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ABSTRACT

Compressed sensing applied to magnetic resonance imag-
ing (MRI) allows to reduce the scanning time by enabling
images to be reconstructed from highly undersampled data.
In this paper, we tackle the problem of designing a sampling
mask for an arbitrary reconstruction method and a limited ac-
quisition budget. Namely, we look for an optimal probabil-
ity distribution from which a mask with a fixed cardinality
is drawn. We demonstrate that this problem admits a com-
pactly supported solution, which leads to a deterministic opti-
mal sampling mask. We then propose a stochastic greedy al-
gorithm that (i) provides an approximate solution to this prob-
lem, and (ii) resolves the scaling issues of [1, 2]. We validate
its performance on in vivo dynamic MRI with retrospective
undersampling, showing that our method preserves the per-
formance of [1, 2] while reducing the computational burden
by a factor close to 200. Our implementation is available at
https://github.com/t-sanchez/stochasticGreedyMRI.

Index Terms— Magnetic resonance imaging, compres-
sive sensing (CS), learning-based sampling.

1. INTRODUCTION
Dynamic Magnetic Resonance Imaging (dMRI) is a powerful
tool in medical imaging, which allows for non-invasive mon-
itoring of tissues over time. A main challenge to the quality
of dMRI examinations is the inefficiency of data acquisition
that limits temporal and spatial resolutions. In the presence of
moving tissues, such as in cardiac MRI, the trade-off between
spatial and temporal resolution is further complicated by the
need to perform breath-holds to minimize motion artifacts [3].

In the last decade, the rise of Compressed Sensing (CS)
has significantly contributed to overcoming these problems.
CS allows for a successful reconstruction from undersampled
measurements, provided that they are incoherent [4, 5] and
that the data can be sparsely represented in some domain.
In dMRI, samples are acquired in the k-t space (spatial fre-
quency and time domain), and can be sparsely represented in
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the x-f domain (image and temporal Fourier transform do-
main). Many algorithms have exploited this framework with
great success (see [6–14] and the references therein).

While CS theory mostly focuses on fully random mea-
surements [15], the practical implementations have generally
exploited random variable-density sampling, based on draw-
ing random samples from a parametric distribution (typically
polynomial or Gaussian) which reasonably imitates the en-
ergy distribution in the k-t space [16, 17]. While all these
approaches allow to quickly design masks which yield a great
improvement over fully random sampling, prescribed by the
theory of CS, they (i) remain largely heuristic; (ii) ignore the
anatomy of interest; (iii) ignore the reconstruction algorithm;
(iv) require careful tuning of their various parameters, and (v)
do not necessarily use a fixed number of readouts per frame.

In the present work, we show that the problem of find-
ing an optimal mask sampling distribution which contains
n out of p possible locations admits a solution compactly
supported on n elements. This demonstrates that our previ-
ously proposed framework in [1, 2], which searches for an
approximately optimal sampling mask, is in fact looking for
a solution to the more general problem of finding an optimal
measurement distribution. In addition, we propose a scalable
learning-based framework for dMRI. Our proposed stochas-
tic greedy method preserves the performance of [1, 2] while
reducing the computational burden by a factor close to 200.

Numerical evidence shows that our framework can suc-
cessfully find sampling patterns for a broad range of decoders,
from k-t FOCUSS [7] to ALOHA [13], outperforming state-
of-the-art model-based sampling methods over nearly all sam-
pling rates considered.

2. THEORY
2.1. Signal Acquisition

In the compressed sensing (CS) problem [5], one desires to
retrieve a signal that is known to be sparse in some basis using
only a small number of linear measurements. In the case of
dynamic MRI, we consider a signal x ∈ Cp = CN2T (i.e.
a vectorized video of size N × N with T frames), and the
subsampled Fourier measurements are

b = PΩΨx + w (1)
where Ψ ∈ Cp is the spatial Fourier transform operator ap-
plied to the vectorized signal, PΩ : Cp → Cn is a subsam-
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pling operator that selects the rows of Ψ according to the in-
dices in the set Ω with |Ω| = n and n � p. We refer to Ω
as sampling pattern or mask. We assume the signal x to be
sparse in the basis Φ, which typically is a temporal Fourier
transform across frames. Given the samples b, along with
Ω, a reconstruction algorithm or decoder g forms an estimate
x̂ = g(b,Ω) of x.

The quality of the reconstruction is then evaluated us-
ing a performance metric η(x, x̂), which could typically in-
clude Peak Signal-to-Noise Ratio (PSNR), the negative Mean
Square Error (MSE), or the Structural Similarity Index Mea-
sure (SSIM) [18].
2.2. Sampling mask design
We model the mask designing process as finding a probabil-
ity mass function (PMF) f ∈ Sp−1, where Sp−1 := {f ∈
[0, 1]p :

∑p
i=1 fi = 1} is the standard simplex in Rp. f as-

signs to each location i in the k-space a probability fi to be
acquired. The mask is then constructed by drawing without
replacement from f until the cardinality constraint |Ω| = n
is met. The problem of finding the optimal sampling distribu-
tion is subsequently formulated as

max
f∈Sp−1

η(f), η(f) := EΩ(f,n)
x∼Px

[η (x, x̂ (Ω,x))] , (2)

where the index set Ω ⊂ [p] is generated from f and
[p] := {1, . . . , p}. This problem corresponds to finding the
probability distribution f that maximizes the expected per-
formance metric with respect to the data Px and the masks
drawn from this distribution. To ease the notation, we will
use η (x, x̂ (Ω,x)) ≡ η (x; Ω).

In practice, we do not have access to EPx [η(x; Ω)] and
instead have at hand the training images {xi}mi=1 drawn in-
dependently from Px. We therefore maximize the empirical
perfromance by solving

max
f∈Sp−1

ηm(f), ηm(f) :=
1

m

m∑
i=1

EΩ(f,n) [η(Ω,xi)] . (3)

Given that Problem (3) looks for masks that are constructed
by sampling n times without replacement from f , the follow-
ing holds.

Proposition 1. There exists a maximizer of Problem (3) that
is supported on an index set of size at most n.

Proof. Let the distribution f̂n be a maximizer of Problem (3).
We are interested in finding the support of f̂n. Because∑
|Ω|=n Pr[Ω] = 1, note that

max
f∈Sp−1

ηm(f) := max
f∈Sp−1

∑
|Ω|=n

1

m

∑m

i=1
η(xi; Ω) · Pr[Ω|f ]

≤ max
f∈Sp−1

max
|Ω|=n

1

m

∑m

i=1
η(xi; Ω)

= max
|Ω|=n

1

m

∑m

i=1
η(xi; Ω). (4)

Let Ω̂n be an index set of size n that maximizes the last line
above. The above holds with equality when Pr[Ω̂n] = 1 and
Pr[Ω] = 0 for Ω 6= Ω̂n and f = f̂n. This in turn happens

when f̂n is supported on Ω̂. That is, there exists a maximizer
of Problem (3) that is supported on an index set of size n.

While this observation does not indicate how to find this
maximizer, it nonetheless allows us to further simplify Prob-
lem (3). More specifically, the observation that a distribution
f̂n has a compact support of size n implies the following:

Proposition 2.

Problem (3) ≡ max
|Ω|=n

1

m

m∑
i=1

η(xi; Ω) (5)

Proof. Proposition 1 tells us that a solution of Problem (3) is
supported on a set of size at most n, which implies

Problem (3) ≡ max
f∈Sp−1,|supp(f)|=n

ηm(f). (6)

That is, we only need to search over compactly supported dis-
tributions f . Let SΓ denote the standard simplex on a support
Γ ⊂ [p]. It holds that

Problem (6) ≡ max
|Γ|=n

max
f∈SΓ

ηm(f)

= max
|Γ|=n

max
f∈SΓ

1

m

∑m

i=1
η(xi; Γ) · Pr[Γ|f ]

= max
|Γ|=n

max
f∈SΓ

1

m

∑m

i=1
η(xi; Γ)

= max
|Γ|=n

1

m

∑m

i=1
η(xi; Γ). (7)

To obtain the second and third equalities, one observes that
all masks have a common support Γ with n elements, i.e. f ∈
SΓ allows only for a single mask Ω with n elements, namely
Ω = Γ.

The framework of Problem (3) captures most variable-
density based approaches of the literature that are defined in
a data-driven fashion [19–25], and Proposition 2 shows that
Problem (7), that we tackled in [1, 2] and develop here, also
aims at solving the same problem as these probabilistic ap-
proaches. Note that while the present theory considered sam-
pling points in the Fourier space, it is readily applicable to the
Cartesian case, where full lines are added to the mask at once.

3. STOCHASTIC GREEDY MASK DESIGN
Aligned with the approach that we previously proposed in [1],
we want to find an approximate solution to Problem (5) by
leveraging a greedy algorithm. This is required by Prob-
lem (5) being inherently combinatorial. The previous greedy
method of [1, 2] suffers from three main drawbacks: (i) it
scales quadratically with the total number of lines, (ii) it
scales linearly with the size of the dataset, and (iii) it does
not construct mask with a fixed number of readouts by frame.
While [2] partially deals with (i), our proposed stochastic
greedy approach addresses all three issues, while preserving
the benefits of [1]. It notably still preserves the nestedness
and ordering of the acquisition, where critical locations are
acquired initially, and the mask built outputs a nested struc-
ture (i.e. the mask at 30% sampling rate includes all sampling
locations of the mask at 20%).
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Let us introduce the set S of all lines that can be acquired,
which is a set of subsets of {1, . . . , p}. A feasible Cartesian
mask takes the form Ω =

⋃`
j=1 Sj , Sj ∈ S, i.e. it con-

sists of a union of lines. Both the greedy method of [1] and
our stochastic method are detailed in Algorithm 1 below. Our
stochastic greedy method (SG-v2) addresses the three main
limitations of the greedy method of [1] (G-v1). The issue (i)
is solved by picking uniformly at random at each iteration a
batch possible lines Siter of size k from a given frame St, in-
stead of considering the full set of possible lines S (line 3 in
Alg. 1); (ii) is addressed by considering a fixed batch of train-
ing data L of size l instead of the whole training set of size m
at each iteration (line 4 in Alg. 1); (iii) is solved by iterating
through the lines to be added from each frame St sequen-
tially (lines 1, 3 and 10 in Alg. 1). These improvements are
inspired by the refinements done to the standard greedy algo-
rithm in the field of submodular optimization [26], and allow
to move the computational complexity from Θ

(
mr(NT )2

)
to Θ (lrkNT ), effectively speeding up the computation by a
factor Θ(m

l
NT
k ). Our results show that this is achieved with-

out sacrificing any reconstruction quality.

Algorithm 1 Greedy mask optimization algorithms for dMRI
(G) refers to the greedy algorithm [1]
(SG) refers to the stochastic greedy algorithm
(v1) algorithm iterated throughout the whole training set
(v2) algorithm iterated through batches of training examples
Input: Training data {x}mi=1, recon. rule g, sampling set S,
max. cardinality n, samp. batch size k, train. batch size l
Output: Sampling pattern Ω

1: (SG) Initialize t = 1
2: while |Ω| ≤ n do

3:

{
(G) Pick Siter = S
(SG) Pick Siter ⊆ St at random, with |Siter| = k

4:

{
(v1) Pick L = {1, . . . ,m}
(v2) Pick L ⊆ {1, . . . ,m}, with |L| = l

5: for S ∈ Siter such that |Ω ∪ S| ≤ Γ do
6: Ω′ = Ω ∪ S
7: For each ` ∈ L set x̂` ← g(Ω′,PΩ′Ψx`)
8: η(Ω′)← 1

|L|
∑

`∈L η(x`, x̂`)

9: Ω← Ω ∪ S∗, where S∗ = argmax
S:|Ω∪S|≤n

η(Ω ∪ S)

10: (SG) t = (t mod T ) + 1

11: return Ω

4. NUMERICAL EXPERIMENTS
4.1. Implementation details
Reconstruction algorithms: We consider three reconstruc-
tion algorithms, namely k-t FOCUSS (KTF) [7], and ALOHA
[13]. Their parameters were selected to maintain a good em-
pirical performance across all sampling rates considered.

Mask selection baselines:
• Coherence-VD [16]: We consider a random variable-

density sampling mask with Gaussian density and optimize
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Fig. 1: PSNR as a func-
tion of the sampling rate
for KTF, comparing the
different reconstruction
methods as well as the
effect of the batch size
on the quality of the re-
construction for SG.

its parameters to minimize coherence.

• LB-VD [1, 2]: Instead of minimizing the coherence as in
Coherence-VD, we perform a grid search on the parameters
using the training set to optimize reconstruction according
to the same performance metric as our method.

Data sets: Our dynamic data were acquired in seven adult
volunteers with a balanced steady-state free precession (bSSFP)
pulse sequence on a whole-body Siemens 3T scanner using
a 34-element matrix coil array. Several short-axis cine im-
ages were obtained during a breath-hold scan. Fully sampled
Cartesian data were acquired using a 256 × 256 grid with 25
frames, then combined and cropped to a 152×152×17 single
coil image. The details of the parameters used are provided
in the supplementary material [27]. In the experiments, we
used three volumes for training and four for testing.

4.2. Comparison of greedy algorithms
We first compare the performance of G-v1 with SG-v1 and
SG-v2, and show the results on Figure 1. We are specifically
interested in determining the sensitivity of our algorithm to
the sampling batch size k and training batch size l (for SG-
v2, we use l = 1 unless stated differently). We see that using
a small batch size k (e.g. 10) yields a drop in performance,
while k = 38 even improves performance compared to G-
v1, with respectively 60 times less computation for SG-v1
and 180 less computations for SG-v2. One should also note
that using a batch of training images (SG-v2) does not reduce
the performance compared to SG-v1, while largely reducing
computations. Also, additional results (in the supplementary
material [27]) show that using larger batches yields similar
results as for k = 38. The fact that the performance of SG-
v2 with k = 38 outperforms G-v1 could be surprising, but
originates in the lack of structure of the problem, where intro-
ducing noise in the computations through random batches of
samples improves the overall performance of the method. In
the sequel, we use k = 38 and l = 1 for SCG-v2.

4.3. Single coil results
The comparison to baselines is shown on Figures 2 and 3,
where we see that the SG-v2 method yields masks that con-
sistently improve the results compared to all variable-density
methods used.

We notice in Figure 3 that comparing the reconstruction
algorithms with VD methods do not allow for a faithful per-
formance comparison of the reconstruction algorithms: the
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Fig. 2: PSNR as a function of sampling rate for both recon-
struction algorithms considered, comparing the mask design
methods considered, averaged on 4 images.

performance difference is very small between the reconstruc-
tion methods. In contrast, considering the reconstruction
algorithm jointly with a sampling pattern optimized with
our model-free approach makes the performance difference
much more noticeable: ALOHA with its corresponding mask
clearly outperforms KTF, and this conclusion could not be
made by looking solely at reconstructions with VD-based
masks. Note that extended results, along with multi-coil ex-
periments, are available in our supplementary material [27].

4.4. Large scale static results
This last experiment shows the scalability of our method to
very large datasets. We used the fastMRI dataset [28] consist-
ing of knee volumes and trained the mask for reconstructing
the 13 most central slices of size 320× 320, which yielded a
training set containing 12649 slices. For the sake of brevity,
we only report computations performed using total variation
(TV) minimization with NESTA [29]. For mask design, we
used the SG-v2 method with k = 80 and l = 20 (2500
fewer computations compared to G-v1). The LB-VD method
was trained using 80 representative slices and optimizing the
parameters with a similar computational budget as SG-v2.
The result on Figure 4 shows a uniform improvement of our
method over the LB-VD approach.

5. DISCUSSION AND CONCLUSION
We presented a scalable sampling optimization method for
dMRI, which largely addresses the scalability issues of [1,2].
Reducing the resources used by G-v1 by as much as a 200
times was shown to have no negative impact on the quality of
reconstruction achieved within our framework. Our method
was demonstrated to successfully scale to very large datasets
such as fastMRI [28], which the previous greedy method [1]
could not achieve.

The masks obtained bring significant image quality im-
provements over the baselines. The results suggest that VD-
based methods limit the performance of CS applied to MRI
through their underlying model. They are consistently out-
performed by our model-free and data-adaptive method on
different in vivo datasets, across several decoders, field of
views and resolutions. Our findings highlight that sampling
design should not be considered in isolation from data and
reconstruction algorithm, as using a mask that is not specif-
ically optimized can considerably hinder the performance of

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

L
B

-V
D

K
T

F
C

oh
er

en
ce

-V
D

Mask

SG
v2

-K
T

F
SG

v2
-A

L
O

H
A

L
B

-V
D

A
L

O
H

A

G
ro

un
d

tr
ut

h

PSNR=34.41
SSIM=0.88

PSNR=34.99
SSIM=0.89

PSNR=33.56
SSIM=0.86

KTF decoder
PSNR=33.39
SSIM=0.85

ALOHA decoder

PSNR=35.18
SSIM=0.88

PSNR=35.94
SSIM=0.9

PSNR=33.78
SSIM=0.87

PSNR=36.59
SSIM=0.91
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Fig. 4: PSNR as a func-
tion of the sampling rate
for TV, averaged on the
13 most central slices of
the fastMRI validation set
[28] (2587 slices). SGv2
outperforms LB-VD over
all sampling rates.

the algorithm.
More importantly, our theoretical results show that the

generic non-convex Problem (3) aiming at finding a probabil-
ity mass function under a cardinality constraint from which
a mask is subsequently sampled, is equivalent to the discrete
Problem (7) of looking for the support of this PMF. This con-
nection opens the door to rigorously leveraging techniques
from combinatorial optimization for the problem of design-
ing optimal, data-driven sampling masks for MRI.
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