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Abstract Electroencephalography (EEG) is among the most
widely diffused, inexpensive, and adopted neuroimaging tech-
niques. Nonetheless, EEG requires measurements against a
reference site(s), which is typically chosen by the experi-
menter, and specific pre-processing steps precede analyses.
It is therefore valuable to obtain quantities that are minimally
affected by reference and pre-processing choices. Here, we
show that the topological structure of embedding spaces, con-
structed either from multi-channel EEG timeseries or from
their temporal structure, are subject-specific and robust to
re-referencing and pre-processing pipelines. By contrast, the
shape of correlation spaces, that is, discrete spaces where
each point represents an electrode and the distance between
them that is in turn related to the correlation between the re-
spective timeseries, was neither significantly subject-specific
nor robust to changes of reference. Our results suggest that
the shape of spaces describing the observed configurations
of EEG signals holds information about the individual speci-
ficity of the underlying individual’s brain dynamics, and that
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temporal correlations constrain to a large degree the set of
possible dynamics. In turn, these encode the differences be-
tween subjects’ space of resting state EEG signals. Finally,
our results and proposed methodology provide tools to ex-
plore the individual topographical landscapes and how they
are explored dynamically. We propose therefore to augment
conventional topographic analyses with an additional – topo-
logical – level of analysis, and to consider them jointly. More
generally, these results provide a roadmap for the incorpora-
tion of topological analyses within EEG pipelines.

Keywords: Resting-state Electroencephalography, Topog-
raphy, Topology, Network, Computational Modelling, Refer-
ence Electrode

1 Introduction

Electroencephalography (EEG) is a non-invasive neuroimag-
ing technique measuring the electrical activity of the brain at
the scalp (Biasiucci et al., 2019). EEG has several practical
strengths as a neuroimaging tool (Michel Christoph M., 2009;
Michel and Murray, 2012; Michel et al., 2004; Murray et al.,
2008): it is temporally precise, cost-effective, easy to use,
portable and compatible with other techniques, such as MRI
and PET. Indeed, these strengths made EEG a primary tool
for studying brain activity both from the clinical and research
standpoints (Lepage et al., 2014). EEG primarily measures
postsynaptic potentials of pyramidal neurons. The neurotrans-
mitter release generated by excitatory or inhibitory action
potentials results in local currents at the apical dendrites of
the post-synaptic neuron, that in turn lead to current sources
and sinks in the extracellular space. In biophysical terms,
voltages refer to the exertion needed to move charge from
one site to another. More practically, this means that voltage
is the charge differential between a “chosen” electrode and
a “reference” electrode (Tivadar et al., 2019; Biasiucci et al.,
2019). EEG is the measurement of this voltage as it varies in
time, and thus results in “time series” across different sites
on the scalp. Two issues arise from the biophysical underpin-
nings of the EEG signal. First, the brain signals recorded at
scalp level is given by the synchronous activity of multiple
neurons that volume conduct. Therefore, a given electrode
not only captures brain activity from directly beneath it, but to
a certain extent from the entire brain. Second, measurements
of voltage are referential, meaning that EEG time series (in-
cluding event-related potentials (ERPs)) at a given electrode
or scalp site will change when the reference changes, as there
is no electrically neutral spot on the scalp or body surface.
This has led to a long-standing debate in the EEG community,
discussing which of the references is more informative for
the analyses (Chella et al., 2016; Yao et al., 2019; Hu et al.,
2019).

This issue concerns spontaneous data as well as pre-
processed and post-processed averages, and functional con-
nectivity data. Thus, referencing affects both temporal and
spatial aspects of the recorded potentials (Chella et al., 2016).
With regards to spatial aspects, the values of the electric
field at the scalp will change when the reference changes, as
a different baseline value (i.e. the voltage of the reference
electrode) is being compared to every other electrode.

In terms of temporal aspects, a non-neutral reference in-
troduces time-varying activity into the recordings of all elec-
trodes, meaning that both the temporal waveforms, as well as
their spectral properties suffer from distortions (Chella et al.,
2016). Therefore, the variance around a mean voltage value
(e.g., spectral power, amplitude, etc.), as well as other derived
and associated measures, including results of statistical con-
trasts, will change when the reference changes. These facts
have generally led to –and to some extent continue to result
in– misinterpretation and misuse of EEG data, despite good
quality in experimental design (Michel and Murray, 2012;
Biasiucci et al., 2019; Tivadar et al., 2019).

To solve the reference issue, many in the EEG community
have turned towards the characterization and analysis of prop-
erties of the electrical field at the scalp, such as topographical
maps and spatial pattern analysis methods, as well as source
localisation techniques (MWong, 2012; Michel and Murray,
2012; Michel et al., 2004; Grave de Peralta Menendez et al.,
2000; Lehmann and Michel, 2011; Michel et al., 2001; Tenke
and Kayser, 2005; Marinazzo et al., 2019). Treating the data
from the entire electrode montage as a multivariate vector
has several advantages over waveform-based analysis of volt-
age. First, the shape of the electrical field at the scalp will
not change with a changing reference (Tivadar et al., 2019).
Second, multivariate analyses also profit from the added in-
formation of high-density recordings. They can disentangle
effects of strength from effects due to changes in sources’
configuration or signal latency (Murray et al., 2008). Third,
topographic information has direct neurophysiologic inter-
pretability (Michel and Murray, 2012), as biophysical laws
dictate that differences in topography indicate changes in
the configuration of active cerebral sources (Vaughan, 1982;
Lehmann, 1987). Nevertheless, traditional waveform-based
analyses still predominate in the EEG community (Luck,
2014).

Here, we propose a new method of description of the
EEG signal, which is robust across different pre-processing
and reference choices. We first build representations of EEG
data based on different types of signal embeddings. We then
assess their robustness and discriminatory power, e.g. be-
tween different subjects and tasks, using recent topological
data analysis tools. These tools have been shown to be use-
ful in the analysis of neurophysiological data (Petri et al.,
2014, 2013; Ibáñez-Marcelo et al., 2019a; Bassett and Sporns,
2017; Giusti et al., 2016; Varley et al., 2020; Billings et al.,
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2021) because they are built to detect properties of datasets,
e.g. point clouds or weighted networks, that are invariant
under homeomorphic transformations, which include, de-
formations, rotations, contractions and any other continu-
ous transformation Zomorodian and Carlsson (2005); Ghrist
(2008).. The rationale for this ability is that they capture
and quantify topology, that is, the shape of spaces in arbi-
trary dimensions, including discrete spaces obtained from
signals, via their topological features, e.g. connected compo-
nents, 1-dimensional holes, three-dimensional cavities, and
the higher-dimensional analogues.

In this way, topological descriptions of EEG data have
been shown to provide meaningful simplifications of high-
dimensional data, by extracting low-dimensional summaries
of the dataset’s shape (Giusti et al., 2015), to capture meso-
scale patterns of disconnectivity (Petri et al., 2014; Lee et al.,
2012) and to explicitly encode interactions among many
elements (i.e. nodes in a network, regions of the brain, etc.)
(Battiston et al., 2020; Iacopini et al., 2019).

We find that embeddings constructed from multi-channel
EEG timeseries, and from their temporal structure, are spe-
cific to subjects and robust to re-referencing and pre-processing
pipelines. By contrast , spaces obtained from spatial correla-
tions among electrodes, analogous to traditional functional
connectivity Sporns (2013); Hutchison et al. (2013); Bet-
zel et al. (2014), were weakly characteristic of subjects and
lacked robustness to changes of reference. Our results high-
light the utility of the proposed tools to explore individual
topographical landscapes, and to observe how these land-
scapes dynamically change across time.

2 Methods

2.1 Overview of analysis pipeline

In the following sections, we summarise the pipeline we
adopt to analyse EEG data and compare the results across
multiple references and pre-processing choices. We start from
raw EEG signals recorded on the scalp in a cohort of 21 sub-
jects (Fig. 1a, see section 2.2). The recorded signals are then
prepared using three different pre-processing pipelines (Fig
1b, see Section 2.3). For each pipeline, we consider different
EEG references, which can result in signals with different
waveforms and different relations to one another (Fig. 1c):
for illustration, we show three EEG signal snippets for vari-
ous references. For all pre-processing pipelines, subjects and
references we compute three different representations: func-
tional connectivity (Sec. 2.4), the Takens embedding (Sec.
2.5) and the direct temporal embedding (Sec. 2.6) (Fig. 1d).
For all these representations, we extract summaries of their
low-dimensional topological properties (Sec. 2.7) and use
them to compute distances between them (Fig. 1e-f). Finally,
we compare the results obtained from the previous analysis

with a two synthetic benchmarks: one obtained by simulating
EEG signals (Sec 2.8) and the other obtained by temporally
reshuffling the EEG data (Sec. 2.9). The following sections
provide details on the analysis steps described above.

2.2 Subjects

We tested twenty-one right-handed participants (18 male,
3 female, age range 21-39, mean age ± standard deviation:
25.76±4.54 years). No participant had a history of or current
neurological or psychiatric illness, according to self-report.
Data from one participant was excluded due to excessive
EEG artifacts, thus leaving 20 participants in the final sample
(17 male, 3 female; aged 21-39). All participants provided
written, informed consent to procedures approved by the can-
tonal ethics committee (CER-VD, Switzerland).

2.3 Recording Procedure and Pre-processing Pipelines

Participants sat in a sound-attenuated darkened room (Whis-
perRoom MDL 102126E), and were first tested using a multi-
sensory paradigm. Event-related potentials from this dataset
have already been published in (Tivadar et al., 2018). After
the experimental paradigm, participants were asked whether
they would like a break before the resting-state recording
was initiated. Participants were then asked to close their eyes
and instructed not to engage in any specific physical or men-
tal activity for 3 minutes. Continuous EEG was recorded at
1024Hz with a 128-channel BioSemi ActiveTwo AD-box
(www.biosemi.com). No online filters were used. Online ref-
erences were the typical BioSemi CMS and DRL electrodes,
which form a feedback loop that drives the average potential
of the subject as close as possible to the amplifier "zero".
Data were offline re-referenced to at least three different ref-
erences at different pre-processing steps (filtered, clean,
and cleanint, described in more detail later, Figure 1b). We
chose those electrodes on the N = 128 BioSemi cap that
were closest to and most representative of the typical classical
external electrodes used for referencing (Chella et al., 2016).
Specifically, we used the average reference as well as C17,
A23 and D24/B14 as representative of nose, inion, and linked-
mastoids/earlobes references, respectively. Prior to cleaning,
a 2nd order Butterworth filter (-12dB/octave roll-off; 0.1Hz
high-pass; 60Hz low-pass; 50Hz notch) was applied, which
was computed linearly in both forward and backward direc-
tions to remove phase shifts. Thus, by filtering, any activity
lower than 0.1Hz and higher than 60Hz was removed, to-
gether with 50Hz activity which is typical of electrical noise
(i.e. power line noise). These filtered data (denoted filtered
in the following) constitute the first pre-processing pipeline
we will consider. Next, we further pre-processed the filtered
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Fig. 1 Overview of analysis pipeline. The standard pipeline of EEG analysis follows these steps: a) raw signals are recorded from scalp EEG
electrodes. b) the signals are filtered in order to remove noisy or uninteresting frequency bands (here, any activity <0.1Hz and >60Hz, as well as
50Hz electrical line noise) (filtered); recorded signals are then cleaned to remove artefacts (i.e. blinks, eye movements, muscle artefacts, heart rate
artefacts, electrode pops - i.e. single or multiple sharp waveforms that appear after a sudden change in impedance, electrode drifts due to sweat,etc.)
(clean); interpolated to account for technical issues (i.e. "dead" electrodes), electrode drifts due to sweat or electrode bridging (when electrolyte
gel spreads between adjacent electrodes), etc. (cleanint). c) pre-processed data are then referenced to one of the electrodes or, in some case to
the average value across all channels. Different reference choices can result in different effects: for illustration, we show here three intervals of
EEG signals for four different references. Note how the relation among series can change depending on the choice of the reference. d) In this study
we investigate three data representations: 1) X is obtained by considering the Pearson correlations among channels and results in a description
of spatial correlations, 2) T is the Takens (or delay) embedding starting from the multivariate EEG timeseries and explicitly encoding temporal
correlations within the signals, 3) D is a variant of T wherein the EEG timeseries is directly embedded, that is, without the imposition of time-delay
vectors, effectively equivalent to considering the brain configuration space. e) We analyse the three types of embeddings using persistent homology,
which quantitatively captures the shape of generic spaces in the form of barcodes or persistence diagrams. f) Finally, we can associate a distance
between spaces by measuring distances between persistence diagrams themselves.

data, by cleaning them (clean dataset). Data quality was thus
controlled first via visual artifact detection and then via ICA
decomposition in Matlab (R2020a) using the EEGLAB tool-
box (Delorme and Makeig, 2004), in order to exclude any
remaining transient noise, muscle artefacts, heart beat arte-
facts and lateral eye-movements or blinks. These data were
also referenced to three references, excluding the average ref-
erence. This constitutes the second pre-processing pipeline.
Finally, for the third pipeline (cleanint), we further inspected
data from artefact-contaminated electrodes. These electrodes
were interpolated using 3D spherical splines (Perrin et al.,
1989), which take into account all of the electrode sites. We
then re-referenced our dataset to all the four references speci-
fied above, including the average reference. To summarize,
the filtered and clean data were only referenced to C17,
A23, D24B14, while the cleanint data was referenced to the
previously named electrodes, and additionally to the average
reference. Lastly, all timeseries were down-sampled to 64
samples per second to reduce computational load and to re-
flect the absence of spectral content >60 Hz.

2.4 Functional connectivity metric embedding construction

We compute functional connectivity networks using Pearson
correlations. More precisely, for each combination of sub-
ject s and reference r, we compute the correlation matrix
Cs,r, in which entry cs,rij corresponds to the Pearson correla-
tion between the timeseries of channels i and j with respect
to a subject s and reference r. To each subject-reference
pair (s, r) we associate to Cs,r a discrete metric space Xs,r,
obtained by mapping the timeseries corresponding to each
channel i to a point pi ∈ Xs,r. Distances between points are
given by ds,rC (pi, pj) = 1− cs,rij . This defines a metric space
(Xs,r, ds,rC ) for each subject-reference pair (s, r).

2.5 Delay embedding construction

Despite the presence of unmodeled noise when re-referencing
EEG potentials, the EEG signal samples from the brain’s dy-
namical state space. To reconstruct the underlying dynamical
system, we compute the Takens embedding of each volun-
teer’s re-referenced multichannel EEG recordings. As before,
for each combination of subject s and reference r, we com-
pute the Takens embedding T s,r as follows: for a single time
series x(t) we build a d-dimensional point cloud defined as
{x(t0), x(t0 + τ), . . . , x(t0 + (d − 1)τ)} for all t0 in the
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time series, and where τ is a delay and d the embedding
dimension. Standard techniques are adopted to choose the
pair (τ, d). Distances between points in Takens embeddings
are computed using the canonical Euclidean distance, dE , as
prescribed by Takens’ embedding theorem (Noakes, 1991). It
is possible to generalize the embedding to the case of I time
series, which in turn results in a d× I dimensional embed-
ding. We therefore consider the metric spaces (T s,r, ds,rE ).
(Myers et al., 2019).

2.6 Direct embedding construction

Following Takens’ finding that the delay embedding charac-
terizes a system’s dynamical state space, Deyle and Sugihara
(2011) found similar properties when directly embedding the
temporal evolution of the I dimensional vectors from multi-
channel recordings (Deyle and Sugihara, 2011). As before,
for each combination of subject s and reference r, we com-
pute the direct multichannel embedding Ds,r as follows: for
a multichannel time series x(t, i) we build a I-dimensional
point cloud defined as {x(t0, i0), x(t0, i1), . . . , x(t0, iI)} for
all t0 in the time series, and where I is the number of
recording channels. Here again, distances between points
are computed using the canonical Euclidean distance, ds,rE .
Thus we develop the metric spaces of the direct embedding
(Ds,r, ds,rE ).

The benefit of the direct embedding comes from its inter-
pretability. Each embedded point corresponds to the vector
of signals from all electrodes at a specific time point. The
embedding therefore corresponds to the configuration space
obtained from all instantaneous EEG topographies.

One downside of the direct embedding is that the number
of embedded points increases by a factor of N/τ where N
is the total number of time points in the recording. In order
to decrease computation time, we utilize the sparsification
method of Nicholas J. Cavanna et al. (2015) to generated
sparse distance matrices having 10% of the original number
of edges (ε = 0.3).

2.7 Topological distances between spaces

We compute distances between spaces corresponding to the
various embeddings using persistent homology (Edelsbrun-
ner and Harer, 2008; Ibáñez-Marcelo et al., 2019b). More
precisely, we perform standard persistent homology analy-
sis on the Rips-Vietoris filtrations defined over the points in
Xs,r, T s,r, or Ds,r. Persistent homology works by study-
ing the evolution of topological features (connected com-
ponents, 1-dimensional cycles, 3d-cavities, etc.) along a se-
ries of progressively finer simplicial complex approxima-
tions. A simplicial complex can be intuitively imagined as
a higher-dimensional version of a graph, that in addition to

edges (that is, pairs of points or vertices, called 1-simplices)
also allows for other elementary bricks composed by groups
of k + 1 points, called k-simplices (k ≥ 2). In our case,
however, we need a way to go from metric spaces to these
simplicial complex approximations. We do this using the
Rips-Vietoris construction. It works as follows: given a set
of points {p0, p1, . . . , pn} in a metric space M and an ar-
bitrary radius r, for each point pi we consider its neigh-
bourhood B(pi, r) of radius r; we define simplices in the
Rips-Vietoris complex RV (M, r) at distance r as follows:
whenever B(pi, r) ∩ B(pj , r) 6= ∅ for some i, j we add
the 1-simplex [pi, pj ]; whenever three points pi, pj , pk all
have non-empty pairwise intersections we add the 2-simplex
[pi, pj , pk], and so on for higher dimensions. The collection
of all these simplices constitutes RV (M, r).

The choice of r is of course problematic, as it requires
picking a scale for the simplicial complex reconstruction.
Persistent homology inverts the problem by scanning the
properties of RV (M, r) as a function of r. The ordered col-
lection of {RV (M, r)}r is called a filtration of M (Figure
2a). The outputs of persistent homology are barcodes (and
equivalently, persistence diagrams). These compressed sum-
maries recapitulate the homological features of a space, de-
scribing how long certain topological features persist along
the filtration (e.g. connected component, 1-dimensional holes,
etc.) (Fig. 2b). Each bar corresponds to a specific topological
feature and its appearance rb and death rd radii correspond
to the radii at which that feature first appears and disappears,
respectively. Persistence diagrams provide an equivalent de-
scription: each topological feature is represented in the 2-
dimensional plot by a point with coordinates (rb, rd). We
adopt the persistence diagram description, because it makes
it easier to compute distances between them, and use those
distances as a measure of similarity between the correspond-
ing spaces (Edelsbrunner and Harer, 2008).

In Xs,r spaces we use the Pearson distance as distance
between points to construct the filtration(Fulekar, 2009). In
T s,r and Ds,r spaces we instead adopt the Euclidean dis-
tance.

Here, for computational reasons, we focus on the first
two homological groups: H0, that describes connected com-
ponents, and H1, that describes one-dimensional holes. Per-
sistence diagrams are equipped with a metric themselves. We
can therefore measure distances between them and use this
homology-based distance as a topological distance between
spaces (Reininghaus et al., 2015). We choose persistent ho-
mology as a descriptor for our study because it allows us to
compare spaces with different numbers of points, dimensions
and metric structure. More precisely, we define the homo-
logical distance between Cs,r and Cs′,r′ to be the sliced
Wasserstein distance between the persistence diagrams corre-
sponding to Xs,r and Xs′,r′ . Similarly, we define the homo-
logical distance between Takens embeddings T s,r and T s′,r′
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to be the Wasserstein distance between the corresponding per-
sistence diagrams. The same applies for computing distances
between multichannel embeddingsDs,r andDs′,r′ . For com-
pleteness, in the following we report the results for H0 and
H1, although in this study the results from both dimensions
typically agree.

2.8 Simulated EEG data

To demonstrate the performance of the present study’s meth-
ods against a known benchmark, we also consider a synthetic
dataset, (sv, rv), generated from the brain activity simulation
software, The Virtual Brain (tvb) (version 2.2) (Leon et al.,
2013; Schirner et al., 2021). Specifically, we modeled lo-
cal neuronal dynamics as a generic 2-dimensional oscillator.
Large-scale structural connectivity was taken from the default
connectivity dataset having 76 nodes (‘connectivity_76.zip’).
The speed of signal propagation was set to 4ms−1. Coupling
between nodes was set to the recommended linear function
with a slope of 0.014. The integration scheme was speci-
fied as ‘HeunStochastic’, with integration rate set to 1024
Hz. Cortical activity was simulated across a surface mesh
having 16384 vertices (‘cortex_16384.zip’). Local cortical
connectivity was specified using the prebuilt default parame-
ters in the file ‘local_connectivity_16384.mat’. The coupling
strength between cortical vertices was set to a recommended
global value of 2−10. Simulated EEG data was monitored
at 65 sites (‘regionMapping_16k_76.txt’). EEG Data were
simulated at a rate of 64 Hz for 4.27 minutes. Data from 5
different references was generated by setting aside 5 EEG
channels, chosen at random, to be used as baselines; and then
subtracting each of the remaining 60 channel data from each
baseline, in turn. Thus, each simulated EEG dataset was of
size [5 references x 60 channels x 16384 samples].

Using the above pipeline as a template, 8 ‘virtual volun-
teers’ were modeled by adjusting the structural connectivity
weight matrix, and by assigning a different level of additive
noise to the integration scheme. Specifically, each edge of
the connectivity matrix was multiplied by a random factor
in [0.75, 1.25]. The default connectivity weights ranged be-
tween [0,3], with most weights assigned a value of 0. For
each virtual volunteer, Gaussian noise having unit variance
and a standard deviation between [0, 0.01] was added at each
integration step.

2.9 Comparison with temporally reshuffled null model

We also consider an auxiliary randomized version of the (s, r)
datasets: given each dataset

x(t) = {x(t0), x(t1), . . . , x(tT )} ∈ RN ,

we keep the vectors the same, but we reshuffle the temporal
labeling. In this way, we preserve the statistical properties of
the signal, but destroy the temporal correlations within it. In
particular, this type of randomization conserves exactly the
network of spatial correlations between electrodes. That is,
those captured by the correlation networks Cs,r. Similarly,
the direct embedding is unaltered by reshuffling the tempo-
ral labels. For this reason, we only re-analyse the Takens
embeddings constructed from the randomized data, T ∗. The
utility of the randomised model is that it provides a bench-
mark for the effect of reshuffling in addition to the observed
inter-subject similarity. It also allow us to tease apart the role
of the set of realised brain topographies (well described by
Ds,r) from that of their temporal order.

3 Results

3.1 Effects of re-referencing on topology of functional
representations.

We quantified the effects of changing the EEG reference on
three different representations: functional connectivity, com-
puted from spatial correlations between electrodes; direct
embedding of the brain activations, representing the space
of sampled configurations; and the dynamical landscape of
brain activity, as reconstructed from temporal embeddings
of the signals. More precisely, the first describes how dif-
ferent regions of the brain co-activate and it corresponds
to how neuroimaging signals are often studied, both with
fMRI (Bassett and Sporns, 2017; Petri et al., 2014) and EEG
(Sakkalis, 2011; Ibáñez-Marcelo et al., 2019b). The direct
embeddings instead cast EEG signals as points of a high-
dimensional static point cloud, which effectively defines the
space of realized activations (Donato et al., 2016). Finally,
the Takens embeddings are used to reconstruct the structure
of the dynamical attractors of dynamical systems and there-
fore capture the temporal properties of the system (Myers
et al., 2019). We analysed data from n = 20 subjects, each
re-referenced to R = 4 different references, using filtered,
cleaned and cleaned interpolated data. For each pair (s, r)
we computed the corresponding correlation Xs,r, Takens
T s,r and direct Ds,r embedding spaces. We then computed
their persistence diagrams as described in Methods and mea-
sured the Wasserstein distances between them. In particular,
we were interested in quantifying the changes induced by
re-referencing data from the same subject. Figure 3a) shows
the distances between the X spaces computed between all
subjects and references, for H0 (left) and H1 (right). Fig-
ures 3 parts b) and c) show the same for T and D spaces,
respectively.

Data calculated against different references and belong-
ing to the same subject are grouped together in the heatmaps
(increasing distances go from white to blue). Thus, diago-
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a)

b)

Fig. 2 Sketch of persistent homology computation. a) an example of a filtration of a data cloud in two-dimensions. As r increases the neighbour-
hoods become larger, they begin to overlap. When the neighbourhoods of two points overlap, an edge (1-simplex) is added. When three overlap in
pairs, a full triangle (2-simplex) is added, and so on for higher-dimensional simplices. Therefore, as r increases, more and more simplices appear,
making the Rips-Vietoris complex progressively denser and providing a sequence of simplicial approximations of the underlying topological space
across radii. Persistent homology focuses on describing the shape (topological features) of the complexes in this sequence. For example, at the
beginning (r = 0), the points all belong to components disconnected from each other. As r grows, the components begin to merge until only one
component remains, which contains all points. Around r ∼ 0.65, a 1-dimensional cycle appears in the simplicial complex and persists until around
r ∼ 1. A similar analysis can be performed for cavities (homological cycles) of arbitrary dimensions (three-dimensional holes bounded by triangles,
four-dimensional cavities bounded by tetrahedra, etc.

b) The barcodes describing the lifetime of the various connected components (red bars), progressively merging into each other until only one
survives (describing H0), and the lifetime of the single 1-dimensional cycle described above (blue bar, describing H1). Barcodes provide a

summary of the topological properties of a space and can be used to compare them in a formal way. We show here the barcode persistence because it
makes it easier to relate to the filtration. However, they are equivalent to persistence diagrams, which in turn are more amenable to compute

(Wasserstein) distances between spaces.

nal blocks of short distances (see definition below) suggest
that re-referencing induces mild changes in the topological
structure of the spaces under study. It is important to specify
what is meant by short distances. We choose here to use as
the benchmark for these effects the distance between spaces
corresponding to different individuals, but the same reference
site (that is, s 6= s′ and r = r′). This choice is predicated
on the finding that the brain waves of each individual are a
unique biometric signature for that individual (Poulos et al.,
1999; Marcel and R. Millan, 2007; Chan et al., 2018). The
boxplots in Figure 3 show this in quantitative form: for each
subject (dark coloured bars) we plot the distribution of dis-
tances between the persistence diagrams of spaces obtained
from the different referencing. In addition, we plot (in lighter
color) the distribution of distances between the spaces corre-
sponding to different subjects.

It is plain to see that the set of intra-subject distances
between re-referenced direct and temporal embeddings are
generally shorter than distances measured between subjects.
By contrast, we see that the set of intra-subject distances be-
tween re-referenced correlation spaces X are approximately
the same value as inter-subject distances. Hypothesis testing
using the two-sided Kolmogorov–Smirnov test (p < 0.01)
confirms that the correlation metric spaces have statistically

similar inter-subject embeddings and intra-subject embed-
dings.

Beyond statistical significance, we can also quantify how
dissimilar intra-subject versus inter-subject distances are by
computing the effect size between distributions, following
Cohen’s d method (Kelley and Preacher, 2012). We find that
the magnitude of the effect sizes is consistently much larger
for the direct embedding spaces D and the temporal embed-
dings space T than for the correlation spaces X (Figure 4)
(Sawilowsky, 2009). Indeed, a simple t-test comparing the
inter-subject and the intra-subject distances reveals that the
two distributions are indistinguishable when drawn from the
correlation spaces. Our results therefore imply that the topol-
ogy of the brain configuration spaces and of the temporal
embeddings retain individual-specificity after re-referencing
of the EEG data. By contrast, correlation embeddings ap-
pear to be unspecific to a given individual subject. Observed
differences between temporal embeddings and correlation
embeddings are especially apparent in H1. While the tempo-
ral embeddings, T and D, retain their individual specificity,
the correlation embedding displays many instances wherein
distances across participants are closer than distances across
references for the same participant. Put another way, in many
cases the correlation embedding exhibits more diversity when
re-referencing a single EEG acquisition than when comparing
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Fig. 3 Topological distance between spaces for different references. we show the results for the topological distances between the various
embeddings for H0, persistent connected components, and H1, persistent one-dimensional cycles (panel a) left). We show distances between all
(s, r) pairs as heatmaps (with distances growing from white to blue). That is, smaller differences between embeddings are coded by lighter colours.
An example is shown in panel a) on the right. Rows and columns are ordered by ordered subject and reference (s, r) pairs, which results in references
from each subject to be displayed in consecutive rows/columns. Therefore, the presence of diagonal blocks of short distances (lighter colored
squares with respect to the off-diagonal blocks) implies that re-referencing induces small changes with respect to inter-subject variability. Panels b)
c) and d) refer respectively to the Xs,r T s,r and Ds,r embedded spaces for the cleanint datasets. For each embedding type, we compute distances
between subjects and references for the first two homological groups, H0 and H1, using sliced Wasserstein distances between the corresponding
persistence diagrams. It is easy to observe and modular block structure for the T s,r and Ds,r spaces that is wider than for the Cs,r spaces. The
boxplots further support this result: we show the distribution of within-subject distances between spaces corresponding to different references
(d(X/T/Ds,r, X/T/Ds′,r′)|s = s′∀r, r′ (separated by subject, one dark coloured box for each subject, correpsonding to the diagonal blocks in
the heatmaps) and compare it to the inter-subject distances (d(X/T/Ds,r, X/T/Ds′,r′)|s 6= s′, r = r′, lighter color bar, corresponding to the
off-diagonal terms in the heatmaps). For the temporal embeddings T/Ds′,r′ , the within-subject distances are smaller (KS test, p < 0.01) than the
between-subject distances, while for the correlation-based embeddings Xs,r the inter-subject distances are comparable with the within-subject
distances. Results for other pipelines are reported in Figures A.1, A.2 and A.3.
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multiple acquisitions from different participants (each pegged
to the same reference). Moreover, this susceptibility to large
changes in the correlation space after re-referencing is made
plain through analysis of the simulated tvb data. Whereas
intra-subject distances are always greater than inter-subject
distances when observed through the correlation space. The
temporal embeddings tend to preserve the expected intra-
subject similarities. The one exception to this trend is found
in the most abstract state space representation, T in H1. Pos-
sibly this exception demonstrates the limits of the simulated
dataset to produce complex EEG data that might preserve
higher-order topological features of a subject’s brain dynam-
ics.

3.2 Role of different pre-processing pipelines

We next investigated whether the above results vary signifi-
cantly for different choices of pre-processing. Indeed, EEG
signals usually undergo a series of steps before being consid-
ered suitable for analysis. We repeated the analysis for all the
pipelines.

Similarly to what we performed in the previous section,
we show the results for effect sizes in Figure 4. We find that
effect sizes are always larger (in magnitude) for the T s,r and
Ds,r spaces than for the corresponding Xs,r spaces, and do
not differ much across pre-processing pipelines (d ∼ 1− 1.5,
considered a very large effect (Sawilowsky, 2009)). This
result suggests that different pre-processing pipelines do in-
duce some changes in the reconstructed topology, but also
that these changes are negligible compared to what happens
in the case of correlation networks. Additionally, we confirm
the result that re-referencing induces changes in the recon-
structed topology of D and T spaces that are much smaller
than the inter-subject variability.

3.3 Comparison with the temporally reshuffled null model.

We showed that T s,r and Ds,r spaces display stronger topo-
logical robustness with respect to those built from spatial
correlations, while at the same time appearing to be more
subject-specific. However, we have not ascertained whether
these properties are a consequence of the statistics of the
signals themselves, or rather they truly emerge from their
temporal features. We tested these alternatives by compar-
ing previous results to a null model in which we destroy
temporal correlations by reshuffling the time labels of the
instantaneous activity. Note that –by construction– the matri-
ces Cs,r (and thus the Xs,r spaces) remain exactly the same
under this reshuffling. In other words, this means that we
preserve exactly the spatial correlations, while destroying the

temporal ones. The same argument holds for theDs,r embed-
dings; it is a direct embedding from the multi-channel EEG
signals and therefore reshuffling the temporal labels does not
change the point cloud. Here, we therefore only focus on the
effects on T s,r spaces, by investigating the changes induced
in the Takens embeddings constructed from the reshuffled
series, T̃ s,r spaces.

In Figure 5a) and b) we compare the results for H0 and
H1. The first observation is that the distances between reshuf-
fled datasets, corresponding to the same subject (across dif-
ferent references), appear to be much more heterogeneous
than in the case of real data. This can be observed in sev-
eral different ways. The distances between references of the
same subject are much farther away from each other in the
reshuffled case than in the real case (darker colored boxes ver-
sus the corresponding lighter colored boxes). Similarly, the
inter-subject distances are typically larger in the reshuffled
cases. This also holds for the distances between a specific
real (s, r) pair and its reshuffled version (white box, labeled
as real-rand in Fig. 5a-b). In fact, this latter distance distri-
bution (real-rand) and the reshuffled inter-subject distance
distribution (for all pipelines) have averages that are statisti-
cally indistinguishable (Mann-Whitney u test for equal mean,
null hypothesis not rejected at p < 0.01), while the real inter-
subject distance has a smaller average (significant on the
same test). The same results hold for the other pre-processing
schemes (Figure A.4).

We further support these observations by computing the
corresponding effect sizes via Cohen’s d, that is the effect
sizes of difference between the distributions of distances
d(T s,r, T s,r′) versus that of d(T s,r, T̃ s,r). For both H0 and
H1 and for all pipelines, the effect sizes across subjects
are significantly smaller than zero (Figure 5c). Hence, de-
stroying temporal correlations induces varied and heteroge-
neous changes in the topology of the resulting embeddings;
changes that are much larger than those induced by pure
re-referencing. Interestingly, for the tvb simulated data, sig-
nal changes related to re-referencing often alter the topology
of the delay embedding as much, if not to a greater extent,
than breaking the temporal correlations. This observation
highlights the stationarity of tvb dynamics. That is, the range
of temporal states is approximately as large as the range of
spatial features.

Finally, we queried the magnitude of the changes induced
by re-referencing with respect to inter-subject variability.
Similarly to Figure 4, we computed the effect sizes for the
distribution of intra-subject and inter-subject distances for
the real and reshuffled data (Figure 5d).

That is, for H0 all pipelines display effect sizes signifi-
cantly different from zero for both real and reshuffled data
(one-sample t-test for mean equal 0, p < 0.01). For H1,
only real data show an effect size significantly smaller than 0
(same test). Interestingly, when directly comparing the real
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Fig. 4 Effect size distributions for within-subject versus inter-subject distances. For each subject s, we compute the Cohen’s d to compare the
collection of within-subject Wasserstein distances (computed across different references) versus the set of inter-subject Wasserstein distances. For
each pre-processing step r, and types of embedding (T,D,X), we collect the Cohen’s d values across all subjects and display them as a distribution.
Instances where the set of within-subject distances are significantly (p < 0.05) different from inter-subject distances are marked with an ‘x’. The
effect of pre-processing is to remove idiosyncratic outliers. We find that for all studied pipelines, the temporal embeddings T s,randDs,r show
larger differences (larger absolute effect size) with respect to the Xs,r spaces, implying that temporal embeddings are more robust to re-referencing
than functional connectivity.

and reshuffled effect sizes, we find significant differences
(Mann-Whitney u test at p < 0.01 Bonferroni-corrected)
only for the clean and filtered datasets. Note that this does
not mean that in the cleanint datasets the actual distances are
the same. Rather, the effect size between the intra-subject and
inter-subject distribution is similar in the real and reshuffled
cases in the presence of further pre-processing.

Overall, this pattern suggests that the differences ob-
served above originate partially from the statistical properties
of the signals, irrespective of the time ordering. More pre-
cisely, this concerns the relative difference across subjects
with respect to different references of the same subject. How-
ever, temporal correlations are crucial to constrain the set of
possible topologies describing a subject and to discriminate
between subjects even when the statistical properties of the
signals are similar.

4 Discussion

We studied the topological structure of different representa-
tions of resting-state EEG signals with a particular focus on
how the choice of the reference alters the resulting topologi-
cal observables. We examined three representations that cap-
ture different features of the data. The first one was the func-
tional connectivity between electrodes, which we computed
as Pearson correlations between electrode timeseries. When
computing these correlations, time is integrated away and for
this reason the resulting correlations capture the patterns of
spatial coactivations among signals at different electrodes.
The second type of representation was direct embeddings.
In these embeddings, each time point is associated with the
vector of instantaneous EEG signal. Together, all the vectors
of instantaneous EEG activations define a space that cap-
tures the possible configurations of brain activations. Note
that in this construction, relative temporal information is lost.

Thus, the direct embedding does not encode brain dynamics,
but rather the range of possible topographies. Finally, the
third type of representation was given by Takens embeddings.
These are constructed by concatenating instantaneous EEG
vectors corresponding to successive time points. In this way,
they reconstruct the properties of the attractor space of a
dynamical system (Noakes, 1991; Myers et al., 2019).

We found that the extent of topological changes across
correlation spaces corresponding to different references are
often comparable with those measured between different
subjects. We found that the direct embeddings and Takens
embeddings exhibited limited changes across different refer-
ences and were able to discriminate better across subjects.

The implications of these results are multi-fold. As men-
tioned above, for a fixed reference, the Ds,r space is the
configuration space (i.e. phase space) of EEG whole-brain
activations (i.e. topographies (Tivadar et al., 2019)). The facts
that the topology of signals does not change significantly
across references and that it is subject-specific suggest that
the overall shape of EEG configuration space holds informa-
tion about the specificity of the underlying individual’s brain
dynamics, similarly to what has been observed for simpler
dynamical systems (Donato et al., 2016).

However, by construction, the configuration spaces above
neglect the role of time, i.e. the temporal ordering in which
brain activity appears. It is reasonable then to ask whether
the specific order of time points plays a role. The Takens em-
beddings explore exactly this question. In fact, as mentioned,
they allow us to probe the brain’s dynamical attractor space
underlying the observed activations (Myers et al., 2019). If
there was no information in the temporal ordering, the topo-
logical structures of T s,r and of its randomized T̃ s,r spaces
should be similar to one another. Instead, we observed a large
standard deviation within embeddings when temporal cor-
relations were removed. More precisely, we observed that
a much larger and more heterogeneous set of topological
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a) b)

c) d)

Fig. 5 Comparison of real with reshuffled data. a) and b) Distance distributions (respectively for H0 and H1) between references of individual
subject (solid color), between the temporally reshuffled data (lighter color boxes). inter labels the inter-subject distance distribution for both real
(solid) and reshuffled data (lighter color). real-rand (white box) represents the distribution of distances between a (s, r) pair and its temporally
reshuffled version. Distances among references of the same subject have generally smaller mean and variance with respect to the reshuffled data.
Moreover, the distances between a (s, r) pair and its randomized versions are often larger than those between different subjects. c) we confirm this
by computing the corresponding effect size via Cohen’s d, that is the effect sizes of the distances d(T s,r, T s,r′) versus that of d(T s,r, T̃ s,r). For
both H0 and H1 and for all pipelines, the effect sizes across subjects are significantly smaller than zero (varying between -1 and -2, considered
to be very large effects, asterisks indicate significance on one-sample t-test at p < 0.01 Bonferroni corrected for multiple comparisons to reject
the null hypothesis that the effect size mean is 0). This feature does not hold for tvb simulations for which the statistical properties of the signal’s
evolution across time vary to the same degree as the statistical properties of the signal’s evolution across space. d) for all pipelines, effect sizes for
the intrasubject distance distributions d(T s,r, T s,r′) are shown against the inter-subject distributions d(T s,r, T s′,r′). Solid color boxes indicate
comparison between real data, lighter color boxes indicate the same comparison for the reshuffled data. Asterisks indicate significance on one-sample
t-test at p < 0.01 Bonferroni corrected for multiple comparisons to reject the null hypothesis that the effect size mean is 0; crosses indicate
significance on Mann-Whitney u test at p < 0.01 Bonferroni corrected for multiple comparisons to reject the null hypothesis that the real and
reshuffled samples have the same mean. In most cases, the shuffled data significantly blurs the idiosyncratic nature of individual EEG traces, causing
rereferenced signals within a volunteer to look almost as different as the signal traces compared between volunteers.

spaces is explored when only spatial correlations and sta-
tistical properties of the signals are preserved. Conversely,
this implies that temporal correlations constrain to a large
degree the set of possible dynamics. These in turn shape how
the space of activations differs across subjects’ resting-state
activity.

There are several ways by which to intuitively under-
stand these findings. One can think the configuration space
of activations Ds,r as a mountainous landscape, where each
point represents a state that the brain has accessed during
the recordings. The Takens embedding instead describes how

an individual explores this configuration landscape, i.e. the
order of states as explored by a subject; each point in the
Takens embedding can be thought as composed by a set of
successive positions in the configuration space (i.e. a path in
the mountainous landscape across different states), that is,
a trajectory through time. We found here that both the land-
scape and how it is explored –the set of trajectories– change
across subjects. However, both of these features are very
robust to re-referencing and pre-processing choices.

We claim that our results extend to the configuration
spaces and the set of trajectories of topographies. While we
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can only access information about topographies via their
referenced instances, our results imply that different refer-
ence choices are essentially equivalent from a topological
perspective. That is, for different references we found very
similar topologies, which therefore implies that we are cap-
turing the topology of the actual space of topographies. This
claim is further supported when considering the properties
of temporal versus spatial embeddings in a simulated virtual
brain. Here, we know at the outset that EEG dynamics will
trace a repetitive cycle, and that the orientation of this cy-
cle is rotated from the perspective of a different reference.
The topology of an temporal embedding of the cyclic dy-
namics is unperturbed after rotation. By contrast, drawing
correlation distances between spatially-distinct electrodes
causes some electrode pairs to look more-or-less similar after
rotation—thus causing the topology of the correlation space
to also change. The empirical and theoretical utility of the
topological description of brain dynamics brings us to pro-
pose to augment conventional topographic analyses with this
additional –topological– level of analysis.

Naturally, our work also leads to many novel questions,
both technical and theoretical: do the topographical config-
uration space and/or its dynamical properties change under
different conditions, e.g. wake versus sleep, altered states,
performance of different tasks, etc.? Do shared topological
structures emerge under such conditions that are stronger than
inter-individual variability? Previous findings with fRMI and
EEG suggest that during tasks the spatial correlation structure
is already sufficient to discriminate between tasks, subjects
(Ibáñez-Marcelo et al., 2019b,a) or altered states (Petri et al.,
2014). It would be indeed important to ascertain which fea-
tures of the topographic and topological spaces are preserved
under different conditions, both analytically and empirically
Haufe and Ewald (2019), as this would have direct impact
on brain fingerprinting and on functional neuro-degeneration
tracking among others (Bari et al., 2019; Rajapandian et al.,
2020). This is an exciting endeavour that is currently at the
forefront of our current ongoing investigations.
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Fig. A.1 Effect of different preprocessing pipelines on correlation spaces Xs,r . Additional pipeline results for Figure 3: (top row) clean pipeline.
(middle row) filtered pipeline. (bottom row) tvb pipeline.
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Fig. A.2 Effect of different preprocessing pipelines on Takens embedding spaces T s,r . Additional pipeline results for Figure 3: (top row) clean
pipeline. (middle row) filtered pipeline. (bottom row) tvb pipeline.

17



Sorted Volunteer#_reference

H0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Wasserstein distance 1e5

S10
S11
S12
S13
S14
S15
S16
S17
S18
S19
S20
S21
S23
S24
S25
S26

S5
S6
S7
S8
S9

inter-subject
H0

Sorted Volunteer#_reference

H1

0.0 0.5 1.0 1.5 2.0 2.5
Wasserstein distance 1e4

S10
S11
S12
S13
S14
S15
S16
S17
S18
S19
S20
S21
S23
S24
S25
S26

S5
S6
S7
S8
S9

inter-subject
H1

Sorted Volunteer#_reference

H0

0.0 0.5 1.0 1.5 2.0
Wasserstein distance 1e5

S10
S11
S12
S13
S14
S15
S16
S17
S18
S19
S20
S21
S23
S24
S25
S26

S5
S6
S7
S8
S9

inter-subject
H0

Sorted Volunteer#_reference

H1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Wasserstein distance 1e4

S10
S11
S12
S13
S14
S15
S16
S17
S18
S19
S20
S21
S23
S24
S25
S26

S5
S6
S7
S8
S9

inter-subject
H1

Sorted Volunteer#_reference

H0

0.0 0.2 0.4 0.6 0.8 1.0
Wasserstein distance 1e8

S0

S1

S2

S3

S4

S5

S6

S7

inter-subject

H0

Sorted Volunteer#_reference

H1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Wasserstein distance 1e7

S0

S1

S2

S3

S4

S5

S6

S7

inter-subject

H1

Fig. A.3 Effect of different preprocessing pipelines on direct temporal embedding spaces Ds,r . Additional pipeline results for Figure 3: (top
row) clean pipeline. (middle row) filtered pipeline. (bottom row) tvb pipeline.
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Results for T s,r spaces from temporally shuffled timeseries
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Fig. A.4 Effect for temporally reshuffled timeseries for clean, filtered, and tvb pipelines.
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