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Abstract. The analogy between combinatorial optimization and statistical
mechanics has proven to be a fruitful object of study. Simulated annealing,
a metaheuristic for combinatorial optimization problems, is based on this
analogy. In this paper we show how a statistical mechanics formalism can
be utilized to analyze the asymptotic behavior of combinatorial optimization
problems with sum objective function and provide an alternative proof for the
following result: Under a certain combinatorial condition and some natural
probabilistic assumptions on the coefficients of the problem, the ratio between
the optimal solution and an arbitrary feasible solution tends to one almost
surely, as the size of the problem tends to infinity, so that the problem of
optimization becomes trivial in some sense. Whereas this result can also
be proven by purely probabilistic techniques, the above approach allows to
understand why the assumed combinatorial condition is essential for such a
type of asymptotic behavior.
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1 Introduction

Large combinatorial optimization problems are often hard to solve. This is in particular
the case for NP-hard problems implying that most probably the considered problem
is not solvable by any polynomial time algorithm. In these situations an asymptotic
analysis of the problem is needed, where in general the coefficients of the problem are
assumed to be random variables and the behavior of the optimal solution is investigated
as the problem size tends to infinity.

For a number of combinatorial optimization problems, asymptotic results are available
in the literature, e.g. for the linear assignment problem (LAP), the quadratic assignment
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problem (QAP) and the traveling salesman problem (TSP). In the LAP of size n, an
n X n matrix C' = (c¢;;) is given and one looks for a permutation ¢ of 1,2,...,n that
minimizes Y ;. ; Cig(i)- 1f the coefficients ¢;; are independent random variables uniformly
distributed on [0, 1], Aldous [3] proved that the optimal value of the LAP is given by

71_2

% — o(1), confirming a conjecture of Mézard and Parisi [15] (for earlier work on that
problem, see [10, 11, 13, 16]). Thus, for large n, the optimal value becomes independent
of the size of the problem and, heuristically, the larger number of summands is exactly

compensated by the larger set of available permutations.

A completely different asymptotic behavior is exhibited by the QAP: In the Koopmans-
Beckmann QAP of size n, two n x n matrices A = (a;;) and B = (b;;) are given and
one looks for a permutation ¢ of 1,2,...,n that minimizes g(¢) = Z?’j:l ag(i)g(j)biz- If
the coefficients a;; and b;; are independent random variables uniformly distributed on
[0,1], then the optimal value is given by g(¢*) = ©(n?) and thus depends on the size
n of the problem. However, under certain probabilistic constraints on the coefficients,
the value of the objective function for any feasible solution gets arbitrarily close to the
optimal value as n — 00, and in that way the problem of optimization becomes in some
sense trivial (although the QAP is NP-hard!). Specifically, Burkard and Fincke [5, 6]
showed that for the Koopmans-Beckmann QAP and the bottleneck QAP, the ratio
of the worst and the optimal feasible solution tends to 1 in probability (for the QAP
this was strenghtened to almost sure convergence by Frenk et al. [12] under similar
probabilistic constraints, see also Rhee [17, 18]). In [7], Burkard and Fincke extended the
above convergence in probability result to a whole class of combinatorial optimization
problems (including graph-theoretic problems) characterized by a specific combinatorial
condition, which was generalized to almost sure convergence by Szpankowski [20].
Sharp convergence rates of the relative difference between best and worst solutions of
bottleneck problems in the above class have recently been obtained by Albrecher [2].

The above results are derived by purely probabilistic techniques and the charac-
terizing combinatorial condition appears as a technical requirement. However, the
condition itself is structural and since it describes a class of optimization problems
for which any feasible solution is in some sense asymptotically optimal, this is of
considerable relevance in applications and it would be nice to gain additional insight
into the geometry of this condition. This can be achieved to some extent by recon-
sidering the problem using a statistical mechanics formalism, which is done in this paper.

For the special case of the QAP, an attempt in that direction can be found in Bonomi
and Lutton [4]. There, however, an invalid convexity argument was applied to exchange
the limit and the derivative for a sequence of functions over [0, +00) (see [4], equalities
(13) and (14)'), the exchange step being crucial for the whole proof.

In this paper we correct their proof and show more generally that the statistical
mechanics approach can be applied to analyze the asymptotic behavior of a whole class
of combinatorial optimization problems including the QAP.

The paper is organized as follows. In Section 2 the analogy between combinatorial
optimization and statistical mechanics is described in some detail and the statistical

1t is not difficult to give examples of sequences of real functions which are convex on [0, +00), where
the derivative and the limit can not be exchanged in a neighborhood of 0.



AN ASYMPTOTICAL STUDY BY MEANS OF STATISTICAL MECHANICS 3

mechanics formalism is introduced. In Section 3 we introduce the class of combinatorial
optimization problems we are dealing with and formulate the main asymptotic result,
which is proved in Section 4. The proof involves six lemmata and parts of it are quite
technical. Finally, in Section 5 we discuss the importance of the conditions imposed on
the problems we deal with, and formulate some open questions.

2 Thermodynamics and Combinatorial Optimization

In combinatorial optimization one is interested in choosing a solution that minimizes
(maximizes, respectively) the value of a certain objective function among a finite number
of feasible solutions. More formally, a generic combinatorial optimization problem P may
be defined as follows. Let a ground set E and a cost function f: E — R™' be given. A
feasible solution S is a subset of the ground set £ and the set of feasible solutions is
denoted by S. By means of the cost function f we associate costs to the feasible solutions.
One possibility is to define an objective function F': S — R™ through

F(S) = fle) (1)

ecS

for all S € S (which is called a sum objective function). The optimization problem can
then be formulated as the task of finding

min F(S). (2)
Let us now turn to thermodynamics. A thermodynamical system may exhibit different
states which are characterized by different values of energy. In thermodynamics, one is
often interested in low-energy-states of the considered system, just as one is interested in
feasible solutions with a small value of the objective function in a minimization problem.
More precisely, an analogy between combinatorial optimization and thermodynamics can
be built along the following two lines:

e Feasible solutions of a combinatorial optimization problem are analogous to states
of a physical system.

e The objective function value corresponding to a feasible solution is analogous to
the energy of the corresponding state.

According to statistical mechanics, the thermal equilibrium of a thermodynamical system
is characterized by the so-called Boltzmann distribution, where the probability that the
system is in state ¢ with energy E; at temperature 7 is given by

G ) @

with kp being a physical constant known as Boltzmann constant, and Q(T') denoting
the so-called partition function defined by

Q1) = S exp( L), (@
J
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where the summation extends over all possible states of the system.

The statistical mechanics formalism can now be used to investigate the asymptotic be-
havior of combinatorial optimization problems. The first authors who argued on the
use of this formalism to analyze the asymptotic behavior of the quadratic assignment
problem, were Bonomi and Lutton [4]. We will repair and generalize their approach
to a generic combinatorial optimization problem as introduced in the beginning of this
section.

The probabilistic model looks as follows. A probability Pr(.S) is assigned to each feasible
solution S € § of the problem by

exp (—F(S) - p)
Q(n) ’

where (1 is a parameter which mimics the reciprocal of the temperature, and Q(u) is the
partition function defined analogously as in the Boltzmann distribution by

Q(u) =) exp(=F(8)-p) - (6)

Ses

Pr(S) = (5)

Denote by (F(S))(p) the expected value of the objective function F(S) in the above
probabilistic model, for fixed . Then (F(S))(u) is given by

(F(S)) () = @ S F(8) exp (—F(S) ). (7)

Ses

It can easily be seen that the right-hand side of the above equality is equal to the
derivative of —InQ(u) with respect to u:

(F(S) (1) = —(nQ(w))". (8)

Furthermore, the variance AF(S)(u) of the objective function F'(S) (in the probabilistic
model introduced above) can be expressed as

AF(S)() = ([F(S) ~ (FE) W) ) = (nQ(w))" (9)

3 The main result

In this section we formulate the main result concerning a specific asymptotic behavior of
combinatorial optimization problems, and introduce the probabilistic and combinatorial
conditions to be imposed on the combinatorial problem so as to guarantee that specific
behavior.

Consider a sequence P,, n € N, of instances of a generic combinatorial optimization
problem, where P, is the instance of size n. The ground set, the set of feasible solutions,
the cost function, and the sum objective function of problem P, are denoted by E,, Sy,
fn, and F},, respectively. Denote by F};, S}, the optimal value and an optimal solution
of problem P,, respectively:

Assume that the combinatorial optimization problem has the following properties:
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(P1) For each n € N, all feasible solutions S € S,, have the same cardinality s,,.

(P2) For some fixed n € N, let n,(e) be the number of feasible solutions S € S, such
that e € S. We suppose that there exists a constant 7, such that n,(e) = n, for
alle € E,.

(P3) The costs fn(e), n € N, e € E,, are random variables identically and indepen-
dently distributed on [0, M], where M > 0, with expected value E := E(f,(e))
and variance D := Var (f,(e)) .

(P4) The cardinality of the set of feasible solutions |S,| and the size of a feasible
solution s, tend to infinity as n tends to infinity. Furthermore
In |S,|
m —— =

li

A 0. (10)
(P5) The size of the feasible solutions s,, grows monotonically in n, i.e. s,41 > s, for
all n € N, and

lim — = o0. (11)

We are interested in the asymptotic behavior of F); as n tends to infinity and we will show
that under (P1)-(P5), the ratio of the optimal solution and an arbitrary solution tends to
1 almost surely (a.s.). For the ease of exposition, let us restate this behavior as follows:
the ratio F/|Sk| tends to E as the size n of the problem tends to infinity, a.s. with
respect to the probability measure Pr defined as the product measure on the probability
space (9, A, Pr), where  is the cartesian product of the individual probability spaces
on which the random varables f,(e) are defined, and A is the corresponding product
o-algebra (note that due to the strong law of large numbers this formulation is equivalent
to the former one). Summarizing, the main result is given by the following theorem:

Theorem 3.1 Let a combinatorial optimization problem be given by (2) and let the
properties (P1)-(P5) be fulfilled. Then

F*
Pr ( lim = = E) =1 (12)

n—00 Sy,

4 Proof of the main result
The proof of Theorem 3.1 is based on the following lemmata;:

Lemma 4.1 Under the conditions of Theorem 3.1, we have

pr (i 900 _ 5

Proof. By applying equality (7) for 4 = 0 we get

(13)

(F()O0) = 3 FalS) - 15

SeS, |
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Considering property (P2), the last equality can be transformed as follows:

1

SeS, eeS ecE, ecE,

From (P2) we have
|Sn - sn = [En| - 1 (14)

and by substitution we obtain:

(Fu(S)(O0) _ Yeer, fn(e)

Sn N |En|
Due to the Chernoff-Hoéffding bound we have

62
( |an >S2exp(—21\y§n‘),

ecE,
and thus, by the Borel-Cantelli lemma, (13) follows, if the sum

Zexp( 26 1By ')

converges for all e > 0. But this is indeed the case, since from (11), (14) and 7, < |Sy|

(15)

. E
we have that lim % = 0. []
n—0o0

Lemma 4.2 Under the conditions of Theorem 3.1, for each w € Q) there exists a con-

vergent subsequence F—’;fﬂ of the sequence Eé% with limit [(w).

Proof. Since ‘E”;% IVSIZ F;S") i
least one cluster point, which we denote by /(w), and a subsequence _;mQ converging
to it, so that
B (@)
|

If S; is an optimal solution of problem P,, the following inequalities hold for the partition
function @, () for each w € Q:

exp (—Fn(Sp) - 1) < Qn(p) < [Sn - exp (= Fn(Sp) - 1) (17)

—Fyp <InQn(p) < In|Sp| — Fy - p. (18)

Let us now introduce the continuous and differentiable functions G, (u) = %, de-

fined on [0,00), for all n € N (note that Gy (u) is a function of w also, however in the
sequel we do not explicitly indicate this dependence for the ease of notation). Dividing
both sides of (18) by s, we get
F In|S F
e T < G < Il T (19)

Sn Sn, Sn
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Lemma 4.3 Under the conditions of Theorem 3.1, for each w € Q and l(w) defined in
(16), there exists a subsequence Gy, (1) of the sequence of functions Gn(u), such that
Gy, (1) and the sequence of its derivatives Gy, (1) converge uniformly in [, B] for any

a,B >0, and

Tim G (1) = —p1- (), (20)
kli)rr;oG' (u) = —l(w) . (21)

Proof. We apply the following classical result: Let a sequence of differentiable functions
Gh,, (1) be given, which are pointwise convergent on an interval [, 3] (here o > 0,
and ( is an arbitrarily large, but finite real number). Assume that the sequence of
derivatives G, (u) is equicontinuous and uniformly bounded on [, 3]. Then, there
exists a subsequence G, of Gy, such that both sequences G, and G,nk are uniformly
convergent on [a, (] (see e.g. [19]).

Note that the pointwise convergence of G, (i) follows from Lemma 4.2, (10) and (19).
Thus, in order to prove the lemma it is sufficient to show that the sequence of functions
G,,. is uniformly bounded and equicontinuous on [a, A].

First, let us show that the sequence of derivatives G, is uniformly bounded on [«, 8]
Note that VS € S,,, we have

= fule) <M -|S| =M - sp. (22)
ecsS
The following inequalities show that G}, (x) is uniformly bounded:
> |Fn(S)| - exp(—p- Fu(S))  sn- M- > exp(—p- Fo(S))

‘ SESH < SES,
Sn - Qn(p) B

Grlw)] < $n - Qn(1) =M

Secondly, we show that the sequence of functions G, is equicontinuous on [a, 3], i.e
Ve > 034 >0, such that Vui,ue € [o, 8] and Vn € N

lur—po| <6 = |GR(u) —Gp(pe)l <e
holds. Let us evaluate the difference |G}, (u1) — Gy, (p2)|, for @ < p1 < po and n € N.

exp(—p - Fn(S))  exp(—pa - Fu(S5)) ‘

Gy () — Ghu)| < 3 E28)

i Qn(p1) - Qn(p2)
exp(—p1 - Fu(S)) |, _ Qn(p) - exp(—p2 - Fu(S5))
<MD Qn (1) ‘ Qn(p2) - exp(—m 'Fn(S))‘ ' (23)

Ses,

Next, we show that there exists a 7' > 0 such that the following inequality holds for all
So € S, and for all n € N:

Qn(p1) - exp(p1 - Fn(So))

b Qul) - expljiz - Fu(S0))

ST (p2—pa)- (24)
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The following elementary transformations prove the existence of such a 7. Assume
w.l.o.g. that

> e (keBu(So) ~FaS)) = Y exp (ulFalS0) — Ful9)) | 2

S: Fr(S)>Fn(So) S: Fr(S)>Fn(So)

> e (maFalS0) ~Fa()) - X e (m(FalS0) ~ Fal(9)))

St Fp(S)<Fn(So) St Fp(S)<Fn(So)

(25)

(The other case can be handled analogously.) Then we have

1 ex -(F,(So) — F,.(S
‘1_Qn(ﬂl)'exp(MI'Fn(So))‘_ . +5es§:;9¢50 p(u1 - (Fu(So) — Fu(5)))

Qn(p2) ~expuz - Fu(So))| | 1+ > exp(uz- (Fu(So) — Fu(S))) =
SESL:S#£So

[exp (j2 - (FalS0) — FaS))) — exp (11 - (Fu(S0) ~ Fu(5)))] ‘

S: Fr(S)>Fn(So)

bl

3 exp (,u2 - (Frn(So) — Fn(S)))

S: Fp(S)>Fn(So)

since the sign of exp(u2(F,(So) — Fr(S))) — exp(p1(Fn(So) — Fr(S))) depends on the
sign of Fy,(S) — F,(So) and together with (25) the above inequality holds. It follows that

exp (111 (Fa(S0) = Fa(S))) [exp (12 = 1) - (Fu(S0) = Fu(8))) — 1]

S: Fn(S)>Fn(So)

<

> exp (uz - (Fr(So) — Fn(S))>
S Fr(S)>Fpn(So)

[exp (G2 = ) - (Fu(S0) = Fu($)) ~ 1]

S: F(S)>Fn(So)

> e (2 (FalSo) - FulS))

St Fo(8)>Fn(So)

We now show that

> e (2 —p) - (FalSo) - Fu(8)) — 1]

S: F(S)>Fn(So)

<

QI+

(=) D e [ (Fa(So) = Fal9))]. (26)

S: Fr(S)>Fn(So)
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Indeed, inequality (26) is a consequence of the following inequalities, which hold for all
S € S, such that F,(S) > F,(Sy):

)"t (Fu(S) — Fu(S0))*

i

‘eXP ((HZ—MI)-(Fn(SO)—Fn(S))) —1‘ < (/‘Q_Hl)‘i (NZ — U1

=1

1 L (F,(S) — F,(Sp))*
a_;(uz) ( (ﬂ) (So))

< (p2 — p1) -

1
< (2= o) - — - exp [z - (Fu(S) = Fa($0))]
and we obtain (24) with T’ := 1. Returning to (23),

eXP(—M : Fn(S)) . . l
Qn(p1) =M «a

G (1) = Gl <M~ (o = i) - 3 (2 = )

SeSn

from which the equicontinuity of G, on [«, 8] obviously follows.
Due to (10), (16) and (19) we have limy_,o, Gy, (1) = —pl(w). Then, uniform conver-
gence of the above sequence together with the sequence of its derivatives implies

!
Jim 64,0 = (Jim G (1) = =106, .

Lemma 4.4 For almost all w € Q we have [(w) < E.

Proof. Since for each w € Q and n € N we have F,(S*) < (F,(5))(0), the assertion
follows from Lemma 4.1. [

For each w € Q and each cluster point /(w) as defined in Lemma 4.2, there are now two
possibilities: (i) either [(w) = E and F is the (unique) limit of E@% or (ii) there exists
a cluster point /(w) of %S”) such that [(w) < E. If (i) is true for almost all w € Q, the
main result follows immediately. We show that the second case almost surely can not
happen:

Assume that [(w) < E throughout the rest of this section. Clearly, in this case the
convergence of Gy, () and Gj, (u) is not uniform over the whole interval [0,5] (cf.
Lemma 4.1). According to Lemma 4.3, however, limy_,, Gy, (#) = —I(w) uniformly on
[, 8] for each a > 0, and limy o G, (0) = —E < —l(w), due to Lemma 4.1. Under
these conditions, for all K > 0 and for all m € N there must be some pg > 0 and

some kg € N, kg > m, such that G’Zko (o) > K. Indeed, given a K > 0, we may

choose ¢ = (F — [(w))/4 and a = E;ﬁg") , and apply the above mentioned convergence
result on [a, 8] and at 4 = 0. For ky large enough we have G;zko () > —l(w) — € and

G, (0) < —E + . Thus, by the mean value theorem,
0

E—lw
A, (1) = Gy (@) = Gl (0) > B —1(w) — 2 = 2=,
for some pg € [0, a]. The last equality implies that G’,’Lk0 (0) > K and hence the second

derivatives ng (1) are unbounded as k approaches infinity and p approaches 0. We show
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that almost surely this can not be the case, because: a) The third derivative Gy’ (i) is
almost surely non-positive for g > 0 and b) the sequence of second derivatives G/ (0)
is almost surely bounded. Combining a) and b) with the nonnegativity of the second
derivative G, (u) = w (cf. (9)) for all n € N and p > 0, yields the desired
contradiction. The facts aIL) and b) are proven in the next two lemmata.

Lemma 4.5 The third derivative G;'L'k () s almost surely non-positive for all k > ko,
u >0, where kg is some fized natural number.

Proof. We have

!
1 2 o= Fny (S)u

= AR S = — | Y [FulS) — Fw]

T

where (-)(u) denotes the expectation w.r.t. the Boltzmann distribution with parameter
w. It follows that

[ o= P (S, (2
T = o | 3 2Rt F)00) g (G — )+
k i c g k k
r 2 e_Fnk(S)l‘ e_Fnk(S)H
+s§k Fn(8) = (Fu) )] (= Funl8) g + P ) ) | =
1 se Py (B = (Fad )" )w)
= (0~ S}gj (Fue(8) = (Fu) ) “5—57) = - .

Hence it is enough to show that F),, (S) — (Fp,)(¢) > 0V p > 0 for all k& > ko almost
surely. Indeed, for all S € Sy, , Fy,, (S) = D .cg fn, (€) is the sum of s,,, independent and
identically distributed random variables with E(f,, (¢)) = E. The Chernoff-Hoéffding
bound thus gives

F, (S) 2¢2s,,
PT(;T—E >e)] <2exp _M2k (27)
for all € > 0, and by the Borel-Cantelli lemma we obtain
F,
Pr(lim M—E‘:O)zl, (28)
k—o0 Sny,
since the growth rate (11) is in particular satisfied for any subsequence of s,. Thus, for
Fny (5)

almost all w € €, klim —&=(w) = E. At the same time, we have from Lemma 4.3 that
—00 "k

F, .
lim M(w) =— lim G}, (1) = l(w)

k—o0 Sny, k—o0
for all g > 0. The inequality /[(w) < E, together with Lemma 4.1 for the case y = 0,
thus implies that Fy, (S) — (Fy,)(p) > 0 for all & > ko almost surely for all 4 > 0, as
desired. -
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Lemma 4.6 The sequence of the second derivatives G (0) is almost surely bounded.
Proof. Since GI(0) = %jﬂ)m) > 0, we have by Markov’s inequality

E(G7(0))

Pr(Gn(0) > K) < I

for every K > 0, where E denotes the expectation w.r.t. the distribution of the random
variables fy(e),e € E,. Now we have

2
1 1
E(GO) = E sn\8|ZF’3(S) Sn | Sn |2<ZF )

"l ses, SeSn

ok Z<Zf”(e))2 T (sz" )

SeSn \e€S SeS, ecS

- _E(Zf" ) e (Zf" )

e€S ecEn

_ i (snD + $3B?) - SnfgnP (1Ba|D + |2 B?)

_ D( |E|)<D

where we have used the equality n,|E,| = s,|S|. Thus, for any K > 0,

Pr(Gn(0) > K) < —

Since D = Var (f,(e)) is finite, it follows that G” (0) is almost surely bounded. ]

Summarizing, for almost all w € €, if I(w) < E, the second derivatives Gy, (1) have to
be bounded and unbounded at the same time. This implies that /(w) < E almost surely
can not happen. Thus /(w) = E a.s. and Theorem 3.1 holds.

Remark 1: The proof technique can also be interpreted as follows: Since <FZ)( B —

Gl (1)] < M is bounded, for each w € Q and for all gy > 0 there exists a convergent

(Fny ) (1) g
ng B
il

(1) does not depend on g and [ = E a.s., from which it follows that

subsequence such that kh = [(p). In the proof it is shown that almost surely
—00

F,
lim (Fn) (k) E almost surely for any p € [0, 3]. (29)
n—o0o Sn,
Recall that (F,)(u) denotes the expectation of F,(S) w.r.t. the Boltzmann weight with
parameter p assigned to each admissible solution S € S,,. The right hand side of (29)

being independent of u, Theorem 3.1 can now be deduced for u — oo, since for any
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So € Sp, we have (see e.g. Aarts and Korst [1])

i i e~ Fn(So)u i e~ Fn(So)u
dm Prso) = lim ooy = i SR o
SeSy
e HFn(S0)—Fy) L. for Sy eS;
lim = I8l n
pooo [SE 4+ Y e MFa(S)-Fy) 0 for Sy € Sp\ S,
SeS\S;

where S C S, is the set of optimal solutions of problem P, and thus for all n € N we
have li_>m (Fn)(p) = Fy.
U—>00

Remark 2: As emphasized earlier, Theorem 3.1 can be proved in a much shorter way
by using the following purely probabilistic argument: Under conditions (P1)-(P5), we
have the Chernoff-Hoéffding bound (27) so that

F,(S) 2€¢2s,,
. —E‘ > e) < 2|8,|exp (— 7 ) (30)

Pr ( sup
SES,

from which Theorem 3.1 can be deduced using the Borel-Cantelli lemma, since the
right-hand side of (30) is summable for all € > 0 provided that the growth condition
(11) holds.

However, our alternative approach to prove Theorem 3.1 gives additional insight into the
structure of the problem and the way the conditions (P1)-(P5) enter (see Section 5). In
particular, the origin of the crucial growth condition (P4) receives a geometric interpre-
tation in view of (19). Moreover the statistical mechanics formalism is of independent
interest in view of applications such as simulated annealing.

5 Discussion and open questions

Let us shortly discuss conditions (P1)-(P5). (P4) is a crucial, purely combinatorial
condition, which is used in Lemma 4.3 to show the pointwise convergence of G, (1) and
this is the simplest kind of convergence which has to hold in order to get through with
the other lemmata. A nice feature of our proof of the main result is that it explicitly
shows the importance of condition (10). Note that (10) is essential for deriving any of
the results existing in the literature on problems which show an asymptotic behavior
similar to the one described by Theorem 3.1.

Condition (P5) is needed to guarantee the almost sure convergence of the result. If (11)
is not fulfilled, then Lemmata 4.1, 4.4 and 4.5 hold in probability only, from which it
follows that the main result holds only in probability, i.e.

*

F
—"—E‘>6>:O Ve > 0.

Sn

lim Pr (

n—oQ

Conditions (P1) and (P2) describe the combinatorial structure of the set of feasible
solutions. (P1) characterizes the feasible solutions from a quantitative point of view
stating that all feasible solutions have the same cardinality. (P2) describes the set of
feasible solutions from a structural point of view showing how often an element of the
ground set appears in some feasible solution. The fact that this frequency index is
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constant among different elements from the ground set means that the feasible solutions
are distributed somehow uniformly in the ground set. It is an open question whether
condition (P1) can be dropped or substituted by a weaker one. Szpankowski [20] showed
in his purely probabilistic proof of Theorem 3.1, that (P2) can be dropped, if in addition
Fy is a nonincreasing function of n and |S,, 41| > |S,| for all n € N.

Conditions (P1) and (P2) are fulfilled by many combinatorial optimization problems.
(P4) is a more restrictive condition and it is essential for the correctness of the main
result. As an illustrating example consider that the QAP fulfills all these conditions
whereas the linear assignment problem (LAP) fulfills only (P1) and (P2) but not (P4).
Indeed, the QAP of size n can be formulated as a general combinatorial optimization
problem with a ground set

E, ={(,j,k,1): 1 <4,j,k,l <nsuchthati=jif and only if £ =1},

feasible solutions
Sp ={(5,5,9(9), ¢(5)): 1 < 4,5 <n}

for ¢ being a permutation of 1,2,...,n, and the set of feasible solutions
Sn = {S¢: ¢ is a permutation of 1,2,...,n},

(see also [7]). Clearly |E,| = O(n*), |Ss| = n? for any permutation ¢, |S,| = n!, and
condition (P4) is fulfilled, since ™% = o(1). Each element (3, j, k,1) of the ground set
appears in (n—2)! feasible solutions, namely in all S, corresponding to some permutation
¢ for which ¢(i) = k, ¢(j) = I. Thus 1, = (n — 2)L.

For the linear assignment problem of size n the ground set E, is given by E, =
{(i,4): 1 < 4,5 < n}, the feasible solutions are given by Sy = {(i,¢(i)): 1 <i < n}, for
some permutation ¢ of 1,2,...,n, and the set of feasible solutions S, is given as

S, ={S,: ¢ is a permutation of 1,2,...,n}.

In this case we have |S,| = n!, |Sy| = n for all permutations ¢, |E,| = n?, and each
pair (i,7), belongs to (n — 1)! feasible solutions corresponding to permutations which
assign 4 to j. Thus 7, = (n — 1)!. Note that here condition (P4) is not fulfilled because
% tends to oo as m — oo. It can be checked that the result of Theorem 3.1 does not
hold in the case of the LAP. Indeed, consider an LAP with cost coefficients uniformly
and independently distributed on [0,1]. As shown by Karp [13], the expected optimal
value of this problem E(F) is bounded from above by 2. Theorem 3.1 would now imply
Pr(limy_ye0 22 = 1) = 1, leading to

Pr(Elno such that F,, > % fornZno) =1,

which contradicts the boundedness of F;. Thus Theorem 3.1 can not hold in this case.
The fact that for any € > 0, lim,, oo (Inn!)/n'*€ = 0 is another indication that condition
(P4) is rather sharp.

Now let us turn to condition (P3). A standard assumption in the literature concerning
the asymptotic behavior of combinatorial optimization problems is that the coefficients
of the problem are independent and identically distributed random variables (not neces-
sarily bounded). Also, the finiteness of variance and higher order moments is frequently
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assumed. Szpankowski [20] showed that in such a case under additional monotonicity
assumptions on F¥ and |S,|, Theorem 3.1 can be proved by purely probabilistic tech-
niques. One can ask, however, what happens in the proof of the main theorem with
our set of assumptions in case that the cost coefficients f,(e) are not bounded, while
fulfilling all other requirements in (P3). In this case, Chernoff-Hoéffding bounds for
deviations from the mean are no longer available. In addition, the boundedness of the
coefficients has been exploited in the proofs of Lemma 4.2 and Lemma 4.3 to show that
the sequences % and G/, (1), p > 0, are bounded. If the boundedness condition on f,(e)
is dropped, then the boundedness of the above sequences can not be guaranteed.

However, given that the first two moments of f,(e) are finite, the probability that F’;—(S)

is bounded, tends to 1 for any S € S, as n — oo. Indeed, recall that E(F, (S)) = snnE',
Var (F,(S)) = spD, and therefore E (F"s—is)) = E and Var (F’;—ELS)) = ﬁ. By applying

Chebyshev’s inequality, one obtains

Pr(™ s k) < e (

Sn

D2

Fo(S)
sn(K — E)?’

Sn

—E‘ZK—E)g

for any K > E. Since s, — oo as n approaches infinity, Lemma 4.2 holds in probability.
Chebyshev’s inequality shows that Lemma 4.1 also holds in probability and so do the
remaining lemmata. This implies that Theorem 3.1 holds in probability in the case that
the coefficients of the problem are unbounded.

It remains an open question whether an a.s. convergence result for unbounded cost
coefficients can be obtained through the statistical mechanics formalism.

Another question of general interest arises in connection with simulated annealing as
a statistical mechanics approach in combinatorial optimization. Is there any class of
problems which is well suited for simulated annealing? Is this class characterized by a
combinatorial property? Clearly, this is a rather complex question and its answer is left
to future research.
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