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ABSTRACT 
We examine the power of different exact tests of differentiation for diploid populations. Since there 

is not necessarily random mating within populations, the  appropriate hypothesis to construct exact tests 
is that of independent sampling of genotypes. There are two categories of tests,  Fsrestimator  tests and 
goodness of fit tests. In this latter category, we distinguish “allelic statistics”, which account for the 
nature of alleles  within genotypes, from “genotypic statistics” that do not. We  show that  the power of 
Fs+stimator tests and of allelic goodness of fit tests are similar when sampling is balanced, and higher 
than the power of genotypic goodness of fit tests. When sampling is unbalanced, the most  powerful  tests 
are shown to belong to the allelic goodness of fit group. 

S EVERAL procedures have been recently proposed in 
the literature to test for population differentiation. 

The development of fast  microcomputers and of efficient 
algorithms  has  allowed the use of various exact  tests (HUD- 
SON et al. 1992;  ROFF and BENTZEN 1992; RAYMOND and 
ROUSSET 1995b), which are preferable to traditionally 
used  asymptotic  tests,  particularly  when  many infrequent 
alleles are considered, a situation now common after the 
recent development of DNA-based  polymorphism. 

The exact-X2 (HUDSON et al. 1992) or  the probability 
test (WEIR 1990; RAYMOND and ROUSSET 1995b) are 
based on the hypothesis of random sampling of genes. 
These tests are  therefore  appropriate for haploid indi- 
viduals, where sampling individuals corresponds  to  the 
same process as sampling genes. For higher ploidy lev- 
els, these tests are also  valid if genes within individuals 
are  independent. For diploid organisms, this condition 
is equivalent to random  mating at least during  the latest 
generation, in each population. When this assumption 
is not valid, exact tests  of population differentiation 
should  be based on the hypothesis of independent sam- 
pling of genotypes. Here we present several exact tests 
assuming random sampling of diploid genotypes. Possi- 
ble nonindependence of genes within individuals is 
therefore taken into  account and could not affect their 
validity.  Power comparison of these tests  has been car- 
ried out to evaluate their  performance in presence of 
distinct alternative hypotheses. 

DEFINITION OF TESTS 
Exact sampling distribution: Under  the null hypoth- 

esis of absence of population  differentiation,  the condi- 
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tional probability of the observed sample given the mar- 
ginal counts is 

where Ne is the  number of individuals of genotype j in 
population i, Ni, is the sample size  of population i, N.j 
is the total number of individuals with genotype j ,  N.. 
the total number of individuals sampled, T the  number 
of samples and NE the  number of genotypes (an exam- 
ple is given in Table 1A). Exact  tests are constructed 
by ranking all  possible  tables  given the marginal counts 
according to  the value of a particular statistic, and sum- 
ming up the probabilities (as defined in Equation 1) 
of the tables  with more  extreme ranks. The resulting 
sum is the  Pvalue of the test. 

Different classes  of  statistics to rank the tables will 
be considered here. A practical distinction is between 
estimators of F Y T  and “goodness of  fit” statistics such 
as the X 2 ,  likelihood ratio, or (by a slight abuse of lan- 
guage)  the sample probability Pr (S) . A more  important 
distinction is between statistics computed from allele 
counts (“allelic statistics”, Table 1B) or from genotype 
counts (“genotypic statistics”, Table 1A). For example, 
an exact-X2 can be an allelic or genotypic goodness of 
fit  statistic whether it is computed  on allele or genotype 
counts. In  both cases  however, the distribution of the 
statistics under the null hypothesis is obtained using 
the sampling distribution under random sampling of 
genotypes, not of genes ( i e . ,  of Table lA,  not Table 
1B). Allelic  statistics  take into  account whether two ge- 
notypes share one allele or not,  an information that is 
ignored by genotypic statistics that only consider 
whether genotypes are identical or different. In this 
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TABLE 1 

Layout for the two types of contingency  tables 
described in text 

11 12 13 22 23 33 All 

B 
1 nI I nlz 1213 nl. 
2 
3 
All 

%I n"' n33 n 2 .  

n31 

n. 1 n.2  n.3 n. 
n32 n33 n3 

A. Layout of a R X C genotypic table. Sample made of 
three subsamples (rows). In this example, three alleles (six 
genotypes) were found  at  the locus analyzed. B. Layout of a 
R X C genic (or allelic) table  derived  from the genotypic one. 

respect the usual estimators of FsT are allelic  statistics 
since they  take into  account  the  nature of alleles  within 
genotypes. 

FsT estimators: The parameter traditionally used to 
measure population differentiation is FSl, (WRIGHT 
1951; COCKERHAM and WEIR 1987). Several estimators 
of F S T  were used to construct a rejection zone. 

8,. This is the estimator ofFST,  defined by WEIR and 
COCKERHAM (1984) as 

where k is the  number of  alleles at the locus, and a,, 
b, and cu are  the  among samples, among individuals 
within samples and within individual estimates of 
components of variance, respectively, of a nested 
analysis  of variance on allele frequencies (COCK- 
ERHAM 1969,1973; WEIR and COCKERHAM 1984).  The 
P value  of the exact awctest is computed as Pgw, = 
Cg,(s,)+,c(s) Pr(s,), where the summation is over  all 
possible contingency tables si with a larger 8,; than 
the observed. 
8,. This is an "unweighted" estimator ofFS7., defined 
by WEIR and  COCKERHAM (1984) as 

The P value  of the exact Bzrtest  is computed as Pe,, 

8,. This statistic is another estimate of F S T  (ROBERT- 
SON and HILL 1984). An explicit formula is found in 
WEIR and COCKERHAM (1984): 

= &ds,)r~,i~) Pr(si). 

TABLE 2 

Parameters  values of the different alternative  hypotheses 

Sampling  scheme m m' Selfing rate H, Fs, 

4 X 64 
16 X 16 
64 X 64 
4 X 64 

16 X 16 

4 X 64 

16 X 16 

0.09 0.12 
0.30 0.32 
0.12 0.12 
0.20 0.27 
0.30 0.40 
0.40 0.53 
0.50 0.67 
0.60 0.80 
0.75 1.00 
0.40 0.43 
0.50 0.53 
0.60 0.64 
0.75 0.80 
0.85 0.91 
0.94 1.00 
0.20 0.27 
0.30 0.40 
0.40 0.53 
0.50 0.67 
0.60 0.80 
0.70 0.93 
0.75 1.00 
0.30 0.32 
0.40 0.43 
0.50 0.53 
0.60 0.64 
0.75 0.80 
0.85 0.91 
0.94 1.00 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 

0.83 0.0262 
0.83 0.0262 
0.94 0.0262 
0.82 0.0090 
0.82 0.0044 
0.82 0.0022 
0.82 0.0010 
0.82 0.0003 
0.82 0.0000 
0.82 0.0151 
0.82 0.0086 
0.82 0.0046 
0.82 0.0013 
0.82 0.0003 
0.82 0.0000 
0.74 0.0138 
0.74 0.0067 
0.74 0.0033 
0.74 0.0015 
0.74 0.0005 
0.74 0.0001 
0.74 0.0000 
0.75 0.0397 
0.74 0.0230 
0.74 0.0132 
0.74 0.0071 
0.74 0.0020 
0.74 0.0004 
0.74 0.0000 

m, migration  rate; m', migration  rate corrected  for  the num- 
ber of populations [m' = D m / ( D I ) ] ;  Ht ,  expected value of 
the genetic diversity, F y T ,  expected value of the  parameter Fyr. 

where p, is the observed frequency of allele u. The 
P value of the exact eRKtest is computed as Pa, = 

&&",)&(S) W s t )  * 

Genotypic goodness of fit  statistics: Three statistics 
have been used in this category. 

X2.  The X' is the well-known chi-square, i.e., 

where = NJN,, .  The  proportion of tables with a 
higher or equal X 2 ,  P2 = Pr(sj), is the P 
value of an exact genotypic-X2  test. 
G. The Gvalue is the traditional log likelihood ratio 
(SON and ROHLF, 1981): 

An exact genotypic Gtest is constructed by comput- 
ing  the  proportion of tables  with a higher or equal 
Gvalue, i.e., PC = C C ( ~ , ) ~ C ( . S ) P ( S ~ ) .  
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TABLE 3 

Power of the  different  exact  tests  described in the  text 

Goodness of fit tests 

FST estimator tests  Genotypic  tests  Allelic  tests 

Sampling scheme FST 8, 8, 8 wc Pr x2 G Pra Ga 

4 X 64  0.0262 999  999 990 965  966  965 999  999 
0.0090 875 873 731  484  489  497  872 873 
0.0044 535 531  392  226  227  227  521  523 
0.0022 250 244  172  109 114 111  243 232 
0.0010 136 130  109  71 85 75  129  129 
0.0003  64 67 61  66  64  66  65  65 

16 X 16 0.0262 994  994 980  782  798  792 994  994 
0.0151  908 913 799  413  429  422  904  899 
0.0086 610 606  47 1 241  268  248 578  577 
0.0046  287 291 242  137  137  139  260  269 
0.0013  95 97  97 74 87 76  89  95 
0.0003 55  55 62 81 73 70 67 70 

4 X 64 stands for  four populations of 64 individuals. 16 X 16 stands for 16 populations of 16 individuals. 
Numbers shown are  the number of replicates (out of 1000) that gave significant ( P  5 0.05) results.  Bold 
characters indicate the highest observed  power for a given alternative hypothesis. All alternative hypotheses 
are generated with random mating within demes. 

Probability. The probability Pr  of the observed Sam- tion. The definitions are  the same as above  with the 
ple (Equation 1) can be used to define  the rejection interpretation  that n9 is the  count of allele J' in sample 
zone. This procedure gives a test generally known  as i, and ng the  number of distinct alleles: 
the Fisher exact test on contingency table or Probabil- 
ity test. The latter designation will be used here. The 
Pvalue is computed as Pp, = Cp,(,,),p,(s) Pr(sj). n..! n:=] n72, n,! . 
Allelic  goodness of fit statistics: The same goodness Test  computation: The  computation of each exact 

of fit statistics can be  computed on  the genic tables test requires the evaluation of all tables given the mar- 
derived from the genotypic ones (that is, under the ginal values,  which is practically impossible for most 
hypothesis of independent sampling of genotypes): the cases (GAIL and MANTEL 1977). Instead of computing x, the G, value, and  the probability Pr,  of the genic this exact probability, an unbiased estimate can be ob- 
table under  the null hypothesis of nongenic differentia- tained using an  appropriate sampling procedure under 

nL1 n1,! n;z, n,! 
Pr(S) = (2) 

TABLE 4 

As Table 3 but alternative  hypotheses  generated with 70% selfing 

Goodness of fit tests 

FsT estimator tests  Genotypic  tests  Allelic  tests 

Sampling scheme FST e ,  8" 8 wc Pr x2 G Pr, Go 
~ 

4 X 64 0.0138 748 740  628  570  560 547 741  740 
0.0067  405 41 1 319  275  266  259  406  406 
0.0033  191  189  170  114  115 111 20 1 197 
0.0015 106 111 108 86 88 86 110  104 
0.0005 85 80  71 73  65  76 83 81 
0.0001  55  50  50  52  48  51  55 58 

16 X 16 0.0397  967  968  925 877 871 873 967 972 
0.0230 780  780 658  579  535  548  749  753 
0.0132 469 469 397  312  304  304  465  461 
0.0071  232 234 195  168  151  170  212  217 
0.0020 88 83 61  71 73 63 81 85 
0.0004  57 56 60  54 69 69 58 57 

Bold indicates the highest observed  power for a given alternative hypothesis. 
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FST 

FIGURE 1.-Power  of  different  tests  as a function of alterna- 
tive  hypotheses.  Population-sampled made of 16 demes of 16 
individuals. No selfing. 0 ,  OM-test; +, B,-test; 0, Pr-test; X, 
Prgest. 

the null hypothesis. We used either  a  permutation- 
based method such as the  one developed by HUDSON 
et al. (1992) or the Markov chain method developed 
by RAYMOND and ROUSSET (1995b) (see also Guo and 
THOMPSON, 1992). All programs were tested by hand 
computation or by comparison with each other  on vari- 
ous datasets. Type I  error was fixed at 5%, as  is  usually 
done in biological studies. 

Generating  alternative  hypotheses: Our simulations 
assume that all  alleles are  different at initial time, and, 
to generate  the alternative hypotheses, follow the prog- 
ress  of inbreeding with time in a  neutral finite island 
model of population. Asymptotic  values  of fixation indi- 
ces and of  heterozygosity are known  in  this model. The 
validity  of simulations were checked by comparing the 
observed values to their theoretical expectations. One 
thousand  independent loci (replicates) were generated 
for each alternative hypothesis. The set of parameters 
we used is described in Table 2. 

The simulations were run for a sufficient number of 
generations to  insure  that equilibrium between drift 
and migration has been  reached. For each set of param- 
eters we checked that asymptotic equilibrium was at- 
tained. Since we are interested in finding tests  with high 
power, we focused our attention on high migration 
rates (small FYI). 

For most of our results, the  entire  population was 
sampled without replacement,  therefore only the effect 
of the genetic sampling is observed. However, the effect 
of the statistical sampling may be  much larger than  that 
of the genetic sampling. For this reason, we simulated 
64 populations made of 64 individuals, from which we 

power 

I 
0 0.005 0 01 0.015 0 02 0.025 0.03 

FST 

FIGURE 2 . - h  in Figure 1. Population  sampled made of 
four demes  of 64 individuals. No selfing. 0 ,  @"test; +, 
Bwc-test; 0, Pr-test; X, Pratest. 

sampled 16 individuals in 16 populations. These simula- 
tions were run for a large number of generations,  much 
larger than  the time  necessary to reach equilibrium, 
and samples where taken every  500 generations until 
the 3000th generation to look at  the effect of global 
genetic diversity on the power of the different tests. 
We also took a series of unbalanced samples from our 
populations, since the behavior of our tests may differ 
between balanced and unbalanced sampling. Pseudo- 
random  numbers were generated according to MARSAG 
LIA et al. (1990) for the Markov Chain algorithm and 
according to L'ECUYER (1988) for  the randomization 
algorithm. 

RESULTS 

In all  cases, the power  of the X', and BRKtest  were 
the same, so the power is not shown  in the tables. 
Results when the null hypotheses were true always  gave 
power very close to  5% as expected and  are  therefore 
not shown either. 

Exhaustive  sampling,  balanced  samples: Results are 
shown  in Tables 3 and 4 and Figures 1 and 2. In all 
cases, genotypic goodness of fit tests are less  powerful 
than allelic  tests that use the additional information of 
the identity of the alleles  within  genotypes. For each 
alternative hypothesis, the different allelic  tests  have 
similar  power. The main exception is when 8, is used 
to define the rejection zone, which lead to  a decrease 
in  power in most conditions (Tables 3 and 4 and Figures 
1 and  2). 

For comparable alternative hypotheses, our results 
indicate that it may be better  to sample more individu- 
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TABLE 5 

Power of goodness of fit statistics under sampling of 
genotypes or alleles 

Allelic  tests 

On  On 
genotypic genic 

tables  tables 

Sampling scheme F,, Pr, G, Pr, C, 

16 X 16 0.0151 904 899 906 905 
0.0086 578  577 593 599 
0.0013 89 95 98 103 

Random  mating  within populations is  assumed.  Bold  char- 
acters  indicate  the  highest  observed  power  for  a  given  alterna- 
tive  hypothesis. 

als from fewer populations than  the reverse, at least 
when the alternative hypothesis is close to the null (ie., 
FYT is small, Tables 3 and 4). 

When there is random mating within populations, 
genes within individuals are  independent. We  may then 
compare  the power  of  tests based on the probability 
distribution of alleles  (which are  obtained from consid- 
ering  the tables  with the same marginal counts as the 
allelic table, Table 1B) and that of genotypes. Table 5 
shows that  the loss  of  power  of the  latter is small. 

Partial  sampling,  balanced  samples: Results are shown 
in Table 6. Ranking of the different tests is similar to what 
we obtain under exhaustive sampling. As the number of 
generations increases, genetic diversity  decreases, so 
does the power of the tests (Table 6). 

Unbalanced  samples: A discrepancy appears when 
samples are  unbalanced between the probability test 
(Pr,) or the  Gtest ( Ga), which performed  better  than 
the &tests. G, seems overall  slightly more powerful 
than Pr, (Table 7). Among the FsTtests, 8, and 8, 
performed equally  well,  with a tendency for  the  former 
to do slightly better when samples are balanced, and 

TABLE 7 

Effect of unequal  sampling on the  power 
of different exact  tests 

Tests  power 

FSl 8, 8" 8, Pro G. 

A 
0.0090 353 366  325 479 496 
0.0044 165  169  159 237 236 

B 
0.0138 244  268  270 372 364 
0.0067 146  145  151 189 196 

C 
0.0262 880 883 822 914 917 
0.0086 320 324 272  341 35 1 

D 
0.0397 758 774 706  788 804 
0.0132 243 255 210  250 25 1 

Partial  sampling  was  carried out on four  populations of 64 
individuals (two samples of five  individuals, two of 64, A no 
selfing; B: 70% selfing) and on 16 populations of 16 individu- 
als (six  samples of five  individuals,  five of 10, six of 16, C: no 
selfing  and D: selfing). Bold  characters indicate the highest 
observed  power for  a  given  alternative  hypothesis. 

slightly  worse when the samples are  unbalanced (Tables 
6 and 7). 

The effect  of  selfing and  nonrandom  mating When 
there is departure from random mating, the power of 
the tests drops (Tables 3 and 4). 

Relationships to estimation: 8, provides the least 
biased estimator of FST for all sampling strategies, but 
has the largest variance when genetic diversity is high 
(Tables 8-10). As genetic diversity decreases, the vari- 
ance of the  three estimators increases (Figure 3). Note- 
worthy is the effect of unbalanced sampling on the vari- 
ance of 8, and 8,: while 0, has always a lower variance 
when  all samples are of equal sizes (Tables 8 and 9) ,  
8, has a lower variance when sample sizes are  unequal 
(Table 10). 

TABLE 6 

Effects of the  sampling  scheme and of  genetic  diversity  on  the  power  of  different  exact tests 

Tests  power 

Sampling scheme Generation FST H, 8, 8, 8, Pr, G, 
~~ ~~ 

Exhaustive  sampling 
16 X 16 0.0262 0.83 994  994 980 994  994 
4 X 64 0.0262 0.83 999  999 990 999 999 

16 X 16 500 0.0262 0.94 996 996 989 997  997 
1000 0.0262 0.88 947 949 907 949 951 
2000 0.0262 0.78 734 733  689 731  728 
3000 0.0262 0.69 629  627  601  627 635 

Partial  sampling was carried out on 64 populations  made of 64 individuals. H, expected heterozygosity. 

Partial  sampling  in 64 X 64 

Bold  characters indicate  the  highest  observed  power  for  a  given  alternative  hypothesis. 
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TABU 8 

Mean of the  three  estimators of F-with no s e m g  

Estimators of FST 

Sampling  scheme FST 8, 8, e WC.Samplrng x h m  

4 X 64  0.0262 0.0226 (0.76) 0.0229 (0.78) 0.0264 (1.14) 

0.0044 0.0040 (0.32) 0.0041 (0.32) 0.0044 (0.44) 
0.0090 0.0082 (0.40) 0.0083 (0.42) 0.0092 (0.60) 

0.0022  0.0020 (0.25) 0.0020 (0.25) 0.0020 (0.32) 
0.0010  0.0010 (0.22) 0.0010 (0.23) 0.001 1 (0.30) 
0.0003  0.0003 (0.22) 0.0003 (0.22) 0.0003 (0.29) 
0.0262  0.0242  (0.74) 0.0243 (0.74) 0.0266 (0.94) 
0.0151 0.0140 (0.60) 0.0141 (0.60) 0.0151 (0.73) 
0.0086 0.0081 (0.51) 0.0082 (0.51) 0.0085 (0.62) 
0.0046  0.0043  (0.45) 0.0043 (0.45) 0.0047  (0.57) 
0.00 13 0.0012 (0.41) 0.0012 (0.41) 0.0013 (0.53) 
0.0003  0.0002 (0.39) 0.0002 (0.39) 0.0002 (0.51) 

16 X 16 

SD X 100 in parentheses. 

DISCUSSION 

Overall, the most  powerful  tests are  the allelic proba- 
bility and the allelic G, carried out  on  the genotypic 
tables  (respectively Pr,-test and Ga-test) . These conclu- 
sions stand  for all sampling schemes. While power is 
similar between these two  tests and  the &-tests for bal- 
anced sampling (e.g., Table 6), the loss of power  when 
samples are  unbalanced is larger in Fsrtests than in the 
Pra-test and  the G,-test (Table 7).  For example, for  an 
alternative hypothesis defined by FST = 0.009, we find 
no significant differences in power between the Fsrtests 
and the Pr, or G, tests (Table 3), but  the  latter  are  at 
least 13% more powerful than FSrtests when samples 
are  unbalanced (Table 7) .  

Sampling strategies: Power is much  higher when 
samples are balanced than when they are not. We also 
find that when gene flow  is high,  it seems better  to 
sample few populations with  many individuals rather 

than  more populations with  less  individuals. This may 
be because one gets a better estimation of  local allele 
frequencies, thereby increasing the ability  of the test to 
reject smaller allele frequency differences. When sam- 
ples are balanced, most exact tests that use the identity 
of  alleles information  perform equally  well. 

Among the tests  based on FyT estimators, gWc, while 
being the least biased estimator, is also the least power- 
ful. 0, and 8, perform equally  well,  with the  former 
doing slightly better under balanced sampling and 
slightly  worse under unbalanced sampling. 

Relationships  to  estimation: The different weightings 
given to alleles  have an influence on the statistical out- 
come.  Giving more weight to rare alleles  provides  estima- 
tors  with  lower  variance under  the null hypothesis and 
therefore more powerful  test  statistics. This finding 
stands for FST (ROBERTSON and HILL 1984; WEIR and 
COCKERHAM 1984; LONG 1986) and related quantities 

TABLE 9 

As Table 8 but with 70% selfing 

Estimators of Fs7 

Sampling  scheme FST 8, 8, e ,  
4 X 64 0.0138  0.0125 (0.82) 0.0127 (0.85) 0.0142 (1.13) 

0.0067  0.0062 (0.61) 0.0063 (0.63) 0.0069 (0.82) 
0.0033  0.0031 (0.50) 0.0031  (0.52)  0.0035 (0.68) 
0.0015 0.0013  (0.46)  0.0013 (0.47) 0.0016 (0.64) 
0.0005 0.0006 (0.43)  0.0006 (0.44) 0.0006  (0.56) 

16 X 16 0.0397  0.0366 (1.41) 0.0372 (1.41) 0.0400 (1.67) 
0.0230  0.0211 (1.18) 0.0214 (1.19) 0.0232 (1.44) 
0.0132 0.0124 (0.94) 0.0127 (0.96) 0.0139 (1.22) 
0.0071 0.0065 (0.83) 0.0067 (0.85) 0.0075 (1.08) 

0.0004 0.0004 (0.73) 0.0004  (0.74)  0.0004 (0.96) 

0.0001  0.0002  (0.40)  0.0002 (0.41) 0.0002  (0.53) 

0.0020  0.0018 (0.77) 0.0018 (0.78) 0.0018 (0.96) 

SD X 100 in parentheses. 
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TABLE 10 

As Table 8 but with unequal  sample sizes 

Estimators  of FsT 

4,. 8, 8" 8 wc 
A 

0.0090 0.0085 f0.88) 0.0085  (0.87)  0.0090  (1.05) 
0.0044  0.0042  (0.75)  0.0042  (0.72)  0.0044  (0.78) 

B 
0.0138  0.0123  (1.61)  0.0125  (1.56)  0.0138  (1.83) 
0.0067  0.0062  (1.48)  0.0062  (1.43)  0.0066  (1.56) 

C 
0.0262  0.0238  (1.05)  0.0240  (1.04)  0.0262  (1.27) 
0.0086  0.0080  (0.77)  0.0081  (0.76)  0.0087  (0.94) 

D 
0.0397  0.0362  (1.61)  0.0368  (1.56)  0.0405  (1.83) 
0.0132  0.0120 (1.48) 0.0123  (1.43)  0.0137  (1.56) 

A, B, C, D as in Table 7. SD X 100 in parentheses. 

(BARTON and SLATKIN 1986; SLATKIN and BARTON 1989) 
as well as for FIs (ROBERTSON and HILL 1984; ROUSSET 
and RAYMOND 1995). 

The weighting given to  the  different samples for  the 
F,+stimators was proportional to their size. This is the 
weighting advocated by WEIR and COCKERHAM (1984). 
HUDSON et al. (1992) used an equivalent weighting. Nev- 
ertheless, this weighting scheme for sample sizes  may 
not be  the best for  the  present testing purposes. NEI 
and CHESSER (1983) suggested to weight  equally  all  sam- 
ples, on the  ground  that  population size  is  usually un- 
known and may not be reflected in sample sizes. This 
point  needs  further investigations. 

Genetic diversity: The levels of genetic diversity  pres- 
ent in our simulated populations are closer to what is 
expected from molecular markers such as microsatel- 
lites than from isozymes (Tables 2 and  6). However, 
mutation was not  considered in this  investigation. Par- 
ticular mutation processes could generate allele fre- 
quency distributions different from the  one  generated 
by drift/migration  alone and could affect the power  of 
the  different tests. 

Conclusions: The tests presented  here  are single lo- 
cus, multi-allelic  tests. Fsr and goodness of fit tests are 
easily generalized to multi-locus data if these can be 
considered  independent. 

For diploid sexual organisms, exact tests  of  subdivi- 
sion should be based on  the hypothesis of independent 
sampling of genotypes when the  random sampling of 
alleles is inappropriate (alleles within individuals are 
not  independent when there is nonrandom  mating). 
Even when there is random mating, the power of allelic 
test based on genotypic tables is similar to that of  tests 
based on genic tables when there is random mating. 
However, when samples are small compared to the level 
of  variability (such that most sampled individuals have 
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a unique  genotype), allelic test on genic tables could 
be  more powerful. 

Tests ignoring  the identity of  alleles (genotypic good- 
ness  of fit statistics) are less  powerful than tests  acknowl- 
edging it.  While a test more powerful than those de- 
scribed here could be  found, it should  emerge from 
the allelic  statistics  class rather  than  the genotypic one. 

This work  was financed in part by grant 3143443.95 of the Swiss 
National Science Foundation U.G.), by  PICS  290  of Centre National 
de la Recherche Scientifique (T.D.) and GDR1105 (Programme Envi- 
ronnement, Vie et SociCte du CNRS).  This is contribution 96139 of 
the Institut des Sciences de I'Evolution (URA  CNRS 327). M.R thanks 
P. PAMILO for the opportunity to spend a year at the department of 
Genetics,  Uppsala  University,  Sweden. The G,-test  will be included 
in future releases  of the computer programs FSTAT (GOUDET 1995) 
and Genepop (RAYMOND and ROUSSET 1995a). 
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