MAXIMA OF A TRIANGULAR ARRAY OF MULTIVARIATE GAUSSIAN SEQUENCE
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Abstract: It is known that the normalized maxima of a sequence of independent and identically distributed
bivariate normal random vectors with correlation coefficient p € (—1,1) is asymptotically independent, which implies
that using bivariate normal distribution will seriously underestimate extreme co-movement in practice. By letting p
depend on the sample size and go to one with certain rate, Hiisler and Reiss (1989) showed that the normalized maxima
of Gaussian random vectors can become asymptotically dependent so as to well predict the co-movement observed in
the market. In this paper, we extend such a study to a triangular array of a multivariate Gaussian sequence, which
further generalizes the results in Hsing, Hiisler and Reiss (1996) and Hashorva and Weng (2013).
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1. INTRODUCTION

Let (X fl), X {2)), Sy (X,(ll)7 Xy(Lz)) be independent and identically distributed bivariate normal random vectors with

zero means, unit variances and correlation coefficient p € [—1,1]. For each z € R, put

) Inlnn + In(4)
1.1 up(x) =z/a, +b, with a, =vV2Inn and b,=vV2lnn— ——m—=.
(1.1) (x) =/ V % WO

When |p| < 1, it is known that for any z,y € R

U, (un (), un(y)) =P (1rga<x Xi(l) < up(x), max Xi(z) < un(y)> e 7 as n— 0,

where the limit becomes the joint distribution of two independent Gumbel random variables, and the choices of a,
and b, in (1.1) can be found in Resnick (1987). In this case, X{l) and XY) are called asymptotically independent
(see Sibuya (1960)). Although normal distributions have many good properties and receive much attention in risk
management (see McNeil, Frey and Embrechts (2005) for some overviews), this asymptotic independence property
does seriously underestimate extreme co-movement observed in practice. To overcome this drawback, Hiisler and Reiss

(1989) proposed to let p = p(n) depend on the sample size n such that
(1.2) (I=pn))lnn = A e0,00] as n— oo,

and then showed that

. im o (U (2), un(y)) = e~ s e )¢ = AT,y
1.3 lim W) POVASRIT VAR H

n— 00

for 2,y € R, where ® denotes the standard normal distribution function. It follows from (1.3) that the limit distribution
H) (referred to as the Hiisler-Reiss distribution) is not a product distribution when A € [0, 00), i.e., X 1(1) and X 1(2) are

asymptotically dependent in this case. Using (1.2), Frick and Reiss (2013) extended the above limit to the maxima of
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normal copulas. Some other extensions of Hiisler and Reiss (1989) to more general triangular arrays have been made
in the literature too as reviewed below.

Consider a triangular array of normal random variables X, ;,i = 1,2,---,n = 1,2,--- such that for each n,
{Xn,i,1 > 1} is a stationary normal sequence with mean zero, variance one and covariance p,, ; = E{X,, 1X, j4+1}.

Motivated by condition (1.2), by assuming that
(1.4) (1—pn;)Inn —6; € (0,00] foral j>1
as n — 0o, and some other conditions on p,, ;, Hsing, Husler and Reiss (1996) showed that

(1.5) lim P < max X, ; < un(:ﬂ)> =e 0

n— 00 1<j<n

holds for all z € R, where
0=P (A/z + /oWy <6 forall k>1 suchthat & < oo) :

with A being a standard exponential random variable independent of Wy and {W} : §; < oo,k > 1} being jointly

normal with zero means and

di 49 — dji—j|

2.,/5,0;

Here 6 is set to be 1 if all §;’s are infinite. Recently French and Davis (2013) generalized this study to a Gaussian

E{W;W;} =

random field on a lattice.

Another extension of Hiisler and Reiss (1989) made by Hashorva and Weng (2013) is to study a triangular array
of 2-dimensional stationary Gaussian sequence as follows.

Consider a triangular array of bivariate normal random vectors X,, ; = (Xfllz, Xff;),j =1,2,---,n=1,2,--- such

that for each n, {X,, j,j > 1} is a Gaussian sequence with mean zero, variance one and covariance
E{XOXI} = piy (k= tln) for i,j=1,2

By assuming that

(1.6) 1i_>m (1 =p12(0,n))Inn =X € [0, 0]

and

(1.7) 7= 1§k<n,7r1112ai),(1§i,j§2 1pig (ks )] < 1, nhﬁngolngkgg,al)%i,ng pij(k,n)Inn =0,
where [,, = [n?] for some a € (0, %)’ Hashorva and Weng (2013) proved that

(1.8) lim,, o0 P (max1§k§n an,,)C < up (), maxi<k<n Xff,l < un(y)> = H)(z,y)

for all z,y € R. Taking y = co in (1.8), we have

li_>m P (1I<nkaé( XS,)C < un($)> —e ¢ for zeR
n—oo <k<n ’

That is, convergence in (1.8) excludes the possibility that (1.4) holds for X 7(11]1 and X 7(12]1 This motivates us to investigate
the limit of IP (maxlgkgn Xy(Lll)f < Uy (x), maxi<p<n X7(L2])€ < un(y)) when (1.6) holds and (1.4) holds for both Xr(lll)c and
X 7(12]1 Such a study will generalize the results in both Hsing, Hiisler and Reiss (1996) and Hashorva and Weng (2013).

Some other recent extensions of Hiisler and Reiss (1989) consist in to drop the Gaussian assumption. For example,

Hashorva (2013) studied the maxima of some spherical processes; Hashorva, Kabluchko and Wiibker (2012) investigated
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the maxima of x2-random vectors; Manjunath, Frick and Reiss (2012) discussed the maxima in the setup of extremal
discriminant analysis; Engelke, Kabluchko and Schlather (2014) analyzed the maxima for some type of conditional
Gaussian models.

We organize this paper as follows. Section 2 derives the limit for the normalized componentwise maxima of a

triangular array of d-dimensional normal random vectors when (1.4) and (1.6) hold. All proofs are put in Section 3.

2. MAIN RESULTS

Throughout we consider a triangular array X, j = (XT(Ll,)C, e ,Xiil,)c)7 k=1,2,---,n=1,2,--- such that for each
n, {X .k, k > 1} is a d-dimensional stationary Gaussian sequence with mean zero, variance one and correlations given
by E{Xflf)kxfjl)} = pi;(lk —1|,n) for k,1=1,2,- and i,j =1,2,--- ,d.

Hereafter A stands for a unit exponential random variable being independent of all other random elements involved

and © = (z1,--- ,14) € R

Theorem 2.1. Let {X, i, k,n > 1} be a d-dimensional centered stationary Gaussian triangular array satisfying
(6:1(0) = 0)

limy, 00 (1 — pij(k,n)) Inn = §;;(k) € (0,00] for i,j=1,---,d;k=1,2,---

lim,, 00 (1 — pi;(0,n)) Inn = §;;(0) € (0,00] for i,j=1,---,d,i#j.

Suppose that there exist positive integers l,,r, satisfying

(2.1)

ln . Tn
(2.2) lim % =0, lim % =0,
n—o0 Ty, n—oo 1
2lnn —Inlnn
2.3 lim — pii(s,n)| exp <—> =0
(2.3) n—oco T, ”z:l szl: 1P L+ |pij(s,n)
and
d "'n 1-pij(sm) 1 —pij(s,n)/(1+pij(s,n))
(2.4) lim limsup Z Z n e (Inn)=o ’ =0.
m—0 n 300 ij=1s=m 1-— pfj(s,n)
Then
: (1) (d) _ e~ Ti d
(2.5) nhﬂngo]P’ (121]?%(71)(”)]9 < up(z1),- - ’121]?§an v < un(zq) ) exp ( 219 > , VxeR,
where
6 91 (x) = P(g + Ok = DWW <6k —1)+ 2551 < 1 < d,

for all k>2 suchthat dpn(k—1) < oo)
and fori=2,--- ,d
Oi(@) = (4 +IaOWL) < 0a(0) + 2551 < 5 < 0,654(0) < o,
(2.7) §+\/5ti7—1Wk‘?§6ﬁ (k—1)+ 255 1<t < d,
forall k>2 suchthat oy(k—1) < oo)
where {W,itl),l <t <d,du(k—1) < oo,k > 1} are jointly normal with zero means and for each i =1,--- ,d

(Sji(k/’— )+5tz( - )_ ]t(|k_l|)
NG =Y

(2.8) Coo(W), Wy =

)
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where j,t =1,--+ ,d, and k,1 > 1 ifi#j andi#t, and k,1 > 2 ifi=j ori=*t.

Remark 2.1. i) The 9’s above should be set to 1 if all §’s involved are equal to infinity. If only a finite number of
d’s is not equal to infinity, then ¥’s are all positive and thus the limit in (2.5) is a maz-stable distribution function.
As mentioned in Remark 2 of French and Davis (2013), for some tractable correlation functions it is possible to show
that 9’s are positive.

it) If condition (2.1) holds with 6,;(k) = oo for any index i,j < d and k > 1, then we can write
192(11:):191(1‘1, axi)a wGRd,iSd,

and the limiting distribution becomes G(x) = e~ By Pilwrwi)e™™ , which coincides with the d-dimensional maz-stable
Hiisler-Reiss distribution.

1) As in Theorem 2.2 of Hsing, Hisler and Reiss (1996), conditions (2.2), (2.3) and (2.4) can be replaced by

nh_)rr;o Z max |ij (k,n)|Inn =0 for some I, =o(n)

- 1, <k<
1<i,5<d
and
d  ln 1=pij(sm) (] —pij(s,m)/(1+pij(s,n))

lim lim sup Z Z n TR (Inn)=7 ’ =0.

m—00 n_soo =1 s=m 1— p?j(svn)
These last two conditions are easier to check than those in Theorem 2.1.

3. PROOFS
For notational simplicity we shall define

M,Ell) = Jmnax Xni’l, Ml(’) M(z) = max Xfl)l, Mz(,? = —0
fori=1,2,---,d,k=1,--- ;land [ = 1,--- ,n. Before proving the theorem, we need some lemmas.
Lemma 3.1. For any n X d random matriz {Xn 1 <k<n1<i< d} and any vector of constants (u(1)7 e ,u(d))
we have

d n
(3.1) P (U{M};) > u“)}) >op (X(l > u®), ﬂ{M ) < u(t)}>
i=1 k=1 t=1

d n d

+3 3P <X“ > @ ﬂ{M(S L S U} M) < u(t)}> .
i=2 k=1 s=1 t=i

Proof. The case of d = 1 directly follows from O’Brien (1987). We shall prove the case of d = 2 and then use the

induction method to conclude that the lemma holds for any d > 2.

It is straightforward to check that for any s >0andi=1,--- ,d,
P (MS(lT)L > u(i)) = P (X( 0> u(z)) +P (Mé(l) > u® X0 < u(i)>
= (X0 > u MO, <u®) 1P (X0, > u® M2, <u)
(@ )

4P <Ms(z > xl) < U(i)vXT(f,)n < u(i)) )
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Continuing the above decomposition, we have

n
(3.2) P (MO, >u) = 3 P(X0) > ul M), < ul)
k=s+1

for any s > 0. For proving that (3.1) holds for the case of d = 2, we first note that

P (M,(ll) <u®M, M? > u<2>)

= Sp (X(Q,l >u®, M@ <u® MO < u<1>)
= P (X(QzC > u(z), M,gi)L < u(z), M,il_)lm < u(l))

SO (XE > a0 <, MY, < 2D, > )

n

= P (XE > u®, 4 < u® MY, < u)

k—1
=Y (x> @ M) <0 X)) > D) < u)

=11l=

k
= S P(xP > u® M2 <u® MY, <u)

3

[

k=1
n—1 n
— Z Z P (Xff,)c > u(Z),M,g?T)L < u(2),XT(:l) > u(l),Ml(;L) < u(1)>
I=1 k=141
n n—1
(33) = P (Xff;)c > u®, M,f;zi <u®, M}gljl’n < u(l)) _ ZP (Mz(,i) >u®, Xle; > u®), Mz(,i) < u(l)) 7
k=1 =1

which can be used to show that

P ({M;}) >uM} U {MP > u@)})

- P (M,§1> > u(l)) AP (M;Ln <uW MO > u(z))

_ ZP(X( ) S (), M(1 < uu)) +Z]p( ) > @) M<2> u® M( ) o< u<1))
=1 k=1

SR > X0 >, M) < )

n—1
> u(l)) + Z P (XSZ) > u(l), M}j} < u(l), Ml(i) < u(2)>
=1

—I- P (X(z) > u(2),M,5’27)l < u(2), M,gi)ln < u(l))

= ZIP( > o, M(l) <o, M( ) < u(z)) + ZIP’ (XT(LQI)c > u(2)7M;5,27)l < u(2)7MIE:1_)1,n < U(l)) ,
=1 k=1

i.e., (3.1) holds for d = 2.
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Next, suppose that (3.1) holds for d=m — 1 > 2, i.e.,

m—1 n m—1
P ( U 0 > um}) ~ yp (X(l a0, () () < uw})

=1 k=1 t=1
m—1 n
(3.4) +Y 3P (X“ u® ﬂ{M,ES 1 Sul}, ﬂ (M < u(t)}>
1=2 k=1

In view of (3.2) and (3.4), we have

m—1
P ( M 010 <u®) 21 > u(m)>

=1
n m—1 ]
= e (s ) < Y 0, <)
k=1 =1
n m—1 )
NP X > Wl M <l ﬂ (M), <uDY (J{MP) > uly
k=1 =1
n m—1 )
- e (s ) < Y 0, <)
k=1 =1

—1n— -1 m—1
(3.5) - P (XY >u® (UM, <a®}, MY <u®), MY > ol

j=2 l=1 s=1 t=j

m—1 m—1
= P ( U {MT(lZ) > u(i)}> +P ( m {Mr(f) < u(i)}7Mr(Lm) > u(m))

i=1 i=1

- S (x,sfz . i <) )
=1 =1
+ZZP ) > ul), ﬁ{M o Su®}, ﬁ{M;Q <u®}

j=21=1 t=j

i.e., (3.1) holds for d = m. Hence the lemma follows from the induction method. O

Lemma 3.2. Let {X,, ., k,n > 1} be a d-dimensional centered stationary Gaussian triangular array. If there exist

positive integers 1, and r, such that (2.2) and (2.3) hold, then we have for any x; € R,i < d
d d qn
i (1) « ) _ (1) <« ) —
(3.6) nh_)ngC (IE” (Q{Mn < un(acl)}> (IE” (Q{MT" < un(acl)}>> ) 0,
where qn, = [n/ry].

Proof. Define N,, = {1,2,--- ,n} for any positive integer n and set

Nepgo =(HUJ) U2 U ) U---U (g, Udg,),
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with Iy = {(s = )rp, + 1,- -+ ,srp, — I} and Js = {sr, — L, + 1,--- ,srp} for s = 1,2,-+- ,g,. Since rpq, < n <
(Tn + 1)qn < TnQn + ln7 we get |Nn\Nr"q”

< qn < lp, where |K| means the length of the interval K C R. Further,
define sets I, 1 and J,, 11 by

an-&-l = {TnQn — T+l + 1, rpgn — 1aTHQn}7

an+1 = {ann+ Lo rpgn + 1 — 13ann+ln}-

Clearly, |1y, +1]| = rn — ln, |Jg, 41| = ln and I, 11 C N, 4, and Ny\N,., . C J, +1. Using the fact that

ndn

ln=0(ry), lo=o0(m), lim n(l—®(uy(z;))) =e*

n—0o0

we obtain

d
0 = (ﬂ ({M9(1,) < unm)}) ~P (ﬂ{M,@ < unm)})

s=14=1
gn+1 d
Sy
s=1 i=1
an+1 d

2.2 P

s=1 i=1

IN

MO (1) < un(a;) < MO(J, ))

IN
—~ —~

IN
—
=)
3

+

—_
=
3
_

|

i
—~

£
3

8
N
~—
~—

as n — oo, where M (I,) = max;er, X( ) Using Berman’s inequality given in Li and Shao (2001) (see also Piterbarg
(1996)) and (2.3)

(ﬂ (M (L) < up(a:) > HP(Q{M@ )<un(xl)}>‘

s=14i=1 i=1

d
X 2 (@) + 2 (a))
R e e e
2m 4,j=11<s<t<n,t—s>l, 2(1 * |pij (t o7 n)|)

9 d n

n 2Inn —Inlnn
< o o) exp (-3

P ID L T+ [pig (5.

ij=1s=l,
— 0 as n— oo,

where C' is some positive constant. Since further

dn dn
0 < HP(Q{MU o) < (g ) HIP(ﬂ{M()IUJ)<un(xZ)}>
i=1 i=1
Adn d )
< Y 3e (un(ﬂci) < M(’)(JS)) =0
s=1i=1
as n — 0o, the lemma follows. O

Remark 3.1. If {s,,n > 1} is a sequence of positive integers such that s, = o(n) and r, = o(sy), then clearly
both (2.2) and (2.3) hold with r,, replaced by s,. From the proof above we see that these two conditions are the only
assumptions of Lemma 8.2. Hence (3.6) still holds if we substitute ¢, by t, = [n/sy].
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Lemma 3.3. Under the conditions of Theorem 2.1, for any bounded index set K C {2,3,---} and each c € {2,--- ,d}

we have

lim, oo P (X(S) < un(xs) 1<s<ec, Xr(fgC <up(zg),1<t<d ke K|Xn 1> un(mc))
(B7) = P4+ VO O)W) < 8,(0) + 2521 < 5 < ¢,8,.(0) < o0,
5—!-\/5750 -1) Wk7(:§6tc — 1)+ #5% 1 <t < d, for all k € K such that §;.(k —1) < 00).

Further

limy, oo P (X9 < wun(ay),1 <t <d ke KXY >,
n,k n,1

(3.8)
= P4+ \Ou(k - OW <8k —1) + 2521 <t < d,for all ke K such that 8 (k—1) < 00),

and {W,Etl), 1<t<d,du(k—1) <oo,ke{1}UK} are jointly normal with zero means and

G5i(k — )+5n-( 1) — 95u(lk 1))
2¢/65i(k — 1)6,(1— 1)

Cov(WZ, WD) = :
where i, j,t =1,--- ,d, and k, ] e {1} UK ifi #j andi#t, and k,1 € K ifi =j ori=t.

Proof. We follow the arguments in the proof of Lemma 4.1 in Hsing, Hiisler and Reiss (1996). First like (4.1) therein

we have for each ¢ € {2, ,d},

) < un(@) 1<t <dke KX\ > un(xc))

~ / P (an% <up(zs),1<s<e, X t;@ <up(m),1 <t<dke K|X,(Lc% = Tn(xc,z)>
0

2
(3.9 X exp <—z - 2u%(mc)> 2,
where T), (¢, 2) = un(xc) +2/un(x.). Let {erzk 1 <i<d ke {1}UK} have the same distribution as the conditional

distribution of {X(lk,l <i<d,ke {1} UK} given X( °) = T, (xc, z). Then

E {eri,)v C} = pic(k = 1,n)T,(z, 2)
and

Coo (Y, Y ) = ik = 11.n) = pic(k = 1,n)pje(l — 1,n)

for i,j € {1,---,d} and k,l € {1} U K. Further define

700 YTE,Z,)%C — pic(k = L,n)T,(x., 2)

n,k,c

)

where 1 <i<d,and k € {1} UK if i # ¢, and k € K if i = ¢. Then we have

pij(k —1,n) — pic(k —1,n)pjc(l = 1,n)  dic(k —1) + §jc(l — 1) — 8i(Jk —I])

Cov(2) .. 23 ) =
S == 1) (= 2, - 1)) 2y/bic(k = DT = 1)

b



MAXIMA OF A TRIANGULAR ARRAY OF MULTIVARIATE GAUSSIAN SEQUENCE 9

where i,j € {1,--- ,d}, and k,l € {1}UK if c# i and ¢ # j, and k,l € K if ¢ = i or ¢ = j. Thus, using u?(z) ~ 2Inn
for x € R we have

IP’(Y(S) < Up (. )1<S<CY(t) un(xt)1<t<d,k€K)

n,l,c v fnk,e =

pse(0,m Z+\/1+psc(0,n)\/ a(we)(1— pgp(On))ZT(LS&,C_ L (U (26)tn (20) — poc(0, n)2 (22)),
prelk — 1, nz+\/1+pu<k 1n>\/u2 r)(1=pue(h=Ln) 7 (1)

n,
(tn (1)U (ze) — ptc(k —1,n)u(x.)), for 1<s<ecl1<t<dkekK)
= P+ VO (O)W]) < 8.e(0) + 2522, 1 < 5 < 6, 85e(0) < o0,

+ /O (k—1 W(t)gém (k—1) + 252 1<t <d,

for all k€ K such that d..(k—1) < 00).

= P

N|—

SIS

,C

(3.10)

IN
ol

Therefore, (3.7) follows by (3.10) and (3.9). The proof of (3.8) can be established with similar arguments. Hence the

claim follows. O

Lemma 3.4. Under the conditions of Theorem 2.1, for ¢ € {1,--- ,d} we have

lim limsupP U U{X(Z > Uy }‘X 1>un(ﬂcc) =0.

Mm—00 n_sso
i=1j=m

Proof. Tt suffices to show that for each fixed i € {1,---,d}

lim limsupP U {X > Uy, (2 }‘X(Cl > up(z.) | =0.

m—o0 n_yo0

j=m
As in the proof of Lemma 3.3, write with a,;(2) = pic(j — 1, n)(un(zc) + 2/un(z.)) and by; := /1 — p2.(j — 1,n)
oo Tn 22
P U > uelx9 > e |~ | { Um0+ 20,00y > (e} | exo (‘Z ) 2u(x>> =
j=m j=m nite

Hence, we only need to show that for each fixed zg > 0

limyp, o0 limsup,, . [5° P (U;":m{anj( )+ Zézcbn] > un(xl)}) exp (—z - ﬁap)) dz =0,

which follows if we show

(3.11) lim limsup sup Z P (an]( )+ Z () bpj > un(xi)) =0.

n,j,c
m—00 5 _3yo0 OSZSZOjfm 2

In view of the derivation of (4.4) in Hsing, Hiisler and Reiss (1996), condition (2.4) implies

lim limsup max ((1— pi(j —1,n))Inn)"t = 0.

m—o0 pnyoo MIG<r,
Thus, for large n and j € [m,r,] we have

un(xz) - un(xc)pic(j - 1an) . Zpic(j -1, n)
By the fact that 1 — ®(z) <z~ '¢(z) for z >0, we obtain

1 1
IP(Z(” >0n4) < — _ex (03,).
mie ZP) = g a2

Next, for some positive constant C' depending only on z;, z. and zy we have

> 0.

an =

ie(j—1,m)
02 < C+ng
L+ pic(j — 1,m)
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1- ic'_lv
ot pic(j —1,mn)

2lnn —Inl
1+Pic(j*1,n)( nn —Inlnn),

which implies that

1—pic(G—1,m) pic(i—1,m)
(3.12) P (Z,(f] > 9n]) < C*b;j n” TGt (Inn) TreeG-1m
for some C* depending on z;, z. and zo. Hence (3.11) follows from (3.12), i.e., the lemma holds. O

Proof of Theorem 2.1. In view of Lemma 3.3

m—o0 N—ro0

lim lim P (ﬂ{Ml(tm < up (x4) ’ 1> un(x1)> = 91 (x)

and fori=2,--- ,d

d
lim lim P (ﬂ{M,(,f < un(zs)}, (ML, < un(sct)}‘Xff)l > un(xi)> = (),
t=1

m—r00 N—00 ’

with ¥ (x) and 9;(z) defined in (2.6) and (2.7) respectively, and by making use of Lemma 3.4

d
lim P (m{Ml(tT)n < up ‘X( 1> un(x1)> =91 (x)

n—o00
t=1

and for i =2,--- ,d

1—1 d
lim P <ﬂ{M;:> < un ()} (MY, < un(xt)}’X(zl > un(acl)> = 9;(z).

nee s=1 t=1
Hence, by n(1 — ®(u,(z))) — e~ as n — oo, the theorem follows if further

d
P (ﬂ{Mé“ < unm)})

i=1

—exp ( nP (X(ll > up (1), ﬂ{Ml(tz < un(xt)}>

t=1

d
—nZIP’ (an)l > U (25), ﬂ{M ) < up(zs)}, (W{M1 o < un(xt)}>>

t=1
—0 as n — oo.

Following the arguments in the proof of Theorem 2.1 in O’Brien (1987), we first derive an asymptotic upper bound

for ppq:=P (ﬂle{Mr(f) < un(xl)}> Utilising (3.6) and Lemma 3.1 for all large n we obtain

d an
DPnd = <P (ﬂ{M,ﬁ? S%(%‘H)) +o(1)

=1

d qn
— <1 —P (U{MT@ > Un(mi)}>> +o(1)

d
(1 — 7P (Xfii > (21), [({M[]), < unm)})

t=1
i—1

d d dn
—> P (Xf:,{ >y (w2), (M) < un ()}, ML), < unm)})) +o(1)
=2

S

IN

Il
-

t=1

sH

< exp (nIP’ (Xflli > up (1), {Ml(tzn < un(xt)}>
1

t
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d i—1 d
j t
—n)_ P (sz,é > (i), ML) < ualw)}, (VML < unm)})) +o(1).
i=2 s=1 t=i
The rest of the proof is dedicated to the derivation of an asymptotic lower bound for p, 4. Choose a sequence of

positive integers {s,,n > 1} such that r, = o(s,), s, = 0o(n), and (3.6) holds with r,, replaced by s, and g, replaced

by t, = [n/ss]. In view of the assumptions (see Remark 3.1) this is possible. Since r, = o(sy,), we have
(3.13) P (ij} > un(xi)) —o0 (IP (MS(? > un(xi))> L 1<i<d

We proceed by induction showing that as n — oo

d
(3.14) P (U{Ms(? > Un(xi)}>

=1

Sn—"Tn d
( Z P (X(lk > U (1) ﬂ t) < Uy xt)})

d sp—7Tn i—
> P(X,i’;bun(x»ﬂ{Mé’”l,sns (25)}, ﬂ{M O <, xt>}>)<1+o<1>>.

i=2 k=1

If d = 1, as in O’Brien (1987), we have

P (ng > un(:cl)) = P (Mgil,.n > un (1), MY < un(m1)> 4P (M;? < un(@)

Sn—Tn,;8n

_ (%Zf"]p (XU,)C > un(a1), My} < un(xl))> (1+0(1) as n— oo.

k=1
For d = 2, by (3.2), (3.3) and stationarity we have
P ({MD > u(@1)} UMD > un(22)})
- p (ng > un(xl)) +P (Mg) > up (22), MY < unm))
=P (Ms(i) > un(xl)) +P (Ms(i) > un(xg),Ms(i) < un(xl))

—P (Ms(j)—rn,sn > Uup(x2), M(l,) < un(x1)> +P (MT(S) > Uy (z2), MT(}L) < un(xl))

= ( Z P (X(l,?C > un(asl),Mlg)ls)” < un(x1)> + ZP (Xf,?c > un(xg),M,fs)n < up(z2), M,gl)l o < un(asl))

k=1 k=1
Sp—1
- P (M,gzs) > U (x2), X( ,)C > Up(21), M,gls) < un(x1)>
k=1
- Z P ()((2,)C > Up(x2), M,Ezs) < up(x2), M,g )1 o S un(xl))
k=s,—7r,+1

Sn—1
> P(ME) > unlee) X > o), MY, < un(xl))> (1+o(1))
k=sp—rn+1

— ( Z P (XSJ)C > un(xl),M,g,lS)n < un(xl),M]i?S)n < un(zg))
k=1

Sn—Tn

> P (X5 > un(e2), ME) < unlaa), MY, Suml))) (1+0(1)),
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i.e., (3.14) holds for d = 2. Assume next that (3.14) holds for d = m — 1 > 2. By (3.13)

P <O{M§§ > un(xi)}> P (nU (MO > un(xi)}> +P <mﬂ (M < ()}, MI™ > un(acm)>

i=1 =1 i=1

m—1 m—1
(w ( 0 > unw) p ( ) M0 < ), M0 > un<xm>)

i=1 i=1

=P ( ﬂ { sn—rn,sn = ( )} Ms(ln—rn,sn > Un(.lfm)))(l + 0(1))

Consequently (3.5) implies that (3.14) holds for d = m. According to (3.14), by stationarity we have

d
3 <U{M§ff > un(xi)}>

i=1
Sn—Tn d
1)
< ( Z P (X( & > up(x1), ﬂ kr,LJrk 1< Un(xt)}>
d sp—7Tn
> P( ok > un (@ ﬂ{Méiw 1 S (@)} ﬂ{ 1<un<xt>})) (1+0(1))
=2 k=1
d
< (snIP’ (XT(Ll > up (1), m Ml(t” < uy, mt)}>

d
+ P (Xff,’l > tun (), ﬂ{M 9 < ()}, ﬂ{Mfin < m»)) (1+0(1)).

Since by our choice of the sequence {s,,n > 1}
d tn
Dn,d = (P <ﬂ{Ms(fl) < un(ml)}>> +o(l) as n— o0
i=1

we have

P (ﬁ{Mr(f) < Un(ffi)}>

i=1

t=1

d
> exp ( nlP (X(l) > U (1), ﬂ{Ml(tzn < un(xt)}>

d i—1 d
—ny P (X;;l > (1), (VM) < ()}, (ML), < un<wt>}>> +o(1).

Hence the theorem holds. ]
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