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Abstract

Introduction. Antibiotic tolerance corresponds to the bacterial ability to survive a transient exposure to antibiotics and 
is often associated with treatment failure. Current methods of identifying tolerance based on bacterial growth are time-
consuming. This study explores the use of a growth-independent method utilizing nanomotion technology to detect 
antibiotic-tolerant bacteria.

Hypothesis. The nanomotion signal obtained from a nanomechanical sensor measures real-time metabolic activity and cel-
lular processes and could provide valuable information about the tolerance of bacteria to antibiotics that cannot be detected by 
standard antibiotic susceptibility tests.

Aim. The aim of this study is to investigate the potential of nanomotion technology to record antibiotic-tolerant bacteria.

Methodology. We generated a slow-growing Escherichia coli strain by manipulating mazF expression levels and confirmed its 
viability by several standard methods. We subsequently measured its nanomotion and the nanomotion of the WT E. coli in the 
presence or absence of antibiotics. Supervised machine learning was employed to distinguish slow-growing from exponentially 
growing bacteria. Observations for bacterial nanomotions were confirmed by standard kill curves.

Results. We distinguished slow-growing from exponentially growing bacteria using specific features from the nanomotion 
signal. Furthermore, the exposition of both growth phenotypes to polymyxin decreased the nanomotion signal indicating cell 
death. Similarly, when exponentially growing cells were exposed to ampicillin, an antibiotic whose efficacy depends on the 
growth rate, the nanomotion signal also decreased. In contrast, the nanomotion signal remained unchanged for slow-growing 
bacteria upon exposure to ampicillin. In addition, antibiotic exposure can cause bacterial elongation, in which the biomass of 
a cell increases without cell division. By overexpressing sulA, we mimicked antibiotic-induced elongation. Differences in the 
nanomotion signal were observed when comparing elongating and non-elongating phenotypes.

Conclusion. This work shows that nanomotion signals entail information about the reaction to antibiotics that standard MIC-
based antibiotic susceptibility tests cannot detect. In the future, nanomotion-based antibiotic tolerance tests could be devel-
oped for clinical use in chronic or relapsing infections.

Introduction
Antibiotic treatment failure is a global health issue typically accredited to bacterial resistance. Resistance mechanisms are diverse 
and are due to mutations or the acquisition of resistance genes by bacterial foreign DNA, such as plasmids [1]. These mechanisms 
decrease the effectiveness of antimicrobial agents, increasing the MIC of resistant strains compared with susceptible strains. 
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The measurement of MICs is the standard in diagnostic laboratories to determine bacterial susceptibility to antibiotics. MIC 
corresponds to the lowest concentration at which no growth is detected [2]. It is generally performed in liquid or solid media by 
exposing bacteria to a gradient of antibiotic concentrations during 16–20 h. Such tests are easy and often automated and miniatur-
ized using microfluidics and are considered the ‘gold standard’ for susceptibility testing. However, they withhold information about 
antibiotic tolerance [3], another mechanism that can lead to treatment failure. Although its impact on infections on promoting 
the evolution of antibiotic resistance is known, tolerance is rarely considered in the healthcare setting [4], mainly due to the lack 
of rapid, efficient and robust testing approach. Many relapses are due to antibiotic-tolerant bacteria being unharmed by antibiotic 
exposure [5, 6] – a phenomenon observed in acute and chronic infections, including endocarditis, urinary tract infection, cystic 
fibrosis and Mycobacterium tuberculosis infections.

Tolerance refers to the ability of a bacterial population to survive a transient exposure to bactericidal antibiotics at concentra-
tions otherwise toxic for non-resistant strains [3, 7–10]. In most cases, tolerance occurs during reduced metabolic activity in 
non-growing or slow-growing bacteria [11, 12]. Many mechanisms can induce a state of bacterial tolerance, such as genetic 
mutations, exposure to inhibitors, location within a biofilm or starvation [11, 13]. Bacteria in such a state survive bactericidal 
antibiotics whose killing efficacy requires active growth, e.g. β-lactams [11, 14–17]. This extensive class of drugs inhibits cell wall 
synthesis by preventing the formation of peptidoglycan bonds [18]. Defects in the bacterial peptidoglycan layer are predominantly 
introduced during growth and cell division. Thus, a strong correlation between tolerance and slow growth was demonstrated in 
Escherichia coli, where the killing rate by β-lactams is proportional to the rate of bacterial growth [14]. Comparable results with 
other antimicrobial agents, such as fluoroquinolones, have also been observed [19]. Consequently, MIC measurements (performed 
under standard growth conditions) do not allow differentiating tolerant from non-tolerant bacteria.

Laborious time-kill curves based on the measurement of c.f.u. over time [20] can reveal antibiotic tolerance and are the standard 
method. In such cases, prolonged exposure to an antimicrobial agent is needed to produce the same level of killing as for a non-
tolerant strain. To quantify tolerance, the minimum duration of killing (MDK), an extracted value from the time-kill curves, has 
been proposed [11]. MDK is the time needed to kill a given proportion of the population at an antibiotic concentration higher 
than MIC. For example, if a strain has a higher MDK than the WT, it demonstrates that the bacterial killing requires more time, 
which corresponds to a higher antibiotic tolerance [20].

Because of being labour-intensive and time-consuming, we were interested in exploring methods besides kill curves to identify 
tolerant bacteria. Through the past 10 years, cantilevers (or nanomechanical sensors) based on atomic force microscopy (AFM) 
have been introduced to aid versatile and rapid tests to determine antibiotic resistance [21]. Initially, AFM was described as a 
revolutionary microscope able to investigate sample surfaces on an atomic scale and reconstruct the 3D topography of a specimen 
[22]. Vice versa, molecules or living cells can also be attached to cantilevers. The Phenotech device using such a technology 
records natural nanomotions of living organisms and mass variations due to chemical treatments or cell division [22–25]. In 
addition, oscillations of cantilevers holding bacteria were reduced under conditions of antibiotic exposure compared with those 
with untreated bacteria [24]. Ever since, this method has been applied to evaluate antibiotic susceptibility profiles of several 
bacteria such as E. coli [24, 26–28], Bordetella pertussis [29] and Staphylococcus aureus [30] and even slow-growing bacteria such 
as Mycobacterium abscessus [31].

The objectives of this study were to (i) determine if the nanomotion approach is suitable to differentiate tolerant from non-tolerant 
phenotypes and (ii) study the impact of bacterial elongation (increased mass per bacterial cell) on the nanomotion signal. 
Therefore, we assessed the difference between the nanomotion signals of an exponentially growing WT E. coli strain (carrying 
the empty plasmid pBAD101), a slow-growing strain (pBAD101-mazF) and a growing but non-dividing (i.e. elongating) strain 
(pBAD101-sulA). The mazF-expressing strain was used in this work as a surrogate of the tolerant phenotype. The sulA-expressing 
strain was used as a surrogate of elongated bacteria.

Methods
Bacterial strains and growth conditions
All strains and plasmids used are listed in Table 1.

Table 1. Bacterial strains and plasmids used for this study

Strain Plasmids Relevant characteristics

E. coli MG1655 pBAD101 Exponential-like WT growth

E. coli MG1655 pBAD101-mazF Slow growth with or without arabinose induction

E. coli MG1655 pBAD101-sulA Growing but non-dividing cells upon arabinose induction
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pBAD101‐mazF was a kind gift from S. Ardissone (Institute of Microbiology, Lausanne). The mazF gene (from Waddlia chon-
drophila) is controlled by an arabinose‐inducible promoter. This plasmid was developed to study bacteria division in Greub’s group 
[32]. The mutant strain E. coli MG1655 pBAD101-mazF expressing the endoribonuclease MazF, the toxin of the well-characterized 
and highly conserved toxin–antitoxin (TA) system MazF–MazE [33] is used in this study as a slow-growing phenotype. Under 
normal growth conditions, the toxin (MazF) and the antitoxin (MazE) are co‐expressed and form a stable complex inhibiting 
the endoribonuclease activity of the toxin (Fig. 1a). However, MazE is degraded under stress conditions and releases MazF to 
cleave mRNAs and inhibit cell growth [33, 34]. In our strain, mazF is overexpressed when bacteria are induced with arabinose. 
Depending on the arabinose concentration, this leads to growth arrest.

pBAD101-sulA: E. coli MG1655 sulA gene was amplified by PCR using primers sulAfor (5′- ​AAAA​AGCT​AGCA​TGTA​CACT​TCAG​
GCTATG-3′) and sulArev (5′-​AAAA​AGGT​ACCT​TAAT​GATA​CAAA​TTAG​AGTGAA-3′). The PCR fragment was digested with 
NheI and KpnI enzymes and then ligated into pBAD101, restricted with NheI and KpnI sites. The SulA gene is also under the 
control of an arabinose-inducible promoter. To obtain growing but non‐dividing bacteria, we transformed MG1655 pBAD101‐
sulA under the control of the araC promoter. SulA is implicated in the SOS response triggered by DNA damage. It directly interacts 
with FtsZ and inhibits FtsZ polymerization, resulting in the absence of the Z‐ring [35, 36]. The phenotype is characterized by a 
lack of septation, resulting in cell separation failure and producing elongated bacteria(Fig. 4a).

Plasmids were amplified in TOP10 E. coli, and the presence of the mazF or sulA gene was assessed by PCR using pBADfor (5′-​CTAC​
CTGA​CGCT​TTTT​ATCGCAA-3′) and pBADrev (5′-​GCGT​TCTG​ATTT​AATC​TGTA​TCAGG-3′) primers. Positive plasmids were 
used to transform E. coli MG1655.

E. coli MG1655 pBAD101, E. coli MG1655 pBAD101-mazF and E. coli MG1655 pBAD101-sulA were routinely grown at 37 °C 
with 200 r.p.m. shaking in Luria–Bertani (LB) broth supplemented with streptomycin 100 µg ml−1. When required, gene expression 
was induced by arabinose (Sigma-Aldrich, Saint Louis, MO, USA).

Growth and kill curves
Overnight cultures were diluted to an optical density of 0.1 at 600 nm (OD600) in 3 ml of medium supplemented or not with 
arabinose or antibiotics of interest. Antibiotics used were ampicillin (AppliChem, Darmstadt, Germany) and polymyxin B 
(Sigma-Aldrich). Absorbance at 600 nm was measured at different time points (0.5, 1, 2, 4, 6 and 8 h), and the number of c.f.u. 
was assessed. Briefly, the culture was serially diluted and plated on LB agar (LB supplemented with 15% agarose) with 100 µg ml−1 
streptomycin. Dilution plates where single colonies (10–50) were easily countable were used to calculate the c.f.u. ml−1.

Measurement of bacterial viability
To assess bacterial viability under arabinose induction, overnight cultures were diluted to OD600=0.1 in 96-well plates. Plates 
were then incubated for 4 h at 37 °C, and absorbance was measured at 590 nm. As a control, a 4-h bacterial culture was heated for 
5 min at 95 °C. Then, bacteria were incubated with 10 µg ml−1 resazurin (Sigma-Aldrich), and plates were incubated for 15 min at 
37 °C. Fluorescence was measured with a FLUOstar Omega Microplate Reader (BMG LABTECH, Ortenberg, Germany), with 
an excitation/emission wavelength of 540/580 nm. Fluorescence was standardized according to the last absorbance measure.

Single-cell division and live–dead viability test
To assess cell division and single-cell viability, overnight cultures were diluted to an OD600=0.1 and incubated for 1 h at 37 °C with 
200 r.p.m. shaking in the presence or absence of arabinose. Afterwards, 5 µl bacteria were plated on an LB agar pad supplemented 
or not with arabinose or 10 µg ml−1 of polymyxin B. The liquid drop was air-dried for 5–10 min before being covered with a cover 
slip. Finally, two pictures (at 0 and 3 h) were taken at 630× magnification with the Axioplan 2 microscope (Zeiss, Oberkochen, 
Germany). A cover slip was kept under the lens until the last picture was taken to keep the same field during the entire experi-
ment. For the single-cell viability test, bacteria were stained according to the manufacturer’s instructions with the LIVE/DEAD 
BacLight Bacterial Viability Kit (Thermo Fisher) before being plated on the pad.

pBAD101-sulA phenotype
Overnight cultures were diluted to an OD600=0.1 and incubated for 1 h at 37 °C with 200 r.p.m. shaking in the presence or absence 
of arabinose. Ten microlitres of bacteria were taken at 0 and 4 h and plated on the cover slip. Finally, pictures were taken at 
magnificent 630× with the Axioplan 2 microscope (Zeiss).

MIC measurement
Overnight cultures were diluted to an OD600=0.1 in 96-well plates containing serial dilutions of antibiotics (polymyxin B 
0.0625–32 µg ml−1 ; ampicillin 0.25–256 µg ml−1). Plates were incubated statically for 24 h at 37 °C, and absorbance was measured 
at 590 nm. The lowest concentration at which no turbidity was observed was determined as the MIC.
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Fig. 1. Assessment of bacterial viability and division. (a) Mode of action of the MazF–MazE TA system, adapted from Al-Hinai et al. [47]. (b) Growth 
curves of E. coli MG1655 pBAD101 or pBAD101-mazF in different arabinose concentrations. OD

600
 and c.f.u. ml−1 were measured at 30 min, 1 h, 2 h, 4 h, 

6 h and 8 h (n=3). (c) Resazurin viability assay to measure bacterial viability after 4 h of incubation in the presence or absence of arabinose. Control 
was done by heat-inactivating E. coli MG1655 pBAD101-mazF at 95 °C for 5 min. The ratio is the A.U/OD

595
 of the tested conditions divided by the A.U/

OD
595

 of E. coli MG1655 pBAD101 without arabinose (n=3, mean±sd, ns not shown). (d) LIVE/DEAD BacLight bacterial viability test to assess single-cell 
viability of E. coli MG1655 pBAD101-mazF on the Luria–Bertani (LB) agar pad supplemented with arabinose 0.01% or polymyxin B 10 µg ml−1. One image 
was taken after 0 h and a second after 3 h on the pad. Green cells are alive. Red cells are dead. For the polymyxin B panel, green circle highlights lived 
cells; for arabinose panels, red squares highlight dead cells. Scale bar=20 µm. (e) Cell division: 1 h culture in the presence or absence of arabinose was 
plated on an LB agar pad with or without arabinose. One image (630× magnification) was taken at 0 h. A second one was taken 3 h later. Fold change is 
the ratio of cells at 3 h divided by the number of cells at 0 h (n=3, mean±sd is shown) (ns P > 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001).
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Nanomotion
Nanomotion technology was initially developed at Ecole Polytechnique Federal Lausanne by the group of Giovanni Dietler and 
Sandor Kasas, where they successfully detected and measured the nanomotion of living organisms, as bacteria [24]. One of the 
potential applications of this technology is to evaluate the viability of micro-organisms and their responses when exposed to killing 
agents such as antibiotics. In collaboration with Greub’s group, this new technology was tested on real blood culture samples [26].

For nanomotion experiments, we used the Phenotech device and corresponding sensors with cantilevers (Resistell AG, Muttenz, 
Switzerland). Sensors were preliminary functionalized with poly-d-lysine 0.01% (Sigma-Aldrich) for 20 min to ensure a firm 
attachment of bacteria and were subsequently washed and dried.

Overnight cultures were diluted to an OD600=0.1 in 3 ml of LB+streptomycin 100 µg ml−1 and incubated for 1 h at 37 °C with 
200 r.p.m. shaking. Bacteria were pelleted by centrifugation at 5000 g for 3 min and resuspended in 200 µl PBS. Then, the sensor 
was incubated 5 min in the 200 µl PBS drop to attach bacteria to the cantilever. Unattached bacteria were removed by gently 
washing with PBS.

The sensor with bacteria attached to the cantilever was introduced in the measurement chamber containing LB+streptomycin 
100 µg ml−1 supplemented with arabinose. For experiments with antibiotics, the drug was added directly in the medium after 1 h 
of recording. Added antibiotics were mixed by pipetting two to three times up and down.

Nanomotion analysis and feature selection
The nanomotion signal is collected at a sampling frequency of 60 kHz and represented as a time series and is divided into 10 s 
time frames. Linear trends were removed, and variance was calculated for each time frame. Noise required smoothing using a 
1-min running median. Variance plots served as the main tool for visual inspection in this study and sufficed to calculate the 
slope, i.e. condense the curve information into a single numerical value, the so-called feature ‘slope’. The slope of the nanomotion 
recordings was calculated using the following equation:

‍x = Cktor log(x) = log(C) + kt,‍
where t is the time, k is the slope and C is the intercept.

Using the variance or other simple statistical features calculated from the nanomotion signal does not exhaust the information in 
the signal. Since the signal is extremely dense, i.e. a 60 kHz sample frequency, automated computing power is needed to calculate 
a pre‐defined set of mathematical features from the curve or parts of it. Supervised machine learning can extract and select 
these features to train a classification model that discriminates experiments under different conditions or strains, for instance, 
fast‐growing versus slow‐growing bacteria.

Extracting features from the signal is necessary to apply supervised machine learning techniques. This process involves the 
estimation of the positions and amplitudes of characteristic shapes within the power spectrum. To mitigate the impact of noise, 
these estimated values are subjected to statistical aggregation within fixed time windows of 20 min.

The base features are structured in Table 2.

As these base features have only a limited time horizon, in this case, the 20 min from the aggregation window, it is beneficial to 
combine them with composition features in order to increase the said time horizon. These composition features can be derived 
from the base features by employing mathematical operations such as division or, as illustrated in the provided example, subtrac-
tion. By merging information from two different time windows, more descriptive features can be formed.

For instance, considering the growth feature, it is structured as follows: ‘Bac_S3_161_181_median_minus_Bac_S1_101_121_
median’. In this case, it delineates a relationship between two base features (S1: y-intersect of a linear fit to the log-log transformed 
power spectrum at a frequency interval of 5–10 Hz and S3: y-intersect of a linear fit to the log-log transformed power spectrum 
at a frequency interval of 10–50 Hz) from two distinct time windows (161–181 min and 101–121 min). Therefore, it extracts 

Table 2. Structure of base features: ‘Bac_S3_161_181_median’

Feature element Description Example

Experimental phase General experimental phase (medium only, with bacteria and with drugs added) Bac

Signal estimator on power spectrum Evaluation metric, such as the slope of a linear fit within a specific frequency range S3

Time window Start and end time of statistical aggregation window (in minutes) 161_181

Statistical aggregation function Used to aggregate the values from the signal estimator to mitigate noisy observations Median
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much more specific information of interest from the signal than by using simple statistics or also using only the aforementioned 
base features.

A feature selection algorithm reduces the resulting high‐dimensional feature space to a few features. In this case, a wrapper method 
called forward selection is applied [37], which selects every feature in the model and selects the one with the highest accuracy 
estimated by the k‐fold cross‐validation method. In addition, the model fitting algorithm has been used to reduce overfitting due 
to the small sample size apart from the k‐fold cross‐validation L2‐regularizer [38].

Data analysis
Prism 9 for Windows (GraphPad Software) was used for statistical analyses. Ordinary one-way ANOVA with Bonferroni correc-
tion for multi-testing was used with ns P>0.05, *P≤0.05, **P≤0.01, ***P≤0.001, ****P≤0.0001.

Results
Nanomotion to differentiate growing and slow-growing bacteria
Viability of slow-growing bacteria
The slow‐growing mutant used in these experiments is E. coli MG1655 pBAD101‐mazF. The mazF endoribonuclease is over-
expressed when bacteria are induced with arabinose. Depending on the arabinose concentration, this leads to growth arrest.

Firstly, we determined which arabinose concentrations were needed to stop or slow down bacterial growth without killing the 
cell. Bacterial growth was measured at OD600 and viability by c.f.u. ml−1 (Fig. 1b). During the first 4 h of culture, the growth rates 
of MG1655 pBAD101-mazF with 0%, 0.01% and 0.1% arabinose were 2-, 2.44- and 2.85-fold lower, respectively, than that of the 
WT with the empty vector control without arabinose. A deferred growth arrest was observed under mazF-inducing conditions 
in the presence of 0.01% or 0.1% arabinose after 4 h. During the first 2 h of culture, bacterial viability was similar in all conditions 
tested for both strains. The exposure to 0.1% arabinose eventually induced cell death for bacteria carrying pBAD101-mazF, while 
an arabinose concentration of 0.01% reduced the growth without significantly affecting viability. Thus, this concentration was 
chosen for further experiments (despite high variability in c.f.u. ml−1). To ensure that experiments were performed with highly 
viable bacteria, we decided to reduce the time window of further experiments to 4 h.

A resazurin–resorufin redox assay was used to measure the metabolic activity of the bacterial cells, which was then used to 
deduce their viability (Fig. 1c). Independent of the presence or induction of mazF (for 4 h) at 0.01% arabinose, the tested condi-
tions showed similar resazurin–resorufin ratios. A 4-h induction of 0.01% arabinose did not affect the viability of MG1655 
pBAD101-mazF, which was further corroborated by a single-cell-based LIVE/DEAD BacLight assay (Fig. 1d). Bacteria were first 
incubated for 1 h in liquid culture supplemented with arabinose, stained with LIVE/DEAD BacLight assay and then plated on an 
LB agar pad supplemented with arabinose. After 3 h of induction with 0.01% arabinose on an LB agar pad, the mazF-expressing 
bacteria stained green-fluorescent, indicative of an intact membrane. While in the control experiment, it stained red and thus 
lost membrane integrity on LB agar pads within 3 h of incubation when it contained 10 µg ml−1 of polymyxin B (MIC 2 µg ml−1), 
a fast-killing drug. It confirms the low impact of arabinose induction on the viability of MG1655 pBAD101-mazF during the 
first few hours of incubation.

In a second microscopy-based single-cell assay, we assessed the average number of cell divisions within 3 h. Practically, bacteria 
were spread on an LB agar pad under induced and uninduced conditions (Fig. 1e). MG1655 pBAD101 reached a fold change 
of 5.1, while MG1655 pBAD101-mazF was not dividing, regardless of arabinose induction – most likely due to a certain level 
of leakage in the araC promoter, leading to low but sufficient levels of MazF even in non-induced conditions. In contrast to the 
slow growth observed in liquid culture (Fig. 1b), no division was observed on the LB pad. The limited oxygen availability and 
lower ambient temperature (room temperature) during the incubation on the LB agar pad are very likely accountable for this 
difference compared with shaking liquid culture at 37 °C.

Nanomotion of slow-growing bacteria
It has been demonstrated that living bacteria emit more vibrations than drug-inactivated bacteria [24, 26, 27, 29–31] (Fig. 3a). 
However, signals of exponentially growing or slow-growing bacteria have never been compared. To that end, we attached MG1655 
pBAD101 or MG1655 pBAD101-mazF on cantilevers (Fig. 3b) and measured their nanomotion in the presence or absence of 
arabinose for 3 h (Fig. 3c). The deflections are given as the variance over 10 s. The higher the variance, the higher the amplitude 
of those deflections. Independent of arabinose induction, MG1655 pBAD101 showed a higher variance than MG1655 pBAD101-
mazF (Fig. 3c). In addition, by looking at the slope of the variance of each replicate (Fig. 3d), we observed that growing cells of 
MG1655 pBAD101 tend to have a steeper variance slope than the slow-growing cells of MG1655 pBAD101-mazF, even though 
differences were not statistically significant. Moreover, in the presence of arabinose, the strain carrying pBAD101-mazF displays 
a slope close to 0.
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Fig. 2. Nanomotion of slow-growing cells. (a) Left panel: cantilever deflection is recorded by fluctuations of the light beam on the position-sensitive 
photodetector. Right panel: fluctuations measured on a nanomotion sensor (functionalized with a linking agent) correspond to environmental noise 
and are low. After the attachment of living bacteria, fluctuations are high and are driven by the metabolically active bacteria. After exposure to killing 
agents such as antibiotics, fluctuations return to a low level – adapted from Stupar et al. [26]. (b) Cantilever with E. coli MG1655 attached to it. The black 
tip is the mirror on which the light source is reflected to reach the position-sensitive photodetector. (c) Nanomotion of E. coli MG1655 carrying pBAD101 
or pBAD101-mazF in the presence or absence of arabinose. Mean, n=18. (d) Slope of variance from (c) (n=18). (e) The best feature is allowing for the 
differentiation of slow-growing and growing cells (n=18) (ns P > 0.05, *** P ≤ 0.001, **** P ≤ 0.0001).
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We used 18 experiments to train a model based on a single feature from the nanomotion signal that could differentiate growing 
and slow-growing cells (Fig. 3d and e). This feature, named ‘growth 1’, could distinguish MG1655 pBAD101 and pBAD101-mazF, 
respectively (Fig. 3e). However, it could not differentiate induced versus uninduced (Fig. 3e).

The feature ‘growth 1’ (Bac_S3_161_181_median_minus_Bac_S1_101_121_median) is computed by taking the difference of 
the signal in two different frequency ranges (10–50 Hz and 5–10 Hz) during two different time windows (160–180 min and 
100–120 min, respectively). This means that ‘growth 1’ captures the trend in these frequency bands over time, which implies that 
the underlying process is changing.

Nanomotion as an indicator of tolerance
Tolerance, the ability of bacteria to survive a transient exposure to antibiotics, is typically observed for non- or slow-growing 
bacteria [4, 7, 9–12, 39, 40]. Therefore, we could establish that the slow-grower MG1655 pBAD101-mazF comprised differences 
in the nanomotion signal compared with the fast-grower MG1655 pBAD101. Because of the different growth phenotypes, a 
different tolerance toward antibiotic-targeting cell growth can be expected. Thus, ampicillin was selected, a β-lactam inhibiting 
the cell wall peptidoglycan synthesis [41]. As a control, we chose polymyxin B, which disrupts the bacterial membranes in a 
growth-independent manner [42].

In the first step, we determined the MIC for both drugs in a broth microdilution assay in the presence or absence of 
arabinose. For both MG1655 derivatives, we detected an MIC of 16 µg ml−1 for ampicillin and 2 µg ml−1 for polymyxin B 
independent of arabinose (Fig. 4a). Because of the suspected araC promoter leakage, we abandoned using arabinose in 
the following nanomotion experiments with sub-inhibitory and inhibitory antibiotic concentrations [ampicillin: 4 µg ml−1 
(=MIC/4), 32 µg ml−1 (=2× MIC) and 128 µg ml−1 (=8× MIC); polymyxin B: 8 µg ml−1 (=2× MIC)]. We used PBS instead of 
the two drugs as a negative control. To that end, bacteria were cultured in a liquid culture medium for 1 h before being 
attached to the cantilever, and the nanomotion measurement commenced. After 1 h of nanomotion recording, the antibiotic 
was added directly to the measurement chamber, and the recording continued for 8 h (Fig. 4b). In parallel, the kill rate was 
assessed by counting c.f.u. ml-1 (Fig. 4b).

We considered the exponential slope (k) of the variance an indicator of bacterial viability. Therefore, we suspected a negative 
slope for dying cells, while tolerant cells should depict an increase or at least stagnation in the variance over time. Indeed, 
we observed a significant positive trend of the variance over time for MG1655 pBAD101 (k=5.78×10−03) and a four times 
lower rate for MG1655 pBAD101-mazF (k=1.23×10−03) in the PBS control experiments (Fig. 4c). This significant slope 
difference between the two strains could be attributed to the extended recording time of 8 h (Fig. 4c), which contrasts with 
the previous experiment (Fig. 3d). Furthermore, the number of c.f.u. ml−1 was similarly increasing with both strains during 
the first 2 h of incubation with PBS (Fig. 4b), suggesting that the differences in variance are not due to differences in the 
biomass on the cantilever.

We still observed a positive slope when bacteria were incubated with sub-inhibitory concentrations of ampicillin (4 µg ml−1, 0.25× 
MIC), although the slopes of slow-growing bacteria were lower than in the PBS control (pBAD101: k=4.64×10−03; pBAD101-mazF: 
k=2.54×10−04). By increasing the antibiotic concentration to 64 µg ml−1, equivalent to twice the MIC (32 µg ml−1), we observed 
that the variance of MG1655 pBAD101 and c.f.u. ml−1 decreased after 2 h of the addition of ampicillin (k=−2.13×10−03). With 
128 µg ml−1 ampicillin (8× MIC), the variance and c.f.u. ml−1 drop were simultaneously observed after 1 h incubation with ampi-
cillin (k=−2.57×10−03). The slope was 1.21-fold steeper than that obtained at 32 µg ml−1. Moreover, the curve increased between 1 
and 3 h steeply after ampicillin addition. It stabilized, contrary to 32 µg ml−1, where the curve decreased linearly after 2 h.

Contrary to the fast-grower MG1655 pBAD101, when the slow-grower MG1655 pBAD101-mazF was treated with 32 µg ml−1 
ampicillin, the slope of the variance did not change compared to sub-inhibitory concentrations of ampicillin (k32µg=2.93×10−04 
versus k4µg=2.54×10−04). This was in line with the observation that the c.f.u. ml−1 did not alter over time (Fig. 4b). However, 
treating the slow-growing strain with 128 µg ml−1 ampicillin resulted in a slight decrease in c.f.u. ml−1 after 4 h of incubation. 
This was reflected in the slope of the variance that assumed a negative value suggesting a decreased viability (k128µg=−2.32×10−04) 
(Fig. 4c). Finally, for inhibitory concentrations of polymyxin B (four times the MIC), we observed similar results with fast-
growing and slow-growing strains, as expected, given that its mode of action is independent of growth (Fig. 4b and c). For both 
strains, the number of c.f.u. ml−1 dropped at the same time, and the slopes of the variance assumed comparable negative values 
(kpBAD101=−1.67×10−03; kpBAD101-mazF =−1.51×10−03).

Nanomotion to characterize growing but not dividing bacteria
By measuring the nanomotions of bacteria exposed to an antibiotic, it is possible to differentiate bacteria that get killed (suscep-
tible) from those that can proliferate (resistant) [24, 26, 27, 29–31]. However, susceptible bacteria can undergo morphological 
changes before getting killed. For example, in the case of cephalosporins, susceptible bacteria can elongate while losing the ability 
to divide [43]. Therefore, we wondered if nanomotion could distinguish elongating bacteria from dividing cells, as observed in 
microscopic techniques.
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The growing but not dividing bacterial strain MG1655 pBAD101-sulA is under the control of the araC promoter, inducible 
using arabinose. To determine the arabinose concentration needed to stop cell division without reducing biomass production 
or killing the cell, we measured the OD600 and c.f.u. ml−1 of MG1655 pBAD101 and MG1655 pBAD101-sulA (Fig. 2b). At 
0.2% arabinose, we observed an increase in OD600 but no increase in c.f.u.s. Hence, it was chosen from several different 
concentrations. Higher concentrations resulted in a decrease in biomass production of MG1655 pBAD101-sulA, while lower 
concentrations were not sufficient to stop bacterial division. We tested further the viability of both strains in the presence 
or absence of arabinose induction using resazurin. We observed no difference between MG1655 pBAD101 and MG165 
pBAD101-sulA, but a twofold increased viability in the presence of arabinose (Fig. 2c), most likely explained by higher 
metabolism due to the additional nutrient source arabinose. Finally, we confirmed the expression of sulA by looking at cell 

Fig. 3. Nanomotion in the presence of antibiotics: (a) Determination of MIC for ampicillin and polymyxin B. n=3, mean±sd. (b) Kill curves (upper panel) 
and nanomotion (lower panel) of E. coli MG1655 carrying pBAD101 (grey) or pBAD101-mazF (black). Nanomotion: n=4, Mean±sem, Kill curve: n=3, 
mean±sd. (c) Slope of variance for E. coli MG1655 carrying pBAD101 (grey) or pBAD101-mazF (black). Mean±sd. Mann–Whitney test was used. (ns P > 
0.05, * P ≤ 0.05).
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morphology microscopically after 4-h induction (Fig. 2d). MG1655 pBAD101-sulA cells were elongated and were up to 
sevenfold longer than non-induced cells.

We compared the elongating MG1655 pBAD101-sulA nanomotion with the fast-growing MG1655 pBAD101 in the presence or 
absence of arabinose (Fig. 5a). The variance increased over time for both strains and conditions, and no significant slope difference 
was observed between uninduced strains (Fig. 5b). However, when arabinose was added, the variance slope was significantly 
higher in both strains, reflecting the results previously obtained by the resazurin assay of increased metabolism due to the surplus 
of nutrients (Figs 2c and 5b).

Finally, we used this set of nanomotion recordings to identify by machine learning putative features that could differentiate 
dividing growing cells from those growing but non-dividing. The feature named ‘elongation 1’ (Bac_S0-rise-rp_100_120_q95_
over_Bac_S1-rise-rp_60_80_q95) could distinguish strains with exponential growth (pBAD101 with or without arabinose and 
pBAD101-sulA without induction) from elongated bacteria (pBAD101-sulA+0.2% arabinose) (Fig. 5c). The feature ‘elongation 
1’ characterizes the noise content in the high-frequency part (6000–9000 Hz) of the power density spectrum of the signal. It is 
calculated as the ratio between two-time windows at 100–120 min and 60–80 min, respectively. This feature explains how the 
signal shape in these frequency ranges changes over time.

Fig. 4. Overexpression of SulA blocks the formation of the Z-ring and results in an elongated phenotype. (a) Mode of action of SulA. Under stress 
conditions inducing the SOS response, SulA is expressed and binds the monomer of FtsZ, preventing the formation of the Z-ring. (b) Growth curves of 
E. coli MG1655 carrying pBAD101 or pBAD101-sulA in different arabinose concentrations. OD

600
 and c.f.u. ml−1 were measured at 30 min, 1 h, 2 h, 4 h, 

6 h and 8 h (n=3). (c) Resazurin viability assay to measure bacterial viability after 4 h of incubation in the presence or absence of arabinose. The ratio 
between A.U/OD

595
 tested conditions and the A.U/OD

595
 of E. coli MG1655 pBAD101 was calculated (n=3, mean±sd) (ns P > 0.05, *** P ≤ 0.001, **** P ≤ 

0.0001). (d) Cell phenotype after induction. Scale bar=20 µm.
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Discussion
Nanomotion technology has been used to rapidly evaluate the antibiotic susceptibility of several bacteria under standard laboratory 
culture conditions [24, 26, 27, 29–31]. For the first time, we showed vibration measurements of an E. coli growing two times slower than 
the WT and which is tolerant to β-lactams by using the conserved MazEF system [33, 34]. Based on information in the variance of 3 h 
of nanomotion measurements, exponentially growing and slow-growing bacteria could be distinguished using a feature determined 
by machine learning. Importantly, nanomotions or bacterial vibrations are widely independent of growth and depend on the cells’ 
metabolic activity. However, the variance increase over time might be attributed to growth and is further corroborated by even steeper 
increases upon the addition of the metabolite arabinose to the media [44, 45]. Furthermore, the variance increase over time in culture 
media was shown before for B. pertussis using an exponential fit [29]. Consequently, slow-growing bacteria showed a lesser increase.

With a sampling frequency of 60 kHz, the signal is complex, spanning a wide range of frequencies. However, the variance changes 
towards antibiotic stress are best understood [24, 26, 27, 29–31]. The feature ‘growth 1’ was selected from a large set of features 
describing signal changes over time. Applying machine learning methods to discriminate best between both phenotypes was found 
in the ratio of the low-frequency range of the power density spectrum between 160–180 min and 100–120 min (Fig. 3e). As it relates 
two intervals in the signal to each other, this feature can be understood as a refinement of the slope (Fig. 3d). It shows that in our 
experimental setting, both phenotypes differ in their nanomotion behaviour. However, it does not allow us to conclude about biological 
underlying mechanisms. Similar conclusions can be drawn for the second feature (elongation) selected by machine learning, i.e. that a 
specific signal may be empirically detected. The information for elongation was drawn from much higher frequencies of the spectrum 
(6000–9000 Hz), relating the time interval at 100–120 min to the one at 60–80 min. Future works will show if these features can be 

Fig. 5. Nanomotion of growing but non-dividing bacteria. (a) Nanomotion of E. coli MG1655 carrying pBAD101 and pBAD101-sulA in the presence or 
absence of arabinose. Mean, n=18. (b) Slope of cantilever variance from (a) (n=18). (c) The best feature allowing differentiation of growing cells from 
growing but non-dividing (elongated) ones (n=18) (ns P > 0.05, * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001).
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further generalized and related to a specific underlying biological mechanism. It still remains to be determined why both features 
derive from different power spectrum frequencies. In future works, the elongation triggered by SulA must also be compared with 
elongation induced by antibiotics, such as fluoroquinolones or β-lactams.

The significant finding in this work is the real-time assessment of antibiotic tolerance using nanomotion technology, which reduces the 
time to result by approximately 18–24 h compared with time-kill curves. With standard methods like time-kill curves, tolerant patterns 
are observable within the first 8 h. By focusing on this same time window, we successfully measured nanomotion deflection over 8 h.

Standard methods, such as time-kill curves, involve a significant workload and have a severe blind spot between actual bacterial death 
and the inability to form a colony, making them impractical for routine use. The minimum bactericidal concentration (MBC)/MIC 
ratio has also been proposed as a measure of bacterial tolerance [46]. The MBC represents the lowest concentration of an antibiotic 
required to kill ≥99.9% of cells in a bacterial culture, typically determined after 24 h of incubation. However, this method is more 
time-consuming compared with the nanomotion methods we propose here.

The overexpression of the toxin mazF is suitable for studying tolerance as it confirms that ampicillin requires growth for efficacy as 
determined by the classical method and the novel nanomotion technology [11, 14–17]. From previous works, we knew that β-lactams 
would decrease the variance in the case of susceptibility [24, 26, 27, 29–31]. Furthermore, we showed in this work by testing a susceptible 
strain that the decrease in variance is dose-dependent. However, when a tolerant strain expressing mazF was tested, even at very high 
inhibitory concentrations, we did not see the variance decrease supported by the classical c.f.u. kill-curves assay (Fig. 4b). Improving 
our understanding of tolerance mechanisms will allow us to address recurring and chronic infections. However, further experiments 
with other mechanisms triggering tolerance are needed, such as starvation, immune factors or antibacterial drugs. In addition, different 
bacterial strains, especially clinical isolates, are now required to increase the evaluation of this method (and its robustness by a better 
machine learning algorithm) before having a method ready to get applied in the diagnostic setting to detect antibiotic tolerance.
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