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Abstract. The seminal papers of Pickands [1, 2] paved the way for a systematic study of high exceedance
probabilities of both stationary and non-stationary Gaussian processes. Yet, in the vector-valued setting, due
to the lack of key tools including Slepian’s Lemma, there has not been any methodological development in
the literature for the study of extremes of vector-valued Gaussian processes. In this contribution we develop
the uniform double-sum method for the vector-valued setting, obtaining the exact asymptotics of the high
exceedance probabilities for both stationary and n on-stationary Gaussian processes. We apply our findings to
the operator fractional Brownian motion and Ornstein-Uhlenbeck process.
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1. Introduction

The asymptotic analysis of probabilities of rare events has been the topic of numerous past contributions and is
still an active area of research. In this article the rare events of interests are the high exceedances of vector-valued
Gaussian processes, i.e., we shall investigate the exact approximation of

pb(T , u) = P {∃t ∈ [0, T ] : Xj(t) > ubj , j ≤ d}

as u → ∞ with X(t) = (X1(t), . . . , Xd(t))
⊤, t ∈ [0, T ] a given centered Rd-valued Gaussian process with a.s.

continuous sample paths and given constants bi’s. In order to avoid trivialities, hereafter we shall assume that
at least one of the bi’s is positive.

The approximation of pb(T , u) is of interest in various applications including statistics, ruin theory, queueing
theory, see e.g., [3–7]. Large deviation type results related to the vector-valued setting of this contribution are
obtained in [8, 9], see [10–12] for various interesting findings for non-Gaussian X.
Even the seemingly trivial case that X has independent components is quite challenging, see the recent contri-
butions by Azais and Pham [3, 13]. We refer also to important work by Piterbarg and Zhdanov [14], where the
exact asymptotics of the tail distribution of extremes of g(X(t)) for the class of centered stationary Rd-valued
Gaussian processes and family of smooth homogeneous real-valued functions g was considered. We note that in
our setting function g̃ defined as g̃(X(t)) := minj≤dXj(t)/bj for bj > 0, j = 1, ..., d plays an analogous role to g in
[14]. Unfortunately, the methodology developed in [14] is not applicable for g̃. We note tha the smooth case has
been also discussed in [15]. The available results in the literature that concern pb(T , u) for Gaussian processes
with dependent components cover only linear transformations of an Rd-valued Brownian motion, see [16, 17].
The independence of increments and the self-similarity property of Brownian motion are essential properties
used in the aforementioned contributions, which also determine limits of applicability of methods used in [16, 17].

In the one-dimensional case three different methods are often utilised when dealing with the asymptotics of
extremes of Gaussian processes: Pickands method which is based on the discretisation of supremum and the
negligibility of double-sum term (see also [18] for further refinements), Piterbarg’s approach which makes par-
ticular use of continuous mapping theorem (see [19]), and Berman’s method that capitalises on the relation
between supremum and sojourn times (see [20, 21]). All the above techniques are heavily based on the following
fundamental results

i) Slepian lemma, see e.g., [22, Thm 2.2.1];
ii) Borell-TIS and Piterbarg inequalities, see e.g., [22, Thm 2.1.1] and [23, Thm 8.1];
iii) uniform version of the classical Pickands-Piterbarg lemma, see [24, Lem 2.1].
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Roughly speaking, in the one-dimensional setting, Slepian lemma, Borell-TIS and Piterbarg inequalities are
essential for the non-stationary case. The first one is utilised to approximate rare events by switching to sta-
tionary Gaussian processes, whereas the both inequalities show that only a small neighbourhood around the
point of the maximum of the variance (assumed to be unique) is responsible for the rare-event approximation;
see, e.g., the seminal monograph by Piterbarg [25].

One of the reasons for the lack of methodological approach for studying extremes of vector-valued Gaussian
process is that the three key tools mentioned above are not available in the general vector-valued setting. In
fact, the existing extensions of Slepian lemma in the form of Gordon inequality, are not generally applicable
in higher dimensions (apart from very special cases like processes with independent components, see e.g., [26,
Lem 5.1]), whereas an extension of Borell-TIS and Piterbarg inequalities requires a deep understanding of the
problem at hand, which has been addressed in this paper.
In this contribution exact asymptotics of pb(T,u) as u → ∞ for both stationary and non-stationary X are
derived by levering the uniform double-sum method to the vector-valued setting. The key to the methodology
developed in this contribution is what we refer to as the uniform Pickands-Piterbarg lemma, see Lemma 4.7
below.
We briefly explain the main ideas underlying the approach taken in this paper pointing out some subtle issues
related to uniform approximations that appear to have been overlooked in the literature; [27] takes particular
care of those issues in the one-dimensional setting.
The main attempts of the double-sum method consist in proving that

pb(T , u) ∼
Nu∑
i=1

P {∃t ∈ Ti(u) : Xj(t) > ubj , j ≤ d} =: Σ(u)(1.1)

as u→ ∞, where Tk(u), k ≤ Nu are disjoint compact intervals covering [0, T ].

Commonly, Σ(u) is referred to as the single-sum term. Each term of the single-sum, say the jth one, is
approximated by some function θj(u) as u → ∞. However, for non-stationary processes, such approximation
does not imply Σ(u) ∼

∑Nu

j=1 θj(u) as u→ ∞, since typically Nu tends to infinity as u→ ∞. This holds true if
the aforementioned approximation of θj(u) is uniform for all positive integers j ≤ Nu.
In the literature this fact has been not taken care of systematically; a notable exception is [28]. As a result nu-
merous proofs in the literature have certain gaps. We take special care of this key uniformity issue by deriving a
uniform version of the Pickands-Piterbarg lemma, see Lemma 4.7. Recently, for the one-dimensional setting, an
alternative approach that solves previous gaps in the literature concerning uniformity issues has been suggested
in [29, 30]. However, due to lack of Slepian lemma for general vector-valued Gaussian processes that approach
is not applicable for the studies of this contribution.

In view of Bonferroni inequality, Σ(u) is an upper bound for pb(T , u) and a lower bound is given by Σ(u)−ΣΣ(u)
where the so-called double-sum term is given by

ΣΣ(u) =

Nu∑
i=1

∑
i<j≤Nu

P {∃(s, t) ∈ Ti(u)× Tj(u) : Xk(s) > ubk, Xl(t)) > ubl, k, l ≤ d} .

Showing the asymptotic negligibility of ΣΣ(u) as u → ∞ is typically a hard and technical problem, since the
asymptotic bounds derived for its summands need also be uniform for all positive integers i, j ≤ Nu.
A subtle novelty of our approach for non-stationary X is that we do not use the common approach to stan-
dardise the process and then substitute it by a stationary process (utilising Slepian lemma). The reason is that,
as previously mentioned, Slepian lemma does not hold in general for vector-valued Gaussian processes.

An application of our findings concerns the study of the behaviour of asymptotics of supremum tail distribution
of operator fractional Brownian motion (fBm) discussed briefly below (see for details Section 3.2). Let H be a
d× d real-valued matrix with eigenvalues hi ∈ (0, 1], i ≤ d. A centered, sample continuous Rd-valued Gaussian
process X(t), t ∈ R is said to be an operator fBm with index H, if it has stationary increments and is operator
self-similar in the sense that

{X(λt), t ∈ R} d
=

{ ∞∑
k=0

(log λ)
k H

k

k!
X(t), t ∈ R

}
(1.2)
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for any λ > 0, where d
= stands for the equality of finite-dimensional distributions. Let h∗ = min1≤i≤d hi.

However, if further X is time-reversible, i.e., E
{
X(t)X(s)⊤

}
= E

{
X(s)X(t)⊤

}
for all t and s, in view of

Proposition 3.3 in Section 3, as u→ ∞, for positive bi’s

pb(T , u) ∼ Cumax(0, 1−2h∗
h∗ )P {Xj(T ) > ubj , j ≤ d} .

Throughout this paper ∼ means the asymptotic equivalence as u → ∞. If h∗ < 1/2, then C is given in the
form of Pickands-type constant and for h∗ = 1/2 it corresponds to the so-called Piterbarg-type constant.
Other applications illustrating findings of this contribution are concerned with stationary X being the Lamperti
transform of some operator fBm or X being an operator fractional Ornstein-Uhlenbeck (fO-U) process.
We note that in the special case when the coordinates of X are mutually independent, our main results given
in Theorems 2.1 and 2.4 in Section 2 recover findings of [26].

Brief organisation of the paper. Main results of this paper are presented in Section 2 with proofs relegated
to Section 5. We dedicate Section 3 some important examples and then present in Section 4 several auxiliary
results; their proofs are relegated to Appendix. We conclude this section by introducing some standard notation.

Notation. All vectors in Rd are written in bold letters, for instance b = (b1, . . . , bd)
⊤, 0 = (0, . . . , 0)⊤ and

1 = (1, . . . , 1)⊤. For two vectors x and y, we write x > y if xi > yi for all 1 ≤ i ≤ d. Given a real-valued
matrix A= (aij) we shall write AIJ for the submatrix of A determined by keeping the rows and columns of
A with row indices in the non-emtpy set I and column indices in the non-empty set J , respectively. If A is a
d× d matrix, then ‖A‖F =

√∑
1≤i,j≤d a

2
ij denotes its Frobenius norm. In our notation Id is the d× d identity

matrix and diag(x) = diag(x1, . . . , xd) stands for the diagonal matrix with entries xi, i = 1, . . . , d on the main
diagonal, respectively.
Let in the sequel Σ ∈ Rd×d be a positive definite matrix with inverse Σ−1. If b ∈ Rd \ (−∞, 0]d, then the
quadratic programming problem ΠΣ(b)

(1.3) ΠΣ(b) = minimise x⊤Σ−1x under the linear constraint x ≥ b

has a unique solution b̃ ≥ b and there exists a unique non-empty index set I ⊂ {1, . . . , d} such that

(1.4) b̃I = bI , b̃J = ΣIJ(ΣII)
−1bI ≥ bJ , wI = (ΣII)

−1bI > 0I , wJ = 0J

and w = Σ−1b̃, where coordinates J = {1, . . . , d} \ I (which can be empty) are responsible for dimension-
reduction phenomena, while coordinates belonging to I play essential role in the exact asymptotics. We refer
to Lemma 4.1 below for more details.

2. Main Results

As mentioned in the Introduction, we are interested in the exact asymptotics of

(2.1) pb(T , u) = P {∃t ∈ [0, T ] : X(t) > ub} , u→ ∞

for a centered Rd-valued Gaussian process X(t), t ∈ [0, T ] and any b ∈ Rd with at least one positive component.
We shall state our main results for X stationary and non-stationary separately.
Hereafter for Gaussian processes defined on some compact parameter set E ⊂ Rk we shall assume its a.s.
sample continuity. Let X(t), t ∈ E be a centered d-dimensional vector-valued Gaussian process i.e., X(t) =
(X1(t), . . . , Xd(t))

⊤, t ∈ E is a column vector Gaussian process. Let for any t, s ∈ E

R(t, s) = E
{
X(t)X(s)⊤

}
be the covariance matrix function (cmf) of X, which is a matrix-valued non-negative definite function in the
sense that

n∑
i,j=1

v⊤
i R(ti, tj)vj ≥ 0

for any ti ∈ E,vi ∈ Rd, i ≤ n. Conversely, if R: E×E 7→ Rd×d is a matrix-valued non-negative definite function
such that R(t, s) = R(s, t)⊤ for any t, s ∈ E, then there exists an Rd-valued Gaussian process X(t), t ∈ E with
cmf R. Note that in the definition of positive definite or non-negative definite matrices we do not require the
matrices to be symmetric.
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Let V be a d× d real-valued matrix and let α ∈ (0, 2] be given. An interesting example of a cmf determined by
V is

(2.2) Rα,V (t, s) = Sα(t, V ) + Sα(−s, V )− Sα(t− s, V ), t, s ∈ R,

with
Sα(t, V ) = |t|α

(
V 1{t≥0} + V ⊤1{t<0}

)
= |t|α

(
V + + V − sgn(t)

)
and

V + =
1

2

(
V + V ⊤) , V − =

1

2

(
V − V ⊤) .

Note that we use the standard notation sgn(t) = 1 for t ≥ 0 and sgn(t) = −1 for t < 0.
By [31, Prop 9], the matrix-valued function Rα,V defined by (2.2) is a non-negative definite function if and only
if the Hermitian matrix

(2.3) V ⋆ =sin
(πα

2

)
V + −

√
−1 cos

(πα
2

)
V −

is non-negative definite. Furthermore, under the above conditions, one can define a multivariate fBm Y (t), t ∈ R
with Rα,V as its cmf. The classical Pickands constants (see [1]) are defined in terms of a standard fBM. A
multidimensional analog of Pickands constants can be defined utilising Y . Specifically, for compact E ⊂ R set

(2.4) Hα,V (E) =

∫
Rd

e1
⊤xP {∃t ∈ E : Y (t)− Sα(t, V )1 > x} dx.

As shown in the proof of Theorem 2.1 the function t 7→ Hα,V ([0, t]), t > 0 is sub-additive, which implies that

(2.5) Hα,V = lim
T→∞

Hα,V ([0, T ])

T
= inf

T>0

Hα,V ([0, T ])

T
∈ [0, ∞).

We shall call Hα,V the multidimensional Pickands constant.

2.1. Stationary case. Let X(t), t ∈ R be a centered, Rd-valued stationary Gaussian process with cmf R(t, s).
The stationarity of X means that R(s+ t, s) = R(t, 0) =: R(t) for any s, t. Letting Σ = R(0) we have that for
each fixed t, the matrix Σ − R(t) is non-negative definite but not necessarily symmetric, which is reflected in
the formula

E
{
[X(t)−X(0)] [X(t)−X(0)]

⊤
}

= Σ−R(t) + Σ−R(t)⊤.

Hereafter I stands for the unique non-empty subset of {1, . . . , d} that determines the solution b̃ of the quadratic
programming problem ΠΣ(b) (defined in the Introduction) and w = Σ−1b̃ has non-negative components.

In this section we shall impose the following assumptions:
(B1) ΣII −RII(t) is positive definite for every t;
(B2) There exists a d× d real matrix V such that w⊤Vw > 0 with w = Σ−1b̃ and further

(2.6) Σ−R(t) ∼ tαV as t ↓ 0

holds for some α ∈ (0, 2].
Here for two matrix-valued functions A(t) = (aij(t)) and C(t) = (cij(t)), we write A(t) ∼ C(t) if aij(t) ∼ cij(t)
for all (i, j) as t→ 0. Note in passing that since R(−t) = R(t)⊤, then by (2.6) we have that

Σ−R(t) ∼ |t|αV ⊤, t ↑ 0.

Moreover, sufficient and necessary condition for V to satisfy (2.6) by a stationary Gaussian process X(t), t ∈ R,
is that V ⋆ given by (2.3) is non-negative definite.

Theorem 2.1. If both (B1) and (B2) hold, then as u→ ∞

(2.7) lim
u→∞

pb(T, u)

Tu2/αP {X(0) > ub}
= Hα,Vw ,

where Vw = diag(w)V diag(w) and Hα,Vw ∈ (0,∞). Moreover, (2.7) holds with T replaced by Tu, provided that
limu→∞ Tuu

2/αP {X(0) > ub} = 0.
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If w⊤Vw = 0 in Assumption (B2), the Pickands constant Hα,Vw is not necessarily positive. For example, when
VII = 0, we have that Vw is the zero matrix. In this case, Hα,Vw = 0 and (2.7) does not provide correct order
of the asymptotics for pb(T, u). It is not a simple task to give a complete characterization of the asymptotics
for pb(T, u), however in the following special case, we can obtain the approximation of pb(T,u) and give further
an explicit formula for the corresponding Pickands constant.

Theorem 2.2. Suppose that α = 1 and Assumption (B1) is satisfied. If there exists a d × d anti-symmetric
matrix V such that

(2.8) Σ−R(t) ∼ tV, t→ 0

and (Vw)I 6= 0I , then the statements of Theorem 2.1 hold with Hα,Vw replaced by 1
2

∑
1≤i≤d wi|(Vw)i|> 0.

2.2. Non-stationary case. We discuss next the case of non-stationary X. Let for t0, t ∈ [0, T ]

Σ(t) = R(t, t), Σ = Σ(t0)

and assume that Σ is non-singular. As in the stationary case, for b ∈ Rd \ (−∞, 0]d we set w = Σ−1b̃. Recall
that b̃ is the unique solution of (1.3) and wI = (ΣII)

−1bI > 0I , wJ = 0J as mentioned in (1.4), where I, J are
defined with respect to ΠΣ(b); see Lemma 4.1. Next, for any t ∈ [0, T ] define

σ2
b(t) = min

z∈[0,∞)d:z⊤b>0

z⊤Σ(t)z

(z⊤b)2
=

1

minx≥b x⊤Σ−1(t)x
,(2.9)

where the second equality holds under the assumption that Σ(t) is non-singular, see Lemma 4.1. We shall refer
to σ2

b(t), t ∈ [0, T ] as the generalized variance function of X.
For the 1-dimensional case (d = 1) it is known from several works of V.I. Piterbarg that the local behaviour of
the variance function around a unique maximizing point is crucial for the exact asymptotics of supremum tail
distribution of non-stationary Gaussian processes.
In the vector-valued setting, the situation is more complex since the local structure of the generalized variance
function in the neighbourhood of its maximizer is crucial. Therefore, the following set of assumptions relates to
both the covariance function and the generalized variance function of X. Namely, we shall assume that:
(D1) σ2

b(t), t ∈ [0, T ] is continuous and attains its unique maximum at t0 ∈ [0, T ];
(D2) For all t in [0, T ], there exists a continuous d× d real matrix function A(t), t ∈ [0, T ] such that

Σ(t) = A(t)A(t)⊤, t ∈ [0, T ](2.10)

and there exist a d× d real matrix Ξ and some β > 0 such that as t→ t0

(2.11) A(t) = A(t0)− |t− t0|βΞ + o(|t− t0|β),

with

(2.12) τw := w⊤ΞA(t0)
⊤w> 0;

(D3) There exist α ∈ (0, 2] and a d× d real matrix D such that for t > s

(2.13) R(t, s) = A(t) (Id − (t− s)αD + o(|t− s|α))A(s)⊤

as t→ t0, s→ t0;
(D4) There exist γ ∈ (0, 2], C ∈ (0,∞) such that for all s, t in an open neighbourhood of t0

(2.14) E
{
|X(t)−X(s)|2

}
≤ C |t− s|γ .

Remark 2.3. i) As shown in Appendix, (2.11) implies that

(2.15) σ2
b(t0)− σ2

b(t) ∼
2τw

(b̃
⊤
Σ−1b̃)2

|t− t0|β as t→ t0.

Thus if τw > 0, then σ2
b(t) has a local maximum point at t = t0. Conversely, if σ2

b(t) attains its maximum
at t = t0, then we have τw ≥ 0.

ii) By (D2), Assumption (D4) follows if for some γ > 0

‖A(t)−A(s)‖F ≤ C |t− s|γ

for all s, t in an open neighbourhood of t0.
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iii) Assumption (D4) is used to control the behavior of the process X(t) for u−β/2 log2/β u ≤ |t− t0| ≤ θ, where
θ is a sufficiently small number (see application of Lemma 4.5 to Equation (5.43) in the proof of Theorem
2.4). In the case d = 1, (D4) is not needed, since we can use Slepian inequality and then consider the
standardised process, see [32]. For d > 1, Slepian-type inequalities do not hold. Instead we suppose that
(D4) holds.

For a multivariate fBm Y (t), t ∈ R with cmf Rα,V given by (2.2) and a matrix W , we introduce the multivariate
Piterbarg constant

(2.16) Pα,V,W = lim
Λ→∞

∫
Rd

e1
⊤xP

{
∃t ∈ [0,Λ] : Y t −

[
Sα(t, V ) + |t|αW

]
1 > x

}
dx,

provided the limit exists. The following theorem constitutes the main result of this section. For compactness
of the presentation we suppose that t0 = 0 in (D1)-(D3); the other cases are commented in Remark 2.5.

Theorem 2.4. Let X(t), t ∈ [0, T ] be a centered Rd-valued Gaussian process satisfying (D1)–(D4) with t0 = 0
and set A = A(t0), V = ADA⊤, Vw = diag(w)V diag(w) and Ww = diag(w)ΞA⊤diag(w).

(1) If β > α and w⊤Vw > 0, then as u→ ∞

(2.17) pb(T , u) ∼ Hα,VwΓ(1/β + 1)τ−β
w u

2
α− 2

β P {X(t0) > ub} ,

where Hα,Vw∈ (0,∞).
(2) If β = α, then as u→ ∞

(2.18) pb(T , u) ∼ Pα,Vw,WwP {X(t0) > ub} ,

where Pα,Vw,Ww ∈ (0,∞).
(3) If β < α, then as u→ ∞

(2.19) pb(T , u) ∼ CwP {X(t0) > ub} ,

where Cw = 1 + τ−1
w

∑
i∈I wi max(0,−(ΞA⊤w)i).

Remark 2.5. i) The constant Cw in (2.19) equals 1 if and only if (ΞA⊤w)I ≥ 0I . Moreover, (2.19) holds
with the same constant if t0 ∈ (0, T ].

ii) If t0 ∈ (0, T ) or t0 = T , then Pickands constant Hα,Vw in (2.17) has to be replaced by Hα,Vw +Hα,V ⊤
w

or
Hα,V ⊤

w
, respectively. Analogously, Piterbarg constant is defined by (2.16) with [0,Λ] replaced by [−Λ,Λ] or

[−Λ, 0] if t0 ∈ (0, T ) or t0 = T , respectively.

3. Examples

In this section we apply the findings of Section 2 to three important classes of vector-valued Gaussian processes,
namely operator fO-U processes, operator fBm’s and their Lamperti transforms.

3.1. Operator fO-U process. Let H be a symmetric matrix with all eigenvalues h1, . . ., hd belonging to (0, 1]
and consider a centered stationary a.s. continuous Rd-valued Gaussian processes X(t), t ≥ 0 with cmf

R(t, s) = e−|t−s|2H ,

where tH = exp (H log t) for t > 0. We call X an operator fO-U process.

The existence of an fO-U process follows from the fact that, by the symmetry of H, we can write H =

Qdiag(h1, . . . , hd)Q
⊤ for some orthogonal matrix Q. Hence X(t)

d
= QZ(t), t ≥ 0, where Zi(t), t ≥ 0, i = 1, . . .,

d, are mutually independent stationary Gaussian processes with covariance function ri(t) = e−|t|2hi , respectively.
Consequently, setting R(t) = R(t, 0) we have

R(t) = Id − |t|2h⋆QĨQ⊤ + o(|t|2h⋆)

as t→ 0, where h∗ = min1≤i≤d hi and

Ĩ = diag(e1, ..., ed), with ei =

{
0 if hi > h⋆
1 if hi = h⋆.

(3.1)

Then (B2) holds with α = 2h∗, Σ = Id and V = QĨQ⊤. Let b̃ be the solution to the quadratic programming
problem (1.3), that is, b̃i = bi ∨ 0 for 1 ≤ i ≤ d.
In view of Theorem 2.1 we arrive at the following result.
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Proposition 3.1. Let X(t), t ∈ [0, T ] be an Rd-valued operator fO-U process with a symmetric matrix H with
all eigenvalues belonging to (0, 1]. If b̃

⊤
QĨQ⊤b̃ > 0, then as u→ ∞

pb(T , u) ∼ TH2h⋆,Vb̃
u1/h⋆P {X(0) > ub} ,

where Vb̃ = diag(b̃)QĨQ⊤diag(b̃).

3.2. Operator fBm. Let H be a d × d matrix and let X(t), t ∈ R be a centered, a.s. continuous Rd-valued
operator fBm with index H. We shall assume that the following conditions hold:

(O1) There exists an invertible matrix Q such that H = QUQ−1 with U = diag(h1, . . . , hd) and h1, . . .,
hd ∈ (0, 1];

(O2) Σ = E
{
X(1)X(1)⊤

}
is non-singular and X is time-reversible, i.e., E

{
X(t)X(s)⊤

}
= E

{
X(s)X(t)⊤

}
for all t and s.

Since X is time-reversible, we have that the cmf of X is given by

R(t, s) =
1

2

(
|t|HΣ|t|H

⊤
+ |s|HΣ|s|H

⊤
− |t− s|HΣ|t− s|H

⊤
)
;

see for example [33].
For notational simplicity we shall suppose that T = 1. Write Σ = A2 for some d × d symmetric real-valued
matrix A. Then Σ(t) = E

{
X(t)X(t)⊤

}
= A(t)A(t)⊤, where

(3.2) A(t) = tHA = A(s)− s−1(s− t)HA(s) + o(|s− t|).

Let σ2
b(t) be the generalized variance function of X defined by (2.9). Since in general the behaviour of σ2

b(t)
may be quite complex, we focus on a tractable class, supposing that:

(O3) The function σ2
b(t), t ∈ [0, 1] attains its unique maximum at t = 1.

Remark 3.2. Assumption (O3) holds if HΣ is positive definite in the sense that y⊤HΣy > 0 for all y 6= 0.
Indeed, we have from (2.15) that

σ2
b(s)− σ2

b(t) =
2τw(s)(

b̃(s)⊤Σ−1(s)b̃(s)
)2 (s− t) + o(|s− t|),

where b̃(t) is the solution to the quadratic programming problem minx≥b x
⊤Σ−1(t)x, w(s) = Σ−1(s)b̃(s) and

τw(s) = s−1w(s)⊤HA(s)A(s)⊤w(s) = s−1w(s)⊤sHHΣ sH
⊤
w(s).

Since HΣ is positive definite, we have that τw(s) > 0 for all s > 0 and hence σ2
b(s) is strictly increasing in

s. Another condition to ensure Assumption (O3) is that b > 0 and H = diag(h1, . . . , hd) with hi ∈ (0, 1),
1 ≤ i ≤ d. Under this setting, the cone t−HSb with Sb = {x : x ≥ b}, is strictly increasing in t ∈ (0, 1] and
therefore

min
x≥b

x⊤Σ−1(t)x = min
y∈t−HSb

y⊤Σ−1y

is strictly decreasing.

By (3.2) we have that (2.11) holds with β = 1 and Ξ = HA. Setting further h∗ = min1≤i≤d hi, we have

A(t)−1R(t, s)
(
A(s)−1

)⊤
=

1

2

[
A

(
t

s

)H⊤

A−1 +A−1
(s
t

)H
A−A−1

(
|t− s|
t

)H

Σ

(
|t− s|
s

)H⊤

A−1

]
= Id − (t− s)D1+O(|t− s|2)− |t− s|2h∗D2 + o(|t− s|2h∗)

as t ↑ 1, s ↑ 1 and |t− s| → 0, where

D1 =
1

2

(
AH⊤A−1 −A−1HA

)
, D2 =

1

2
A−1QĨQ−1Σ(QĨQ−1)⊤A−1,

with Ĩ given by (3.1). If D1 = 0, or equivalently ΣH⊤ = HΣ, then Assumption (D3) holds with α = 2h∗ and
D = D2. If H⊤Σ 6= ΣH, then Assumption (D3) also holds for h∗ < 1/2 with α = 2h∗ and D = D2, for h∗ = 1/2
with α = 1 and D = D1 +D2, whereas for h∗ > 1/2 with α = 1 and D = D1. Note that D1 is anti-symmetric
and hence w⊤AD1A

⊤w = 0.
Applying Theorem 2.4, we have the following asymptotics for operator fBm X.
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Proposition 3.3. Let X(t), t ∈ [0, 1] be an operator fBm with index H. Suppose that (O1)-(O3) hold and
τw = τw(1) = w⊤HΣw > 0.

i) If h∗ < 1/2 and w⊤AD2Aw > 0, then

pb(1,u) ∼ H2h∗,Vwτ
−1
w u

1−2h∗
h∗ P {X(1) > ub} ,

with Vw = diag(w)AD2Adiag(w).
ii) If h∗ = 1/2, then

pb(1,u) ∼ P1,Vw,WwP {X(1) > ub} ,
with Vw = diag(w)A (D1 +D2)Adiag(w) and Ww = diag(w)HΣdiag(w).

iii) If h∗ > 1/2, then
pb(1,u) ∼ CwP {X(1) > ub} ,

with Cw = 1 + τ−1
w

∑
i∈I wi max

(
0, −

(
H b̃
)
i

)
.

3.3. Lamperti transform of operator fBm’s. Let Y (t), t ≥ 0 be an operator fBm with index H. Suppose
that (O1)-(O2) hold and let X(t) = (e−t)HY (et), t ≥ 0 be the Lamperti transform of Y . We follow the notation
introduced in Section 3.2. Clearly, X is stationary with

E
{
X(t)X(s)⊤

}
=
1

2

(
Σe(t−s)H⊤

+ e−(t−s)HΣ− |1− e−(t−s)|HΣ|1− et−s|H
⊤
)

=Σ− (t− s)
1

2

(
HΣ− ΣH⊤)− |t− s|2h⋆QĨQ−1Σ

(
QĨQ−1

)⊤
+ o

(
|t− s|2h⋆

)
for t ≥ s, as t − s → 0. Set Ṽ = QĨQ−1Σ(QĨQ−1)⊤. Recall that b̃ solves the quadratic programming
problem (1.3) and we set w = Σ−1b̃. Applying Theorem 2.1 and 2.2, we have the following proposition.

Proposition 3.4. Let X be the Lamperti transform of an operator fBm with index H satisfying (O1)-(O2).
i) Assume HΣ = ΣH⊤ or HΣ 6= ΣH⊤ but h∗ < 1/2. If w⊤Ṽw > 0, then as u→ ∞

(3.3) pb(T,u) ∼ T Hα,Vwu
2/α P {X(0) > ub} ,

with α = 2h∗ and V = Ṽ .
ii) Assume HΣ 6= ΣH⊤ and h∗ = 1/2. If w⊤Ṽw > 0, then (3.3) holds with α = 1 and V = HΣ−ΣH⊤ + Ṽ .

iii) Assume HΣ 6= ΣH⊤ and h∗ > 1/2. Set α = 1 and V = HΣ−ΣH⊤. If (Vw)I 6= 0I , then (3.3) holds with
Hα,Vw replaced by 1

2

∑
1≤i≤d wi |(Vw)i|.

4. Auxiliary Results

In this section we include some key tools for vector-valued Gaussian processes, which will be used in the proofs
of the main results and are of some interest on their own right. We postpone all the proofs of lemmas presented
in this section to Appendix. We explain first the properties of the solution of ΠΣ(b) followed by a section on
uniform approximation of tails of functionals of Gaussian processes.

4.1. Quadratic programming problem. For a given non-singular d × d real matrix Σ we consider the
quadratic programming problem
(4.1) ΠΣ(b) : minimise x⊤Σ−1x under the linear constraint x ≥ b.

Below J = {1, . . . , d}\I can be empty; the claim in (4.3) is formulated under the assumption that J is non-empty.

Lemma 4.1. Let d ≥ 2 and Σ a d×d symmetric positive definite matrix with inverse Σ−1. If b ∈ Rd\(−∞, 0]d,
then ΠΣ(b) has a unique solution b̃ and there exists a unique non-empty index set I ⊂ {1, . . . , d} with m ≤ d
elements such that

b̃I = bI 6= 0I ,(4.2)
b̃J = ΣJI(ΣII)

−1bI ≥ bJ , (ΣII)
−1bI > 0I ,(4.3)

min
x≥b

x⊤Σ−1x = b̃
⊤
Σ−1b̃ = b⊤I (ΣII)

−1bI > 0,(4.4)

max
z∈[0,∞)d:z⊤b>0

(z⊤b)2

z⊤Σz
=

(w⊤b)2

w⊤Σw
= min

x≥b
x⊤Σ−1x,(4.5)

with w = Σ−1b̃ satisfying wI = (ΣII)
−1bI > 0I ,wJ = 0J .
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Define the solution map of the quadratic programming problem (1.3) by P : Σ−1 7→ b̃ with b̃ the unique solution
to ΠΣ(b). The next result is a special case of [34, Thm 3.1].

Lemma 4.2. P is Lipschitz continuous on compact subset of the space of real d× d symmetric positive definite
matrices.

4.2. Uniform tail appropximation for functionals of families of Gaussian processes. A key role in
the analysis of extremes of Gaussian processes is played by the continuous mapping theorem, the idea appeared
first in [35, 36] and it is used extensively in the monographs [19, 25].
Our main tool that shall compensate for the lack of Slepian lemma is the uniform approximation of the supremum
tail distribution of threshold-dependent Gaussian processes. We present below a general result where the tail
distributions for a continuous functional of a family of Gaussian processes are uniformly approximated.
Let {Xu,τ (t), t ∈ E}, u > 0, τ ∈ Qu ⊂ R be a family of centered, d-dimensional Gaussian processes with a.s.
continuous sample paths and parameter space E which is assumed to be a compact subset of Rk. For notational
simplicity we discuss below only case k = 1. Denote its cmf by Ru,τ (t, s) = E

{
Xu,τ (t)Xu,τ (s)

⊤} and let C(E)

be the separable Banach space of all Rd-valued continuous functions on E equipped with the sup-norm and
assume for simplicity that the origin 0 of Rk belongs to E.

Lemma 4.3. Suppose that Xu,τ (0) = 0 almost surely and Y (t), t ∈ E is a Gaussian process with a.s. contin-
uous sample paths. Let fu,τ (t), f(t), t ∈ E be deterministic Rd-valued continuous functions. Assume that

lim
u→∞

sup
t∈E,τ∈Qu

∣∣fu,τ (t)− f(t)
∣∣ = 0(4.6)

and
lim
u→∞

sup
t,s∈E,τ∈Qu

∥∥Ru,τ (t, s)− E
{
Y (t)Y (s)⊤

}∥∥
F
= 0.(4.7)

If further for some C ∈ (0,∞), γ ∈ (0, 2] and any s, t ∈ E

lim sup
u→∞

max
1≤i≤d

sup
τ∈Qu

E
{
[Xi,u,τ (t)−Xi,u,τ (s)]

2
}
≤ C |t− s|γ ,(4.8)

then for any continuous functional Γ : C(E) → R,

lim
u→∞

sup
τ∈Qu

∣∣∣∣P{Γ(Xu,τ (·)− fu,τ (·))≤s
}
− P {Γ(Y (·)− f(·))≤s}

∣∣∣∣ = 0(4.9)

is valid for all continuity point s of the distribution function of Γ(Y (·)− f(·)).

Application of Lemma 4.7 requires the determination of the continuity points of the functional Γ(Y (·)− f(·)).
The next result is useful in that context.

Lemma 4.4. If Y (t), t ∈ E is a Gaussian process with a.s. bounded sample paths, then P {∃t ∈ E : Y (t) > x}
is continuous on Rd, except at most at points of Lebesgue measure 0 in Rd belonging to

⋃d
i=1 Ri×{si}×Rd−i−1,

where si = inf{s : P {supt∈E Yi(t) ≤ s} > 0} for i = 1, ..., d.

4.3. Borell-TiS & Piterbarg inequalities. The Borell-TIS inequality, see e.g. [22], is very useful and crucial
in numerous theoretical problems. Under some weak assumptions, its refinement i.e., Piterbarg inequality ([23,
Thm 8.1]) gives a more precise upper bound for supremum tail distribution of Gaussian random fields. In the
following lemma we present an extension of these tools to vector-valued setting.

Lemma 4.5. Let Z(t), t ∈ E be a separable centered d-dimensional vector-valued Gaussian process having
components with a.s. continuous trajectories. Assume that Σ(t) = E

{
Z(t)Z(t)⊤

}
is non-singular for all t ∈ E.

Let b ∈ Rd \ (−∞, 0]d and define σ2
b(t) as in (2.9). If σ2

b =supt∈E σ
2
b(t) ∈ (0,∞), then there exists some positive

constant µ such that for all u > µ

P {∃t ∈ E : Z(t) > ub} ≤ exp

(
− (u− µ)2

2σ2
b

)
.(4.10)

If further for some C ∈ (0,∞) and γ ∈ (0, 2]

(4.11)
∑

1≤i≤d

E
{
(Zi(t)− Zi(s))

2
}
≤ C |t− s|γ

and
(4.12)

∥∥Σ−1(t)− Σ−1(s)
∥∥
F
≤ C |t− s|γ
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hold for all t, s ∈ E, then for all u positive

P {∃t ∈ E : Z(t) > ub} ≤ C∗mes(E) u
2d
γ −1 exp

(
− u2

2σ2
b

)
,(4.13)

where C∗ is some positive constant not depending on u.
In particular, if σb(t), t ∈ E is continuous and achieves its unique maximum at some fixed point t0 ∈ E, then
(4.13) is still valid if (4.11) and (4.12) are assumed to hold only for all s, t ∈ E in an open neighbourhood of
t0.

4.4. Uniform approximation on short intervals (Pickands-Piterbarg Lemma). Following notation
introduced in Section 4.2 denote by Ru,τ (·, ·) the cmf of Xu,τ . We shall impose the following assumptions:
(A1) For all large u and all τ ∈ Qu the matrix Σu,τ = Ru,τ (0, 0) is positive definite and
(4.14) lim

u→∞
u sup

τ∈Qu

‖Σ− Σu,τ‖F = 0

holds for some positive definite matrix Σ;
(A2) There exist a continuous Rd-valued function d(t), t ∈ E and a continuous matrix-valued function K(t, s),

(t, s) ∈ E × E such that
lim
u→∞

sup
τ∈Qu,t∈E

u ‖Σu,τ −Ru,τ (t, 0)‖F = 0,(4.15)

lim
u→∞

sup
τ∈Qu,t∈E

∣∣∣∣u2 [Σu,τ −Ru,τ (t, 0)] Σ
−1b̃− d(t)

∣∣∣∣ = 0(4.16)

and
(4.17) lim

u→∞
sup

τ∈Qu,s,t∈E

∥∥u2[Ru,τ (t, s)−Ru,τ (t, 0)Σ
−1
u,τRu,τ (0, s)

]
−K(t, s)

∥∥
F
= 0;

(A3) There exist positive constants C and γ ∈ (0, 2] such that for any s, t ∈ E

(4.18) sup
τ∈Qu

u2E
{
|Xu,τ (t)−Xu,τ (s)|2

}
≤ C |t− s|γ .

Remark 4.6. (i) The existence of Σ−1
u,τ follows from the positive definiteness of Σ and condition (4.14).

Further since
Ru,τ (t, s)−Ru,τ (t, 0)Σ

−1
u,τRu,τ (0, s)

=E
{[

Xu,τ (t)−Ru,τ (t, 0)Σ
−1
u,τXu,τ (0)

] [
Xu,τ (s)−Ru,τ (s, 0)Σ

−1
u,τXu,τ (0)

]⊤}
,

then K(t, s) is a matrix-valued non-negative definite function on E × E with K(t, s) = K(s, t)⊤. Con-
sequently, for Kw(t, s) = diag(w)K(t, s)diag(w) with w some vector in Rd\{0} there exists a centered,
Rd-valued Gaussian random field Y (t), t ∈ E with Y (0) = 0 and cmf Kw.

(ii) If for some continuous matrix-valued function V (t, s) ∈ Rd×d, (t, s) ∈ E × E

(4.19) lim
u→∞

sup
τ∈Qu,s,t∈E

∣∣∣∣u2[Σu,τ −Ru,τ (t, s)
]
− V (t, s)

∣∣∣∣ = 0,

then (A2) holds with d(t) = V (t, 0)w and K(t, s) = V (t, 0) + V (0, s)− V (t, s).
(iii) Let Au,τ (t) (resp. Au,τ ) be the square roots of the positive definite matrices Σu,τ (t) (resp. Σu,τ ). Note

that
Ru,τ (t, s) = Au,τ (t)Cu,τ (t, s)Au,τ (s)

⊤,

with Cu,τ (t, s) the cmf of Au,τ (t)
−1Xu,τ (t). Under the condition that limu→∞Au,τ (t) = A uniformly in

t ∈ E and τ ∈ Qu, the convergence in (4.17) only depends on the correlation structure of Xu,τ (t), that is,
if we suppose that

(4.20) lim
u→∞

sup
τ∈Qu,s,t∈E

∣∣∣∣u2 [Cu,τ (t, s)− Cu,τ (t, 0)Cu,τ (0, s)]− K̃(t, s)

∣∣∣∣ = 0,

then (4.17) holds with K(t, s) = AK̃(t, s)A⊤.

For Y (t), t ∈ E a centered Rd-valued Gaussian process with a.s. continuous sample paths with cmf K(s, t), s,
t ∈ E and an Rd-valued function d define below

HY ,d(E) =

∫
Rd

e1
⊤xP {∃t ∈ E : Y (t)− d(t) > x} dx.(4.21)
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Lemma 4.7. Suppose that Xu,τ (t), t ∈ E, u > 0, τ ∈ Qu satisfy (A1)-(A3). Let w = Σ−1b̃ where b̃ is the
unique solution of ΠΣ(b). If Y (t), t ∈ E has cmf R(t, s) = diag(w)K(t, s)diag(w) and dw(t) = diag(w)d(t),
then we have

(4.22) lim
u→∞

sup
τ∈Qu

∣∣∣∣P {∃t ∈ E : Xu,τ (t) > ub}
P {Xu,τ (0) > ub}

−HY ,dw(E)

∣∣∣∣ = 0.

Remark 4.8. If we suppose stronger assumptions on Σu,τ , for instance
lim
u→∞

sup
t∈Qu

∥∥u2 [Σ− Σu,τ ]− Ξ
∥∥
F
= 0,

then as u→ ∞
P {Xu,τ (0) > ub} ∼ e−w⊤Ξw/2P {N > ub} ,

where N is a centered Gaussian vector with covariance matrix Σ.

5. Proofs of Main Results

Recall that I and J with |I| = m are the index sets related to ΠΣ(b) with unique solution b̃, where b ∈ Rd is
assumed to have at least one positive component. As before we set w = Σ−1b̃. By (1.4) and Assumption (B2)
we have that wJ = 0J and

ξw = w⊤Vw = w⊤
I VIIwI > 0.(5.1)

Otherwise specified, in the following Y (t), t ∈ R is a centered Rd-valued Gaussian process with cmf
diag(w)Rα,V (t, s)diag(w)

where Rα,V is defined in (2.2).
Hereafter, throughout this paper we use the lower case constants c1, c2, . . . to denote generic constants used in
the proofs, whose exact values are not important and can be changed line to line. The labelling of the constants
starts anew in every proof.

5.1. Proof of Theorem 2.1. Let X(t), t ∈ [0, T ] be a stationary centered Rd-valued Gaussian process. Before
proceeding to the proof of Theorem 2.1, we shall derive some useful asymptotic bounds. The first lemma is
crucial for the negligibility of the double-sum. Below we set ∆(λ,Λ) = [0,Λ]× [λ, λ+ Λ] and

(5.2) Pb(λ,Λ, u) = P
{
∃(t, s) ∈ u−2/α∆(λ,Λ) : X(t) > ub, X(s) > ub

}
.

Lemma 5.1. If Assumption (B2) holds, then there exist positive constants C, ε and n0 such that for every
λ ≥ n0Λ > 0 with λ+ Λ < εu2/α

(5.3) Pb(λ,Λ, u) ≤ C P {X(0) > ub} e−λα

16 ξw .

Proof of Lemma 5.1: Since
Pb(λ,Λ, u) ≤ P

{
∃(t, s) ∈ u−2/α∆(λ,Λ) : XI(t) > ub, XI(s) > ub

}
and P {X(0) > ub} ∼ c1P {XI(0) > ubI} as u→ ∞, it suffices to prove that

P
{
∃(t, s) ∈ u−2/α∆(λ,Λ) : XI(t) > ubI , XI(s) > ubI

}
≤ C P {XI(0) > ubI} e−

λα

16 ξw .

Without loss of generality, in the rest of the proof we assume that I = {1, . . . , d} and write X instead of XI ,
w instead of wI and so on.
Set below

V + =
1

2
(V + V ⊤), V (t) = Sα(t, V ) = |t|α

(
V 1{t≥0} + V ⊤1{t<0}

)
.

By Assumption (B2), for every δ > 0 there exists ε > 0 such that for every |t| < ε we have
(5.4) ‖Σ−R(t)− V (t)‖F ≤ δ|t|α.

Set Ru(t) = R(u−2/αt) and define Xu(t, s) =
1
2

(
X(u−2/αt) +X(u−2/αs)

)
which has cmf

Ru(t, s; t1, s1) =E
{
Xu(t, s)Xu(t1, s1)

⊤}
=
1

4
(Ru(t− t1) +Ru(s− s1) +Ru(t− s1) +Ru(s− t1)) .

Further set
Σu,λ = E

{
Xu(0, λ)Xu(0, λ)

⊤} =
1

4
[2Σ +Ru(λ) +Ru(−λ)]
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and
V (t, s; t1, s1) = V (t− t1) + V (s− s1) + V (t− s1) + V (s− t1)− V (λ)− V (−λ).

In view of (5.4) we have for λ ∈ (0, εu2/α) that

(5.5)
∥∥∥∥u2(Σ− Σu,λ)−

λα

2
V +

∥∥∥∥
F

≤ 1

2
δλα

and

(5.6)
∥∥∥∥u2(Σu,λ −Ru(t, s; t1, s1)

)
− 1

4
V (t, s; t1, s1)

∥∥∥∥
F

≤ 3

2
δλα.

Since Σ−1
u,λ − Σ−1 = Σ−1

u,λ (Σ− Σu,λ)Σ
−1, we have from (5.5) that∥∥∥Σ−1

u,λ − Σ−1
∥∥∥
F

= O(λαu−2)(5.7)

and ∥∥∥∥u2 (Σ−1
u,λ − Σ−1

)
− λα

2
Σ−1V +Σ−1

∥∥∥∥
F

≤
∥∥∥∥Σ−1

[
u2 (Σ− Σu,λ)−

λα

2
V +

]
Σ−1

∥∥∥∥
F

+
∥∥∥u2 (Σ−1

u,λ − Σ−1
)
(Σ− Σu,λ)Σ

−1
∥∥∥
F

≤δλα
∥∥Σ−1

∥∥2
F
.

(5.8)

Therefore, for δ > 0 sufficiently small

(5.9) u2b⊤Σ−1
u,λb ≥ u2b⊤Σ−1b+

λα

4
ξw.

Conditioning on Xu(0, λ) = ub− u−1x =: au(x) we obtain further

Pb(λ,Λ, u) ≤P {∃(t, s) ∈ ∆(λ,Λ) : Xu(t, s) > ub}

=u−d

∫
Rd

P
{
∃(t, s) ∈ ∆(λ,Λ) : Xu(t, s) > ub

∣∣Xu(0, λ) = au(x)
}
φΣu,λ

(au(x))dx

=u−d

∫
Rd

Ju(x)φΣu,λ
(au(x))dx,

where
Ju(x) = P {∃(t, s) ∈ ∆(λ,Λ) : χu(t, s) > x}

and χu(t, s) is the conditioned process u(Xu(t, s)− ub) + x given Xu(0, λ) = au(x). By (5.7) and (5.9)

(5.10)
φΣu,λ

(au(x)) ≤φΣu,λ
(ub) exp

(
b⊤ (Σu,λ)

−1
x
)

≤φΣ(ub) exp

(
−λ

αξw
8

)
e(w+O(λαu−2))

⊤
x.

Consequently, for all u large enough

(5.11) Pb(λ,Λ, u) ≤ 2u−dφΣ(ub) exp

(
−λ

α

8
ξw

)∫
Rd

e(w+O(λαu−2))
⊤
xJu(x)dx.

Given F ⊂ {1, . . . , d} let ΩF =
{
x ∈ Rd : xi > 0, xj < 0, i ∈ F, j 6∈ F

}
. If F is empty i.e., F = ∅, then

(5.12)
∫
Ω∅

e(w+O(λαu−2))
⊤
xJu(x)dx ≤

∫
Ω∅

e(w+O(λαu−2))
⊤
xdx ≤ 2∏

1≤i≤d wi
.

Assume next that F 6= ∅ and define for u > 0

du(t, s) = −E {χu(t, s)} , ηu(t, s) = w⊤
F

(
χu,F (t, s) + du,F (t, s)

)
.

For all x ∈ ΩF

(5.13) Ju(x) ≤ P
{
∃(t, s) ∈ ∆(λ,Λ) : ηu(t, s) > w⊤

FxF −w⊤
Fdu,F (t, s)

}
.

Since Xu(0, λ) is independent of Xu(t, s)−Ru(t, s; 0, λ)Σ
−1
u,λXu(0, λ) we obtain

du(t, s) = u2 [Σu,λ −Ru(t, s; 0, λ)] Σ
−1
u,λb− [Σu,λ −Ru(t, s; 0, λ)] Σ

−1
u,λx
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and the cmf of χu is

Ku(t, s; t1, s1) = u2
[
Ru(t, s; t1, s1)−Ru(t, s; 0, λ)Σ

−1
u,λRu(0, λ; t1, s1)

]
.

Set
d(t, s) =

1

4
[tα + (s− λ)α + sα − λα]Vw − 1

4
(λα − (λ− t)α)V ⊤w

and

K(t, s; t1, s1) =
1

4
(V (t, s; 0, λ) + V (0, λ; t1, s1)− V (t, s; t1, s1))

=
1

4

[
ψ(t, s; t1, s1)V + ψ(t1, s1; t, s)V

⊤ − V (t− t1)− V (s− s1)
]
,

where
ψ(t, s; t1, s1) = tα + (s− λ)α + sα − λα + (λ− t1)

α − (s− t1)
α.

By (5.6) and (5.8), there exists c2 > 0 such that for λ+ Λ < εu2/α and (t, s), (t1, s1) ∈ ∆(λ,Λ)

(5.14)
∣∣∣du(t, s)− d(t, s)− [Σu,λ −Ru(t, s; 0, λ)] Σ

−1
u,λx

∣∣∣ ≤ c2δλ
α

holds and further
(5.15) ‖Ku(t, s; t1, s1)−K(t, s; t1, s1)‖F ≤ c2δλ

α.

Using the inequality ∣∣ph − qh
∣∣ ≤ hmax(ph−1, qh−1) |p− q|(5.16)

valid for all p, q and h positive, we obtain that
|d(t, s)| ≤ c3λ

α−1Λ and ‖K(t, s; t1, s1)‖F ≤ c3λ
α−1Λ

holds for some positive constant c3. Therefore, we can choose n0 large enough so that, for λ ≥ n0Λ and
λ+ Λ < εu2/α

(5.17) inf
(t,s)∈∆(λ,Λ)

[
−w⊤

Fdu,F (t, s)
]
≥ −1

2
w⊤

FxF − c4δλ
α

and
(5.18) σ2

F = sup
(t,s)∈∆(λ,Λ)

Var (ηu(t, s)) ≤ c4δλ
α.

Since the conditional variance is always less than or equal to the unconditional one, we have that
Var (ηu(t, s)− ηu(t1, s1))

≤u2Var
(
w⊤

FXu,F (t, s)−w⊤
FXu,F (t1, s1)

)
≤u

2

2

[
Var

(
w⊤

FXF (u
−2/αt)−w⊤

FXF (u
−2/αt1)

)
+Var

(
w⊤

FXF (u
−2/αs)−w⊤

FXF (u
−2/αs1)

)]
=u2w⊤

F

(
ΣFF −RFF (u

−2/α(t− t1))
)
wF + u2w⊤

F

(
ΣFF −RFF (u

−2/α(s− s1))
)
wF

≤c5 (|t− t1|α + |s− s1|α) .
Now Piterbarg inequality (c.f. [25, Theorem 8.1]) and (5.13), (5.17) imply that

Ju(x) ≤c6
(
w⊤

FxF − 2c4δλ
α

σF

)4/α

exp

(
−
(
w⊤

FxF − 2c4δλ
α
)2

8σ2
F

)

≤c7 exp

(
−
(
w⊤

FxF − 2c4δλ
α
)2

16c4δλα

)
for w⊤

FxF > 2c4δλ
α. It follows that

(5.19)

∫
ΩF

e(w+O(λαu−2))
⊤
xJu(x)dx

≤c8 (δλα)|F |
e2c4δλ

α

+ c8

∫ ∞

2c4δλα

y|F |−1 exp

(
2y − (y − 2c4δλ

α)
2

16c4δλα

)
dy

≤c9 exp (c10δλα) ,
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where |F | is the cardinality of the set F . Together with (5.11) and (5.12) we obtain further

Pb(λ,Λ, u) ≤c11u−dφΣ(ub) exp

(
−λ

α

8
ξw + c10δλ

α

)
.

Choosing δ > 0 small enough so that c10δ ≤ ξw/16, we have

Pb(λ,Λ, u) ≤ c12u
−mφΣ(ub) exp

(
−λ

α

16
ξw

)
∼ c13P {X(0) > ub} exp

(
−λ

α

16
ξw

)
as u→ ∞, which establishes the proof. □
Corollary 5.2. Under Assumption (B2), there are positive constants C and ε such that for every λ > Λ > 0
with λ+ Λ < εu2/α we have

(5.20) Pb(λ,Λ, u)

P {X(0) > ub}
≤ CΛ2(λ− Λ)−2e−

(λ−Λ)α

16 ξw .

Proof of Corollary 5.2. Hereafter bxc stands for the integer part of x ∈ R. Let n0 be the constant specified in
Lemma 5.1. By Lemma 5.1, it suffices to consider the case λ < n0Λ. Let k0 = b n0Λ

λ−Λc+ 1 and Λ0 = Λ/k0. For
0 ≤ k, l ≤ k0 − 1 we define

Akl =
{
∃(t, s) ∈ u−2/α ([kΛ0, (k + 1)Λ0]× [λ+ lΛ0, λ+ (l + 1)Λ0]) : X(t) > ub, X(s) > ub

}
and thus in this notation

Pb(λ,Λ, u) ≤
k0−1∑
k,l=0

P {Akl} .

Since λ+ (l − k − 1)Λ0 ≥ λ− Λ ≥ n0Λ0 Lemma 5.1 implies

P {Akl} = Pb(λ+ (l − k)Λ0,Λ0, u) ≤ CP {X(0) > ub} e−
(λ−Λ)α

16 ξw .

The claim follows from the fact that k20 ≤ 4n20Λ
2(λ− Λ)−2. □

Proof of Theorem 2.1. Let in the following for Λ > 0, u > 0

∆k = [kΛu−2/α, (k + 1)Λu−2/α], 0 ≤ k ≤ NT = b T

Λu−2/α
c.

Since X is stationary, we have
(NT + 1)P {∃t ∈ ∆0 : X(t) > ub}
≥ P {∃t ∈ [0, T ] : X(t) > ub}

≥ NTP {∃t ∈ ∆0 : X(t) > ub} − 2

NT∑
k=1

(NT − k)P b(kΛ,Λ, u),(5.21)

where Pb(kΛ,Λ, u) is defined by (5.2). By Lemma 4.7 and the stationarity of X, as u→ ∞
P {∃t ∈ ∆k : X(t) > ub} ∼ HY ,dw([0,Λ])P {X(0) > ub} ,

with Y as defined at the beginning of this section and
dw(t) = Sα(t, Vw)1, Vw = diag(w)V diag(w).(5.22)

Note that in our notation HY ,dw([0,Λ]) = Hα,Vw([0,Λ]), consequently

(5.23) lim sup
u→∞

P {∃t ∈ [0, T ] : X(t) > ub}
Tu2/αP {X(0) > ub}

≤ 1

Λ
Hα,Vw([0,Λ]).

The stationarity of X implies that the function Λ 7→ Hα,Vw([0,Λ]) is sub-additive. Therefore, the limit
Hα,Vw = lim

Λ→∞
Λ−1Hα,Vw([0,Λ])

exists and is finite. The sum in (5.21) is bounded by

A1 +A2 +A3 := NTPb(Λ,Λ, u) +NT

Nε∑
k=2

Pb(kΛ,Λ, u) +NT

NT∑
k=Nε+1

Pb(kΛ,Λ, u).

In view of Lemma 4.7, Corollary 5.2 and the Piterbarg inequality stated in Lemma 4.5 the negligibility of the
double-sum follows with the same arguments as in the 1-dimensional case. Here we spell out the details for
readers’ convenience.



EXTREMES OF VECTOR-VALUED GAUSSIAN PROCESSES 15

We first estimate A3. For k ≥ Nε + 1, the distance between ∆0 and ∆k is at least ε/2. Note that the variance
matrix of X(t) +X(s) is

Σ(t, s) = 2Σ +R(t− s) +R(s− t).

In view of Assumption (B1) (ΣII(t, s))
−1 − (ΣII)

−1 is strictly positive definite for t 6= s, which implies that

(5.24) τ = inf
(t,s)∈∆0×∆k

inf
vI≥bI

v⊤
I (Σ(t, s)II)

−1
vI > inf

vI≥bI

v⊤
I (ΣII)

−1
vI = b⊤I (ΣII)

−1bI> 0.

By the Piterbarg inequality stated in Lemma 4.5
Pb(kΛ,Λ, u) ≤P {∃(t, s) ∈ ∆0 ×∆k : XI(t) +XI(s) > 2ubI}

≤c1Λ2u−2/αu
4
γ −1 exp

(
−u

2

2
τ

)
.

It follows that

(5.25) A3 = O

(
exp

(
−u

2

2
(τ − δ)

))
for some 0 < δ < τ − b⊤I (ΣII)

−1bI . For 2 ≤ k ≤ Nε, we have from Corollary 5.2 that

lim sup
u→∞

A2

Tu2/αP {X(0) > ub}
≤ c2Λ

Nε∑
k=1

(kΛ)
−2

exp

(
−k

αΛα

16
ξw

)
≤ c3Λ

−1 exp

(
−Λα

16
ξw

)
.(5.26)

Now we consider A1. Note that

Pb(Λ,Λ, u) ≤ Pb(Λ +
√
Λ,Λ, u) + P

{
∃t ∈ u−2/α[0,

√
Λ] : X(t) > ub

}
.

Applying Corollary 5.2, Lemma 4.7 and the subadditivity of Hα,Vw([0,Λ]) we obtain

(5.27) lim sup
u→∞

A1

Tu2/αP {X(0) > ub}
≤ c5

[
exp

(
−Λα/2

16
ξw

)
+Hα,Vw([0, 1])Λ

−1/2

]
.

Putting all the bounds (5.21)–(5.27) together, for any Λ1 and Λ2 > 0 we obtain that
Hα,Vw([0,Λ1])

Λ1
≥ lim sup

u→∞

P {∃t ∈ [0, T ] : X(t) > ub}
Tu2/αP {X(0) > ub}

≥ lim inf
u→∞

P {∃t ∈ [0, T ] : X(t) > ub}
Tu2/αP {X(0) > ub}

≥ Hα,Vw([0,Λ2])

Λ2
− c6Λ

−1
2 exp

(
−Λα

2

16
ξw

)
−c7 exp

(
−Λ

α/2
2

16
ξw

)
− c8Hα,Vw([0, 1])Λ

−1/2
2 .(5.28)

Consequently, the constant Hα,Vw is positive. This and (5.28) establish the proof when T does not depend on
u. The case T dependent on u follows with analogous calculations. □
5.2. Proof of Theorem 2.2.

Lemma 5.3. For every v ∈ Rd such that a = 1⊤v ≥ 0 and Λ ≥ 0 we have∫
Rd

e1
⊤x1{∃t∈[0,Λ]: x<−tv}dx =

{
1 + Λ

∑d
i=1 v

−
i , if a = 0,

1 + 1−e−aΛ

a

∑d
i=1 v

−
i if a > 0,

where x− = max(0,−x), x ∈ R.

Proof of Lemma 5.3. Set b =
∑d

i=1 v
−
i and

F = {1 ≤ i ≤ d : vi > 0}, F̄ = {1, . . . , d} \ F.

Define Ωt = {x < −tv} and let Ω =
⋃

0≤t≤Λ Ωt. For a Borel set A ⊂ Rd, let I(A) =
∫
A
e1

⊤xdx. Then
for every t ≥ 0 we have I(Ωt) = e−at. Note that for t < s, Ωs ∩ Ωt = {xF < −svF , xF̄ < −tvF̄ }. Since
I(Ωs ∩ Ωt) = e−(a+b)s+bt,

I(Ωs \ Ωt) = e−at−(a+b)(s−t)
(
ebt − 1

)
.
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On the other hand,
⋃

t<u<s Ωu ⊂ {xF < −tvF , xF̄ < −svF̄ } and hence

I

( ⋃
t<u<s

Ωu \ Ωt

)
≤ e−at

(
eb(s−t) − 1

)
.

Let tk = kΛ/n. Since

⋃
0≤k≤n−1

(
Ωtk+1

\ Ωtk

)
⊂ Ω \ Ω0 ⊂

⋃
0≤k≤n−1

 ⋃
tk+1≤u≤tk

Ωu

 \ Ωtk


we have

n−1∑
k=0

e−atk−Λ(a+b)
n

(
e

Λb
n − 1

)
≤ I(Ω)− 1 ≤

n−1∑
k=0

e−atk
(
e

Λb
n − 1

)
.

Letting n→ ∞ we complete the proof. □
Proof of Theorem 2.2. We follow the same idea as in the proof of Theorem 2.1 and only spell out the necessary
changes.
For Λ > 0, from Lemma 4.7 and the fact that V ⊤ = −V we obtain

lim
u→∞

P
{
∃t ∈ [0,Λu−2] : X(t) > ub

}
P {X(0) > ub}

= H0,dw([0,Λ]),

where dw(t) = tdiag(w)Vw and the constant H0,dw([0,Λ]) is given by (4.21). By Lemma 5.3, we have that

(5.29) lim
Λ→∞

H0,dw([0,Λ])

Λ
=

∑
i∈I wi |(Vw)i|

2
> 0.

Let below
M = {i ∈ I : (Vw)i > 0} , M = I \M.

By the assumption (Vw)I 6= 0I , both M and M are non-empty. Using that (5.21) also holds under the
conditions of Theorem 2.2, now we analyze the sum in (5.21). Without loss of generality, we assume that
I = {1, . . . , d}. Define

∆k = [0, Λ]× [kΛ, (k + 1)Λ], 0 < k ≤ NT =
Tu2

Λ
.

We first estimate the sum in (5.21) for large k. By (2.8), for any δ > 0, there exists ε > 0 such that
‖Σ−R(t)− tV ‖F ≤ δλ for |t| < ε. Assume that (k + 1)Λ ≤ εu2. Let χu(t) be the conditioned process
u(X(u−2t)− ub) + x given X(0) = ub− u−2x. Then

P
{
∃(t, s) ∈ u−2∆k : X(t) > ub, X(s) > ub

}
≤P {X(0) > ub}

∫
Rd

ew
⊤xP {∃(t, s) ∈ ∆k : χu(t) > x, χu(s) > x} dx.

Setting du(t) = −E {χu(t)} and d(t) = tVw we have∣∣du(t)− d(t)−O(λu−2)x
∣∣ ≤ c1δλ

and ∥∥E{(χu(t) + du(t))(χu(s) + du(s))
⊤}∥∥

F
≤ c1δλ

for some c1 > 0. Consequently, for all (t, s) ∈ ∆k

du,M (s) ≥ λ(Vw)M − c1δλ−O(λu−2)xM ,

du,M (t) ≥ Λ(Vw)M − c1δλ−O(λu−2)xM .

By the change of variables yM = xM − λ(Vw)M + c1δλ and yM = xM −Λ(Vw)M + c1δλ and the assumption
w⊤Vw = 0, we have that∫

Rd

ew
⊤xP {∃(t, s) ∈ ∆k : χu(t) > x, χu(s) > x} dx

≤
∫
Rd

dx ew
⊤x P

{
∃(t, s) ∈ ∆k : χu,F (s) > xM − λ(Vw)M + c1δλ+O(λu−2)xM ,

χu,M (t) > xM − Λ(Vw)M + c1δλ+O(λu−2)xM

}
≤e−w⊤

M (Vw)M (λ−Λ)+c2δλ

∫
Rd

e(w+O(λu−2))⊤ygu(y)dy,
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where
gu(y) = P

{
∃(t, s) ∈ [0,Λ]× [0,Λ] : Zu,M (s) > yF , Zu,M (t) > yM

}
and

Zu,M (t) = χu,M (t+ kΛ)− du,M (t+ kΛ), Zu,M (t) = χu,M (t)− du,M (t).

For F ⊂ {1, . . . , d} with m = |F | let

ΩF = {y ∈ Rd : yi > 0, yj < 0, i ∈ F, j 6∈ F}
and set

η(t1, . . . , tm) =
∑
i∈F

Zu,i(ti).

Note that
sup

ti∈[0,Λ],i≤m

E
{
η(t1, . . . , tm)2

}
≤ c3δλ.

Applying Borell-TIS inequality we obtain∫
Rd

e(w+O(λu−2))⊤ygu(y)dy ≤ ec4δλ.

Therefore, there exists n0 > 0 such that for all k ≥ n0 and (k + 1)Λ ≤ εu2

P
{
∃(t, s) ∈ u−2∆k : X(t) > ub, X(s) > ub

}
≤ P {X(0) > ub} e−

w⊤
M (V w)M

2 λ.

It remains to estimate the sum in (5.21) for 1 ≤ k ≤ n0. We have from Lemma 4.7 that

lim sup
u→∞

P {∃(t, s) ∈ ∆k : X(t) > ub, X(s) > ub}
P {X(0) > ub}

≤
∫
Rd

ew
⊤xP {∃(t, s) ∈ ∆k : −d(t) > x, −d(s) > x} dx

≤
∫
Rd

ew
⊤x1{xM<−λ(Vw)M , xM<−Λ(Vw)M}dx

≤c5e−w⊤
M (Vw)M (λ−Λ),

where d(t) = tVw.
From the above we conclude the negligibility of the sum in (5.21). The rest of the proof follows by the same
arguments as given in the proof of Theorem 2.1. □

5.3. Proof of Theorem 2.4. We present first several supporting lemmas and then continue with the proof of
Theorem 2.4.
For the next two lemmas we impose the assumptions of Theorem 2.4. Set below δu = u−2/β log2/β u and recall
that in view of (2.12)

τw = w⊤ΞA⊤w = w⊤
I (ΞA

⊤)IIwI > 0.

Lemma 5.4. There exist positive constants C, u0 and Λ0 such that for Λ ≥ Λ0 and u ≥ u0

(5.30) P
{
∃t ∈ [Λu−

2
β , δu] : X(t) > ub

}
≤ C exp

(
−τwΛβ

)
P {X(0) > ub} .

Proof of Lemma 5.4: Similarly as in the proof of Lemma 5.1, without loss of generality, we may assume
that I = {1, . . . , d}. Letting ν = min(α, β) and θu = Λu−2/ν . For 1 ≤ k ≤ Nu = dδu/θue we define
Xu,k(t) = X(kθu + tu−2/ν). Then

Ru,k(t, s) = E
{
Xu,k(t)Xu,k(s)

⊤} = R(kθu + tu−2/ν , kθu + su−2/ν),

where R(t, s) is the cmf of X. Setting next Σu,k = E
{
Xu,k(0)Xu,k(0)

⊤} = Σ(kθu) we have (see also the proof
of Lemma 4.7)

P {∃t ∈ [kθu, (k + 1)θu] : X(t) > ub}

≤u−dφΣu,k
(ub)

∫
Rd

eb
⊤Σ−1

u,kxP
{
∃t ∈ [0,Λ] : χu,k(t) > x

}
dx,

where χu,k(t) is the conditional process u (Xu,k(t)− ub) + x given Xu,k(0) = ub− u−1x. Note that

du,k(t) = −E
{
χu,k(t)

}
= u2 [Σu,k −Ru,k(t, 0)] Σ

−1
u,kb+ [Σu,k −Ru,k(t, 0)] Σ

−1
u,kx
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and
Ku,k(t, s) =E

{[
χu,k(t)− du,k(t)

] [
χu,k(s)− du,k(t)

]⊤}
=u2

[
Ru,k(t, s)−Ru,k(t, 0)Σ

−1
u,kRu,k(0, s)

]
.

By Assumptions (D2) and (D3) with Rα,V defined in (2.2)

(5.31) Ku,k(t, s) →

{
Rα,V (t, s), if β ≥ α

0, if β < α

as u→ ∞, where the convergence is uniform in (t, s) ∈ [0,Λ]× [0,Λ] and 1 ≤ k ≤ Nu.
By Assumptions (D2) and (D3) again, for every ε > 0, there is u0 such that for u ≥ u0

(5.32)
∣∣∣du,k(t)− d(t)− [Σu,k −Ru,k(t, 0)] Σ

−1
u,kx

∣∣∣ ≤ εu∗k
βΛβ ,

with u∗ = min(1, u2−
2β
α ) and

d(t) =


|t|αVw, if β > α,

[(kΛ + t)
α − (kΛ)

α
] ΞA⊤w + |t|αVw, if β = α,[

(kΛ + t)
β − (kΛ)

β
]
ΞA⊤w, if β < α.

In the above derivation we used (5.16) with h = β for the case β > α. Consequently,

lim
u→∞

max
1≤k≤Nu

∣∣∣∣u2−2β/α
(
(kΛ + t)

β − (kΛ)β
)∣∣∣∣ = 0.

As in the proof of Lemma 5.1, we define for F ⊂ {1, . . . , d}
ΩF = {x ∈ Rd : xi > 0, xj < 0, i ∈ F and j 6∈ F}.

Applying (5.16) we have that

sup
t∈[0,Λ]

∣∣w⊤
FdF (t)

∣∣ ≤ {c1Λα, if β > α,

c1
(
1 + kβ−1

)
Λβ , if β ≤ α.

It follows from (5.32) that for every 1 ≤ k ≤ Nu and all u large enough

(5.33) sup
t∈[0,Λ]

∣∣w⊤
Fdu,k,F (t)

∣∣ ≤ 1

2
w⊤

FxF + c(k,Λ),

with

c(k,Λ) =

{
c1Λ

α + εu∗k
βΛβ , if β > α,

c1
(
1 + kβ−1

)
Λβ + εkβΛβ , if β ≤ α.

Setting ηu,k(t) = w⊤
F

(
χu,k(t) + du,k(t)

)
for every x ∈ ΩF we have

P
{
∃t ∈ [0,Λ] : χu,k(t) > x

}
≤ P

{
sup

t∈[0,Λ]

ηu,k(t) >
1

2
w⊤

FxF − c(k,Λ)

}
.

By (5.31), the variance of ηu,k(t), 0 ≤ t ≤ Λ is bounded uniformly (with respect to k ≤ Nu) by σ2 = c2Λ
α for

β ≥ α and σ2 = c2 for β < α. Consequently, Piterbarg inequality implies

P
{
∃t ∈ [0,Λ] : χu,k(t) > x

}
≤ c3

(
w⊤

FxF − 2c(k,Λ)

σ

)2/γ

exp

(
−
(
w⊤

FxF − 2c(k,Λ)
)2

8σ2

)
.

Similarly to the derivation of (5.19) in the proof of Lemma 5.1 it follows that∫
Rd

eb
⊤Σ−1

u,kxP
{
∃t ∈ [0,Λ] : χu,k(t) > x

}
dx ≤ c4e

c5(σ2+c(k,Λ))≤ c6e
c5c(k,Λ).

Assumption (D2) implies further

(5.34) u2b⊤
(
Σ−1

u,k − Σ−1
)
b = u2b⊤Σ−1

u,k (Σ− Σu,k)Σ
−1b = 2τwu∗k

βΛβ + o
(
u∗k

βΛβ
)
.

It follows that

(5.35) P {∃t ∈ [kθu, (k + 1)θu] : X(t) > ub}
P {X(0) > ub}

≤ c7 exp

(
−3

2
τwu∗k

βΛβ + c(k,Λ)

)
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for u large enough. If β > α, then the left-hand side of (5.30) is at most
Nu∑

k=⌊u
2
α

− 2
β ⌋

P {∃t ∈ [kθu, (k + 1)θu] : X(t) > ub} ≤ c8P {X(0) > ub} exp
(
−3

2
τwΛβ + c1Λ

α

)
,

hence the thesis of the lemma follows by taking Λ ≥ Λ0 with Λβ−α
0 τw > 2c1.

Now assume that β ≤ α. Choose k0 so that c1(k−β
0 + k−1

0 ) < τw/2. By (5.35), we have for k > k0

(5.36) P {∃t ∈ [kθu, (k + 1)θu] : X(t) > ub} ≤ c8P {X(0) > ub} exp
(
−τwkβΛβ

)
.

It remains to consider the case 1 ≤ k ≤ k0. Set Λ̃ = Λ/k0 and note that our choice of k0 is independent of Λ.
By (5.36) we have that

P {∃t ∈ [kθu, (k + 1)θu] : X(t) > ub} ≤
k0(k+1)−1∑

j=k0k

P
{
∃t ∈ [jΛ̃u−2/ν , (j + 1)Λ̃u−2/ν ] : X(t) > ub

}

≤
k0(k+1)−1∑

j=k0k

c8P {X(0) > ub} exp
(
−1

2
τwu∗j

βΛ̃β

)

≤c9P {X(0) > ub} exp
(
−1

2
τwu∗k

βΛβ

)
,

which together with (5.36) completes the proof. □
Corollary 5.5. If α, V,w and W = ΞA⊤ are as in Theorem 2.4, then Pα,Vw,Ww∈ (0,∞).

Proof of Corollary 5.5: First, we note that with dw(t) = diag(w)V (t)w and Y as in Theorem 2.4, we
have Pα,Vw,Ww = limΛ→∞HY ,dw+fw

([0,Λ]), where

Vw = diag(w)V diag(w), Ww = diag(w)ΞA⊤diag(w),fw(t) = |t|αWw1.(5.37)
Since HY ,dw+fw

([0,Λ]) is increasing in Λ, it suffices to prove that it is uniformly bounded.
Fix 0 < Λ0 < Λ. By Lemma 5.4 for two positive constants c, C

lim sup
u→∞

P
{
∃t ∈ [Λ0u

−2/α,Λu−2/α] : X(t) > ub
}

P {X(0) > ub}
≤ Ce−cΛα

0 .

It follows that

HY ,dw+fw
([0,Λ]) = lim

u→∞

P
{
∃t ∈ [0,Λu−2/α] : X(t) > ub

}
P {X(0) > ub}

≤ lim
u→∞

P
{
∃t ∈ [0,Λ0u

−2/α] : X(t) > ub
}

P {X(0) > ub}
+ Ce−cΛα

0

≤HY ,dw+fw
([0,Λ0]) + Ce−cΛα

0 ,

which completes the proof. □
Set in the following ∆(τ, λ,Λ) = [τ, τ + Λ]× [λ, λ+ Λ] and

Pb(τ, λ,Λ, u) = P
{
∃(t, s) ∈ u−2/α∆(τ, λ,Λ) : X(t) > ub, X(s) > ub

}
.

Lemma 5.6. If β > α and ξw = w⊤Vw > 0, then for every 0 < τ + Λ < λ ≤ Nu with u large enough
Pb(τ, λ,Λ, u) ≤C1Λ

2 exp (−C2 (λ− τ − Λ)
α
)u−dφΣu,τ,λ

(ub),

where C1, C2 are two positive constants and

(5.38) Σu,τ,λ =
1

4
E
{
(X(u−α/2τ) +X(u−α/2λ))(X(u−α/2τ) +X(u−α/2λ))⊤

}
.

Proof of Lemma 5.6: The proof is similar to that of Lemma 5.1 and we only sketch the main ideas. We shall
assume for simplicity that |I| = d. Set Xu(t, s) =

1
2

(
X(u−α/2t) +X(u−α/2s)

)
and define

P (τ, λ,Λ) = P
{
∃(t, s) ∈ u−α/2∆(τ, λ,Λ) : X(t) +X(s) > 2ub

}
.

For any u > 0

udP (τ, λ,Λ)

φΣu,τ,λ
(ub)

≤
∫
Rd

eb
⊤Σ−1

u,τ,λxP
{
∃(t, s) ∈ ∆(τ, λ,Λ) : χu,τ,λ(t, s) > x

}
dx,
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where χu,τ,λ(t, s) is the conditioned process u (Xu(t, s)− ub)+x given Xu(τ, λ) = ub−u−1x. Define du,τ,λ(t) =

−E
{
χu,τ,λ(t)

}
and let Ru(t, s; t1, s1) be the cmf of χu,τ,λ. Set further

d(t, s) =
1

4
[(t− τ)α + (s− τ)α + (λ− t)α + (s− λ)α − 2(λ− τ)α]

and
r(t, s; t1, s1) =(t− τ)α + (s− τ)

α
+ (t1 − τ)α

+ (s1 − τ)α + (λ− t)α + (λ− t1)
α + (s− λ)α + (s1 − λ)α

− |t− t1|α − |s− s1|α − (s1 − t)α − (s− t1)
α − 2(λ− τ)α.

By Assumptions (D2) and (D3), we have that for every ε > 0 and (t, s) ∈ ∆(τ, λ,Λ)

(5.39)
∣∣∣du,τ,λ(t, s)− d(t, s)Vw − [Σu,τ,λ −Ru(t, s; τ, λ)] Σ

−1
u,τ,λx

∣∣∣ ≤ ε (λ− τ)
α

and

(5.40)
∥∥∥∥Ru(t, s; t1, s1)−

1

4
r(t, s; t1, s1)V

∥∥∥∥
F

≤ ε (λ− τ)
α
,

provided u is large enough. Now, by the same argument as in the proof of Lemma 5.1, there exist positive
constants c1 and n0 such that for every λ− τ ≥ n0Λ > 0 with λ ≤ Nu and u large enough

(5.41) P (τ, λ,Λ) ≤ C1u
−dφΣu,τ,λ

(ub) exp

(
−ξ2w

(λ− τ)α

16

)
.

It remains to consider the case λ− τ ≤ n0Λ. Set Xu,τ (t) = X(u−α/2(τ + t)) with cmf Ru,τ (t, s) = R(u−α/2(τ +

t), u−α/2(τ + s)) and define Σu,τ = Ru,τ (0, 0). Note that
lim
u→∞

u2 [Σu,τ −Ru,τ (t, 0)] = |t|αV(5.42)

and
lim
u→∞

u2
[
Ru,τ (t, s)−Ru,τ (t, 0)Σ

−1
u,τRu,τ (0, s)

]
= Rα,V (t, s)

uniformly in λ − τ ≤ n0Λ. Recall that we defined Y as a centered Rd-valued Gaussian process with cmf
diag(w)Rα,V diag(w) and

dw(t) = |t|αdiag(w)Vw = Vw1, Vw = diag(w)V diag(w).

Analogous to Lemma 4.7

Pb(τ, λ,Λ, u) ∼ H(λ− τ,Λ)u−dφΣu,τ,λ
(ub̃)

as u→ ∞, where (set G=[0,Λ]× [λ− τ, λ− τ + Λ])

H(λ− τ,Λ) =

∫
Rd

e1
⊤xP {∃(t, s) ∈ G : Y (t)− dw(t) > x,Y (s)− dw(s) > x} dx,

with dw(t) = Sα(t, Vw)1 = |t|αdiag(w)Vw. By Corollary 5.2 we have the following upper bound
H(λ− τ,Λ) ≤ c2Λ

2 exp (−c3(λ− τ − Λ)α) ,

which together with (5.41) establishes the proof. □

Proof of Theorem 2.4. For δu = u−2/β log2/β u and some θ > 0 sufficiently small by Assumption (D2)
max

t∈[δu,θ]
σb(t) ≤ σ2

b(0) + cδβu = σ2
b(0) + cu−2 log2 u,

which together with the assumption that σb(t) attains its unique maximum at t0 = 0 and the vector version of
Piterbarg inequality derived in Lemma 4.5 yield

(5.43) P {∃t ∈ [δu, T ] : X(t) > ub} ≤ CTu2/γ−1 exp

(
−u

2

2

(
σ2
b(0) + c2u

−2 log2 u
))

and thus it suffices to consider the asymptotics of P {∃[0, δu] : X(t) > ub} as u→ ∞.
Recall that in our notation

w = Σ−1b̃, V = ADA⊤, W = ΞA⊤, Vw = diag(w)V diag(w)

and HY ,dw([0,Λ]) = Hα,Vw([0,Λ]) with dw = Sα(t, Vw)1 is the constant defined in (2.4).
We divide the rest of the proof into three separate cases.
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1. Case β > α. For given Λ, S positive we define Nu = bSu
2
α− 2

β /Λc. Consider a Gaussian process Xu,k(t) =

X(u−2/α(kΛ + t)) with cmf Ru,k(t, s) = R(u−2/α(kΛ + t), u−2/α(kΛ + s)). By Assumption (D2) (set Σu,k =
Ru,k(0, 0))

u2 (Σ− Σu,k) ∼
(
u

2
β− 2

α kΛ
)β (

AΞ⊤ + ΞA⊤) , u→ ∞.

Hence, τw = w⊤AΞ⊤w > 0 implies further

(5.44) P {Xu,k(0) > ub} = P {X(0) > ub} exp
(
−τw

(
u

2
β− 2

α kΛ
)β

(1 + o(1))

)
.

In view of both Assumptions (D2) and (D3)
(5.45) lim

u→∞
u2 [Σu,k −Ru,k(t, 0)] = |t|αV

and
(5.46) lim

u→∞
u2
[
Ru,k(t, s)−Ru,k(t, 0)Σ

−1
u,kRu,k(0, s)

]
= Rα,V (t, s)

uniformly for all non-negative integers k ≤ Nu and t, s ∈ [0,Λ]. Define for k ∈ N, u > 0

Ak = {∃t ∈ [kΛu−2/α, (k + 1)Λu−2/α] : X(t) > ub}.
In view of (5.45) and (5.46), we have from Lemma 4.7 that
(5.47) P {Ak} ∼ HY ,dw([0,Λ])P {Xu,k(0) > ub} , u→ ∞
uniformly for all non-negative integers k ≤ Nu. This together with (5.44) implies that∑Nu

k=0 P {Ak}
P {X(0) > ub}

∼Hα,Vw([0,Λ])

Λ
u

2
α− 2

β

Nu∑
k=0

exp

(
−τw

(
u

2
β− 2

α kΛ
)β

(1 + o(1))

)
u

2
β− 2

αΛ

∼Hα,Vw([0,Λ])

(τw)βΛ
u

2
α− 2

β

∫ S

0

e−xβ

dx

as u→ ∞. In view of Lemma 5.4 for some c1 > 0 we have

P
{
∃t ∈ [Su−2/β , δu] : X(t) > ub

}
≤ c1 exp

(
−τw

Sβ

2

)
P {X(0) > ub} .

Letting S → ∞ and then Λ → ∞ yields further

(5.48) lim sup
u→∞

P {∃t ∈ [0, T ] : X(t) > ub}
u2/α−2/βP {X(0) > ub}

≤ Hα,VwΓ(1/β + 1)τ−β
w ,

where
Hα,Vw = lim

Λ→∞

Hα,Vw([0,Λ])

Λ
∈ (0,∞)

is defined in (2.5). Next, we show the negligibility of the double-sum term. Note first that

lim
u→∞

u2 [Σu,k − Σu,kΛ,jΛ] =
1

2
(j − k)

β
Λβ

uniformly for all non-negative integers k < j ≤ Nu, where Σu,τ,λ is defined in (5.38). By Lemma 5.6, for some
c2 > 0

(5.49)

Nu∑
j=k+1

P {AkAj} ≤c2Λ2u−|I|
Nu∑

j=k+1

exp (−θ (j − k − 1)
α
Λα)φΣu,kΛ,jΛ

(ub̃)

≤c2Λ2 exp
(
−θΛβ

)
u−|I|φΣu,k

(ub̃),

which implies that the double-sum
∑

0≤k<j≤Nu
P {AkAj} is negligible compared to the single-sum if we let

Λ → ∞. Therefore we complete the proof of (2.17).
2. Case β = α. Let in the following Vw, Ww, fw be as in (5.37). It is straightforward to see from Lemma 4.7
that
(5.50) P

{
∃t ∈ [0,Λu−2/α] : X(t) > ub

}
∼ HY ,dw+fw

([0,Λ])P {X(0) > ub} .

Applying Lemma 5.4 we obtain

(5.51) P
{
∃t ∈ [Λu−2/α, δu] : X(t) > ub

}
≤ c3e

−c4Λ
α

.
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Combining (5.43), (5.50) and (5.51) and letting Λ → ∞ the claim in (2.18) follows utilising Corollary 5.5.
3. Case β < α. The proof is similar to the case β = α. Define Xu(t) = X(u−2/βt), u > 0 with cmf

Ru(t, s) = R(u−2/βt, u−2/βs). By Assumptions (D2) and (D3)

lim
u→∞

u2 [Σ−Ru(t, 0)] = |t|βΞA⊤

and
lim
u→∞

u2
[
Ru(t, s)−Ru(t, 0)Σ

−1Ru(0, s)
]
= 0.

By Lemma 4.7, as u→ ∞

P
{
∃t ∈ [0,Λu−2/β ] : X(t) > ub

}
∼ H0,fw

([0,Λ])P {X(0) > ub} ,

where
H0,fw

([0,Λ]) =

∫
Rd

e1
⊤x1{∃t∈[0,Λ]: −fw|t|β>x}dx.

Further Lemma 5.3 implies

lim
Λ→∞

H0,fw
([0,Λ]) = 1 +

∑
i∈I wi max(0,−(ΞA⊤w)i)

w⊤ΞA⊤w
,

which together with Lemma 5.4 yields (2.19). □

6. Appendix

We present the proofs of (2.15), Lemmas 4.1, 4.3, 4.5 and 4.7.

Proof of (2.15). In view of Assumption (D2) we have as t→ t0

Σ−1(t)− Σ−1 = Σ−1 (Σ− Σ(t))Σ−1(t) = |t− t0|β Σ−1
(
AΞ⊤ + ΞA⊤)Σ−1 + o

(
|t− t0|β

)
,

where A = A(t0). Let b̃(t) be the unique solution to the quadratic programming problem (1.3) with Σ replaced
by Σ(t). Then we have from the fact that σ−2

b (t) = minx≥b x
⊤Σ−1(t)x,

b̃(t)⊤
(
Σ−1(t)− Σ−1

)
b̃(t) ≤ σ−2

b (t)− σ−2
b (t0) ≤ b̃⊤

(
Σ−1(t)− Σ−1

)
b̃.

This and the fact that b̃(t) is Lipschitz continuous (c.f. Lemma 4.2) complete the proof. □

Proof of Lemma 4.1: All the claims apart from (4.5) are known, see e.g., [16, Lem 2.1]. Repeating the
arguments of [9, Lem 1] (therein b > 0 is assumed) we have for any z ≥ 0 with z⊤b ≥ 0 and B a square matrix
such that BB⊤ = Σ

0 ≤ z⊤b = inf
x≥b

z⊤x ≤
∣∣B⊤w

∣∣ inf
x≥b

∣∣B−1x
∣∣ = √

z⊤Σz inf
x≥b

x⊤Σ−1x

implying thus

max
z∈[0,∞)d:z⊤b>0

(z⊤b)2

z⊤Σz
≤ min

x≥b
x⊤Σ−1x.

By the properties of the unique solution b̃ of ΠΣ(b) we have that the unique solution w of the dual programming
problem of ΠΣ(b) is given by w = Σ−1b̃. We have b̃I = bI and if J is non-empty, then b̃J = ΣJIΣ

−1
II bI . Since

Σ is non-singular, then (Σ−1)JJΣJI = −(Σ−1)JIΣII . Consequently, we obtain

wI = (Σ−1)IIbI + (Σ−1)IJΣJI(ΣII)
−1bI = [(Σ−1)II + (Σ−1)IJΣJI(ΣII)

−1]bI = (ΣII)
−1bI

and
wJ = (Σ−1)JIbI + (Σ−1)JJΣJI(ΣII)

−1bI = [(Σ−1)JI + (Σ−1)JJΣJI()ΣII)
−1]bI = 0J

hold implying that
w⊤b = w⊤

I bI = b⊤I (ΣII)
−1bI = inf

x≥b
x⊤Σ−1x > 0,

which yields further
(w⊤b)2

w⊤Σw
= b⊤I (ΣII)

−1bI = min
x≥b

x⊤Σ−1x.

Hence (4.5) follows and the proof is complete. □
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Proof of Lemma 4.3: First note that a family of vector-valued processes is tight if its components are
tight, see e.g., [37, Cor 1.3]. Let τu ∈ Qu, u > 0 be given and set Zu(t) = Xu,τu(t) − fu,τu(t). For given
si ∈ R, , ti ∈ E, i ≤ n by Berman’s comparison lemma (see e.g., [21]) and (4.7) for some c > 0

|P {Xi,u,τu(tk)− fi,u,τu(tk) ≤ si, i ≤ d, k ≤ n} − P {Yi(tk)− fi,u,τu(tk) ≤ si, i ≤ d, k ≤ n}|

≤ c
∑

1≤l≤k≤n,1≤i≤j≤n

|cov(Xi,u,τu(tl), Xj,u,τu(tk))− cov(Yi(tl), Yj(tk))|

→ 0, u→ ∞.

Since Yi(tk), i ≤ d, k ≤ n has a continuous distribution, then (4.8) yields
lim
u→∞

|P {Yi(tk)− fi,u,τu(tk) ≤ si, i ≤ d, k ≤ n} − P {Yi(tk)− fi(tk) ≤ si, i ≤ d, k ≤ n}| = 0.

Consequently, the finite-dimensional distributions of Zu converge in distribution to those of Y − f as u→ ∞.
Moreover, condition (4.8) implies that each component of Xu,τ , u > 0 is tight, see [19, Prop 9.7]. By (4.8) each
component of Zu, u > 0 is also tight, and thus Zu, u > 0 is tight. Since by assumption Γ is continuous, the
continuous mapping theorem implies that for any continuity point s of Γ(Y (·)− f(·)) we have

lim
u→∞

P {Γ(Zu(·)) > s} = P {Γ(Y (·)− f(·)) > s} ,(6.1)

hence
lim
u→∞

sup
τ∈Qu

∣∣P{Γ(Xu,τ (·)− fu,τ (·)) > s
}
− P {Γ(Y (·)− f(·)) > s}

∣∣ = 0.

Indeed, if the above is not satisfied, then for a given ε > 0 and all u large we can find τu such that∣∣P{Γ(Xu,τu(·)− fu,τu(·)) > s
}
− P {Γ(Y (·)− f(·)) > s}

∣∣ > ε which is a contradiction in view of (6.1), hence
the proof is complete. □
Proof of Lemma 4.4: Let x ∈ Rd and δ = (δ1, ..., δd)

⊤ ≥ 0 be given. The proof follows from combination of
the fact that

P {∃t ∈ E : Y (t) > x− δ} − P {∃t ∈ E : Y (t) > x+ δ}

≤
d∑

i=1

P
{
sup
t∈E

Yi(t) ∈ (xi − δi, xi + δi]

}
and Tsirelson Theorem (see, e.g., [38, Thm 7.1] and [39]) which implies that P {supt∈E Yi(t) ≤ x} is continuous
i = 1, . . . , d except at most at one point si = inf{s : P {supt∈E Yi(t) ≤ x} > 0}. □
Proof of Lemma 4.5: For z ∈ [0,∞)d such that z⊤b > 0, we define Yz(t) = z̃⊤Z(t) with z̃ = z/(z⊤b).
Clearly, {Z(t) > ub} ⊂ {Yz(t) > u} for such z implying

P {∃t ∈ E : Z(t) > ub} ≤ inf
z∈[0,∞)d:z⊤b>0

P
{
sup
t∈E

Yz(t) > u

}
.(6.2)

The proof of (4.10) follows by a direct application of Borell-TIS inequality to Yz(t) (see e.g., [22]) with

µ = E
{
sup
t∈E

Yz(t)

}
<∞.

Next, if Σ(t) is non-singular for t ∈ E, choose v(t) ≥ b such that it minimises v⊤(t)Σ−1(t)v(t) and set
z(t) = Σ−1(t)v(t). By Lemma 4.1 and (4.11)

sup
z≥[0,∞)d:z⊤b>0

Var(Yz(t)) = Var(Yz(t)(t)) =
1

v(t)⊤Σ−1(t)v(t)
> 0.

In view of Lemma 4.2, (4.12) and the compactness of E for f = v or f = w we obtain
|f(s)− f(t)| ≤ C1 |t− s|γ(6.3)

for some positive constant C1. Note that since E is compact
inf
t∈E

v(t)⊤b > 0.(6.4)

It follows that f(t) = z̃(t) = z(t)/[z(t)⊤b] also satisfies (6.3) (for some other constant C1). This and (4.11)
imply the γ-Hölder continuity of Yz̃(t) = z̃(t)⊤Z(t). Therefore (4.13) follows by applying [25, Thm 8.1] to Yz̃.
If σ2

b(t), t ∈ E has a unique maximum at t0 ∈ E and is continuous, the claim follows by using first Borell-TIS
inequality and then applying Piterbarg inequality for the neighbourhood of t0, see the derivation of (32) and
(33) in [26]. □
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Proof of Lemma 4.7: For notational simplicity we shall assume that the index set J is not empty. Define
u ∈ Rd such that uI has all components equal u and uJ has all components equal 1. Set next

Zu,τ (t) = u ·
[
Xu,τ (t)− ub̃

]
+ x, χu,τ (t) =

(
Zu,τ (t)|Zu,τ (0) = 0

)
,

where in our notation x · y = (x1y1, . . . , xdyd)
⊤ for x and y two vectors in Rd. For any u > 0 we obtain

P {∃t ∈ E : Xu,τ (t) > ub}

=P
{
∃t ∈ E :

(
Xu,τ (t)− ub̃

)
> u(b− b̃)

}
=u−m

∫
Rd

P
{
∃t ∈ E :

(
Xu,τ (t)− ub̃

)
> u(b− b̃)

∣∣Xu,τ (0) = ub̃− x/u
}
φΣu,τ

(ub̃− x/u) dx

=u−m

∫
Rd

P
{
∃t ∈ E : Zu,τ (t) > x+ uu(b− b̃)

∣∣Zu,τ (0) = 0
}
φΣu,τ (ub̃− x/u) dx

=u−m

∫
Rd

P
{
∃t ∈ E :

(
χu,τ (t)− uu(b− b̃)

)
> x

}
φΣu,τ

(ub̃− x/u) dx.

Assumption (A2) implies

(6.5)

E
{
χu,τ (t)

}
=u ·

{
Ru,τ (t, 0)Σ

−1
u,τ (ub̃− x/u)− ub̃

}
+ x

=

u2 {(Ru,τ (t, 0)− Σu,τ )Σ
−1
u,τ b̃

}
I

u
{
(Ru,τ (t, 0)− Σu,τ )Σ

−1
u,τ b̃

}
J

+ u ·
{
(Ru,τ (t, 0)− Σu,τ )Σ

−1
u,τ (x/u)

}
→
(
−dI(t)
0J

)
and

(6.6)

E
{[

χu,τ (t)− E
{
χu,τ (t)

}] [
χu,τ (s)− E

{
χu,τ (s)

}]⊤}
=diag(u)

[
Ru,τ (t, s)−Ru,τ (t, 0)Σ

−1
u,τRu,τ (0, s)

]
diag(u)

→
(
KII(t, s) 0

0 0

)
uniformly in t, s ∈ E and τ ∈ Qu as u→ ∞.
Define the index set L as the maximal subset of J such that b̃i = bi for any i ∈ L. Hence b̃i = bi for all i ∈ I ∪L
and b̃i > bi for i ∈ J \ L. For simplicity we shall assume that L is non-empty. We write next

au(x) := P
{
∃t ∈ E : χu,τ (t)− uu(b− b̃) > x

}
= P

{
Γ
(
χ̃u,τ (·)

)
> 0
}
,

where

χ̃u,τ,i(t):=χu,τ,i(t)− xi, i ∈ I ∪ L; χ̃u,τ,j(t):=u
−1χu,τ,j(t)− (bj − b̃j)− u−1xj , j ∈ J \ L,

and Γ is the continuous functional on the Banach space C(E) (of all Rd-valued continuous functions on E)
given by

Γ(ω(·)) = sup
t∈E

min
1≤i≤d

ωi(t), ω ∈ C(E).

Let W I(t), t ≥ 0 denotes a centered Gaussian process with KII as its cmf and let W̃ (t) =
(
W I(t),0J

)⊤. It
follows from (6.5) and (6.6) that the assumptions of Lemma 4.3 hold true with Xu,τ (t), Y (t), fu,τ (t) and f(t)

replaced respectively by χ̃u,τ (t)−E
{
χ̃u,τ (t)

}
, W̃ (t), −E

{
χ̃u,τ (t)

}
and d̃(t) =

(
dI(t) + xI ,xL,bJ\L − b̃J\L

)⊤
.

Since
P
{
Γ
(
W̃ (·)− d̃(·)

)
> 0
}
= 1{xL<0L}P {∃t ∈ E : W I(t)− dI(t) > xI} ,

we have from Lemma 4.4 that 0 is a continuity point of the distribution function of Γ
(
W̃ (·)− d̃(·)

)
for almost

all x ∈ Rd. Applying Lemma 4.3, we obtain that

(6.7) lim
u→∞

sup
τ∈Qu

∣∣∣∣au(x)− 1{xL<0L}P {∃t ∈ E : W I(t)− dI(t) > xI}
∣∣∣∣ = 0
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holds for almost all x ∈ Rd. Note that, by Lemma 4.1 there exists a positive constant λ such that for all u large
and all τ ∈ Qu

1

2
(x/u)⊤Σ−1

u,τ (x/u) ≥ λ (x/u)
⊤
(x/u) ≥ λx⊤

J xJ .

Hence (set w = Σ−1b̃ and recall that wI = (ΣII)
−1bI > 0I , wJ = 0J and w⊤x = w⊤

I xI for any x ∈ Rd)

φΣu,τ
(ub̃− x/u) =φΣu,τ

(ub̃) exp

(
u (x/u)

⊤
Σ−1

u,τ b̃−
1

2
(x/u)

⊤
Σ−1

u,τ (x/u)

)
=φΣu,τ

(ub̃) exp

(
w⊤

I xI −
1

2
(x/u)⊤Σ−1

u,τ (x/u)) + ub̃
⊤ (

Σ−1
u,τ − Σ−1

)
(x/u)

⊤
)

≤φΣu,τ
(ub̃) exp

(
w⊤

I xI + ub̃
⊤ (

Σ−1
u,τ − Σ−1

)
(x/u)− λx⊤

J xJ

)
.

In view of (6.7) and Assumption (A1) as u→ ∞

(6.8)
P {∃t ∈ E : Xu,τ (t) > ub}

∼u−mφΣu,τ
(ub̃)

∫
Rd

ex
⊤
I wI− 1

2x
⊤
J (Σ−1)JJxJ1{xL<0L}P {∃t ∈ E : W I(t)− dI(t) > xI} dx.

The asymptotic equivalence above follows by the dominated convergence theorem, which is justified by the
following arguments. First note that

wi = ((ΣII)
−1bI)i > 0, ∀i ∈ I.

Split the region of the integration on sets where the ith coordinates of xI are either positive or negative. If
xi < 0, then the domination of the integrand for this coordinate is clear since wi > 0. Suppose that we deal
therefore with a region Ω where the first l components are negative and the m− l components in the index set
F are positive. Then (recall the definition of au(x) above)

au(x) ≤ P
{
∃t ∈ E : χu,τ,F (t) > xF

}
≤ P

{
∃t ∈ E : 1⊤

Fχu,τ,F (t) > 1⊤
FxF

}
.

It follows from (6.5), (6.6) and Assumptions (A1), (A2) that for any t ∈ E

E
{
1⊤
Fχu,τ,F (t)

}
≤ c+ δ1⊤

FxF and E
{
(1⊤

Fχu,τ,F (t))
2
}
≤ σ2

for some δ > 0, σ > 0 and some constant c. By the Borell-TIS inequality (c.f. [25, Theorem D.1])

au(x) ≤ P
{
∃t ∈ E : 1⊤

Fχu,τ,F (t) > 1⊤
FxF

}
≤ e−ε(x⊤

F xF )

for some ε > 0 small enough, hence the domination of the integrand follows.
Taking in particular E = {0} in (6.8) implies as u→ ∞

P {Xu,τ (0) > ub} ∼ u−mφΣu,τ (ub̃)

(∏
i∈I

wi

)−1 ∫
R|J|

e−
1
2x

⊤
J (Σ

−1)
JJ

xJ1{xL<0L}dxJ .

Therefore, as u→ ∞

P {∃t ∈ E : Xu,τ (t) > ub}

∼P {Xu,τ (0) > ub}

(∏
i∈I

wi

)∫
Rm

ew
⊤
I xIP {∃t ∈ E : W I(t)− dI(t) > xI} dxI ,

which complete the proof. □
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