57,715 UK Biobank samples. b, QQ plot from the parent-of-origin specific 

analysis testing the association between BW and maternally transmitted vs. paternally 

transmitted alleles in 4,908 mother-child pairs from the ALSPAC study (Methods, 

Supplementary Tables 15, 16). In both panels, the black dots represent lead SNPs at 59 

identified autosomal BW loci and a further sub-genome-wide significant signal for BW near 

DLK1 (rs6575803; P=5.6x10-8). The grey lines represent expected P values and their 95% 

confidence intervals under the null distribution for the 60 SNPs. Both results show trends in 

favour of imprinting effects at BW loci: however, despite the large sample size, these 

analyses were underpowered (see Methods) and much larger sample sizes are required for 

definitive analysis.
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Extended Data Figure 8. Summary of previously reported loci for systolic blood pressure (SBP, 
a), coronary artery disease (CAD, b, e), type 2 diabetes (T2D, c, f) and adult height (d) and their 
effect on birth weight.
a-d, Effect sizes (left y axis) of previously reported 30 SBP loci13,14, 45 CAD loci23, 84 

T2D loci24 and 422 adult height loci25 are plotted against effects on BW (x axis). Effect 

sizes are aligned to the adult trait-raising allele. The colour of each dot indicates BW 

association P value: red, P<5×10−8; orange, 5×10−8≤P<0.001; yellow, 0.001≤P<0.01; white, 

P≥0.01. The superimposed grey frequency histogram shows the number of SNPs (right y 
axis) in each category of BW effect size. e, Effect sizes (with 95% CI) on BW of 45 known 
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CAD loci are plotted arranged in the order of CAD effect size from highest to lowest, 

separating out the known SBP loci. CAD loci with a larger effect on BW concentrated 

amongst loci with primary BP association. f, Effect sizes (with 95% CI) on BW of 32 known 

T2D loci are plotted, subdivided by previously reported categories derived from detailed 

adult physiological data27. Heterogeneity in BW effect sizes between five T2D loci groups 

with different mechanistic categories was substantial (Phet=1.2x10-9). In pairwise 

comparisons, the “beta cell” group of variants differed from the other four groups: fasting 

hyperglycaemia (Phet =3x10-11), insulin resistance (Phet =0.002), proinsulin (Phet =0.78) and 

unclassified (Phet =0.02) groups. All of the BW effect sizes plotted in the forest plots are 

aligned to the trait (or risk)-raising allele.
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Figure 1. Genome-wide genetic correlation between birth weight and a range of traits and 
diseases in later life.
Genetic correlation (rg) and corresponding standard error between BW and the traits 

displayed on the x axis are estimated using LD Score regression8. The genetic correlation 

estimates (rg) are colour coded according to their intensity and direction (red for positive and 

blue for inverse correlation). WHRadjBMI=waist-hip ratio adjusted for body mass index, 

HOMA-B/IR=homeostatic model assessment of beta-cell function/insulin resistance, 

HbA1c=Hemoglobin A1c, BMD=bone mineral density, ADHD=attention deficit 
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hyperactivity disorder. See Supplementary Table 12 for references for each of the traits and 

diseases displayed.
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Figure 2. Hierarchical clustering of birth weight loci based on similarity of overlap with adult 
diseases, metabolic and anthropometric traits.
For the lead SNP at each BW locus (x-axis), z-scores (aligned to BW-raising allele) were 

obtained from publicly available GWAS for various traits (y-axis; see Supplementary Table 

17). A positive z-score (red) indicates a positive association between the BW-raising allele 

and the outcome trait, while a negative z-score (blue) indicates an inverse association. BW 

loci and traits are clustered according to the Euclidean distance amongst z-scores (see 

Methods). Squares are outlined with a solid black line if the BW locus is significantly 

(P<5x10-8) associated with the trait in publicly available GWAS, or with a dashed line if 

reported significant elsewhere. WHRadjBMI=waist-hip ratio adjusted for body mass index.
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