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CLINICAL HIGHLIGHTS
A major difficulty associated with the insulin treatment of patients with type 1 or type 2 diabetes is the risk of hypoglyce-
mia, with initial hypoglycemic episodes increasing the risk of developing subsequent ones of greater severity.
Hypoglycemia sensing by the central nervous system (CNS) leads to a coordinated counterregulatory hormonal
response (CRR) initiated by a rapid stimulation of glucagon secretion and inhibition of insulin release. Recent studies
have identified specific glucose sensing neurons in the brain stem and hypothalamus and, through the use of current
genetic technologies, have characterized the circuits that connect these neurons to the endocrine pancreas to control
hormone secretion. In addition, new investigations have characterized so far unknown hypothalamic mechanisms that
adapt the response to hypoglycemia according to the prevailing metabolic and inflammatory states. These studies will
pave the way for a more complete understanding of the defects in CRR in patients with diabetes treated with insulin
and for the development of prevention or therapeutic strategies.
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Abstract

Glucose homeostasis is mainly under the control of the pancreatic islet hormones insulin and glucagon, which,
respectively, stimulate glucose uptake and utilization by liver, fat, and muscle and glucose production by the
liver. The balance between the secretions of these hormones is under the control of blood glucose concentra-
tions. Indeed, pancreatic islet b-cells and a-cells can sense variations in glycemia and respond by an appropri-
ate secretory response. However, the secretory activity of these cells is also under multiple additional
metabolic, hormonal, and neuronal signals that combine to ensure the perfect control of glycemia over a life-
time. The central nervous system (CNS), which has an almost absolute requirement for glucose as a source of
metabolic energy and thus a vital interest in ensuring that glycemic levels never fall below �5 mM, is equipped
with populations of neurons responsive to changes in glucose concentrations. These neurons control pancreatic
islet cell secretion activity in multiple ways: through both branches of the autonomic nervous system, through
the hypothalamic-pituitary-adrenal axis, and by secreting vasopressin (AVP) in the blood at the level of the pos-
terior pituitary. Here, we present the autonomic innervation of the pancreatic islets; the mechanisms of neuron
activation by a rise or a fall in glucose concentration; how current viral tracing, chemogenetic, and optogenetic
techniques allow integration of specific glucose sensing neurons in defined neuronal circuits that control endo-
crine pancreas function; and, finally, how genetic screens in mice can untangle the diversity of the hypothalamic
mechanisms controlling the response to hypoglycemia.
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1. INTRODUCTION

Glucose homeostasis is classically described as result-
ing from the equilibrium between glucose absorption,
glucose utilization, and endogenous glucose produc-
tion, a balance that is under the control of the pancre-
atic islet hormones insulin and glucagon (1, 2). Insulin
stimulates glucose utilization by liver, fat, and muscle
and inhibits hepatic glucose production. On the other
hand, glucagon is secreted by pancreatic a-cells and
stimulates glucose release from the liver to prevent

hypoglycemia development. The equilibrium between
insulin secretion and glucagon secretion as well as the
action of these hormones on peripheral tissues need to
be perfectly controlled to maintain normoglycemia over
a lifetime to prevent development of diabetic hypergly-
cemia. Currently, >92% of the world population is free
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A major difficulty associated with the insulin treatment of patients
with type 1 or type 2 diabetes is the risk of hypoglycemia, with initial
hypoglycemic episodes increasing the risk of developing subse-
quent ones of greater severity. Hypoglycemia sensing by the central
nervous system (CNS) leads to a coordinated counterregulatory hor-
monal response (CRR) initiated by a rapid stimulation of glucagon
secretion and inhibition of insulin release. Recent studies have iden-
tified specific glucose sensing neurons in the brain stem and hypo-
thalamus and, through the use of current genetic technologies, have
characterized the circuits that connect these neurons to the endo-
crine pancreas to control hormone secretion. In addition, new
investigations have characterized so far unknown hypothalamic
mechanisms that adapt the response to hypoglycemia according
to the prevailing metabolic and inflammatory states. These studies
will pave the way for a more complete understanding of the
defects in CRR in patients with diabetes treated with insulin and
for the development of prevention or therapeutic strategies.
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of diabetes (3) despite the increase in life expectancy
and the metabolic challenges associated with reduced
physical activity and overnutrition inherent to modern
lifestyle. What does ensure the robustness of this sys-
tem? A key aspect is the functional plasticity of the islet
b-cells and a-cells, which ensures not only the efficient
minute-to-minute control of insulin and glucagon secre-
tion in response to glucose variations but also a com-
pensatory change in their total number to adapt to the
sensitivity of target tissues to the action of insulin or glu-
cagon (4–6). This plasticity is controlled by multiple sig-
nals such as metabolites, hormones, and cytokines
produced by liver, fat, and muscle and by neuronal
inputs from the autonomic nervous system (ANS).
Among these signals, glucose itself has a major role in
modulating pancreatic endocrine cell secretion and pro-
liferation cell autonomously and cell nonautonomously.
b-Cells and a-cells have intrinsic glucose sensing prop-
erties that trigger insulin and glucagon secretion when
extracellular glucose concentrations increase above or
fall below the euglycemic level, but glucose has also
many indirect ways of controlling hormone secretion.
For example, in the oral cavity, glucose activates taste
cells, which trigger a vagal reflex that induces insulin
secretion, the so-called cephalic phase of insulin release
(CPIR) (7); in the duodenum, glucose triggers the secre-
tion of the gluco-incretin hormones gastric inhibitory
protein (GIP) and glucagon-like protein (GLP)-1, which
potentiate glucose-stimulated insulin secretion (GSIS),
protect b-cells from apoptosis, and increase their mass
and function (8–11); in the liver, glucose regulates the
expression of many genes (12) and, through the produc-
tion of bile acids, controls a liver-b-cell axis that
increases the capacity of these cells to respond to glu-
cose (13); in the peripheral and central nervous systems,
specific glucose-responsive neurons are activated by a
rise [glucose-excited (GE) neurons] or a fall [glucose-
inhibited (GI) neurons] in blood glucose levels (14, 15)
and control the activity of the endocrine pancreas
through the regulation of both branches of the auto-
nomic nervous system (15, 16). Importantly, autonomic
nervous innervation of the endocrine pancreas appears
during the developmental period and is required for the
establishment of normal adult pancreatic islet mass and
function (17, 18). Thus, although endocrine cells from the
pancreatic islets can respond directly to changes in glu-
cose concentrations, the communication with other glu-
cose sensing cells, located at different anatomical sites,
is essential for islet development and to maintain glu-
cose homeostasis over a lifetime.
The present review focuses on the role of nervous

glucose sensing in the regulation of insulin and gluca-
gon secretion. We present a description of the auto-
nomic innervation of the pancreas; discuss how neurons

sense glucose; and illustrate how recent viral tracing,
chemogenetic, and optogenetic techniques, as well as
genetic screens in mice, allow identification of the neu-
ronal network that controls pancreatic hormone secre-
tion. Collectively, these data illustrate the importance of
nervous glucose sensing in the control of the endocrine
pancreas as a means to preserve glucose homeostasis.
They highlight the important role of hypoglycemia sens-
ing by the central and peripheral nervous systems to
suppress insulin and stimulate glucagon secretion to
restore euglycemia and preserve continuous glucose
supply to the brain. Because defective glucose sensing
may cause life-threatening hypoglycemia in patients
with diabetes (19), development of this area of research
may lead to novel preventive and therapeutic interven-
tions to manage this frequent and dangerous condition.

2. AUTONOMIC INNERVATION OF THE
PANCREAS

2.1. Sympathetic and Parasympathetic
Innervation

The pancreas is richly innervated by efferent projections
from the sympathetic and parasympathetic branches of
the autonomic nervous system (ANS), which ensure con-
nections between the brain and the pancreas (FIGURE
1). It also receives neuronal input from the enteric nerv-
ous system. Afferent vagal and spinal sensory fibers
originating from the hepatoportal vein area also convey
information to the pancreas via vago-vagal or spino-
vagal reflexes, as discussed further below (see FIGURE
8). Here, only a short description of this innervation is
presented, as more emphasis will be placed on the cen-
tral mechanisms that regulate the activity of the ANS.
Detailed descriptions of the pancreas innervation by the
ANS can be found in excellent recent reviews (20–22).
Vagal afferent nerves originate from the dorsal motor

nucleus of the vagus (DMNX), a nucleus of the brain stem
dorsal vagal complex (DVC), which also comprises the nu-
cleus of the tractus solitarius (NTS) and the area postrema
(AP) (FIGURE 1, FIGURE 2). These vagal neurons are cho-
linergic and project to intrapancreatic ganglia from which
postganglionic neurons innervate the exocrine part of the
pancreas and the pancreatic islets. These postganglionic
neurons are cholinergic and can be identified by immuno-
staining of the vesicular acetylcholine transporter (vAChT).
They also express neuropeptides such as vasoactive in-
testinal polypeptide (VIP), pituitary adenylate cyclase-acti-
vating polypeptide (PACAP), or gastrin-releasing peptide
(GRP) (23). In mice, these postganglionic neurons contact
a, b, d, and PP cells. In humans, although it was suggested
early on that there was no parasympathetic innervation of
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the islet endocrine cells (24), recent reports from optically
cleared tissue and three-dimensional (3-D) imaging have
established that vagal nerves are present within the islets
making contact, in particular, with a-cells (25, 26).
The sympathetic nerve that innervates the pancreas is

issued from neurons located in the intermediolateral cell
column (IML) of the spinal cord, which send projections
to the celiac and superior mesenteric ganglia (FIGURE 1)
(27). The postganglionic neurons then reach the pan-
creas, where some contact vagal ganglia and others
send terminals to islet a- and b-cells and the islet vascu-
lature (25). These postganglionic neurons are catechola-
minergic and can be identified by tyrosine hydroxylase
(TH) immunostaining. In addition to norepinephrine, they
can also carry neuropeptides such as neuropeptide Y
and galanin (23).

Functionally, the vagal nerve stimulates insulin secre-
tion by activating the b-cell’s muscarinic acetylcholine
receptor, m3AchR (23, 28). However, the effect of ace-
tylcholine on insulin secretion requires glycemia to be
above the euglycemic level. Importantly, vagal activity is
also stimulated by hypoglycemia, and acetylcholine
binding to the a-cell m3AchR increases glucagon secre-
tion. Thus, the effects of vagal nerve activity on insulin or
glucagon secretion are largely determined by the preva-
lent glycemic levels.
Norepinephrine secreted by intraislet sympathetic

nerves also has a dual action on insulin and glucagon
secretion. Pancreatic b-cells express the a2-adrenergic
receptor (a2-AR), which when activated inhibits insulin
secretion, whereas a-cells express the b2-adrenergic re-
ceptor, which stimulates glucagon secretion (29).
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FIGURE 1. Schematic representation of the autonomous nervous system innervation of the endocrine pancreas. The sympathetic nerve extends
through the intermediolateral column (IML) of the spinal cord and sends branches to the celiac and superior mesenteric ganglia. Postganglionic nerves
project directly to the pancreatic islets and use norepinephrine (NE) as principal neurotransmitter, but neuropeptide Y (NPY) and galanin are also pres-
ent in some nerve terminals. In the parasympathetic nervous system, the vagal nerve neurons have their cell bodies in the dorsal motor nucleus of the
vagus (DMNX), which is part of the dorsal vagal complex that includes the area postrema (AP) and the nucleus tractus solitarii (NTS). The cholinergic
vagal neurons send their projections to the intrapancreatic ganglia, and postganglionic neurons reach the islets. These neurons use acetylcholine
(ACh) as main neurotransmitter but some also express vasoactive intestinal polypeptide VIP, pituitary adenylate cyclase-activating polypeptide
(PACAP), and gastrin-releasing peptide (GRP). Figure generated with BioRender.com, with permission.
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2.2. Pancreas Innervation during Development
and Diseases

Innervation of the pancreas by the vagal nerve develops
during midgestation in mice, a process that is under neg-
ative regulation by leptin (17). Parasympathetic innerva-
tion of the islets requires expression in developing
nerve fibers of GRFA2, the receptor for the neurotrophic
factor neurturin. Mice lacking this receptor display
marked defects in neuroglucopenia-stimulated insulin,
glucagon, and pancreatic polypeptide secretion (30).
Sympathetic innervation of pancreatic islets develops

during prenatal life but fully matures around weaning
(31, 32). This innervation depends on the production of
neurotrophic factors, such as nerve growth factor (NGF),
by the islets (33–35). Conversely, sympathetic innerva-
tion is required for the development of the normal islet
architecture. In mice, sympathetic denervation, or inacti-
vation of the NGF receptor TrkA that leads to defective
sympathetic innervation, disrupts the normal structure of
the islets, with a-cells being present in the core of the
islets; this also leads to defect in insulin secretion

capacity and the development of glucose intolerance
(18). The fact that islet autonomic innervation is guided
by neurotrophic factors secreted by islets is further evi-
denced by the observation that islets transplanted in the
liver (36), under the kidney capsule (37), or in the back
chamber of the eye (38) become progressively inner-
vated by autonomic nerves. In the eye, transplanted
islets are innervated by vagal nerves and are responsive
to topical application of the AChR antagonist atropine
(38). In the mouse liver, however, only sympathetic
innervation is observed (36).

In diabetic NOD mice, a model of type 1 diabetes, the
density of intraislet parasympathetic and vagal fibers is
increased and positively correlates with the glycemia
(39). In humans, the density of islet sympathetic innerva-
tion is increased up to threefold in type 2 diabetes (40).
The increased nerve fiber density may be due to the
infiltration of the pancreas parenchyma by adipocytes,
which provide neurogenic signals (26). This increased
sympathetic tone can contribute to the hyperglucagone-
mia present in both forms of diabetes. An interesting ob-
servation was made by Groop’s team, which reported
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FIGURE 2. Schematic localization of the brain stem and hypothalamic nuclei containing glucose sensing neurons. A: sagittal section of a mouse brain
with indication of the bregma levels at which the coronal sections in B are prepared. B: coronal sections with indications of the nuclei where glucose-
excited (GE) and glucose-inhibited (GI) neurons are present (colored regions). Sections A, B, and C are from the hypothalamus and sections D and E
from the brain stem. Amyg, amygdala; AP, area postrema; ARC, arcuate nucleus of the hypothalamus; BLM, basolateral medulla; DMH, dorsomedial
hypothalamus; DMNX, dorsal motor nucleus of the vagus; LC, locus coeruleus; LHA, lateral hypothalamus; NA, nucleus ambigus; NTS, nucleus tractus
solitarii; PBN, parabrachial nucleus; PVN, paraventricular nucleus of the hypothalamus; RCH, retrochiasmatic nucleus; SCh, suprachiasmatic nucleus;
SO, supraoptic nucleus; VMH, ventromedial nucleus of the hypothalamus; ZI, zona incerta.
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that islets of Goto-Kakizaki rats, a model of type 2 diabe-
tes, display abnormally elevated expression of the a2-
AR. They showed that reducing this receptor’s expres-
sion or its intracellular signaling restored normal glu-
cose-stimulated insulin secretion. They further found, in
humans, a genetic variant in the ADRA2A gene (encod-
ing the a2-AR) that leads to increased receptor expres-
sion in b-cells, diminished insulin secretion, and higher
risk of developing type 2 diabetes (41). This important
human study shows that autonomic nervous inputs into
pancreatic b-cells play a critical role in the long-term
maintenance of glucose homeostasis.

2.3. Enteric Nervous System

In addition to sympathetic and parasympathetic innerva-
tion, the endocrine pancreas receives nerve fibers from
the enteric nervous system (42–44). Some of these
nerves are equipped with proteins required for glucose
sensing, such as the ATP-sensitive K1 (KATP) channel,
and may provide information related to gut nutrient
absorption (43). These nerves and their role in control-
ling pancreatic endocrine secretion have been little
described so far.

3. CENTRAL GLUCOSE SENSING
MECHANISMS THAT CONTROL
AUTONOMOUS NERVOUS ACTIVITY

How is the autonomic nervous tone to the endocrine pan-
creas controlled by the CNS? This is an important ques-
tion that, if fully described at the molecular, cellular, and
neuronal circuit levels, can lead to a better understanding
of the pathogenesis of obesity and diabetes as well as of
the defective counterregulatory response to hypoglyce-
mia that often develops in insulin-treated patients with
type 1 or type 2 diabetes. FIGURE 2 presents a schematic
description of the hypothalamic and brain stem nuclei
where glucose sensing neurons are located and that are
discussed in the present review.
Anatomical description of the vagal and sympathetic

neuronal connections between CNS nuclei and the pan-
creas has been established by following the retrograde
transport of recombinant pseudorabies viruses injected
in the pancreas (45, 46). First-order vagal neurons are
located in the DMNX; second-order neurons are in the
adjacent NTS and in several hypothalamic nuclei, includ-
ing the arcuate (ARH), paraventricular (PVN), lateral (LH),
and dorsomedial (DMH) nuclei, as well as in the zona
incerta (ZI). Third-order neurons are found in the ventro-
medial hypothalamus (VMN) and the suprachiasmatic nu-
cleus (SCN).

The first-order neurons of the pancreas-projecting
sympathetic neurons are in the intermediolateral column
of the spinal cord; second-order neurons are found in
the A5 region of the basolateral medulla and the locus
coeruleus (LC) as well as in the hypothalamic LH, PVN,
ZI, and retrochiasmatic area (RCA); third-order neurons
are present in ARH, VMN, DMH, and SCN.
Glucose sensing neurons have been identified in

each of these brain stem and hypothalamic nuclei (15).
Neurons located in nuclei not protected by a blood-brain
barrier, such as the NTS and ARH, can respond to
changes in blood glucose concentrations (47). The glu-
cose sensing GE or GI neurons present in other nuclei
detect changes in parenchymal glucose concentrations,
which vary in parallel with, and are about a third of, the
blood glucose concentrations (48). The characteristics
of these neurons have been elucidated by recording
their electrophysiological properties in live animals (47,
49) or by patch-clamp analysis performed on acute brain
sections or isolated neurons with extracellular glucose
concentrations varying between 0.5–1 mM and 5 mM
(50–53); a few studies reported changes in electrical ac-
tivity over the 5 mM to 10 mM glucose concentration
range, defining high-glucose-excited (HGE) or high-glu-
cose-inhibited (HGI) neurons (54, 55).

3.1. How Do GE Neurons Sense Glucose?

GE neurons are activated by a mechanism that requires
glucose uptake, metabolism, and closure of the KATP
channel to induce membrane depolarization and firing
activity (49, 54, 56–58) (FIGURE 3A). The presence of
the KATP channel has been identified by its characteristic
electrophysiological and pharmacological properties
(49, 56), and its role has been confirmed by genetic
approaches. For instance, in mice with whole body
knockout of the Kir6.2 subunit of the KATP channel, glu-
cose-responsive neurons are no longer detected in the
VMN, and the mice show defective glucagon secretion
in response to hypoglycemia (58). Also, specific overex-
pression in hypothalamic proopiomelanocortin (POMC)
or melanin-concentrating hormone (MCH) neurons of a
mutant of the Kir6.2 subunit, which suppresses the ATP
sensitivity of the channel, blocks the response of these
neurons to high glucose, leading to the development of
glucose intolerance (59–61). In POMC and MCH neu-
rons, the mitochondrial UCP2 uncoupling protein has
been found to control ATP production and glucose
responsiveness (59, 60).
In VMN neurons, UCP2 is also required to control the

level of phosphorylation of Drp1, a protein that regulates
mitochondria fission and activation of GE neurons by
glucose (62). A requirement for adequate regulation of
mitochondria dynamics for the glucose responsiveness
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of POMC GE neurons has also been reported in mice
with knockout of Mitofusin 2, a regulator of mitochondria
fusion, or of Drp1 (63–65). These studies highlight the
critical role of mitochondria and ATP production in the
signaling pathway that activates GE neuron firing. An
obligatory role for mitochondrion-produced reactive ox-
ygen species (ROS) has also been reported for the
response of GE neurons of the VMN and ARH to high
glucose (10 mM), a response that can be suppressed by
various antioxidants (66, 67).
However, how glucose metabolism is regulated is not

fully established. Because of the similarity with the activa-
tion of pancreatic b-cells by glucose, notably the role of
the KATP channel, it is widely assumed that glucokinase
(Gck), which catalyzes the rate-limiting step in glucose-
stimulated insulin secretion (68), also plays a critical role in
both GE and GI neurons (50, 69, 70). However, the glu-
cose responsiveness of GE and GI neurons is over a glu-
cose concentration range, 0.5 mM to 5 mM, that is much
lower than the Km for glucose of glucokinase (�8 mM)
and below the glucose concentration range that stimu-
lates insulin secretion,�3.4 mM to 20 mM (71, 72). In addi-
tion, these studies (50, 69, 70) mostly used glucokinase
pharmacological inhibitors such as alloxan, glucosamine,
or mannoheptulose or siRNA-mediated silencing of the
glucokinase mRNA in dissociated neuronal cells, and non-
specific or off-target effects cannot be excluded. In con-
trast, targeted inactivation of Gck in Sf1-expressing
neurons of the VMN, which represent a very largemajority
of the VMN neurons, had no impact on the glucose
responsiveness of GE or GI neurons as detected by elec-
trophysiological recordings on acute brain slices (73).
Thus, although widely considered in the literature to be
required for the function of the classically defined GE and
GI neurons, Gck inactivation did not confirm the assumed
role of this enzyme. Nevertheless, mice with inactivation
of Gck in Sf1 neurons displayed impaired control by glu-
cose of both branches of the autonomic nervous system,
reduced hypoglycemia-induced glucagon secretion, and
increased fat mass; these phenotypes were, however,
only observed in female mice (73). The role of glucokinase

in hypothalamic neurons, which appears to be sex de-
pendent, still needs to be fully elucidated.
Additional unresolved questions related to the func-

tion of the GE neurons include the following: Why does
glucose lead to closure of the KATP channel only in GE
neurons when this channel is expressed in all neurons?
Do GE neurons that that are protected or not by the
blood-brain barrier sense glucose with the same or a dif-
ferent mechanism? In the ARH, which is at least in part
outside the blood-brain barrier, neurons have been
characterized that respond to increases in glucose con-
centrations from 5 mM to 20 mM (54, 55). These HGE
neurons are activated in a KATP channel-independent
manner but require the production of ROS and the acti-
vation of the TRPC3 nonselective cation channel (67).
Other mechanisms associated with GE neuron activation
include the detection of glucose by the T1R2/T1R3 sweet
taste receptor or the uptake of glucose by the Na1-glu-
cose symporters Sglt1 and Sglt3 (66, 74) (FIGURE 3A).
There is obviously a need to better define the respective
importance of each of these mechanisms in the activa-
tion of GE neurons, whether they are present in the
same or distinct GE neurons, and whether these neu-
rons are part of different neuronal circuits that control
pancreatic endocrine cells.

3.2. How Are GI Neurons Activated by
Hypoglycemia?

The mechanisms of activation of GI neurons by hypogly-
cemia are also diverse and depend on the modulation of
either K1 or Cl� conductance to depolarize the plasma
membrane in low-glucose conditions (49, 75–78) (FIGURE
3B). One study also suggested that activation of orexin GI
neurons of the LH depends on a cell surface glucose re-
ceptor (79), which has, however, not yet been character-
ized. Thus, activation of GI neurons is currently viewed as
being triggered by a decrease in cellular glucose metabo-
lism that lowers intracellular ATP levels, leading to activa-
tion of AMP-dependent protein kinase (AMPK) and
reduced activity of the Na1-K1-ATPase.

FIGURE 3. Proposed modes of glucose signaling in glucose-excited (GE) and glucose-inhibited (GI) neurons. A: GE neurons. Glucose induces mem-
brane depolarization through a glucose metabolism-dependent pathway, which requires glucose uptake by Glut1, Glut2, or Glut3, although whether
specific transporters are required for glucose sensing by various GE neurons has not yet been tested. After glucose uptake, glucose phosphorylation
by glucokinase (Gck) has been reported to be required, although gene knockout studies in mice showed that Gck was not required for GE neuron acti-
vation by glucose. Increased oxidative phosphorylation (OXPHOS)-dependent ATP production then leads to the inhibition of the ATP-sensitive K1

(KATP) channel and membrane depolarization (Dw). KATP channel-independent GE neuron activation has been reported that required TRPC3 channel
participation or the induction of membrane depolarization by Na1 cotransport with glucose through the SGLT1 or SGLT3 cotransporter. Other reports
provided evidence for the T1R2/T1R3 heterodimer sweet taste receptor, which is linked to intracellular phospholipase Cb (PLCb) signaling. PDH, pyru-
vate dehydrogenase. B: GI neurons. Decreases in extracellular glucose concentrations reduce the glycolytic flux, Krebs cycle activity, and OXPHOS-de-
pendent ATP production. The decrease in intracellular ATP lowers the activity of the Na1-K1-ATPase, leading to membrane depolarization and
neuronal firing. Reduced ATP production also leads to increased intracellular AMP levels that activate AMP-dependent protein kinase (AMPK), which
can control the membrane potential by regulating the activity of Cl� channels, such as the cystic fibrosis transmembrane regulator (CFTR) or, as demon-
strated in gene knockout experiments, Ano4. AMPK also controls intracellular reactive oxygen species (ROS) levels, by triggering the expression of the
mitochondria detoxifying enzyme Txn2. Figure generated with BioRender.com, with permission.
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In GI neurons of the VMN, AMPK has been reported to
phosphorylate and activate guanylate cyclase; the
increased production of cGMP further stimulates AMPK
activity, which regulates plasma membrane ion chan-
nels, possibly the cystic fibrosis transmembrane regula-
tor (CFTR), a chloride channel (77). However, more
recent studies have identified and provided genetic evi-
dence that the chloride channel anoctamin 4 (Ano4) is
required for hypoglycemia sensing by GI neurons of the
VMN (78, 80).
The role of AMPK in activation of neurons by hypogly-

cemia has been shown with the GT1-7 hypothalamic GI
cell line (81). In mice, this has been demonstrated by
genetic inactivation of AMPK in Sf1 neurons of the VMN
(82). Inactivation of either the a1 or a2 catalytic subunit
of AMPK only partially reduced the number of GI neu-
rons, whereas simultaneous inactivation of both subu-
nits completely suppressed their presence. Of note,
VMN GE neurons were not affected by these genetic
modifications. Analysis of the transcriptome of the
VMN neurons of double a1-a2-subunit-knockout mice
revealed a strong decreased expression of Txn2,
which encodes a mitochondrial reactive oxygen spe-
cies (ROS) scavenging enzyme. Virus-directed overex-
pression of Txn2 in the VMN of the double-knockout
mice restored GI neuron activity. Thus, AMPK contrib-
utes to hypoglycemia sensing also by inducing the
expression of a gene that limits the production of
ROS. This is also supported by another study that
showed that overexpressing Txn1, a cytoplasmic form
of the enzyme, in the VMN of streptozotocin-induced
diabetic rats preserves normal glucagon secretion
(83). ROS are known to be increased upon hypoglyce-
mia following the activation of various enzymes, such
as NADPH oxidase, xanthine oxidase, or the Ca21-de-
pendent phospholipase A2, and their overproduction
may have a deleterious impact on glucose sensing
(84–86).
Another established mechanism by which a fall in in-

tracellular ATP levels induces neuronal firing, possibly
independently of a role of AMPK, is by reducing the ac-
tivity of the Na1-K1-ATPase, leading to membrane
depolarization and neuron activation. This mechanism
has been observed in the rat LH and VMN, in experi-
ments where blood and parenchymal glucose levels
and firing activity were recorded simultaneously (49): af-
ter insulin injection, GI neuron activity progressively
increases until the parenchymal glucose levels decrease
to 1.0 to 0.5 mM; at lower glucose levels the neurons
stop firing at all. In mouse AgRP neurons, evidence has
been obtained for the crucial role of the Na1-K1-ATPase
in triggering firing activity in response to hypoglycemia;
this response can be replicated by application of the so-
dium pump inhibitor ouabain (87).

4. NEURONAL CONTROL OF INSULIN
SECRETION

4.1. Cephalic Phase of Insulin Release

The cephalic phase of insulin release (CPIR) is triggered
by stimuli conveyed by the senses of sight, smell, and
taste (7). In the oral cavity, glucose is detected by taste
cells, which transfer this information to the chorda tym-
pani, the nerve that connects the tongue to the NTS (87).
This signal is then transferred to the vagal nerve to stimu-
late insulin secretion, a response that can be blocked by
vagotomy or by administration of the muscarinic antago-
nist atropine (88–90). How glucose is initially detected by
taste cells to control CPIR is not fully characterized yet.
Taste cells express the sweet taste receptor T1R2-T1R3
(91), which is activated by nonnutritive sweeteners and by
glucose, and the glucose transporters Glut2, Glut5, and
SGLT1 (92). In T1R3-knockout mice glucose still activates
the CPIR (93, 94), whereas it is reduced by the glucose
transporter inhibitors phloretin and phlorizin (95); this sug-
gests that glucose transporters rather than the sweet
taste receptors are involved in triggering CPIR.
In addition, CPIR can also be stimulated by the sight or

smell of food. For instance, in a recent report Montaner
et al. (96) showed that the odor of food, without direct
contact with the food pellets, induced insulin release.
They showed that this response required the production
of GLP-1 by olfactory bulb glomerular layer cells and the
activation of local GLP1-R-expressing cells; this was fol-
lowed by vagal nerve activation and stimulation of insu-
lin secretion. In a different setting, a CPIR was elicited in
mice by a short-term (60 s) contact with food pellets. In
this experiment, activation of the vagal nerve, and the
consequent secretion of insulin, were found to depend
on Il-1b secreted by microglial cells (97), suggesting that
the CPIR can be modulated by the local inflammatory
state. Together, these observations indicate that the
vagal nerve innervating the b-cells can be activated by
multiple pathways in anticipation of food ingestion. This
anticipatory insulin secretion plays an important role to
ensure normal postprandial glucose tolerance (98, 99).

4.2. Vagal Control of b-Cell Proliferation and Mass

Appropriate insulin secretion to maintain normoglycemia
over a lifetime requires preservation of b-cell mass (100,
101) and function (102, 103). The role of the vagal nerve in
controlling b-cell mass has been demonstrated, for
instance, in rats with lesion of the ventromedial hypothal-
amus, which display higher vagal nerve activity, leading
to increased insulin secretion, b-cell proliferation, and
mass (104, 105). Also, intracerebroventricular injection of
NPY, which is normally secreted by ARH NPY/AgRP
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neurons, increases insulin secretion and triggers an obe-
sity phenotype; the hyperinsulinemic response depends
on vagal afferent signals (106). A more recent study
showed that inactivation of Glut2 selectively in neurons in
mice suppresses the activation by glucose of the vagal
nerve (107). This led to a lower rate of b-cell proliferation
around the weaning period and a consequent �30%
reduction in adult b-cell mass. This defect, together with
the loss of vagally controlled first-phase insulin secretion,
induces a progressive development of glucose intoler-
ance (107). This indicates that the direct effects of glucose
on b-cell proliferation and GSIS are not sufficient to main-
tain glucose homeostasis in the absence of glucose-de-
pendent vagal input (FIGURE 4).
A physiological increase in b-cell mass is also a com-

pensatory mechanism to the development of insulin resist-
ance. In a mouse model of liver-specific insulin resistance
induced by activation of the hepatocyte Erk pathway,
b-cell proliferation and mass are strongly increased (109).
The signal linking liver to b-cells was shown to depend on
splanchnic afferent signals that increase vagal nerve-de-
pendent b-cell proliferation, an effect mediated by cholin-
ergic and VIP/PACAP signaling and induction of the b-cell
transcription factor FoxM1 (109–111).

4.3. Neuronal Circuits Controlling Insulin
Secretion

With the use of green fluorescent protein (GFP)-express-
ing pseudorabies viruses in retrograde labeling techni-
ques, the hypothalamic neurons connected to the
pancreas and b-cells could be more precisely mapped.
For instance, infection of mouse pancreatic b-cells led to
the expression of a reporter GFP protein in hypothalamic
PVN, VMN, ARH, and LH neurons (112). Adenovirus-
directed overexpression of hexokinase 1 in these nuclei,

which was hypothesized to alter their glucose sensing
properties, induced glucose intolerance with reduced in-
sulin secretion when the virus was injected in the ARC
and VMN and increased glucagon secretion when
injected in the LH. No discernible effect on glucose ho-
meostasis was observed when hexokinase 1 was over-
expressed in the PVN. These experiments confirmed
that neurons within several hypothalamic nuclei control
efferent circuits that regulate insulin and glucagon
secretion. In addition, they show that modifying the glu-
cose metabolism of these neurons can have a direct
impact on glucose homeostasis.
With the development of genetically engineered mice

in combinations of viral tracing, chemogenetic, and
optogenetic techniques it is now possible to test the
role of specific genes, expressed in defined brain cells,
in the control of pancreatic hormone secretion (108). For
instance, a conditional retrograde viral tracing study that
used Ins1-Cre mice to selectively label the neurons
that contact b-cells established the existence of a multi-
synaptic, sympathetic connection between b-cells and
oxytocin neurons of the PVN (113) (FIGURE 5). These
neurons are activated by glucoprivation, and their
chemogenetic activation suppresses insulin secretion
whereas their inhibition by expression of tetanus toxin,
which blocks synaptic transmission, increases insulin
secretion, and induces hypoglycemia. Similarly, chemo-
genetic activation of PACAP-expressing GI neurons of
the VMN inhibits insulin secretion (114). This study indi-
cates that the VMN has a tonic inhibitory role in insulin
secretion, in line with the early report that lesion of this
nucleus increases vagal activity and b-cell proliferation
(104). Thus, the neuronal circuits that control b-cells char-
acterized so far are recruited by hypoglycemia to inhibit
insulin secretion; they are thus part of the global counter-
regulatory response to hypoglycemia.
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FIGURE 4. Glucose controls b-cell proliferation and mass
through Glut2-dependent glucose sensing neurons that
control vagal activity. In mice lacking Glut2 expression in
neurons, the vagal nerve is no longer activated by glucose,
and this leads to reduced b-cell proliferation during the
weaning period and lower b-cell mass in adult mice. In adult
mice, this is also associated with the absence of first-phase
insulin secretion. These combined defects lead to the pro-
gressive development of glucose intolerance, even though
the direct effects of glucose on b-cell proliferation and insu-
lin secretion are present. Thus, glucose-dependent vagal
activity is required for the long-term preservation of glucose
homeostasis. GSIS, glucose-stimulated insulin secretion;
PNS, parasympathetic nervous system. Figure modified
from Ref. 108, with permission from Trends in Endocrinology
& Metabolism, and generated with BioRender.com, with
permission.
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5. NEURONAL CIRCUITS CONTROLLING
GLUCAGON SECRETION

5.1. The Dorsal Vagal Complex

The immediate response to a fall in blood glucose con-
centrations below the euglycemic level is the secretion of
glucagon triggered by vagal nerve activation, and at
deeper hypoglycemic levels the sympathetic nervous
system also becomes activated (115). The dorsal vagal
complex, which comprises the vagal neurons of the
DMNX, the AP, and the NTS (FIGURE 2), is an important
site of hypoglycemia sensing that triggers counterregula-
tion and feeding (116, 117). In the NTS, neurons are directly
sensitive to small variations in circulating glucose concen-
trations (47, 57). For instance, neurons of the NTS that
express the glucose transporter Glut2 are activated by
hypoglycemia in a concentration- and AMPK-dependent
manner when glucose decreases below 5 mM. These
neurons send projections to the DMNX, and their optoge-
netic activation increases vagal nerve firing, leading to
increased glucagon secretion. This NTS-DMNX-a-cell cir-
cuit links central hypoglycemia sensing to the secretion
of glucagon to restore euglycemia (118) (FIGURE 6).

5.2. Hypothalamic Mechanisms

5.2.1. The VMN.

The VMN is an important nucleus involved in the control of
glucose homeostasis (119, 120), which contains functionally

well-characterized GE, GI, and glucose-nonresponding
neurons (121–123). The role of the VMN neurons in physio-
logical regulation has now been tested with genetic
approaches. For instance, Sf1-Cre mice have been used to
allow Cre-dependent expression of light-activated or light-
inhibited ion channels. Activation of Sf1 neurons by laser
light stimulates glucagon secretion and increases glyce-
mia, whereas their silencing markedly delays the glycemic
recovery from insulin-induced hypoglycemia (124).
Similarly, expression of a magnetically controlled ion chan-
nel in glucokinase neurons of the VMN, which also repre-
sent a large fraction of the neurons in this nucleus, allows
their activation by an external magnetic field (125). This
results in a robust increase in blood glucose levels, associ-
ated with higher plasma glucagon and reduced insulin
secretion. Although these studies provide clear evidence
for the role of the VMN neurons in stimulating glucagon
secretion, they do not distinguish between the role of GE
and GI neurons. A more recent study, however, showed
that estrogen receptor-expressing (Esr1) neurons of the
ventrolateral part of the VMN are either GE or GI. The
authors showed that the Esr1 GI neurons require the pres-
ence of the chloride channel anoctamine 4 (Ano4) for their
activation by hypoglycemia (78). These GI neurons project
to themedioposterior part of the ARH, and their stimulation
increases glycemia. Interestingly, the Esr1 GE neurons,
whose activation by high glucose depends on the pres-
ence of the KATP channel, project to the dorsal raphe nu-
cleus, and their optogenetic inhibition increases glycemia
(78). Thus, hypoglycemia triggers glucagon secretion by a
dual action on activating GI neurons and inhibiting GE neu-
rons. However, inactivation of the Ano4 gene in the VMN,
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IML

SNS

↓ Insulin

↓Glucose

FIGURE 5. Hypoglycemia activates the
sympathetic nerve to suppress insulin
secretion as part of a global counterregu-
latory response that restores normogly-
cemia. Oxytocin (OXT) neurons of the
paraventricular nucleus (PVN) are in mul-
tisynaptic contact with pancreatic b-cells
through the sympathetic nerve. Their
activation by hypoglycemia suppresses
insulin secretion. Activation of glucose-
inhibited (GI) pituitary adenylate cyclase-
activating polypeptide (PACAP) neurons
of the ventromedial hypothalamus (VMN)
also suppresses insulin secretion. BLM,
basolateral medulla; IML, intermediolat-
eral column; SNS, sympathetic nervous
system.
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which suppresses GI neuron activity, is sufficient to reduce
glycemia and cause defective glucagon secretion in
response to 2-deoxy-D-glucose (2DG)-induced neuroglu-
copenia or to insulin-induced hypoglycemia (80).
An interesting question is whether the glucose sensing
properties of VMN GI neurons are required for the physio-
logical response to hypoglycemia. These VMN neurons
receive information from afferent GI neurons located at vari-
ous anatomical sites, such as the hepatoportal vein area,
the NTS, or the parabrachial nucleus (PBN). In the PBN,
CCK-expressing neurons are activated by hypoglycemia
and project to VMN Sf1 neurons, which then control gluca-
gon secretion through a synaptic relay in the bed nucleus of
the stria terminalis (BNST) (124, 126, 127). In this PBN-VMN-
BNST circuit (FIGURE 7), VMN neurons are required to
transmit the information about hypoglycemia. Indeed,
genetic inactivation of the vesicular glutamate transporter
vGLUT2 in Sf1 neurons prevents synaptic communication,
and mice carrying this mutation display defective glucagon

response to hypoglycemia, indicating that these neurons
form an essential link in this circuit (128). However, suppres-
sion of hypoglycemia sensing by these neurons by inactiva-
tion of the a1- and a2-subunits of AMPK does not impair
hypoglycemia-induced glucagon secretion (82). Thus, the
hypoglycemia sensing property of these neurons appears
to be dispensable for the physiological response to hypogly-
cemia; it may nevertheless be recruited in the case of dys-
function of the peripheral glucose sensors or in response to
fast development of hypoglycemia (see sect. 6), which
would lead to development of central hypoglycemia.

6. HEPATOPORTAL GLUCOSE SENSORS AND
AUTONOMIC CONTROL OF PANCREATIC
ISLETS

The hepatoportal vein area is richly innervated by nutri-
ent-sensitive vagal and spinal afferents (FIGURE 8) that
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FIGURE 6. Glut2 neurons of the nucleus tractus solitarii (NTS) are connected to dorsal motor nucleus of the vagus (DMNX) neurons to control gluca-
gon secretion through the vagal nerve. Glut2- and channelrhodopsin2 (ChR2)-expressing neurons of the NTS send projections (labeled with biocytin,
green) to the DMNX neurons identified by choline acetyltransferase (ChAT) labeling (violet). When stimulated by light, the NTS Glut2 neurons of mice
that express ChR2, but not those of control mice, activate vagal nerve firing and glucagon secretion. AP, area postrema. Figure modified from Ref. 118,
with permission from Cell Metabolism, and generated with BioRender.com, with permission. Significant difference: �P< 0.05; ��P< 0.01.
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monitor the local concentrations not only of glucose but
also of amino acids and lipids. These nutrient sensing
afferents have profound effects on feeding behavior
and glucose homeostasis, in part by modulating auto-
nomic nervous activity (129–134).
Vagal afferents have their cell bodies mainly in the left

nodose ganglion and project to the DMNX, the NTS, and
the AP; the projections to the DMNX can activate a
vago-vagal reflex to rapidly control pancreatic islet hor-
mone secretion (132). The spinal sensory fibers of the
hepatoportal vein area originate from dorsal root gan-
glion bipolar neurons, which are connected to second-
order neurons present in the spinal cord; these project
to the DVC and to other central regions (129); the projec-
tions to the DMNX indicate that spino-vagal connections
can control islet hormone secretion (135).
Vagal sensory fibers are responsive to glucose injec-

tions in the portal vein (136). When glucose is infused in
the portal vein at a relatively high rate, corresponding to
endogenous glucose production, it triggers glucose
uptake in muscle, heart, and brown fat by an insulin-in-
dependent mechanism (137–139). Both pharmacological
and genetic studies showed that glucose sensing by

this system depends on the expression of Glut2 and of
the Glp-1R and can be inhibited by somatostatin (140,
141) (FIGURE 8), thereby sharing similarities with glucose
sensing by pancreatic b-cells. Notably, this sensing sys-
tem also controls the first phase of insulin secretion
induced by an intraperitoneal glucose injection. The
necessity for Glut2 expression was demonstrated by
studies revealing suppressed first-phase insulin secre-
tion in mice lacking Glut2 in their nervous system
(107). Activation of a first phase of insulin secretion
can also be induced by portal infusion of GLP-1, a
response triggered by a hepatopancreatic vago-vagal
reflex (142–144).
Slow-onset hypoglycemia (reaching �2.5 mM over 75

min) activates spinal afferents and induces expression of
c-Fos (a marker of neuron activation) in the AP, the NTS,
and the DMNX (145) and triggers the counterregulatory
secretion of epinephrine, norepinephrine, and glucagon
(146, 147) (FIGURE 8). This response is prevented by ce-
liac-superior mesenteric ganglionectomy but not by va-
gotomy or cooling-induced inhibition of vagal nerve
firing (146, 148). Notably, if hypoglycemia develops faster
(reaching 2.5 mMwithin 20min), a normal CRR develops
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FIGURE 7. A lateral parabrachial nucleus (LPBN)-ventromedial hypothalamus (VMN)-bed nucleus of the stria terminalis (BNST) circuit that controls
hypoglycemia-induced glucagon secretion. CCK-expressing neurons of the PBN are activated by hypoglycemia, an activation countered by leptin
action. These neurons project to Sf1 neurons of the VMN that express the CCKB receptor (CCKBR). When activated, these VMN neurons trigger gluca-
gon secretion through a relay in the BNST. Whether the BNST activates the sympathetic nervous system (SNS) or parasympathetic nervous system
(PNS) to control glucagon secretion is not established. LepR, leptin receptor. Figure generated with BioRender.com, with permission.
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even upon ganglionectomy (149, 150). This may be
explained by the recruitment of central glucose sensors,
possibly the GI neurons of the VMN that are part of a
neuronal circuit that controls glucagon secretion, as dis-
cussed above.
The mechanism of hypoglycemia sensing that acti-

vates spinal afferent is not established. It may depend
on Sglt3 (151), an isoform of the Na1-glucose symporter
family that does not transport glucose but induces so-
dium currents upon glucose binding (152). Genetic evi-
dence for the role of this symporter in glucose sensing
is, however, still to be obtained.
Collectively, the above information indicates that the

hepatoportal vein area contains multiple glucose sens-
ing mechanisms that activate vagal and spinal afferents
(FIGURE 8). These are connected to the dorsal vagal
complex, which can transfer information to hypothalamic
nuclei or other central areas. Importantly, vagal and spi-
nal afferents projecting to the DMNX can initiate vagal
reflexes to rapidly control the secretion of pancreatic is-
let hormones.
Through stimulating first-phase insulin secretion and

enhancing peripheral tissue glucose uptake, vagal affer-
ents play a critical role in the anticipatory adjustment of
the body to incoming glucose loads. Conversely, during
slow development of hypoglycemia spinal afferents are
essential to trigger the secretion of counterregulatory
hormones.

7. GENETIC IDENTIFICATION OF
HYPOTHALAMIC MECHANISMS
CONTROLLING THE CRR

As described above, the DMNX neurons receive input
from second-order neurons located not only in the NTS
but also in several hypothalamic nuclei where glucose
sensing neurons are also located (15, 45). Thus, activation
of DMNX vagal neurons may also be controlled by hypo-
glycemia sensing by these hypothalamic neurons. To iden-
tify, in an unbiased manner, novel hypothalamic regulators
of glucagon secretion, Picard et al. (153, 154) performed
genetic screens. They used a panel of recombinant inbred
BXD mice, derived from the cross of C57BL/6 and DBA/2
mice (155), and induced glucagon secretion by intraperito-
neal injection of 2DG or of insulin (insulin-induced hypogly-
cemia, IIH) (FIGURE 9). Interestingly, the two screens
revealed different quantitative trait loci (QTLs) for the con-
trol of glucagon secretion, indicating that the response to
2DG-induced neuroglucopenia and IIH depends on differ-
ent molecular mechanisms (FIGURE 9). The screen for
2DG-induced glucagon secretion led to the identification
of a single QTL on the distal part of chromosome 7.
Combining this information with RNA sequencing data
from the hypothalami of the BXD mice identified Fgf15 as
the mRNA whose hypothalamic level of expression corre-
lated most, and negatively, with the glucagon trait (153).
In the IIH screen, two QTLs were identified, one on

Islets
SMG

Sglt3

DRGGLUCOSE

NTS
DMNX

Nodose
ganglion

Vagal
afferents

Glut2
GLP-1R
SSTR

Spinal
afferents

Vagus
Nerve

First phase
insulin secretion

Glucagon
secretion

FIGURE 8. The hepatoportal glucose sensors and islet hormone secretion. The hepatoportal vein area contains glucose sensors that are linked
to vagal and spinal afferents. Vagal afferent activity is controlled by sensors that depend on the expression of Glut2 and the glucagon-like protein-1
(GLP-1) receptor (GLP-1R) and are inhibited by somatostatin. The signal transmitted to the dorsal motor nucleus of the vagus (DMNX) can induce a vago-
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pendent glucose uptake by muscle, heart, and brown adipose tissue (see text). Spinal afferents are activated by slow-developing hypoglycemia. The
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cagon secretion. DRG, dorsal root ganglia; NTS, nucleus tractus solitarii; SMG, superior mesenteric ganglia; SSTR, somatostatin receptor. Figure gener-
ated with BioRender.com, with permission.
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chromosome 8 and one on chromosome 15. On chromo-
some 8 Agpat5 and on chromosome 15 Irak4 and
Tmem117 were the best candidates (154). Analysis of these
genes yielded new information about the complexity of
the neuronal mechanisms and circuits that regulate gluca-
gon secretion. These genes are described below (and see
FIGURE 9).

7.1. Fgf15 in Neurons of the DMH

Fgf15mRNAwas found to be expressed in the perifornical
area (PeF) and by glutamatergic neurons of the dorsome-
dial hypothalamus (DMH). Intracerebroventricular injection
of FGF19, the human ortholog of Fgf15, decreases hypo-
glycemia-induced activation of NTS and DMNX neurons
asmeasured by c-Fos immunostaining and reduces gluca-
gon secretion (153), in line with the negative correlation
between Fgf15 expression and plasma glucagon levels.
Fgf15-Cre mice were then generated to allow for virus-
directed expression of hM3Dq receptors, which can be
activated by intraperitoneal clozapine or clozapine-N-ox-
ide, specifically in Fgf15 neurons of the DMH (156, 157).

Chemogenetic activation of the Fgf15 neurons reduces
hypoglycemia-activated vagal activity and glucagon
secretion, confirming the negative role of these neurons
in vagal nerve activation. However, activation of the Fgf15
neurons induces intraperitoneal glucose intolerance. This
effect is not caused by reduced insulin secretion or by
increased insulin resistance. Instead, it is caused by a
strong activation of the parasympathetic nerve leading to
phosphorylation of the transcription factor CREBP in
the liver, increased expression of Pepck, a rate-limiting
enzyme in gluconeogenesis, and increased hepatic glu-
cose production (FIGURE 10). In basal conditions activa-
tion of Fgf15 neurons also led to an �1-mM increase in
glycemia (156). Thus, Fgf15 neurons of the DMH suppress
hypoglycemia-induced vagal nerve activity and glucagon
secretion, but, at the same time, they activate hepatic glu-
cose production through a direct sympathetic pathway.
Only a small fraction of Fgf15 neurons of the DMH are GI,
a higher proportion are GE, and the majority are glucose
nonresponders, and IIH does not induce c-Fos expression
in these neurons. Thus, these Fgf15 neurons may not
directly respond to hypoglycemia. However, viral tracing
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FIGURE 9. Recombinant inbred mice for the identification of gene loci controlling glucagon secretion. A: recombinant inbred BXD mice were gener-
ated from the breeding of C57BL/6 and DBA/2 mice. Mice with unique combinations of the parental chromosomes are obtained after several back-
crossings; their genotype has been established, allowing identification of quantitative trait loci (QTLs) for 2-deoxy-D-glucose (2DG)- or insulin-induced
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experiments showed that they receive inputs from neu-
rons in the ARH, the VMN, the PVN, and the LH and may
thus be activated indirectly by hypoglycemia. In addition,
viral tracing showed that these neurons send projections
to the medial preoptic nucleus (MPO), the ARH, and the
LC. The latter is a site that controls activation of the sym-
pathetic nerve and inhibition of the parasympathetic nerve
(158); it may thus form an important relay for the glucore-
gulatory effect of the Fgf15 neurons. The dual effect on
both branches of the ANS may be required when a rapid
hepatic glucose release is required without triggering
other glucagon responses, for instance, a reduction in
food intake (159).

7.2. Agpat5 in AgRP Neurons

Agpat5 encodes acylglycerolphosphate-acyltransferase
5, an enzyme associated with the outer mitochondrial
membrane, which catalyzes the formation of phosphati-
dic acid from lysophosphatidic acid and fatty acyl-CoA. It
is ubiquitously expressed, including in the ARH and

PVN, two nuclei that show intense c-Fos labeling upon
insulin-induced hypoglycemia (154). Knockout of Agpat5
in PVN neurons had no effect on any measured glucose
homeostasis parameters. Its inactivation in AgRP neu-
rons of the ARH, in contrast, reduced the number of
AgRP GI neurons, decreased hypoglycemia-induced
vagal nerve activity, and blunted glucagon secretion
(160) (FIGURE 11). Why is this lipid-modifying enzyme
required to preserve hypoglycemia sensing? Activation
of AgRP GI neurons by hypoglycemia is triggered by a
fall in intracellular ATP concentration, which reduces the
activity of the Na1-K1-ATPase, leading to membrane
depolarization and neuron firing (161). Thus, for the intra-
cellular ATP levels to reflect a fall in extracellular glucose
concentrations, ATP should not be produced from other
substrates, in particular from free fatty acids, whose cir-
culating concentrations augment during fasting, i.e.,
when glucagon secretion is needed. In this context,
Agpat5, whose expression level increases in AgRP neu-
rons during fasting (162), converts fatty acyl-CoAs into
phosphatidic acid and thus diverts them away from

DMH

FGF15

CNO

DMNX

BLM

NTS

IML

SNS PNS

hM3Dq

↑ Gluconeogenesis ↓ Glucagon

FIGURE 10. Fgf15 neurons of the dorsomedial hypothalamus (DMH) that express the hM3Dq receptor can be activated by intraperitoneal injection of
clozapine-N-oxide (CNO). This suppresses hypoglycemia-induced dorsal motor nucleus of the vagus (DMNX) neuron activation and vagal nerve firing
but increases sympathetic nerve activity, and that stimulates hepatic glucose output. BLM, basolateral medulla; IML, intermediolateral column; NTS, nu-
cleus tractus solitarii; PNS, parasympathetic nervous system; SNS, sympathetic nervous system. Figure generated with BioRender.com, with
permission.
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Cpt1a-dependent entry into the mitochondria and b-oxida-
tion-directed ATP production (see FIGURE 3B). This role
was proven in the GT1-7 cell line by showing that ATP pro-
duction is increased by silencing Agpat5 expression and
that simultaneous silencing of Cpt1a returned ATP to basal
levels. Similarly, in AgRPAgpat5KO mice the loss of GI neu-
rons is fully reversed by additional inactivation of the
Cpt1a gene. Thus, Agpat5, in a subset of GI AgRP neu-
rons, is required for proper hypoglycemia sensing, induc-
tion of vagal activity, and full glucagon response.

7.3. Irak4 and Il-1b Signaling

Irak4 is a kinase that acts downstream of the Il-1bR or
the Toll-like receptors (TLRs) and upstream of the

transcription factor NF-κB (163). Its expression in the
hypothalamus is negatively correlated with the glucagon
response, and studies of C57BL/6 and DBA/2 mice
showed that Irak4 is much more expressed in the hypo-
thalamus of DBA/2 mice than in that of C57BL/6 mice
and that insulin, despite inducing the same hypoglyce-
mia in both strains, triggers a lower glucagon response
in DBA/2 mice (154). The relative unresponsiveness
of DBA/2 mice is also associated with higher hypothala-
mic Il-1b expression. Intracerebroventricular injection of
an Il-1R antagonist (anakinra) increases hypoglycemia-
induced c-Fos expression in the ARH but not in the PVN,
vagal activity, and glucagon secretion. These effects are
seen in DBA/2 mice but not in C57BL/6 mice. Thus,
Irak4 expression level is genetically determined and
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FIGURE 11. Agpat5 is required for the response to hypoglycemia in a subset of AgRP neurons. Top: the schemes illustrate the role of Agpat5 in pre-
venting fatty acyl-CoAs (FA-CoA) from entering the mitochondria to generate b-oxidation-derived ATP. In the absence of Agpat5, FA-CoAs can enter
the mitochondria through Cpt1a, leading to increased ATP levels. This prevents ATP levels from decreasing in proportion to the developing hypoglyce-
mia and activating AgRP neuron firing. Bottom: when activated by hypoglycemia, Agpat5-expressing AgRP neurons trigger dorsal motor nucleus of the
vagus (DMNX) neuron activity, increase vagal nerve firing, and increase glucagon secretion. ARH, arcuate nucleus; LPA, lysophosphatidic acid;
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controls Il-1b production and Il-1b signaling (164), which
controls the response to hypoglycemia and glucagon
secretion. How does Il-1b decrease hypoglycemia sens-
ing and the CRR? Il-1b can be produced by neurons,
astrocytes, or microglial cells, and microglia-produced Il-
1b has been reported to decrease AgRP neuron activa-
tion and glucagon secretion (165). Il-1b increases glu-
cose uptake and glycolysis in neurons and astrocytes
and thus shifts the relationship between the fall in
extracellular glucose concentration and the decreased
production of ATP, thereby dampening the normal
induction of GI neuron firing (166).

7.4. Tmem117, AVP Secretion, and Glucagon
Response

Tmem117 is an eight transmembrane domain-containing
protein (167), which regulates ROS production and endo-
plasmic reticulum (ER) stress (168) and whose expres-
sion is inversely correlated with IIH-induced glucagon
secretion (154). In the hypothalamus, Tmem117 is
expressed in AVP magnocellular neurons of the PVN
and supraoptic nucleus (SON) (169). Its knockout in AVP
neurons increases ROS production and AVP mRNA
expression, in agreement with studies showing tran-
scriptional upregulation of this gene by ROS (170, 171).
In addition, knockout of Tmem117 in AVP neurons
increases their intracellular Ca21 response to insulin-
induced hypoglycemia as measured by fiber photometry
in living mice. Noteworthy, in female mice the effect of
Tmem117 inactivation on glucagon secretion was only
observed during the proestrus phase, indicating a
strong sex-dependent role of this protein. Because
Tmem117 was identified in an unbiased genetic screen
for hypothalamic regulator of glucagon secretion, this
highlights the role of the AVP neurons in the physiologi-
cal response to hypoglycemia. This is in line with previ-
ous studies showing that hypoglycemia triggers AVP
secretion and that AVP can stimulate glucagon secre-
tion by binding to the pancreatic a-cell AVP1b receptor
(172–174). A more recent study further showed that AVP
is a physiological regulator of glucagon secretion in
humans and that part of the defective CRR observed
in individuals with type 1 diabetes is linked to a defect in
the AVP response to hypoglycemia (175). This study also
provided evidence that activation of AVP neurons is, at
least in part, secondary to activation of GI neurons of the
basolateral medulla (BLM), which send projection to
these neurons in the SON, thus forming a BLM-SON-
posterior pituitary axis for the controlled release of AVP
(FIGURE 12). It is also interesting to note that in a mouse
model of type 2 diabetes with defective CRR induced by
repeated IIH, which displays reduced glucagon secre-
tion, Avp is one of the most downregulated mRNAs

compared with gene expression in the hypothalamus of
control mice (176).
The integration of AVP magnocellular neurons/AVP

as a physiological axis in the control of glucagon secre-
tion is of significant importance. It expands the diversity
of the central mechanisms that control the CRR to hypo-
glycemia and more specifically of glucagon. This axis
comes in addition to both branches of the autonomic
nervous system and of the sympatoadrenal axis that
releases epinephrine, which secondarily stimulates glu-
cagon secretion.

8. INTEGRATION OF NEURONAL GLUCOSE
SENSING IN THE CONTROL OF INSULIN
AND GLUCAGON SECRETION

Glucose sensing cells regulate insulin and glucagon
secretion through the modulation of sympathetic and par-
asympathetic nerve activity and by controlling the secre-
tion of the neurohormone AVP. These sensing cells are
situated in the hepatoportal vein area and in several
nuclei of the brain stem and hypothalamus. An often-dis-
cussed question is whether this glucose sensing system
has a hierarchical organization, with one region exerting
a dominant role in triggering islet hormone secretion or,
alternatively, whether glucose sensing neurons form a
distributed system that monitors local glucose concentra-
tions and integrate this information at a preautonomic
level to trigger hormone secretion.
In anticipation of food absorption, the sight or smell of

food or the initial presence of sugar-containing food in
the oral cavity triggers a CPIR, a response that is vagally
controlled. Then, appearance of glucose in the portal
vein activates sensors that trigger a vagal-dependent
first phase of insulin release and an insulin-independent
stimulation of glucose uptake by peripheral tissues.
These anticipatory, neuronally mediated responses are
activated sequentially. Their overall goal is to minimize
postabsorptive glucose excursions and ensure normal
glucose tolerance.
The neural response to hypoglycemia involves glucose

sensing cells in the hepatoportal vein area, the brain
stem, and the hypothalamus. Early studies showed that
hypoglycemia-induced CRR is suppressed by infusion of
glucose in the VMN and, conversely, that administration
of 2DG in the VMN of euglycemic rats stimulates gluca-
gon secretion (177, 178). These observations suggested a
primordial role of the VMN in CRR. However, other experi-
ments showed that glucose infusion in the portal vein of
hypoglycemic rats reduces the CRR and that spinal de-
nervation impairs the CRR induced by hypoglycemia (146,
179), thereby supporting a crucial role of the hepatoportal
vein sensors. More recently, these sensors were shown
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to be essential for the CRR induced by slow- but not fast-
onset hypoglycemia. Thus, depending on the experimen-
tal conditions, a primary role in the CRR can be attributed
to central or peripheral sensors.
Additionally, not all central sensing units are equal. For

instance, hypoglycemia sensing neurons of the NTS are
directly sensitive to small blood glucose variations (47);
they may thus participate in the CRR response to slow-
onset hypoglycemia. Also, their presence can explain
why celiac-superior mesenteric ganglionectomy does not
completely suppress the counterregulatory hormone
secretion (146). In contrast, VMN GI neurons, which are
located within the blood-brain barrier, are activated when
parenchymal glucose concentrations decrease below a
certain threshold, well under the blood glucose concen-
trations. Such low central glucose concentrations prob-
ably occur rarely, possibly when peripheral sensors
dysfunction or, experimentally, during fast-onset hypogly-
cemia. The central GI neurons located within the blood-
brain barrier may thus be a fail-safe system activated only
when central hypoglycemia develops.
Additional differences between glucose sensing neu-

rons are their sensitivities to metabolites, immune, and
hormonal signals. For instance, the CCK GI neurons of

the PBN express the leptin receptor (LepRb) whose acti-
vation reduces hypoglycemia-induced CRR (127); the
response to hypoglycemia of ARH AgRP neurons is
impacted by circulating free fatty acid levels (160); Il-1b
decreases the responsiveness of ARH neurons and the
activation of the vagal nerve and glucagon secretion
(154); and Tmem117, a regulator of ER stress and ROS
production, modulates the secretory activity of AVP neu-
rons and the glucagon response in a sex-specific man-
ner (169). Thus, although the CRR is triggered by a fall of
glycemia it is also modulated by information about the
body energy level and the local or global inflammatory
state and is influenced by sex hormones, all acting on
different glucose sensing neurons. Another aspect of
the CRR is that it not only induces counterregulatory hor-
mone secretion but also suppresses insulin secretion, as
controlled by oxytocin neurons of the PVN and PACAP
neurons of the VMN.
Collectively, the above information supports a model

in which the CRR is under the control of a distributed glu-
cose sensing system. Information collected by portal
vein sensing neurons is directed to the DVC and hypo-
thalamic nuclei. From the DMNX a spino-vagal reflex
can directly control glucagon secretion, although this

AVP
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AVP1bR

α-cell
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BLM

↑ Glucagon

↓ Glucose

Posterior
pituitary

↓ Glucose

↑ Tmem117

↓ [Ca2+]i

FIGURE 12. Vasopressin (AVP) neurons of the supraoptic nucleus (SON) can be activated by hypoglycemia, probably directly but also indirectly by
glucose-inhibited (GI) neurons of the basolateral medulla (BLM). They then secrete AVP in the blood at the level of the posterior pituitary. AVP binding
to AVP1b receptors present at the surface of pancreatic a-cells stimulates glucagon secretion. Tmem117, an 8 transmembrane domain-containing pro-
tein, negatively controls AVP secretion at least in part by regulating intracellular Ca21 concentration ([Ca21]i). Figure generated with BioRender.com,
with permission.
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has not yet been formally demonstrated. The informa-
tion conveyed from portal glucose sensors to hypothala-
mic nuclei utilizes these central neurons as a relay for
the subsequent activation of sympathetic and parasym-
pathetic nerves innervating pancreatic islets. This relay
function allows these centrally located glucose sensing
neurons to fine-tune the CRR to the metabolic status of
the organism. Their glucose sensing properties may,
however, only be recruited when local hypoglycemia
develops, which must remain a rare event. Additionally,
AVP secretion triggered, at least in part, by GI neurons
of the basolateral medulla represents a parallel, neuro-
hormonal system to restore normoglycemia.

9. CONCLUSIONS

The existence of a link between the central nervous sys-
tem and the control of glucose homeostasis was described
in the middle of the nineteenth century by Claude Bernard
(180). Since then, glucose-responsive neurons have been
identified that are excited either by hyperglycemia or by
hypoglycemia and that are localized not only centrally but
also at peripheral sites such as the hepatoportal vein area.
The diversity of glucose sensing mechanisms used by GE
and GI neurons is still not fully described. Initial investiga-
tions relied mostly on electrophysiological recordings of
neurons exposed to different concentrations of glucose
in combination with various pharmacological inhibitors.
Newer technologies now allow for the genetic identifica-
tion of specific genes required for GE or GI glucose sens-
ing. Virus-based neuronal circuit mapping, together with
chemogenetic and optogenetic techniques, allow precise
characterization of the neuronal circuits that functionally
link glucose sensing neurons to the control of pancreatic
islet cells. With these tools and the use of single-cell
genomic and spatial transcriptomic technologies (181), it
can be expected that the diversity of the glucose sensing
mechanisms can not only be expanded but also be attrib-
uted to specific neurons, neuronal circuits, and physiologi-
cal functions. Another frontier in this field of research will
be to understand the molecular basis for defective CRR
induced by insulin treatment of patients with diabetes and
whether it can be prevented or reversed. Initial studies
using single-cell genomics analysis of the hypothalamus
have revealed that impaired glucagon response to hypo-
glycemia is associated with multiple defects in neurons,
astrocytes, and oligodendrocytes that explain defective
hypoglycemia sensing and indicate global impairment in
synaptic transmission with signs of neurodegeneration
(176). Further studies along these lines are expected to bet-
ter define the molecular and cellular origin of defective
CRR. This could then lead to the prevention and better
management of this dangerous condition. Finally, the

progressive loss of glucose-stimulated insulin secretion
that is associatedwith, and characterizes, the development
of type 2 diabetes may be caused by dysfunctions of not
only pancreatic b-cells but also of the numerous extra-pan-
creatic glucose-sensing cells discussed here that indirectly
control b-cell mass and function. This strongly argues for
further extensive characterization of this integrated net-
work of glucose-sensing cells to better understand the
pathogenesis of diabetes.
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