
MAXIMA OF A TRIANGULAR ARRAY OF MULTIVARIATE GAUSSIAN SEQUENCE

ENKELEJD HASHORVA, LIANG PENG, AND ZHICHAO WENG

Abstract: It is known that the normalized maxima of a sequence of independent and identically distributed

bivariate normal random vectors with correlation coefficient ρ ∈ (−1, 1) is asymptotically independent, which implies

that using bivariate normal distribution will seriously underestimate extreme co-movement in practice. By letting ρ

depend on the sample size and go to one with certain rate, Hüsler and Reiss (1989) showed that the normalized maxima

of Gaussian random vectors can become asymptotically dependent so as to well predict the co-movement observed in

the market. In this paper, we extend such a study to a triangular array of a multivariate Gaussian sequence, which

further generalizes the results in Hsing, Hüsler and Reiss (1996) and Hashorva and Weng (2013).
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1. Introduction

Let (X
(1)
1 , X

(2)
1 ), · · · , (X(1)

n , X
(2)
n ) be independent and identically distributed bivariate normal random vectors with

zero means, unit variances and correlation coefficient ρ ∈ [−1, 1]. For each x ∈ R, put

(1.1) un(x) = x/an + bn with an =
√

2 lnn and bn =
√

2 lnn− ln lnn+ ln(4π)

2
√

2 lnn
.

When |ρ| < 1, it is known that for any x, y ∈ R

Ψρ(un(x), un(y)) := P
(

max
1≤i≤n

X
(1)
i ≤ un(x), max

1≤i≤n
X

(2)
i ≤ un(y)

)
→ e−e

−x−e−y as n→∞,

where the limit becomes the joint distribution of two independent Gumbel random variables, and the choices of an

and bn in (1.1) can be found in Resnick (1987). In this case, X
(1)
1 and X

(2)
1 are called asymptotically independent

(see Sibuya (1960)). Although normal distributions have many good properties and receive much attention in risk

management (see McNeil, Frey and Embrechts (2005) for some overviews), this asymptotic independence property

does seriously underestimate extreme co-movement observed in practice. To overcome this drawback, Hüsler and Reiss

(1989) proposed to let ρ = ρ(n) depend on the sample size n such that

(1.2) (1− ρ(n)) lnn→ λ ∈ [0,∞] as n→∞,

and then showed that

(1.3) lim
n→∞

Ψρ(n)(un(x), un(y)) = e
−Φ(
√
λ+ x−y

2
√
λ

)e−y−Φ(
√
λ+ y−x

2
√
λ

)e−x
=: Hλ(x, y)

for x, y ∈ R, where Φ denotes the standard normal distribution function. It follows from (1.3) that the limit distribution

Hλ (referred to as the Hüsler-Reiss distribution) is not a product distribution when λ ∈ [0,∞), i.e., X
(1)
1 and X

(2)
1 are

asymptotically dependent in this case. Using (1.2), Frick and Reiss (2013) extended the above limit to the maxima of
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normal copulas. Some other extensions of Hüsler and Reiss (1989) to more general triangular arrays have been made

in the literature too as reviewed below.

Consider a triangular array of normal random variables Xn,i, i = 1, 2, · · · , n = 1, 2, · · · such that for each n,

{Xn,i, i ≥ 1} is a stationary normal sequence with mean zero, variance one and covariance ρn,j = E {Xn,1Xn,j+1}.

Motivated by condition (1.2), by assuming that

(1.4) (1− ρn,j) lnn→ δj ∈ (0,∞] for all j ≥ 1

as n→∞, and some other conditions on ρn,j , Hsing, Hüsler and Reiss (1996) showed that

(1.5) lim
n→∞

P
(

max
1≤j≤n

Xn,j ≤ un(x)

)
= e−θe

−x

holds for all x ∈ R, where

θ = P
(
A/2 +

√
δkWk ≤ δk for all k ≥ 1 such that δk <∞

)
,

with A being a standard exponential random variable independent of Wk and {Wk : δk < ∞, k ≥ 1} being jointly

normal with zero means and

E {WiWj} =
δi + δj − δ|i−j|

2
√
δiδj

.

Here θ is set to be 1 if all δk’s are infinite. Recently French and Davis (2013) generalized this study to a Gaussian

random field on a lattice.

Another extension of Hüsler and Reiss (1989) made by Hashorva and Weng (2013) is to study a triangular array

of 2-dimensional stationary Gaussian sequence as follows.

Consider a triangular array of bivariate normal random vectors Xn,j = (X
(1)
n,j , X

(2)
n,j), j = 1, 2, · · · , n = 1, 2, · · · such

that for each n, {Xn,j , j ≥ 1} is a Gaussian sequence with mean zero, variance one and covariance

E
{
X

(i)
n,kX

(j)
n,l

}
= ρij(|k − l|, n) for i, j = 1, 2.

By assuming that

(1.6) lim
n→∞

(1− ρ12(0, n)) lnn = λ ∈ [0,∞]

and

(1.7) σ := max
1≤k<n,n≥1,1≤i,j≤2

|ρij(k, n)| < 1, lim
n→∞

max
ln≤k<n,1≤i,j≤2

ρij(k, n) lnn = 0,

where ln = [nα] for some α ∈ (0, 1−σ
1+σ ), Hashorva and Weng (2013) proved that

(1.8) limn→∞ P
(

max1≤k≤nX
(1)
n,k ≤ un(x),max1≤k≤nX

(2)
n,k ≤ un(y)

)
= Hλ(x, y)

for all x, y ∈ R. Taking y =∞ in (1.8), we have

lim
n→∞

P
(

max
1≤k≤n

X
(1)
n,k ≤ un(x)

)
= e−e

−x
for x ∈ R.

That is, convergence in (1.8) excludes the possibility that (1.4) holds forX
(1)
n,k andX

(2)
n,k. This motivates us to investigate

the limit of P
(

max1≤k≤nX
(1)
n,k ≤ un(x),max1≤k≤nX

(2)
n,k ≤ un(y)

)
when (1.6) holds and (1.4) holds for both X

(1)
n,k and

X
(2)
n,k. Such a study will generalize the results in both Hsing, Hüsler and Reiss (1996) and Hashorva and Weng (2013).

Some other recent extensions of Hüsler and Reiss (1989) consist in to drop the Gaussian assumption. For example,

Hashorva (2013) studied the maxima of some spherical processes; Hashorva, Kabluchko and Wübker (2012) investigated
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the maxima of χ2-random vectors; Manjunath, Frick and Reiss (2012) discussed the maxima in the setup of extremal

discriminant analysis; Engelke, Kabluchko and Schlather (2014) analyzed the maxima for some type of conditional

Gaussian models.

We organize this paper as follows. Section 2 derives the limit for the normalized componentwise maxima of a

triangular array of d-dimensional normal random vectors when (1.4) and (1.6) hold. All proofs are put in Section 3.

2. Main results

Throughout we consider a triangular array Xn,k = (X
(1)
n,k, · · · , X

(d)
n,k), k = 1, 2, · · · , n = 1, 2, · · · such that for each

n, {Xn,k, k ≥ 1} is a d-dimensional stationary Gaussian sequence with mean zero, variance one and correlations given

by E
{
X

(i)
n,kX

(j)
n,l

}
= ρij(|k − l|, n) for k, l = 1, 2, · · · and i, j = 1, 2, · · · , d.

Hereafter A stands for a unit exponential random variable being independent of all other random elements involved

and x = (x1, · · · , xd) ∈ Rd.

Theorem 2.1. Let {Xn,k, k, n ≥ 1} be a d-dimensional centered stationary Gaussian triangular array satisfying

(δii(0) = 0)

(2.1)

 limn→∞(1− ρij(k, n)) lnn = δij(k) ∈ (0,∞] for i, j = 1, · · · , d; k = 1, 2, · · ·

limn→∞(1− ρij(0, n)) lnn = δij(0) ∈ (0,∞] for i, j = 1, · · · , d, i 6= j.

Suppose that there exist positive integers ln, rn satisfying

(2.2) lim
n→∞

ln
rn

= 0, lim
n→∞

rn
n

= 0,

(2.3) lim
n→∞

n2

rn

d∑
i,j=1

n∑
s=ln

|ρij(s, n)| exp

(
−2 lnn− ln lnn

1 + |ρij(s, n)|

)
= 0

and

(2.4) lim
m→∞

lim sup
n→∞

d∑
i,j=1

rn∑
s=m

n
−

1−ρij(s,n)

1+ρij(s,n)
(lnn)−ρij(s,n)/(1+ρij(s,n))√

1− ρ2
ij(s, n)

= 0.

Then

lim
n→∞

P
(

max
1≤k≤n

X
(1)
n,k ≤ un(x1), · · · , max

1≤k≤n
X

(d)
n,k ≤ un(xd)

)
= exp

(
−

d∑
i=1

ϑi(x)e−xi

)
, ∀x ∈ Rd,(2.5)

where

(2.6)
ϑ1(x) = P

(
A
2 +

√
δt1(k − 1)W

(t)
k,1 ≤ δt1(k − 1) + xt−x1

2 , 1 ≤ t ≤ d,

for all k ≥ 2 such that δt1(k − 1) <∞
)

and for i = 2, · · · , d

(2.7)

ϑi(x) = P
(
A
2 +

√
δsi(0)W

(s)
1,i ≤ δsi(0) + xs−xi

2 , 1 ≤ s < i, δsi(0) <∞,
A
2 +

√
δti(k − 1)W

(t)
k,i ≤ δti(k − 1) + xt−xi

2 , 1 ≤ t ≤ d,

for all k ≥ 2 such that δti(k − 1) <∞
)
,

where {W (t)
k,i , 1 ≤ t ≤ d, δti(k − 1) <∞, k ≥ 1} are jointly normal with zero means and for each i = 1, · · · , d

Cov(W
(j)
k,i ,W

(t)
l,i ) =

δji(k − 1) + δti(l − 1)− δjt(|k − l|)
2
√
δji(k − 1)δti(l − 1)

,(2.8)
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where j, t = 1, · · · , d, and k, l ≥ 1 if i 6= j and i 6= t, and k, l ≥ 2 if i = j or i = t.

Remark 2.1. i) The ϑ’s above should be set to 1 if all δ’s involved are equal to infinity. If only a finite number of

δ’s is not equal to infinity, then ϑ’s are all positive and thus the limit in (2.5) is a max-stable distribution function.

As mentioned in Remark 2 of French and Davis (2013), for some tractable correlation functions it is possible to show

that ϑ’s are positive.

ii) If condition (2.1) holds with δij(k) =∞ for any index i, j ≤ d and k ≥ 1, then we can write

ϑi(x) = ϑi(x1, · · · , xi), x ∈ Rd, i ≤ d,

and the limiting distribution becomes G(x) = e−
∑d
i=1 ϑi(x1,··· ,xi)e−xi , which coincides with the d-dimensional max-stable

Hüsler-Reiss distribution.

iii) As in Theorem 2.2 of Hsing, Hüsler and Reiss (1996), conditions (2.2), (2.3) and (2.4) can be replaced by

lim
n→∞

∑
1≤i,j≤d

max
ln≤k≤n

|ρij(k, n)| lnn = 0 for some ln = o(n)

and

lim
m→∞

lim sup
n→∞

d∑
i,j=1

ln∑
s=m

n
−

1−ρij(s,n)

1+ρij(s,n)
(lnn)−ρij(s,n)/(1+ρij(s,n))√

1− ρ2
ij(s, n)

= 0.

These last two conditions are easier to check than those in Theorem 2.1.

3. Proofs

For notational simplicity we shall define

M
(i)
k,l = max

k<s≤l
X(i)
n,s, M

(i)
l = M

(i)
0,l = max

1≤s≤l
X

(i)
n,l, M

(i)
l,l = −∞

for i = 1, 2, · · · , d, k = 1, · · · , l and l = 1, · · · , n. Before proving the theorem, we need some lemmas.

Lemma 3.1. For any n× d random matrix {X(i)
n,k, 1 ≤ k ≤ n, 1 ≤ i ≤ d} and any vector of constants (u(1), · · · , u(d))

we have

P

(
d⋃
i=1

{M (i)
n > u(i)}

)
=

n∑
k=1

P

(
X

(1)
n,k > u(1),

d⋂
t=1

{M (t)
k,n ≤ u

(t)}

)
(3.1)

+

d∑
i=2

n∑
k=1

P

(
X

(i)
n,k > u(i),

i−1⋂
s=1

{M (s)
k−1,n ≤ u

(s)},
d⋂
t=i

{M (t)
k,n ≤ u

(t)}

)
.

Proof. The case of d = 1 directly follows from O’Brien (1987). We shall prove the case of d = 2 and then use the

induction method to conclude that the lemma holds for any d ≥ 2.

It is straightforward to check that for any s ≥ 0 and i = 1, · · · , d,

P
(
M (i)
s,n > u(i)

)
= P

(
X(i)
n,n > u(i)

)
+ P

(
M

(i)
s,n−1 > u(i), X(i)

n,n ≤ u(i)
)

= P
(
X(i)
n,n > u(i),M (i)

n,n ≤ u(i)
)

+ P
(
X

(i)
n,n−1 > u(i),M

(i)
n−1,n ≤ u(i)

)
+P
(
M

(i)
s,n−2 > u(i), X

(i)
n,n−1 ≤ u(i), X(i)

n,n ≤ u(i)
)
.
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Continuing the above decomposition, we have

(3.2) P
(
M (i)
s,n > u(i)

)
=

n∑
k=s+1

P
(
X

(i)
n,k > u(i),M

(i)
k,n ≤ u

(i)
)

for any s ≥ 0. For proving that (3.1) holds for the case of d = 2, we first note that

P
(
M (1)
n ≤ u(1),M (2)

n > u(2)
)

=

n∑
k=1

P
(
X

(2)
n,k > u(2),M

(2)
k,n ≤ u

(2),M (1)
n ≤ u(1)

)
=

n∑
k=1

P
(
X

(2)
n,k > u(2),M

(2)
k,n ≤ u

(2),M
(1)
k−1,n ≤ u

(1)
)

−
n∑
k=1

P
(
X

(2)
n,k > u(2),M

(2)
k,n ≤ u

(2),M
(1)
k−1,n ≤ u

(1),M
(1)
k−1 > u(1)

)
=

n∑
k=1

P
(
X

(2)
n,k > u(2),M

(2)
k,n ≤ u

(2),M
(1)
k−1,n ≤ u

(1)
)

−
n∑
k=1

k−1∑
l=1

P
(
X

(2)
n,k > u(2),M

(2)
k,n ≤ u

(2), X
(1)
n,l > u(1),M

(1)
l,n ≤ u

(1)
)

=

n∑
k=1

P
(
X

(2)
n,k > u(2),M

(2)
k,n ≤ u

(2),M
(1)
k−1,n ≤ u

(1)
)

−
n−1∑
l=1

n∑
k=l+1

P
(
X

(2)
n,k > u(2),M

(2)
k,n ≤ u

(2), X
(1)
n,l > u(1),M

(1)
l,n ≤ u

(1)
)

=

n∑
k=1

P
(
X

(2)
n,k > u(2),M

(2)
k,n ≤ u

(2),M
(1)
k−1,n ≤ u

(1)
)
−
n−1∑
l=1

P
(
M

(2)
l,n > u(2), X

(1)
n,l > u(1),M

(1)
l,n ≤ u

(1)
)
,(3.3)

which can be used to show that

P
(
{M (1)

n > u(1)} ∪ {M (2)
n > u(2)}

)
= P

(
M (1)
n > u(1)

)
+ P

(
M (1)
n ≤ u(1),M (2)

n > u(2)
)

=

n∑
l=1

P
(
X

(1)
n,l > u(1),M

(1)
l,n ≤ u

(1)
)

+

n∑
k=1

P
(
X

(2)
n,k > u(2),M

(2)
k,n ≤ u

(2),M
(1)
k−1,n ≤ u

(1)
)

−
n−1∑
l=1

P
(
M

(2)
l,n > u(2), X

(1)
n,l > u(1),M

(1)
l,n ≤ u

(1)
)

= P
(
X(1)
n,n > u(1)

)
+

n−1∑
l=1

P
(
X

(1)
n,l > u(1),M

(1)
l,n ≤ u

(1),M
(2)
l,n ≤ u

(2)
)

+

n∑
k=1

P
(
X

(2)
n,k > u(2),M

(2)
k,n ≤ u

(2),M
(1)
k−1,n ≤ u

(1)
)

=

n∑
l=1

P
(
X

(1)
n,l > u(1),M

(1)
l,n ≤ u

(1),M
(2)
l,n ≤ u

(2)
)

+

n∑
k=1

P
(
X

(2)
n,k > u(2),M

(2)
k,n ≤ u

(2),M
(1)
k−1,n ≤ u

(1)
)
,

i.e., (3.1) holds for d = 2.
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Next, suppose that (3.1) holds for d = m− 1 > 2, i.e.,

P

(
m−1⋃
i=1

{M (i)
n > u(i)}

)
=

n∑
k=1

P

(
X

(1)
n,k > u(1),

m−1⋂
t=1

{M (t)
k,n ≤ u

(t)}

)

+

m−1∑
i=2

n∑
k=1

P

(
X

(i)
n,k > u(i),

i−1⋂
s=1

{M (s)
k−1,n ≤ u

(s)},
m−1⋂
t=i

{M (t)
k,n ≤ u

(t)}

)
.(3.4)

In view of (3.2) and (3.4), we have

P

(
m−1⋂
i=1

{M (i)
n ≤ u(i)},M (m)

n > u(m)

)

=

n∑
k=1

P

(
X

(m)
n,k > u(m),M

(m)
k,n ≤ u

(m),

m−1⋂
i=1

{M (i)
k−1,n ≤ u

(i)}

)

−
n∑
k=1

P

X(m)
n,k > u(m),M

(m)
k,n ≤ u

(m),

m−1⋂
i=1

{M (i)
k−1,n ≤ u

(i)},
m−1⋃
j=1

{M (j)
k−1 > u(j)}


=

n∑
k=1

P

(
X

(m)
n,k > u(m),M

(m)
k,n ≤ u

(m),

m−1⋂
i=1

{M (i)
k−1,n ≤ u

(i)}

)

−
n−1∑
l=1

P

(
M

(m)
l,n > u(m),

m−1⋂
i=1

{M (i)
l,n ≤ u

(i)}, X(1)
n,l > u(1)

)

−
m−1∑
j=2

n−1∑
l=1

P

X(j)
n,l > u(j),

j−1⋂
s=1

{M (s)
l−1,n ≤ u

(s)},
m−1⋂
t=j

{M (t)
l,n ≤ u

(t)},M (m)
l,n > u(m)

 .(3.5)

It follows from (3.4) and (3.5) that

P

(
m⋃
i=1

{M (i)
n > u(i)}

)

= P

(
m−1⋃
i=1

{M (i)
n > u(i)}

)
+ P

(
m−1⋂
i=1

{M (i)
n ≤ u(i)},M (m)

n > u(m)

)

=

n∑
l=1

P

(
X

(1)
n,l > u(1),

m⋂
i=1

{M (i)
l,n ≤ u

(i)}

)

+

m∑
j=2

n∑
l=1

P

X(j)
n,l > u(j),

j−1⋂
s=1

{M (s)
l−1,n ≤ u

(s)},
m⋂
t=j

{M (t)
l,n ≤ u

(t)}

 ,

i.e., (3.1) holds for d = m. Hence the lemma follows from the induction method. �

Lemma 3.2. Let {Xn,k, k, n ≥ 1} be a d-dimensional centered stationary Gaussian triangular array. If there exist

positive integers ln and rn such that (2.2) and (2.3) hold, then we have for any xi ∈ R, i ≤ d

(3.6) lim
n→∞

(
P

(
d⋂
i=1

{M (i)
n ≤ un(xi)}

)
−

(
P

(
d⋂
i=1

{M (i)
rn ≤ un(xi)}

))qn)
= 0,

where qn = [n/rn].

Proof. Define Nn = {1, 2, · · · , n} for any positive integer n and set

Nrnqn = (I1 ∪ J1) ∪ (I2 ∪ J2) ∪ · · · ∪ (Iqn ∪ Jqn),
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with Is = {(s − 1)rn + 1, · · · , srn − ln} and Js = {srn − ln + 1, · · · , srn} for s = 1, 2, · · · , qn. Since rnqn ≤ n <

(rn + 1)qn < rnqn + ln, we get |Nn\Nrnqn | < qn < ln, where |K| means the length of the interval K ⊂ R. Further,

define sets Iqn+1 and Jqn+1 by

Iqn+1 = {rnqn − rn + ln + 1, · · · , rnqn − 1, rnqn},

Jqn+1 = {rnqn + 1, · · · , rnqn + ln − 1, rnqn + ln}.

Clearly, |Iqn+1| = rn − ln, |Jqn+1| = ln and Iqn+1 ⊂ Nrnqn and Nn\Nrnqn ⊂ Jqn+1. Using the fact that

ln = o(rn), ln = o(n), lim
n→∞

n(1− Φ(un(xi))) = e−xi

we obtain

0 ≤ P

(
qn⋂
s=1

d⋂
i=1

{M (i)(Is) ≤ un(xi)}

)
− P

(
d⋂
i=1

{M (i)
n ≤ un(xi)}

)

≤
qn+1∑
s=1

d∑
i=1

P
(
M (i)(Is) ≤ un(xi) < M (i)(Js)

)

≤
qn+1∑
s=1

d∑
i=1

P
(
un(xi) < M (i)(Js)

)

≤ (qn + 1)ln

d∑
i=1

(1− Φ(un(xi)))

→ 0

as n→∞, where M (i)(Is) = maxj∈Is X
(i)
n,j . Using Berman’s inequality given in Li and Shao (2001) (see also Piterbarg

(1996)) and (2.3) ∣∣∣∣∣P
(
qn⋂
s=1

d⋂
i=1

{M (i)(Is) ≤ un(xi)}

)
−

qn∏
s=1

P

(
d⋂
i=1

{M (i)(Is) ≤ un(xi)}

)∣∣∣∣∣
≤ (qn − 1)

1

2π

d∑
i,j=1

∑
1≤s<t≤n,t−s>ln

∣∣∣arcsin(ρij(t− s, n))
∣∣∣ exp

(
− u2

n(xi) + u2
n(xj)

2(1 + |ρij(t− s, n)|)

)

≤ C
n2

rn

d∑
i,j=1

n∑
s=ln

|ρij(s, n)| exp

(
−2 lnn− ln lnn

1 + |ρij(s, n)|

)
→ 0 as n→∞,

where C is some positive constant. Since further

0 ≤
qn∏
s=1

P

(
d⋂
i=1

{M (i)(Is) ≤ un(xi)}

)
−

qn∏
s=1

P

(
d⋂
i=1

{M (i)(Is ∪ Js) ≤ un(xi)}

)

≤
qn∑
s=1

d∑
i=1

P
(
un(xi) < M (i)(Js)

)
→ 0

as n→∞, the lemma follows. �

Remark 3.1. If {sn, n ≥ 1} is a sequence of positive integers such that sn = o(n) and rn = o(sn), then clearly

both (2.2) and (2.3) hold with rn replaced by sn. From the proof above we see that these two conditions are the only

assumptions of Lemma 3.2. Hence (3.6) still holds if we substitute qn by tn = [n/sn].
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Lemma 3.3. Under the conditions of Theorem 2.1, for any bounded index set K ⊂ {2, 3, · · · } and each c ∈ {2, · · · , d}

we have

(3.7)

limn→∞ P
(
X

(s)
n,1 ≤ un(xs), 1 ≤ s < c,X

(t)
n,k ≤ un(xt), 1 ≤ t ≤ d, k ∈ K|X(c)

n,1 > un(xc)
)

= P(A2 +
√
δsc(0)W

(s)
1,c ≤ δsc(0) + xs−xc

2 , 1 ≤ s < c, δsc(0) <∞,
A
2 +

√
δtc(k − 1)W

(t)
k,c ≤ δtc(k − 1) + xt−xc

2 , 1 ≤ t ≤ d, for all k ∈ K such that δtc(k − 1) <∞).

Further

(3.8)
limn→∞ P

(
X

(t)
n,k ≤ un(xt), 1 ≤ t ≤ d, k ∈ K|X(1)

n,1 > un(x1)
)

= P(A2 +
√
δt1(k − 1)W

(t)
k,1 ≤ δt1(k − 1) + xt−x1

2 , 1 ≤ t ≤ d, for all k ∈ K such that δt1(k − 1) <∞),

and {W (t)
k,i , 1 ≤ t ≤ d, δti(k − 1) <∞, k ∈ {1} ∪K} are jointly normal with zero means and

Cov(W
(j)
k,i ,W

(t)
l,i ) =

δji(k − 1) + δti(l − 1)− δjt(|k − l|)
2
√
δji(k − 1)δti(l − 1)

,

where i, j, t = 1, · · · , d, and k, l ∈ {1} ∪K if i 6= j and i 6= t, and k, l ∈ K if i = j or i = t.

Proof. We follow the arguments in the proof of Lemma 4.1 in Hsing, Hüsler and Reiss (1996). First like (4.1) therein

we have for each c ∈ {2, · · · , d},

P
(
X

(s)
n,1 ≤ un(xs), 1 ≤ s < c,X

(t)
n,k ≤ un(xt), 1 ≤ t ≤ d, k ∈ K|X(c)

n,1 > un(xc)
)

∼
∫ ∞

0

P
(
X

(s)
n,1 ≤ un(xs), 1 ≤ s < c,X

(t)
n,k ≤ un(xt), 1 ≤ t ≤ d, k ∈ K

∣∣X(c)
n,1 = Tn(xc, z)

)
× exp

(
−z − z2

2u2
n(xc)

)
dz,(3.9)

where Tn(xc, z) = un(xc)+z/un(xc). Let {Y (i)
n,k,c, 1 ≤ i ≤ d, k ∈ {1}∪K} have the same distribution as the conditional

distribution of {X(i)
n,k, 1 ≤ i ≤ d, k ∈ {1} ∪K} given X

(c)
n,1 = Tn(xc, z). Then

E
{
Y

(i)
n,k,c

}
= ρic(k − 1, n)Tn(xc, z)

and

Cov(Y
(i)
n,k,c, Y

(j)
n,k,c) = ρij(|k − l|, n)− ρic(k − 1, n)ρjc(l − 1, n)

for i, j ∈ {1, · · · , d} and k, l ∈ {1} ∪K. Further define

Z
(i)
n,k,c =

Y
(i)
n,k,c − ρic(k − 1, n)Tn(xc, z)√

1− ρ2
ic(k − 1, n)

,

where 1 ≤ i ≤ d, and k ∈ {1} ∪K if i 6= c, and k ∈ K if i = c. Then we have

Cov(Z
(i)
n,k,c, Z

(j)
n,l,c) =

ρij(|k − l|, n)− ρic(k − 1, n)ρjc(l − 1, n)√
(1− ρ2

ic(k − 1, n))(1− ρ2
jc(l − 1, n))

→ δic(k − 1) + δjc(l − 1)− δij(|k − l|)
2
√
δic(k − 1)δjc(l − 1)

,
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where i, j ∈ {1, · · · , d}, and k, l ∈ {1}∪K if c 6= i and c 6= j, and k, l ∈ K if c = i or c = j. Thus, using u2
n(x) ∼ 2 lnn

for x ∈ R we have

(3.10)

P
(
Y

(s)
n,1,c ≤ un(xs), 1 ≤ s < c, Y

(t)
n,k,c ≤ un(xt), 1 ≤ t ≤ d, k ∈ K

)
= P( 1

2ρsc(0, n)z +
√

1+ρsc(0,n)
2

√
u2
n(xc)(1−ρsc(0,n))

2 Z
(s)
n,1,c ≤ 1

2 (un(xs)un(xc)− ρsc(0, n)u2
n(xc)),

1
2ρtc(k − 1, n)z +

√
1+ρtc(k−1,n)

2

√
u2
n(xc)(1−ρtc(k−1,n))

2 Z
(t)
n,k,c

≤ 1
2 (un(xt)un(xc)− ρtc(k − 1, n)u2

n(xc)), for 1 ≤ s < c, 1 ≤ t ≤ d, k ∈ K)

→ P( z2 +
√
δsc(0)W

(s)
1,c ≤ δsc(0) + xs−xc

2 , 1 ≤ s < c, δsc(0) <∞,
z
2 +

√
δtc(k − 1)W

(t)
k,c ≤ δtc(k − 1) + xt−xc

2 , 1 ≤ t ≤ d,

for all k ∈ K such that δtc(k − 1) <∞).

Therefore, (3.7) follows by (3.10) and (3.9). The proof of (3.8) can be established with similar arguments. Hence the

claim follows. �

Lemma 3.4. Under the conditions of Theorem 2.1, for c ∈ {1, · · · , d} we have

lim
m→∞

lim sup
n→∞

P

 d⋃
i=1

rn⋃
j=m

{X(i)
n,j > un(xi)}

∣∣∣X(c)
n,1 > un(xc)

 = 0.

Proof. It suffices to show that for each fixed i ∈ {1, · · · , d}

lim
m→∞

lim sup
n→∞

P

 rn⋃
j=m

{X(i)
n,j > un(xi)}

∣∣∣X(c)
n,1 > un(xc)

 = 0.

As in the proof of Lemma 3.3, write with anj(z) = ρic(j − 1, n)(un(xc) + z/un(xc)) and bnj :=
√

1− ρ2
ic(j − 1, n)

P

 rn⋃
j=m

{X(i)
n,j > un(xi)}|X(c)

n,1 > un(xc)

 ∼
∫ ∞

0

P

 rn⋃
j=m

{anj(z) + Z
(i)
n,j,cbnj > un(xi)}

 exp

(
−z − z2

2u2
n(xc)

)
dz.

Hence, we only need to show that for each fixed z0 > 0

limm→∞ lim supn→∞
∫ z0

0
P
(⋃rn

j=m{anj(z) + Z
(i)
n,j,cbnj > un(xi)}

)
exp

(
−z − z2

2u2
n(xc)

)
dz = 0,

which follows if we show

(3.11) lim
m→∞

lim sup
n→∞

sup
0≤z≤z0

rn∑
j=m

P
(
anj(z) + Z

(i)
n,j,cbnj > un(xi)

)
= 0.

In view of the derivation of (4.4) in Hsing, Hüsler and Reiss (1996), condition (2.4) implies

lim
m→∞

lim sup
n→∞

max
m≤j≤rn

((1− ρic(j − 1, n)) lnn)−1 = 0.

Thus, for large n and j ∈ [m, rn] we have

θnj :=
un(xi)− un(xc)ρic(j − 1, n)√

1− ρ2
ic(j − 1, n)

− zρic(j − 1, n)

un(xc)
√

1− ρ2
ic(j − 1, n)

> 0.

By the fact that 1− Φ(x) ≤ x−1ϕ(x) for x > 0, we obtain

P
(
Z

(i)
n,j,c > θnj

)
≤ 1

θnj
√

2π
exp

(
−1

2
θ2
nj

)
.

Next, for some positive constant C depending only on xi, xc and z0 we have

θ2
nj ≤ C +

1− ρic(j − 1, n)

1 + ρic(j − 1, n)
b2n
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≤ C +
1− ρic(j − 1, n)

1 + ρic(j − 1, n)
(2 lnn− ln lnn),

which implies that

(3.12) P
(
Z

(i)
n,j,c > θnj

)
≤ C∗b−1

nj n
− 1−ρic(j−1,n)

1+ρic(j−1,n) (lnn)
− ρic(j−1,n)

1+ρic(j−1,n)

for some C∗ depending on xi, xc and z0. Hence (3.11) follows from (3.12), i.e., the lemma holds. �

Proof of Theorem 2.1. In view of Lemma 3.3

lim
m→∞

lim
n→∞

P

(
d⋂
t=1

{M (t)
1,m ≤ un(xt)}

∣∣∣X(1)
n,1 > un(x1)

)
= ϑ1(x)

and for i = 2, · · · , d

lim
m→∞

lim
n→∞

P

(
i−1⋂
s=1

{M (s)
m ≤ un(xs)},

d⋂
t=i

{M (t)
1,m ≤ un(xt)}

∣∣∣X(i)
n,1 > un(xi)

)
= ϑi(x),

with ϑ1(x) and ϑi(x) defined in (2.6) and (2.7) respectively, and by making use of Lemma 3.4

lim
n→∞

P

(
d⋂
t=1

{M (t)
1,rn
≤ un(xt)}

∣∣∣X(1)
n,1 > un(x1)

)
= ϑ1(x)

and for i = 2, · · · , d

lim
n→∞

P

(
i−1⋂
s=1

{M (s)
rn ≤ un(xs)},

d⋂
t=i

{M (t)
1,rn
≤ un(xt)}

∣∣∣X(i)
n,1 > un(xi)

)
= ϑi(x).

Hence, by n(1− Φ(un(x)))→ e−x as n→∞, the theorem follows if further

P

(
d⋂
i=1

{M (i)
n ≤ un(xi)}

)

− exp

(
−nP

(
X

(1)
n,1 > un(x1),

d⋂
t=1

{M (t)
1,rn
≤ un(xt)}

)

−n
d∑
i=2

P

(
X

(i)
n,1 > un(xi),

i−1⋂
s=1

{M (s)
rn ≤ un(xs)},

d⋂
t=i

{M (t)
1,rn
≤ un(xt)}

))
→ 0 as n→∞.

Following the arguments in the proof of Theorem 2.1 in O’Brien (1987), we first derive an asymptotic upper bound

for pn,d := P
(⋂d

i=1{M
(i)
n ≤ un(xi)}

)
. Utilising (3.6) and Lemma 3.1 for all large n we obtain

pn,d =

(
P

(
d⋂
i=1

{M (i)
rn ≤ un(xi)}

))qn
+ o(1)

=

(
1− P

(
d⋃
i=1

{M (i)
rn > un(xi)}

))qn
+ o(1)

≤

(
1− rnP

(
X

(1)
n,1 > un(x1),

d⋂
t=1

{M (t)
1,rn
≤ un(xt)}

)

−
d∑
i=2

rnP

(
X

(i)
n,1 > un(xi),

i−1⋂
s=1

{M (s)
rn ≤ un(xs)},

d⋂
t=i

{M (t)
1,rn
≤ un(xt)}

))qn
+ o(1)

≤ exp

(
−nP

(
X

(1)
n,1 > un(x1),

d⋂
t=1

{M (t)
1,rn
≤ un(xt)}

)
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−n
d∑
i=2

P

(
X

(i)
n,1 > un(xi),

i−1⋂
s=1

{M (s)
rn ≤ un(xs)},

d⋂
t=i

{M (t)
1,rn
≤ un(xt)}

))
+ o(1).

The rest of the proof is dedicated to the derivation of an asymptotic lower bound for pn,d. Choose a sequence of

positive integers {sn, n ≥ 1} such that rn = o(sn), sn = o(n), and (3.6) holds with rn replaced by sn and qn replaced

by tn = [n/sn]. In view of the assumptions (see Remark 3.1) this is possible. Since rn = o(sn), we have

(3.13) P
(
M (i)
rn > un(xi)

)
= o

(
P
(
M (i)
sn > un(xi)

))
, 1 ≤ i ≤ d.

We proceed by induction showing that as n→∞

P

(
d⋃
i=1

{M (i)
sn > un(xi)}

)
(3.14)

=

(
sn−rn∑
k=1

P

(
X

(1)
n,k > un(x1),

d⋂
t=1

{M (t)
k,sn
≤ un(xt)}

)

+

d∑
i=2

sn−rn∑
k=1

P

(
X

(i)
n,k > un(xi),

i−1⋂
s=1

{M (s)
k−1,sn

≤ un(xs)},
d⋂
t=i

{M (t)
k,sn
≤ un(xt)}

))
(1 + o(1)).

If d = 1, as in O’Brien (1987), we have

P
(
M (1)
sn > un(x1)

)
= P

(
M

(1)
sn−rn > un(x1),M

(1)
sn−rn,sn ≤ un(x1)

)
+ P

(
M (1)
rn > un(x1)

)
=

(
sn−rn∑
k=1

P
(
X

(1)
n,k > un(x1),M

(1)
k,sn
≤ un(x1)

))
(1 + o(1)) as n→∞.

For d = 2, by (3.2), (3.3) and stationarity we have

P
(
{M (1)

sn > un(x1)} ∪ {M (2)
sn > un(x2)}

)
= P

(
M (1)
sn > un(x1)

)
+ P

(
M (2)
sn > un(x2),M (1)

sn ≤ un(x1)
)

= P
(
M (1)
sn > un(x1)

)
+ P

(
M (2)
sn > un(x2),M (1)

sn ≤ un(x1)
)

−P
(
M

(2)
sn−rn,sn > un(x2),M

(1)
sn−rn,sn ≤ un(x1)

)
+ P

(
M (2)
rn > un(x2),M (1)

rn ≤ un(x1)
)

=

(
sn−rn∑
k=1

P
(
X

(1)
n,k > un(x1),M

(1)
k,sn
≤ un(x1)

)
+

sn∑
k=1

P
(
X

(2)
n,k > un(x2),M

(2)
k,sn
≤ un(x2),M

(1)
k−1,sn

≤ un(x1)
)

−
sn−1∑
k=1

P
(
M

(2)
k,sn

> un(x2), X
(1)
n,k > un(x1),M

(1)
k,sn
≤ un(x1)

)
−

sn∑
k=sn−rn+1

P
(
X

(2)
n,k > un(x2),M

(2)
k,sn
≤ un(x2),M

(1)
k−1,sn

≤ un(x1)
)

+

sn−1∑
k=sn−rn+1

P
(
M

(2)
k,sn

> un(x2), X
(1)
n,k > un(x1),M

(1)
k,sn
≤ un(x1)

))
(1 + o(1))

=

(
sn−rn∑
k=1

P
(
X

(1)
n,k > un(x1),M

(1)
k,sn
≤ un(x1),M

(2)
k,sn
≤ un(x2)

)

+

sn−rn∑
k=1

P
(
X

(2)
n,k > un(x2),M

(2)
k,sn
≤ un(x2),M

(1)
k−1,sn

≤ un(x1)
))

(1 + o(1)),
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i.e., (3.14) holds for d = 2. Assume next that (3.14) holds for d = m− 1 > 2. By (3.13)

P

(
m⋃
i=1

{M (i)
sn > un(xi)}

)
= P

(
m−1⋃
i=1

{M (i)
sn > un(xi)}

)
+ P

(
m−1⋂
i=1

{M (i)
sn ≤ un(xi)},M (m)

sn > un(xm)

)

=

(
P

(
m−1⋃
i=1

{M (i)
sn > un(xi)}

)
+ P

(
m−1⋂
i=1

{M (i)
sn ≤ un(xi)},M (m)

sn > un(xm)

)

−P

(
m−1⋂
i=1

{M (i)
sn−rn,sn ≤ un(xi)},M (m)

sn−rn,sn > un(xm)

))
(1 + o(1)).

Consequently (3.5) implies that (3.14) holds for d = m. According to (3.14), by stationarity we have

P

(
d⋃
i=1

{M (i)
sn > un(xi)}

)

≤

(
sn−rn∑
k=1

P

(
X

(1)
n,k > un(x1),

d⋂
t=1

{M (t)
k,rn+k−1 ≤ un(xt)}

)

+

d∑
i=2

sn−rn∑
k=1

P

(
X

(i)
n,k > un(xi),

i−1⋂
s=1

{M (s)
k−1,rn+k−1 ≤ un(xs)},

d⋂
t=i

{M (t)
k,rn+k−1 ≤ un(xt)}

))
(1 + o(1))

≤

(
snP

(
X

(1)
n,1 > un(x1),

d⋂
t=1

{M (t)
1,rn
≤ un(xt)}

)

+

d∑
i=2

snP

(
X

(i)
n,1 > un(xi),

i−1⋂
s=1

{M (s)
rn ≤ un(xs)},

d⋂
t=i

{M (t)
1,rn
≤ un(xt)}

))
(1 + o(1)).

Since by our choice of the sequence {sn, n ≥ 1}

pn,d =

(
P

(
d⋂
i=1

{M (i)
sn ≤ un(xi)}

))tn
+ o(1) as n→∞

we have

P

(
d⋂
i=1

{M (i)
n ≤ un(xi)}

)

≥ exp

(
−nP

(
X

(1)
n,1 > un(x1),

d⋂
t=1

{M (t)
1,rn
≤ un(xt)}

)

−n
d∑
i=2

P

(
X

(i)
n,1 > un(xi),

i−1⋂
s=1

{M (s)
rn ≤ un(xs)},

d⋂
t=i

{M (t)
1,rn
≤ un(xt)}

))
+ o(1).

Hence the theorem holds. �
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