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Abstract
To transfer toxicological findings from model systems, e.g. animals, to humans, standardized safety factors are applied to 
account for intra-species and inter-species variabilities. An alternative approach would be to measure and model the actual 
compound-specific uncertainties. This biological concept assumes that all observed toxicities depend not only on the expo-
sure situation (environment = E), but also on the genetic (G) background of the model (G × E). As a quantitative discipline, 
toxicology needs to move beyond merely qualitative G × E concepts. Research programs are required that determine the 
major biological variabilities affecting toxicity and categorize their relative weights and contributions. In a complementary 
approach, detailed case studies need to explore the role of genetic backgrounds in the adverse effects of defined chemicals. In 
addition, current understanding of the selection and propagation of adverse outcome pathways (AOP) in different biological 
environments is very limited. To improve understanding, a particular focus is required on modulatory and counter-regulatory 
steps. For quantitative approaches to address uncertainties, the concept of “genetic” influence needs a more precise defini-
tion. What is usually meant by this term in the context of G × E are the protein functions encoded by the genes. Besides the 
gene sequence, the regulation of the gene expression and function should also be accounted for. The widened concept of 
past and present “gene expression” influences is summarized here as  Ge. Also, the concept of “environment” needs some 
re-consideration in situations where exposure timing  (Et) is pivotal: prolonged or repeated exposure to the insult (chemical, 
physical, life style) affects  Ge. This implies that it changes the model system. The interaction of  Ge with  Et might be denoted 
as  Ge × Et. We provide here general explanations and specific examples for this concept and show how it could be applied 
in the context of New Approach Methodologies (NAM).
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Abbreviations
ADI  Acceptable daily intake
ADME  Absorption-distribution-metabolism-excretion, 

aka toxicokinetics (TK)
AOP  Adverse outcome pathway
BMD  Benchmark dose
Cmax  Peak concentration in plasma
Et  Timing of toxic exposures/insults
Ge  Sequence, epigenetic state, and transcript levels 

of genes of an organism/model system and their 
translation to the proteome

G × E  Classical genes vs environment concept
Ge × Et  Interaction of the biological  (Ge) background 

and environmental exposure, with emphasis on 
timing of toxic exposures/insults  (Et)

LOEL  Lowest observed effect level
MAK  Maximal workplace concentration
NAM  New approach methodologies
NOAEL  No observed adverse effect level
NOEL  No observed effect level
PoD  Point-of-departure
RfD  Reference dose
SF  Safety factor, aka uncertainty factor

Uncertainty

Toxicological data are always associated with uncertainty. 
This uncertainty needs to be considered when the primary 
test data are converted to legally binding exposure limits, or 
thresholds for safe exposure. A typical approach to account 
for uncertainty in exposure thresholds is to reduce the exper-
imental threshold dose by a safety factor (SF, also called 
uncertainty factor). This is usually accomplished by dividing 
the experimental threshold by a SF of 100, to arrive at the 
regulatory value that is suitable for application for human 
exposure. The SF may be larger if particularly suscepti-
ble populations need to be protected, or if the knowledge 
base is weak. In standard cases (with a robust and refined 
knowledge base), a factor of 10 is considered to account for 
human (inter-individual) variability. Another factor of 10 is 
applied to buffer errors due to extrapolation from a model 
system (animal) to man (inter-species conversion) (Chap-
man et al. 1998; Dankovic et al. 2015; Dorne and Renwick 
2005). This standardized approach follows the precaution-
ary principle, and is relatively easy to apply without a need 
for additional scientific information on given chemicals. 
However, if applied in a stereotypic (non-flexible) way, this 
approach may under- or over-estimate the uncertainty of risk 
of individual substances. To make risk assessment more sci-
entifically justifiable, an alternative approach would be to 
better understand and quantify all factors that contribute to 

uncertainty, and then to study or model/predict their role for 
given chemicals under evaluation.

Although the above considerations are generally 
applicable, each field, industrial sector or national legislation 
has developed slightly different procedures to relate the 
primary testing data, usually expressed as benchmark doses 
(BMD) or as no observed adverse effect levels (NOAEL), 
to exposure limits for human populations. Depending on the 
legislation, such legally binding exposure limits may then 
be called reference doses (RfD), acceptable daily intake 
(ADI), tolerable daily intakes (TDI) or maximal workspace 
concentrations (MAC).

Main types of uncertainties considered

Many studies show that previously and currently used 
animal models have many levels of uncertainty with respect 
to human prediction (Grass and Sinko 2002; Luechtefeld 
et  al. 2018; Ly Pham et  al. 2020; Natsch et  al. 2023; 
Smirnova et al. 2018; Wang and Gray 2015). In the future, 
New Approach Methodologies (NAMs) and the strategies 
to use and combine them will play important roles (Krebs 
et al. 2020; Leist et al. 2014; Mone et al. 2020; Pallocca 
and Leist 2022). The uncertainties of such modern model 
systems require more research, and this needs to cover all 
variabilities covered by classical safety factors. In general, 
classical toxicological SFs are considered to contain a 
toxicodynamic and a toxicokinetic component. For instance, 
the inter-individual factor of 10 comprises a  100.5 (square 
root of 10 ≈ 3.2) component for toxicokinetic variation 
and a similarly sized component reflecting toxicodynamic 
uncertainty. Similarly, the inter-species factor is (in some 
legislations) considered to consist of a factor of 4 for 
toxicokinetic differences and an assumed factor of 2.5 for the 
difference in toxicodynamics between animals and humans. 
In the case of NAMs, it is possible that novel strategies 
will be required to not only determine hazard and basic 
absorption-distribution-metabolism-excretion (ADME) 
properties (Tsaioun et al. 2016), but also to determine their 
uncertainty relative to the human population.

Major components of uncertainty in the setting of 
exposure-based limits are differences: (1) within susceptible 
and less susceptible human subpopulations, (2) between 
tissues and cells that may be affected, (3) of life stages 
(e.g. foetal vs adult), and (4) of past exposures/disease 
states. In addition, a further set of uncertainties comes 
from the relation of test methods (and the model system 
used for them) to the target population, i.e. (5) cross-
species differences in case of animal models, or (6) those 
associated with various test method protocols of NAM, 
even when the insult is the same. In a widened concept, 
going beyond toxicology, and embracing issues of general 
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health and ageing, the overall life-style (for humans) comes 
in as another important component (beneficial or negative 
modifier function) for cumulative risk.

All considerations on toxicological uncertainty are based 
on five major drivers:

Xenobiotic metabolism A large fraction of xenobiotics 
are metabolized, which usually shortens the periods during 
which the parent compounds can interact with organs and 
tissues. Besides the host’s cells, such as hepatocytes, the 
microbiome may also contribute to metabolism. Different 
metabolic rates can affect maximum plasma concentrations 
(Cmax) and also the concentration–time courses in target 
tissues (Hassan et al. 2022; Oesch et al. 2022; Ren et al. 
2022). In some cases, metabolism can lead to the generation 
of intermediates with increased toxicity, such as reactive 
electrophiles, and the relative speed of various metabolic 
pathways can determine the concentration-, time-courses and 
location of such toxicants generated in the body (Capinha 
et al. 2021, 2023). Thus, metabolism often contributes a 
major fraction of inter-species differences, inter-individual 
human differences, and target cell specificities. Many 
individual NAMs are still missing this component (Coecke 
et al. 2006).

Distribution (comprising absorption and elimination): 
many toxicants (or their metabolites) are substrates of 
transporters. This condition determines their localization, 
accumulation, or elimination from body compartments 
(Grass and Sinko 2002; Schildknecht et  al. 2015). 
The distribution of transporters and their enzymatic 
properties concerning xenobiotics (Km, Vmax) can thus 
affect tissue concentrations of chemicals and, thereby, 
their toxicologically effective concentrations at target 
sites. In many cases, target organ specificities are driven 
by distribution phenomena. For weak bases and acids, the 
distribution is often determined by transporters, and by the 
pH differences of body compartments.

Need/Demand For toxicants that impair certain cellular 
functions, the threshold of toxicity is determined by the 
extent the cell depends on these functions (or can buffer 
functional losses). For instance, carbon monoxide poisoning 
leads to a lack of oxygen supply and thus to an impaired 
respiration in the body. However, some cells depend 
more on respiratory ATP generation than others, and 
this characteristic determines the target organ specificity. 
Similarly, toxicants may affect organ development only 
during a specific time window when organogenesis critically 
depends on the respective target pathway (Balmer et al. 
2014; Dreser et al. 2020; Meisig et al. 2020; Schildknecht 
et al. 2017).

Resilience Cells and tissues have evolved extensive and 
elaborate mechanisms to compensate, buffer and repair 
damage (Smirnova et al. 2015). As such resilience requires 
time to build up and often fades later, this is an example of 

the importance of insult timing. For example, hepatic levels 
of CYP2E1 strongly decrease during repeated exposure 
to cytotoxic doses of compounds that are metabolically 
toxified by this enzyme, such as  CCl4 (Ghallab et  al. 
2019b). Moreover, export carriers of hepatocytes can be 
upregulated to protect the cells from cytotoxicity due to 
overloading with bile acids or xenobiotics (Ghallab et al. 
2019a). The use of stress response pathways differs largely, 
so that a given insult may be innocuous for one cell type, but 
detrimental for another (Gutbier et al. 2018b; Harris et al. 
2018; Smirnova et al. 2015; Wijaya et al. 2022). According 
to the toxicological concept of the adverse outcome pathway 
(AOP) (Leist et al. 2017), it is possible to include resilience 
factors as a “modulatory influence” on key events and within 
the description of key event relationships. For most AOPs, 
very little (or no) quantitative information is available on 
these issues (Spinu et al. 2020).

Target biochemistry/AOP Last, but not least, biochemical 
targets of toxicants may play a role. Within the AOP concept, 
this would mean that triggering of molecular initiating 
events (MIE) would be different: if the expression levels, 
post-translational modifications or localization of a toxicant 
target are changed, then the affinity and extent of the MIE 
would be altered. This could lead to altered pathways of 
toxicity on the molecular/cellular level (Kleensang et al. 
2014) and an enhanced, or attenuated, triggering of the 
AOP. In addition, such biochemical changes may lead to the 
triggering of AOPs otherwise not triggered. In more general 
terms, the patterns of activation of AOP networks may be 
altered.

All the above drivers of variation have genetic compo-
nents (Fig. 1A). For instance, a mutation in a gene may alter 
its affinity for a toxicant, or the increased expression level of 
a protein may lead to some attenuation of toxicity. Therefore, 
it appears essential to consider the effect of toxicants in light 
of given “genetic backgrounds”.

G × E concept

The G × E concept dates back nearly 100 years and the 
notion of an interaction of heritable factors (genetic setup) 
and non-heritable influences (environment, lifestyle) 
on disease outcome and on different life performance 
parameters is well-established in many scientific fields (bit.
ly/3YEbuuc). There is agreement that both genetics (nature, 
G) and the environment (“nurture” or external insults, E) 
together (G × E) affect pathological processes. However, 
the concept is rarely used in a fully quantitative way. Exact 
definition of what is meant by G, E, or the connector (×), 
are rarely given. They are mostly qualitative descriptions and 
they may vary greatly between different studies.
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Fig. 1  Relationship of insult,  Ge and toxicity outcomes. Several 
aspects of mutual interactions are displayed. The left side (subfigures 
A–C) deals with interactions of toxicants and test system (toxicants 
are considered here in a very wide sense, comprising all adverse 
influences, such as chemicals, radiation, infectious agents and other 
stressors). The right side (subfigures D–E) deals with effects of the 
 Ge background on the toxic response. A The genetic component  (Ge 
state) can affect toxicity in many ways. Five major drivers are shown 
and further explained in the main text. MIE refers to molecular ini-
tiating events (MIE of adverse outcome pathways (AOP)). B The 
genetic component in the classical G × E concept is not adequately 
described by “primary genetic sequence”. In reality, it is not the 
nucleic acid component of a gene that determines toxic responses, but 
the function of the protein that is encoded by the gene. The “real” 
meaning of “G” includes therefore at least the factors: gene sequence, 
epigenetic state, expression level, and post-translational processing. 
Altogether, this  Ge state determines the properties of the model sys-
tem. C The environment (E) component of the classical G × E con-
cept is composed of chemical, physical and life style factors. It is 
sometimes considered independent of (orthogonal to) genetic  (Ge) 
influences. This is an oversimplification in situations of prolonged or 
repeated insult. Under such conditions, it needs to be considered that 
insults not only contribute to toxicity as an endpoint, but that they 
also alter the test system. This involves in many cases a change of  Ge. 
Thus, a system with a given initial  Ge state during the first insult may 
have a different  Ge state upon a secondary or later insult, because the 
first insult changed the system. The timing of exposures to toxicants 
or other insults  (Et) needs consideration for a quantitative strategy to 
predict the extent and variability of toxicity. D The solid (blue) line 
shows a typical biological response to an insult (assumed to be the 
average within a test population): with an increasing insult, the bio-
logical system changes. It is assumed that up to a certain level, the 

changes are within a normal homeostatic regulation range and can 
be called adaptive; beyond this threshold (grey area) the changes are 
classified as toxicity. The dashed curves exemplify responses in par-
ticularly sensitive (S) or resistant (R) individuals. The dash-dotted 
line (B, red) shows a broadened response (i.e. it refers to a popula-
tion with more variation). The short-dashed line (B + S, green) shows 
a broadened response in a particularly sensitive subpopulation. While 
the insult is clearly defined by the values on the x-axis, the result-
ant biological deviation differs between members of the population. 
The sensitivity differences of its members are assumed to be due to 
genetic variation. The toxicity threshold is therefore reached at dif-
ferent insult intensities for individuals with different genetic back-
ground. E There is always an uncertainty of binary classifications 
(toxic vs non-toxic), which is largest at insult levels corresponding to 
the toxicity threshold. This can be visualized by frequency distribu-
tion curves showing how many additional individuals would be clas-
sified as affected (toxicity onset) at the next incremental insult step. 
If there is no (or very low) genetic variability  (Ge = 0, solid, blue), 
the uncertainty distribution is narrow. A moderate genetic variabil-
ity (dash-doted, red) leads to broadening of the distribution (some 
individuals affected at clearly lower toxicant levels, some at clearly 
higher levels). A high genetic variability (dashed, green) leads to 
further broadening, and may lead to asymmetric shapes, e.g. with a 
particularly sensitive sub-population. Given a certain reference dose 
(RD, e.g. accepted daily intake), the  Ge = 0 population would be 
safe. In the red (dash-dotted) population, some individuals would 
be endangered. Many individuals in the green (dashed) population 
would be victims of toxicity. Thus, the interaction of genetic fac-
tors  (Ge) and insult (including its timing,  Et), i.e.  Ge ×  Et, determines 
response variability and affects setting of safe reference doses
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A critical aspect of the G × E discussion is the underly-
ing models and causes. While it has been postulated that 
the interaction (G × E) of genes (G) and the environment 
(E) is only of statistical nature (no biological significance), 
it is now largely accepted that there are defined underlying 
biological mechanisms and that the two components can 
influence each other. Advanced examples of this concept 
are available from the field of pharmacogenetics (effect of 
drug dose and genetic background on maximum drug con-
centrations). One example refers to organophosphate toxic-
ity: paraoxonase polymorphisms and toxicant dose interact 
to determine acetylcholine esterase inactivation or overall 
toxicity, e.g. for sarin (Bolt 2023).

While historical models consider the role of genes 
as binary input (on/off), it is increasingly evident that 
G-effects can be polygenic and that expression of genes 
can vary on a continuous scale. An extreme example 
of G × E pathology is the autosomal recessive disorder 
phenylketonuria. It is caused by a rare gene mutation 
(disease frequency 1:15,000) that leads to defects in brain 
development followed by intellectual disability. However, 
if the biallelic mutation is identified at birth, and a diet 
with low levels of the amino acid phenylalanine is applied, 
no disease phenotype will occur and development occurs 
normally. Also, the expression of many polygenetic disease 
syndromes can be largely affected by diet, e.g. coronary 
artery disease, type 2 diabetes, and non-alcoholic fatty liver 
disease. For instance, there is an extensive directory of G × E 
interactions relevant to cardiometabolic traits and ensuing 
disease (Parnell et al. 2014). In many cases, a gene may have 
dozens or even hundreds of variants, alleles and mutated 
forms, in addition to copy number variations and changes in 
enhancer regions. This can lead to a broad range of activities 
of the encoded protein. One example is the melanocortin-4 
receptor (MC4R). Its mutations and loss are associated with 
obesity. Many partially active mutations allow the drug 
setmelanotide (a MC4R agonist) to be clinically beneficial 
(Abbasi 2021; Fatima et  al. 2022). Another clinically 
relevant example is the cystic-fibrosis-related chloride 
transporter (CFTR). Mutations can be associated with a 
range of residual activities, and drug effects depend on the 
type of mutation (Fajac and Girodon 2020).

While the acceptance of the G × E concept, i.e. mutual 
interaction of genes and environment, has provided a 
unifying solution for the nurture vs. nature debate, many 
additional steps are required to sharpen the concept and 
allow eventually a quantitative application e.g. to the 
definition of uncertainty in risk assessment.

G × E examples in toxicology and beyond

The examples of G × E interactions in pharmacology and 
toxicology are legion, and only few outstanding examples 
will be given. For instance, allelic variants for drug 
acetylation or hydroxylation by cytochrome P450-2D6 have 
a major influence on their metabolic capacity and therewith 
on the concentrations of their substrates. Mutations of the 
tumour suppressor p53 can affect the toxicity of irradiation, 
chemotherapeutics or genetic modifiers (Levine and Oren 
2009; Panatta et al. 2022a, b; Sabapathy and Lane 2018). 
The concept of G × E for metal toxicity is also very broadly 
explored (Broberg and Pawlas 2022). A more focussed 
example is Fava bean consumption, which results in 
haemolytic anaemia only in “normal” subjects, but not 
when the G6PD gene product is deficient. An example for a 
functional polymorphism comes from the antioxidant gene 
NQO1 where a single small change in the coding sequence 
(rs1800566) favours NOx-induced lung injury (Basharat 
et al. 2016).

Species-dependent susceptibilities to potent toxins 
also provide a clear illustration of the genetic component. 
Organisms using tetrodotoxin (TTX) for defence have 
altered the genetic sequence of their own potential toxin 
target, a sodium channel, so that the protein does not 
bind TTX (Geffeney et al. 2019). Moreover, snakes using 
α-neurotoxins are resistant because of mutations in their 
nicotinic receptors (the usual target) that prevent toxin 
binding (Khan et al. 2020).

Similar resistance versus susceptibility phenomena are 
well studied in the case of infectious diseases, where the 
presence or absence of a suitable receptor determines the 
host range of viruses or the disease risk for individuals 
(Liu et al. 1996; V'kovski et al. 2021). The more than 400 
identified inborn-errors-of-immunity provide numerous 
examples of specific human genotypes linked to an often 
narrow spectrum of infectious diseases (Casanova and Abel 
2022; Notarangelo et al. 2020). A case in point is made by 
patients with recurrent meningococcal infections, which 
can be linked to inherited deficiencies in terminal comple-
ment factors (Fijen et al. 1989; Lee et al. 1978; Owen et al. 
2015). Whereas such individual genetic predispositions for 
particular infectious diseases are easily explained by defects 
in innate immune defence mechanisms, deletions or allelic 
variations in non-immune-related loci can also protect from 
infections as seen in biallelic loss-of-function (LOF) muta-
tions of the fucosyltransferase 2 (FUT2) gene, which confer 
resistance to Noro- and Rotavirus infections (Lindesmith 
et al. 2003; Payne et al. 2015). In this context, it is becom-
ing apparent that frequencies of such protective or deleteri-
ous alleles differ between human populations (Adrian et al. 
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2019), indicating that future G × E extrapolations should 
ideally consider human ancestry.

Model refinement by G × E

Toxicology heavily depends on models (Lanzoni et al. 2019; 
Leist et al. 2008; Marx-Stoelting et al. 2021; Marx et al. 
2020; Neuhaus et al. 2022; Pallocca and Leist 2022). Some 
models are so extensively used that it is at times forgotten 
that they are “only” modelling aspects of reality, but they are 
not the reality proper. This logical fallacy is called reification 
(Pallocca et al. 2022b), and one of its consequences has been 
an over-reliance on animal experiments in the past. Now, 
it has become clear that healing an “Alzheimer mouse” 
or protecting a rat from stroke or septic shock translates 
extremely poorly (less than 10%) to actual patients (Leist 
and Hartung 2013; Pistollato et  al. 2016). The reasons 
for this discrepancy are not yet entirely clear, but genetic 
differences may play a role (Li et  al. 2017; Seok et  al. 
2013). This assumption is in line with partially significant 
differences between the model systems. In some areas of 
toxicology, one animal species is 60% predictive of another 
one (Smirnova et al. 2018), and even strains of mice may 
show sensitivity differences to carcinogens by > 100-fold 
(Diwan et al. 1986; Romualdo et al. 2021). Understanding 
the underlying G × E effects is important for the selection 
of models with the best translational value in toxicology 
or in disease biology. Evidence for the importance of the 
G × E concept is provided by the absence of LPS-sensitivity 
in C3H/HeJ and C57BL/10ScCr mice. Their resistance to 
LPS-induced septic shock, compared to other inbred mouse 
strains, was the basis for the research leading to the 2011 
Nobel Prize in Medicine (Poltorak et al. 1998).

Concerning cytotoxic properties, ouabain is an exemplary 
chemical that inhibits human Na/K-ATPase, but hardly 
affects the same enzyme in mice (Kent et al. 1987). The 
reproductive toxicity of thalidomide to New Zealand white 
rabbits, but not to other rabbit strains or mice, is another 
example (Knapp et al. 1962).

Also, the susceptibility of chicken to organophosphate-
induced delayed-type neuropathy (relative to rodents) or the 
lack of effect of the neurotoxicant MPTP in rats (vs. the high 
sensitivity of some mouse strains and monkeys) represent 
well-established examples in toxicology. This suggests that 
knowledge of the relevant genetic backgrounds (including 
the gene products (proteins), and their regulation in models 
relative to human populations), would be highly beneficial 
(Li et al. 2017).

It is tempting to assume that all differences observed 
between animals and humans are due to genetic variation. 
Also, differences between animal strains (of the same 
species) are often considered to be fully explained by the 

different genomes. However, such simplistic assumptions 
neglect the large influences of life style, life history, 
husbandry and experimental protocol differences on the 
outcome of studies. Experiments repeated within a given 
animal model (same genes) can show a surprisingly large 
extent of variability. This characteristic may be due to 
animal husbandry, operator differences, or various lifestyle 
factors. Nevertheless, some of the variability is likely due to 
genetic heterogeneity, e.g. in outbred animal strains (Festing 
2016). Various strategies have been suggested to control the 
genetic background and to use it for improved predictivity 
(Kafkafi et al. 2018; Richter et al. 2009; Vollert et al. 2022).

The key question of this editorial is: how can the G × E 
concept help to improve toxicological models and their 
predictions? The answer has two major, conceptually 
different, components. The first is obvious and has been 
frequently discussed: models may be selected to reflect 
optimally the human type of genetic background and the 
functional/regulatory networks encoded. For this reason, 
many human polymorphisms have been mapped to toxicant 
sensitivity differences (Axelrad et al. 2019; Chao et al. 2017; 
Gurol et al. 2023; Monte et al. 2022; Pham et al. 2022; 
Reverte et al. 2013; Salazar-Gonzalez et al. 2023; Xu et al. 
2022a, b). If hazard evaluation follows the AOP concept, 
it is especially important that there are no large taxonomic 
differences and that the fine-tuning of key event relationships 
by genetic factors is similar between the model system and 
the human population. This aspect may require careful case 
studies and case-by-case evaluations, especially for complex 
networks (Arnesdotter et al. 2021; Knapen et al. 2020; Spinu 
et al. 2022).

The second issue is much less discussed. It deals with the 
uncertainty of predictions and with the population variability 
concerning toxic responses. In regulatory toxicology, and 
in risk assessment in general, not only is the determination 
of the insult level (toxicant dose or concentration) relevant, 
but also the uncertainty related to its measurement. The 
uncertainty describes the distribution of response thresholds 
across a population. If there is a narrow distribution, it 
is relatively simple to define a reference dose so that no 
individuals are exposed to toxic levels. If the variability 
is large, and possibly includes particularly sensitive 
subpopulations, it is much more difficult to define reference 
doses, and they may need to be set far lower than for the 
average population sensitivity. Genetic factors are a major 
contributor to the variability. Probabilistic risk assessment 
(Maertens et al. 2022) (see below) aims to take this inter-
individual distribution into account.

Some promising studies have already been undertaken to 
understand genetic variability in model systems (Rusyn et al. 
2022). Nevertheless, this research field is still in its infancy. 
Much research is required on defining—in principle—which 
factors are the main drivers of uncertainty and to which 
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extent they can modify responses. If this field gets more 
advanced, many detailed case studies are required to see how 
such factors interact with various toxicants and in different 
models. In future, hopefully general rules and predictions 
can be derived from such data. To promote progress in this 
area, more awareness for G × E interactions and systematic 
testing in many models and with various insults is required. 
To highlight the need for a new view on G × E, we suggest 
some adaptations of naming, as detailed in the sections 
below. We anticipate that the work to provide a basis for 
quantitative predictions based on quantitative knowledge of 
complex biology may take decades. However, we feel that 
it is time to get it started (Leist et al. 2008), and to lay out 
a conceptual framework (Hartung et al. 2017; Mone et al. 
2020; Pallocca et al. 2022a; Thomas et al. 2018, 2019).

G × E and probabilistic risk assessment

The classical points-of-departure (PoD) for risk assessment 
are NOAELs. These are data points without any measure of 
variability, and with adversity determined by expert opinion, 
as opposed to stringent statistical criteria. The BMD concept 
is used increasingly, allowing for the calculation of a 
confidence interval. However, the statistical basis for this is 
usually weak, and the reasons for variation of the confidence 
intervals have not yet been sufficiently investigated. They 
are considered stochastic, rather than being causally driven 
by genetic differences in susceptibility. Usually, the PoD 
point estimates are divided by a safety factor (e.g. 100x) 
in a relatively rigid and formalized procedure to arrive at 
the reference dose (Dankovic et al. 2015). What could a 
future procedure look like? Knowledge and understanding 
of population variability may allow modelling of probability 
functions for toxicant risk at given exposure levels (Maertens 
et al. 2022). Regulatory toxicology could then use these 
functions to set reference doses so that 95, 99, or 99.99% 
of the population are protected (dependent on other factors 
and background knowledge used for risk management). In 
figurative terms, risk would be represented by a distribution 
curve, which is sliced in an appropriate (statistically 
defined) manner. This would also work the other way 
around: we could illustrate what the impact of different 
thresholds for public health are when deciding on such 
thresholds. This process may be combined with probabilistic 
uncertainty determinations within the test model. Instead 
of a point estimate, the PoD may be defined by the dose or 
concentration with a residual uncertainty of < 5% or < 1%.

Broadened concept of G × E:  Ge ×  Et

To further develop the concept of G × E and set it on a solid 
basis (giving it an explanatory and quantitative character 
beyond non-mechanistic observations and qualitative 
descriptions), it is important to rationalize what is meant 
by “G” in the G × E expression. If we consider the protein-
coding genes, it is the fluctuation in the level of proteins 
that determines cell behaviour. If a gene has a mutation, 
misses an exon, or is duplicated, this will, in most cases, 
have no direct (in a chemical sense) effect on cell behaviour 
and toxicant sensitivity. If the gene codes for an enzyme, its 
activity (Vmax, Km and amount) is the key modifying factor. 
The same applies (with modifications) to transporters or 
transcription factors encoded by the gene. This statement, 
apparently trivial, has important implications. First, gene 
sequence changes outside the protein-coding region can 
play important roles, as they may affect the amount of 
protein produced. This aspect is also obviously extended 
to regulatory regions of specific genes, promoters and 
enhancers, whose mutations/polymorphisms can affect 
protein production. Second, the factor “G” can, in many/
most cases, not be modelled with a binary approach (on/
off or present/deleted). For many genes, dozens, hundreds 
or even thousands of mutations are known, so the activity 
of the corresponding proteins may vary nearly continuously 
over a relatively wide range. Third, epigenetic changes and 
other influences that affect the relevant mRNA levels must 
be taken into account, considering that it is the gene product 
that matters, not the polynucleotide as such. A hitherto 
often neglected genetic effect relevant to toxicity involves 
non-coding areas of the genome, including microRNAs, 
long non-coding RNAs, retrotransposon elements and 
satellite RNAs (Smirnova et al. 2012). An adversity arising 
independent of proteins is based on the hybridization of 
different nucleic acid species with one another, which can 
lead to R-loop formation, stalling of replication forks and 
generation of genetic instability (Janssen et al. 2018; Panatta 
et al. 2022a, b).

The role of gene expression in response to environmental 
changes (toxicant exposure, lifestyle, etc.) (vs the primary 
gene sequence) becomes evident when one considers 
the drastic sensitivity differences of various cell types in 
the body, or the influence that life stage and lifestyle can 
play in the toxicant response of one given individual. In 
both cases, the genes (primary nucleotide sequence) are 
unchanged (the same in all cells at all times). However, 
epigenetic modifications in each cell lead to the silencing 
of gene subsets or their positioning in open chromatin 
areas. This mechanism determines the subset of genes 
expressed in tissue-specific cell types. In addition, many 
other factors affect the mRNA levels of active genes, and 
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eventually their translation. For this reason, “G” stands, in a 
functional sense, not only for the gene’s primary sequence, 
but also epigenetic state and transcript/protein levels. As 
“gene” is more narrowly defined in biological ontologies, 
it would cause less confusion to use a different acronym. 
We suggest here  Ge (the subscript including epigenetics, 
expression levels and other relevant biology beyond the 
primary nucleotide sequence). This should signify a 
difference from the concept “gene” (unit of hereditary 
transmission), and be better suited to describe the influence 
of the genetic background in toxicology (Fig. 1). We would 
like to stress here, that epigenetic changes and transcriptome 
modifications are not necessarily correlated and thus need 
to be considered separately. Together they may contribute to 
the heritability of environmental influences, independent of 
the primary gene sequence alteration (Li et al. 2022; Siwek 
et al. 2020). N.B.: the concept does not neglect that it is 
mostly the concentration, localization and modification of 
proteins coded by the genes that determines the phenotype 
of cells. However, the role of non-coding RNAs and of long-
range chromatin re-arrangements are also well noted (see 
outlook), but for space reasons not considered here.

Direct effects of the environment and insult 
timing on  Ge

As described above, we have seen that considerations of 
the interaction between the “environment (E)”, i.e. the 
exposure situation to toxicants, and the genetic background 
are likely to lead to a better description and quantification 
of uncertainties in risk assessment than a focus on insult 
levels (exposures) alone. Toxicology is not the only field 
where this principle may be applied. It may be generalized 
to any harmful effects on humans, including natural ageing 
and long-term consequences of chronic stress. In all these 
cases, a name change from G to  Ge may lead to a heightened 
awareness for the role that the affected biological system 
plays in the outcome of toxicant exposure.

There is a need for further adaptation of the concept: 
time must be given specific consideration. The duration 
of exposure is an important toxicological parameter, as 
expressed e.g. in Haber’s law (Macko et al. 2021) or in 
different testing methods for acute and chronic toxicity. We 
are well aware that time is part of the definition of E (long- 
or short-term exposures) in classical toxicology. However, 
many time concepts are still little considered, and awareness 
for them is important for new toxicological approaches. They 
include the time period of exposure during a sequence of life 
stages, the time between different exposures, the time of 
recovery after an exposure, etc. Time is also important as we 
apply the AOP framework. However, the AOP framework 

neither includes a symbol for time, nor is time a prominent 
descriptor of most key events or molecular initiating events. 
In addition, the development of qAOPs has seldom included 
time. There may be many reasons for not including time 
in qAOPs, but the paucity of data and absence of a time 
concept from the underlying AOP are key. Therefore, we 
suggest accentuating “E” with an extension for Time  (Et) 
to highlight the need to take the various time-related issues 
into consideration.

The classical G × E concept regards environment as a 
neutral (positive or negative) driver of behaviour. For use 
in risk assessment, the term  Et should be considered to 
mainly stand for an insult (with its connotation of possibly 
detrimental effects). In summary, we suggest to rename 
G × E to  Ge × Et.  Et will mainly be considered as “insult” 
when exposure to xenobiotics is considered, but additional 
factors are not excluded (see below).

The consideration of  Ge and  Et (both as orthogonal 
input factors) implies that they affect one another on a third 
dimension and thus together drive the outcome. However, in 
many cases,  Et will also directly affect Ge. This concept can 
be investigated with a simple thought experiment: prolonged 
exposure may be perceived as a repetition of short exposures. 
After the first of these short exposure periods,  Ge × Et needs 
to be considered. For instance, biological systems react 
to stressful stimuli by adaptations, i.e. the activation of 
canonical stress responses, such as the heat shock response, 
the oxidative stress response, the endoplasmic reticulum 
stress response, the DNA damage stress response, the 
inflammatory response, the hypoxia response, endotoxin 
tolerance etc. (Lehner and Hartung 2002; Ter Braak 
et al. 2022; Wink et al. 2018). All these canonical stress 
responses are adaptations of the transcriptional activities 
and epigenetic regulations of the cell. Consequently, after 
the first short exposure to an insult, the biological system 
would change its gene expression  (Ge) (Fig. 1C). This means 
that the second insult (or the prolonged insult period) would 
interact with a system that is altered concerning its  Ge-state. 
Thus,  Ge × Et would be different from the first exposure 
period.

The above example shows that more prolonged insults 
will likely affect the  Ge state of the system directly. The 
initial  Ge × Et interaction will be different from that at the 
end of the exposure. One of the most extreme results of the 
time effect is ageing. Biological ageing may be measured 
by progress on an epigenetic clock (Li et al. 2022), i.e. a 
measureable alteration of the epigenetic state  (Ge) over time. 
This assumption means that the system changes its  Ge-state 
over time. Notably, the change of the  Ge state over time does 
not parallel the progress of physical time. In other words, the 
biological clocks of individuals may run at a different speeds 
and humans of same “calendaric” age may have different 
biological ages  (Ge states).
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The system (e.g. human tissues) changes its  Ge state 
because of environmental influences  (Et), such as oxidative 
stress, DNA damage, etc. Exposure to DNA damaging 
conditions clearly changes the epigenetic state and, thus, the 
time of exposure affects  Ge (Yang et al. 2023). In essence, 
this means that the environment  (Et) can directly change 
 Ge so that  Ge and  Et are not really orthogonal dimensions 
that interact on a third level, but they also have some direct 
overlaps. The interaction of  Et and  Ge thus occurs on two 
levels (direct and indirect), unless insults are of very short 
duration. In many cases (repeated/prolonged exposure), the 
system adapts, and the interaction of  Ge and  Et becomes 
very dynamic.

This widened  Ge × Et concept now allows for the 
incorporation of multiple environmental factors, acting 
sequentially or simultaneously. In classical toxicology, the 
latter case would be termed mixture toxicity. The concept 
would also allow for the interaction of toxicants, pathogens 
and/or lifestyle changes, with genetic backgrounds (Hartung 
2022). For practical reasons, non-adverse environmental 
factors may even be considered as a third dimension.

With further development of such a concept, techniques 
to quantify  Ge × Et (on different environmental backgrounds) 
may be identified and developed. The epigenetic clock 
(integrating the impact of multiple environmental factors 
over time with a given genetic background) may provide an 
initial orientation. Possibly, a set of epigenetic modifications 
and expression patterns of certain mRNAs may be defined 
for given cell types or toxicological situations to quantify 
the  Ge × Et effect.

The integration of multiple environmental factors has 
already been explored in the field of mental illnesses and 
psychological distress, e.g. by combining knowledge of 
genetic variants of the serotonin transporter, early childhood 
experiences, and later life stress factors (Grabe et al. 2012). 
The research field dealing with chronic stress developed early 
on far-reaching concepts for how environmental exposure 
modifies the experimental system. This “allostatic load 
concept” (McEwen 1998) also integrated multiple inputs 
(e.g. direct stressors together with enhancing and moderating 
life style factors) to a fully developed model of what we 
named here  Ge × Et. The system alterations were read out 
in many ways, e.g. by a reduced telomere length upon 
continued stress (Epel et al. 2004) or altered inflammatory 
responses (Wirtz et al. 2003). In the course of these studies, 
it was revealed that pre-challenged systems (higher allostatic 
load, less resilience) would respond differently to a second 
or continued stressor, e.g. by accelerated ageing, coronary 
heart disease or altered brain function as consequence of 
an unbalanced hypothalamic–pituitary–adrenal (HPA) axis 
(Wirtz and von Kanel 2017). The implication of this is not 
only relevant to life-style-related stress. Exposure to toxic 
chemicals is a classical way to activate the physiological 

stress responses, and this plays a role in many toxicological 
studies (Everds et al. 2013).

With the increasing importance of non-animal methods 
in toxicology (Mone et al. 2020; Pallocca and Leist 2022), 
several questions arise concerning the  Ge × Et concept in 
NAM. The answers are relevant to understand whether the 
novel toxicological test approaches will eventually allow 
predictions of human effects, not only concerning hazard 
of chemicals, but also concerning uncertainties of risk 
assessments. Here, brief information and food-for-thought 
on future research efforts is given.

Can  Ge ×  Et be observed in NAM?

As many NAM are set up in a way to allow mechanistic 
studies and the application of modern ~ omics technologies, 
they seem pre-destined for studies on  Ge × Et and underlying 
mechanisms. Many observational studies give evidence 
of this potential, while at the same time providing alerts 
concerning genetic variability. For instance, we (Kleensang 
et al. 2016) observed major differences in the transcriptional 
response to oestrogen in MCF-7 cells from different frozen 
vials. Similarly, (Gutbier et al. 2018a) correlated the toxicant 
sensitivity of LUHMES neurons with their culture history 
and corresponding development of mutational patterns. 
Such findings seem to be more widespread than assumed, 
as, e.g. (Ben-David et al. 2018) showed more broadly that 
cancer cell line drug responses continuously change by 
transcriptional evolution.

Other types of studies have made use of controlled shifts 
of the  Ge status of cells. For instance, (Hammour et al. 
2022) have compared two protocols to generate HepaRG 
cell models for drug toxicity studies, i.e. cells with the 
same DNA primary sequence were manipulated to assume 
different  Ge states, then used further for  Ge × Et studies. This 
approach is extremely widespread in the field of stem cell-
derived cell types. A toxicological example is the use of 
one given iPSC line to generate two cell types (neurons and 
cardiomyocytes) that then showed different toxicological 
responses and were characterized by their transcriptome 
shifts (Seidel et al. 2022).

Can one use NAM to evaluate and to predict 
the importance of  Ge ×  Et?

Many different aspects have been addressed here, 
as exemplified by the small field of developmental 
neurotoxicity (DNT) testing. For instance, we (Modafferi 
et al. 2021) demonstrated that iPSC cells with or without 
an autism-related mutation in the CHD8 gene showed 
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different neuronal development patterns. More importantly, 
evidence was obtained from this in vitro model that the DNT 
toxicant chlorpyrifos synergizes with the effect of the CHD8 
variant. It has also been found that neuronally differentiating 
stem cells change their epigenetic structure upon toxicant 
exposure. This chromatin modification affected gene 
expression patterns at later developmental stages (Balmer 
et al. 2014). Using a similar experimental model, a genome-
wide prediction approach was developed on how toxicant 
exposure would affect gene expression patterns over time 
(Meisig et al. 2020).

NAMs also allow interventions on selected candidate 
genes, or they can be used for genome-wide assessments 
to identify susceptibility genomic loci. Genetic screens 
based on CRISPR and shRNA libraries have been used 
to identify specific genes of interest associated to altered 
susceptibility to toxicants: (Olivieri et al. 2020) generated, 
with a massive effort of 31 genome-wide screens against 27 
genotoxic agents, a genetic map of human cell responses to 
DNA damage inducers.

When model systems are used, considerations of 
the environment are particularly important, as they are 
decided, defined and maintained by the experimenter, 
often independent of  Ge and independent of  Et. In a narrow  
Ge ×   Et concept, all environmental factors may be included 
in “Et”. In a wider concept, a third dimension may be justi-
fied. Often overall  Ge × Et effects depend on the cell density, 
on the cell culture medium, on the oxygen supply of cells 
(Pamies and Hartung 2017), and on other factors that neither 
affect gene expression, nor can be classified as insults in a 
classical sense. A striking example is neurotoxicity testing, 
where the contents of glucose and galactose in the medium 
can affect toxicant potency by > 1000-fold (Delp et al. 2019). 
Media composition can also cause drastic shifts in cell death 
type or extent (Gutbier et al. 2020; Leist et al. 1997; Suciu 
et al. 2023).

In applied toxicology, it is a common approach to focus 
on the insult effect (toxicant exposure) of the environment. 
This approach neglects the contributions of all other aspects 
of the environment. For a comprehensive risk assessment, it 
appears mandatory to also take the beneficial effects of the 
environment into account. This extension is an important 
background frame for the  Ge × Et concept, and also points 
to needs for future adaptations.

Can one explore the human population   
Ge ×  Et in NAM?

In parallel to the exemplary studies above, generalized 
approaches have been developed on how the genetic compo-
nent of  Ge × Et may be decoded using NAM approaches. Such 
approaches are widespread in oncology, and a more modern 

variant is the generation of patient-derived cancer organoids 
for drug screening (Driehuis et al. 2020). For instance, the 
NCI-60 cancer cell line panel has been used to study the 
correlation of toxicant effects with genetic features of the 
cells (Krushkal et al. 2021). This experimental approach 
will generate large data sets that will eventually allow the 
correlation of drug toxicities with genetic backgrounds and 
the deconvolution to susceptibility and sensitizing genetic 
modules. Another approach was developed on the basis of 
immortalized human lymphoblastoid cell lines (Abdo et al. 
2015a; O'Shea et al. 2011). In this approach, e.g. 1086 cell 
lines from the 1000 Genomes Project were used to assess 
variation in cytotoxic response to 179 chemicals (Abdo et al. 
2015a, b). Similar approaches are ongoing with human iPSC 
or primary human hepatocytes, and sequencing of the cells 
will allow multivariate correlations between genetic back-
grounds and toxicant susceptibilities.

An outlook towards the future is provided by single cell 
sequencing approaches, where the response of individual 
cells in complex multi-cellular cultures can be characterized, 
and where cells with different genetic background can be 
combined in a single culture system. The technology is being 
made ready for toxicological applications (Liu et al. 2022; 
Paisley and Liu 2021). Single-cell sequencing was applied 
to simple liver models already years ago (Zhang et al. 2020). 
More recently, an exemplary study on a 3D microtissue liver 
model revealed cell type-specific responses to pre-fibrotic 
stimulation (Messner et al. 2021). An increase of complex-
ity is provided by a microfluidics-based stem cell model of 
early post-implantation human development for teratology 
studies. It allows following the toxicant effects on single 
cells by RNA sequencing (Zheng et al. 2021).

On the basis of such studies, one vision for the future is 
that toxicant testing will be performed with assays that use 
multiple test systems representative of the human genetic 
variability (Fig. 1D, E). This means that the future test 
methods will not be based on a single cell line, cultured 
under highly defined conditions, as is currently often the 
case. Instead, cells with multiple genetic backgrounds and 
also in various transcriptional and epigenetic states may be 
used in a highly parallelized way to fully explore the extent 
of uncertainty linked to the model system variation.

Conclusions and outlook

The G × E concept is neither new, nor has it gone unnoticed. 
It is firmly established in toxicology and other disciplines. 
So why is it worth revisiting and investing thoughts and 
resources? Three arguments have been brought forward, and 
are summarized here:

First, the limitation of “G” to a gene primary sequence 
is too restrictive, and the concept that a gene is either on or 
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off is outdated. The  Ge-concept, referring to transcriptome 
adaptations, non-coding RNAs, epigenetics and various 
factors affecting the encoded proteins appears more 
appropriate. This has not only conceptual consequences, but 
also affects the parameters that need to be assessed and the 
techniques used for this.

Second, the “E” component should be considered broadly, 
and it needs to be considered that it may feedback on  Ge. 
The timing of exposure is a key issue often neglected, and 
the interaction of multiple insults or of insults with other life 
style factors is a frequent difference between simple model 
systems and the real world of human life. Where models are 
being used for predictions of human health, this has impor-
tant consequences. In an integrated view, a step for the future 
would not only be to apply the concept to toxicology, infec-
tion research, stress-fatigue etc., but to see these fields as 
part of an integrated structure, as illustrated by an exemplary 
study on the interaction of viral infection, immune modula-
tion by helminths and air pollution (Leist et al. 2014).

Third, while the concept is broadly embraced, there is a 
long way to go from a conceptual understanding to a quan-
titative application. Initially, a mapping of the key drivers is 
required. For each of them, it needs to be determined, how 
much it can alter the adverse outcome. This would already 
in some cases allow a more rational definition of uncertainty 
of toxicological predictions. Finally, a network model for all 
drivers of variability and their interaction has to be devel-
oped, based on systems biology understanding. This is a 
long-term vision, possibly taking decades. The effort would 
pay not only for some practical applications, but also by 
putting disease biology on a new foundation. For the whole 
field of medicine/biology, it may be debated whether this is 
an ambitious, but realistic goal, or an unachievable dream. 
However, partial solutions may be developed for more nar-
row fields and applications. For instance, the concept of AOP 
in toxicology is taking the step towards quantitative AOP 
(mathematical networks predicting the state of the system 
and its components over time). In parallel, the mostly linear 
AOPs are converted to AOP networks. First approaches to 
determine uncertainties for individual key events in such 
networks have been started (Paini et al. 2022; Spinu et al. 
2022; Tebby et al. 2022; Yang et al. 2022). Application of 
the  Ge ×  Et concept to key event definitions may be an impor-
tant next step. Concerning research policies and research 
funding, it appears vital to develop a roadmap for such a 
process, similar to other long-term initiatives, such as the 
transition from animal-based testing to NAM (Leist et al. 
2014). Steps to move towards integrated biomarkers (e.g. 
multi-omics approaches or exploring the use of exosomes 
as integrative biomarkers) may be integrated (Cano et al. 
2023; Gupta et al. 2021; Jain et al. 2023; Perpetuo et al. 
2022; Pitzer et al. 2023).
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