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Abstract A geophysical and geochemical study has been
conducted in a fractured carbonate aquifer located at
Combioula in the southwestern Swiss Alps with the
objective to detect and characterize hydraulically active
fractures along a 260-m-deep borehole. Hydrochemical
analyses, borehole diameter, temperature and fluid electri-
cal conductivity logging data were integrated in order to
relate electrokinetic self-potential signals to groundwater
flow inside the fracture network. The results show a
generally good, albeit locally variable correlation of
variations of the self-potential signals with variations in
temperature, fluid electrical conductivity and borehole
diameter. Together with the hydrochemical evidence,
which was found to be critical for the interpretation of
the self-potential data, these measurements not only made
it possible to detect the hydraulically active fractures but
also to characterize them as zones of fluid gain or fluid
loss. The results complement the available information
from the corresponding litholog and illustrate the potential
of electrokinetic self-potential signals in conjunction with
temperature, fluid electrical conductivity and hydrochem-
ical analyses for the characterization of fractured aquifers,
and thus may offer a perspective for an effective

quantitative characterization of this increasingly important
class of aquifers and geothermal reservoirs.

Résumé Une étude géophysique et géochimique a été
menée dans un aquifère carbonaté fracturé à Combioula
dans les Alpes Suisses du Sud Ouest avec pour objectif la
détection et la description des fractures actives hydrauli-
quement sur la longueur d’un forage profond de 260m.
Des analyses hydrochimiques, des données de diagraphies
du diamètre du forage, de la température et la conductivité
électrique du fluide ont été combinées afin de relier des
signaux électrocinétiques de polarisation spontanée à
l’écoulement d’eau souterraine à l’intérieur du réseau de
fractures. Les résultats montrent une corrélation général-
ement bonne, bien que localement avec une corrélation
changeante des variations des signaux de polarisation
spontanée avec les variations de température, de con-
ductivité électrique du fluide et du diamètre du forage.
Avec la signature hydrochimique, qui a été trouvée être
cruciale pour l’interprétation des données de polarisation
spontanée, ces mesures ont non seulement rendu possible
la détection des fractures actives hydrauliquement mais
aussi de les décrire comme zones de gain de fluide ou de
perte de fluide. Les résultats complètent l’information
disponible provenant des logs lithologiques correspond-
ants et expliquent les potentialités des signaux électro-
cinétiques de polarisation spontanée en liaison avec la
température, la conductivité électrique du fluide et les
analyses hydrochimiques pour la description des aquifères
fracturés et peuvent ainsi offrir une approche pour une
description quantitative efficace de cette catégorie d’aqui-
fères et de réservoirs géothermaux d’importance crois-
sante. Détection et description de fractures actives
hydrauliquement dans un aquifère carbonaté : résultats
de diagraphies de polarisation spontanée, de température
et de conductivité électrique du fluide dans le système
hydrothermal de Combioula dans les Alpes Suisses du
Sud Ouest

Resumen Estudios geofísicos y geoquímicos han sido
llevados a cabo en el acuífero carbonático fracturado
localizado en Combioula, sudoeste de los Alpes Suizos, a
in de detectar y caracterizar fracturas hidráulicamente
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activas en una perforación de 260m de profundidad. Se
han integrado datos de análisis hidroquímicos, diámetro
de la perforación, temperatura y conductividad eléctrica
del fluido para relacionar las señales de potencial
espontáneo con el flujo subterráneo en la red de fracturas.
Los resultados muestran una buena correlación entre las
variaciones del potencial espontáneo y las variaciones en
temperatura, conductividad eléctrica del fluido y diámetro
de la perforación, aunque se registran variaciones locales.
La evidencia hidroquímica resultó crítica para la inter-
pretación de los datos de potencial espontáneo, y así fue
posible detectar no sólo las fracturas hidráulicamente
activas sino también caracterizarlas como zonas de
ganancia o pérdida de fluidos. Los resultados comple-
mentan la información disponible de los perfiles litológi-
cos e ilustran el potencial de las señales electrocinéticas de
potencial espontáneo en conjunto con la temperatura, la
conductividad eléctrica del fluido y los análisis hidroquí-
micos para la caracterización de acuíferos fracturados, y
de esta manera ofrecen una perspectiva para la caracter-
ización cuantitativa efectiva de esta clase de acuíferos de
importancia creciente y de reservorios geotérmicos.
Detección y caracterización de fracturas hidráulicamente
activas en un acuífero carbonático: Resultados de registros
de potencial espontáneo, temperatura y conductividad
eléctrica de los fluidos en el sistema hidrotermal de
Combioula, sudoeste de los Alpes Suizos

Keywords Switzerland . Hydrogeophysics . Fractured
rocks . Groundwater flow . Self-potential logging

Introduction

In mountainous regions such as the Alps, pronounced
topography, complex geology and seasonally accentuated
and generally precipitation-rich climatic conditions in
conjunction with the inherently complex geological
setting and associated prominent spatial variations in
permeability largely govern the development of deep-
water circulations. In particular, the generally strong
hydraulic gradient, the presence of highly permeable
geological formations and/or deep-reaching faults and
fractures allow deep-water infiltration and circulation and
thus favour the formation of medium- to high-temperature
aquifer systems (e.g., Forster and Smith 1988; Lopez and
Smith 1995).

In this context, fractured aquifers are of particular
interest and importance. They are generally characterized
by strong heterogeneity due to the inherently large
contrasts in hydraulic properties between the highly
permeable fractures and the surrounding rock matrix of
generally negligible permeability. In addition to their
geothermal potential, fractured aquifers are also increas-
ingly used for ensuring the groundwater supply in several
regions of the world (e.g., Jeong 2001; Mapani 2005;
Durand et al. 2006). The sustainable use of these
groundwater and geothermal resources requires a detailed
knowledge of their hydraulic properties, which makes the

detection and hydraulic characterization of the fractures an
ever more important task (e.g., Lemieux et al. 2006). In
addition to traditional hydrogeological techniques such as
core analyses, flowmeter measurements as well as tracer
and pumping tests, borehole geophysical measurements
are becoming increasingly important (e.g., Paillet 2004;
Le Borgne et al. 2006).

Although there are a number of techniques that are
sensitive to the presence of fractures, most common
geophysical methods do not provide any information with
regard to their hydraulic activity. This problem can be
potentially alleviated through self-potential measurements,
which exhibit a direct sensitivity not only to movement of
fluids within fractures but also to their dominant flow
direction (e.g., Bogoslovsky and Ogilvy 1973; Wishart et
al. 2006). A particular advantage of self-potential logs in
fractured aquifers could thus be that they are directly
sensitive to the generally sub-horizontal in- and outflows
along fractures and that they are considered to be capable
of detecting very weak fluid movements. Although the
promise of self-potential measurements for the detection
and characterization of hydraulically active fractures is
widely acknowledged (e.g., Ogilvy et al. 1969; Sharma
and Baranwal 2005; Rozycki et al. 2006), corresponding
methodological studies and/or systematic practical appli-
cations for borehole measurements are few and far apart
(Hunt and Worthington 2000; Ishido and Pritchett 2003).

This report presents the results of an integrated study
including hydrochemical analyses and self-potential meas-
urements, complemented by temperature, fluid electrical
conductivity and borehole diameter, or caliper, logs, along
a 260-m-deep borehole. The site for this study is located
within the Combioula hydrothermal system in the south-
western Swiss Alps, which in many ways can be regarded
as being typical of a fractured geothermal aquifer in a
mountainous region (Vuataz 1983). A particular objective
of this study is to explore the fundamental applicability
and practical usefulness of self-potential borehole meas-
urements in such environments for detecting and charac-
terizing hydraulically active fractures.

The Combioula geothermal site

The Combioula hydrothermal system is located at 693 m
above sea level at the beginning of Val d’Hérens, a deep
glacial valley in the so-called Penninic region in the
southwestern Swiss Alps. Detailed descriptions of the
regional geology are given by Escher (1988), Sartori and
Marthaler (1994), and Steck et al. (2001). The region is
characterized by a strong topography with steep slopes
and a high average elevation ranging between 2,500 and
3,000 m above sea level. From a hydrogeological point of
view, this Penninic region can be regarded as a complex
superposition of multiple aquifers consisting principally of
a tectonic assemblage of basement rocks and their Triassic
sedimentary covers (Fig. 1). In general, the permeability
of the basement aquifers is small, except for some
circulation along isolated fracture zones and open joints.
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The Triassic sedimentary overburden is typically com-
posed of quartzites, marbles, limestones, dolomites, and
evaporites, of which in particular the carbonates and
evaporites tend to constitute important potential aquifers
as they are characterized by locally very high permeabil-
ities related to abundant faults and fractures (Figs. 1 and
2). This fracture-dominated permeability may be locally
further enhanced by the presence of features related to
karstification processes (Bureau d’Etudes Géologiques S.
A., unpublished data, 1987).

The Combioula thermal springs are related to Triassic
rocks composed predominantly of quartzite, dolomite,
limestone and gypsum (Fig. 1). For the period 1961–1990,
the mean annual rainfall for this region is 652 mm/year,
with generally more accentuated precipitation during the
spring and autumn, and the mean annual temperature is
6.4°C. The hydographic system is generally dendritic and
the two rivers of the main valleys La Borgne and La

Dixence flow to the Rhône River perpendicularly to the
structures of the Penninic structural grain.

The surface expression of the Combioula hydrothermal
system is composed of some 80 thermal, sub-thermal and
cold springs emerging primarily along the riverbanks of
the La Borgne over a distance of about 100 m. These
springs with their generally highly mineralized waters
were supposedly discovered around AD 1530 and were
subsequently exploited for salt and therapeutic bathing. In
1986, three boreholes (C2, C3, and C3bis) were drilled
near the springs and close to the river La Borgne with the
objective to set up a thermal spa. These boreholes reach
depths of 274 m for C2, 438 m for C3, and 412 m for
C3bis. A commercial use of the thus accessed thermal
water has not, however, materialized to date. A primary
reason for this is that only borehole C2 remained open,
whereas the two other wells were rapidly plugged by the
precipitation of gypsum. Consequently, this study focuses
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on borehole C2, which first crosses a highly permeably
alluvial deposit and then from 42 m down to 274 m depth a
carbonate sequence with intercalations of gypsum
corresponding to the so-called Pontis aquifer (Figs. 1 and 2).

Hydrochemistry

In the framework of several studies of regional thermal
waters, the boreholes, springs and rivers were sampled at
Combioula (Vuataz 1983; Ladner, University of Neuchâtel,
unpublished data, 2005). The temperature of the deep
reservoir was estimated by hydrochemical methods to be
around 40°C. The tritium concentration indicates that most
of the water in borehole C2 is relatively young and
infiltrated after 1952 so that the recharge can be assumed
to have occurred under present climatic conditions. The
oxygen and deuterium isotopic values indicate a mean
altitude of infiltration zones about 2,500–3,000 m above sea
level. This infiltration zone is supposed to be the Vallon de
Réchy, a small valley situated to the east of Val d’Hérens.

Recent sampling by means of pumping tests and
corresponding analyses of the water of borehole C2 yields
an average pH of 6.8 and an average fluid electrical
conductivity of 2,990 μS cm–1 (Ladner, University of
Neuchâtel, unpublished data, 2005). The dominant ions
are calcium and sulphate and the chemical type of the
fluid is Ca>Mg; SO4 (Table 1). The observed water
chemistry is thought to principally originate from disso-
lution within the local carbonate and evaporite series
consisting predominantly of dolomitic limestone contain-
ing gypsum and anhydrite layers. In particular, the
dissolution of gypsum and anhydrite and to a lesser extent
of dolomite and dolomitic limestone is considered to be
largely responsible for the overall mineralization of the
Combioula thermal springs.

The calculation of the saturation index of the sampled
water in well C2 has shown that the water is (1) over-
saturated for quartz, (2) quasi-saturated with respect to
gypsum and (3) under-saturated for dolomite and calcite
(Fig. 3). This in turn indicates that primarily hydrated
forms of silica and, to a more limited extent, gypsum can
be expected to precipitate along the borehole walls and
inside the hydraulically active fractures.

Electrokinetic self-potential signals

When groundwater flows through a saturated porous
medium, electric and hydraulic processes are coupled as
there is always an excess of electrical charges in the
vicinity of the water/mineral interface (Pride 1994; Revil
et al. 2003). This phenomenon is generally referred to as
the diffuse double layer and the associated drag of this
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excess of charge by the flow of the groundwater is
responsible for a net source of electrical current that
polarizes the porous continuum (Ishido and Mizutani
1981; Revil et al. 1999). The flow of water through a
porous medium thus inherently generates an electrical
field and the associated “spontaneous” difference in
voltage, or electrical potential, is generally referred to as
the electrokinetic or streaming potential (e.g., Sill 1983;
Fournier 1989; Birch 1993, 1998; Doussan et al. 2002;
Suski et al. 2006). The electrokinetic self-potential
represents one of several possible contributions to the
total self-potential signal measurable inside a borehole.
Other contributions might arise from: (1) the presence of
metal or metallic minerals (redox potential), (2) a
chemical difference between the liquid used in drilling
and the fluid enclosed in the formation drilled (membrane
potential), and (3) the filtrate and the formation fluid at the
boundary of the invaded zone, a phenomenon also known
as liquid junction potential (e.g., Chapellier 1992). In this
case study, the two dominant sources of self-potentials are
expected to be the redox potential along the first 50 m due
to the presence of a metallic casing and the electrokinetic
potential along the remaining open part of the borehole
due to the presumed circulation of groundwater inside the
fractures (Fig. 2).

Various applications of self-potential signals in general
and electrokinetic self-potential signals in particular to
assess and characterize geothermal resources (e.g.,
Anderson and Johnson 1973; Corwin and Hoover 1979),
to determine the preferential path of groundwater flow (e.g.,
Jardani et al. 2006a, b), to determine hydraulic properties
of the shallow subsurface (e.g. Rizzo et al. 2004), and to
identify hydrofracturing (e.g. Byrdina et al. 2003) have
been reported to date. Despite this remarkably broad range
of applications, however, only very few systematic studies
regarding the relationship between electrokinetic self-

potential signals and the hydraulic activity of fractures
exist (Bogoslovsky and Ogilvy 1972, 1973; Wishart et al.
2006; Moore and Glaser 2007) and corresponding
applications to borehole studies are in even shorter supply
(Hunt and Worthington 2000; Ishido and Pritchett 2003).

In the classical formulation of the electrokinetic
potential, electrical and hydraulic processes are coupled.
At the scale of a representative elementary volume of the
considered porous material, the total electrical current
density J is the sum of a conductive current described by
the Ohm’s law J0 and a net or driving electrokinetic
source current density JS, which is associated with the
pore fluid pressure field p (e.g., Sill 1983):

J ¼ J0 þ JS ¼ ��r’þ �Crp ð1Þ

with

C � �L=�; ð2Þ

where 8 is the electrical potential in V, σ is the electrical
conductivity of the porous medium in S m–1, C is the
electrokinetic potential coupling coefficient in V Pa−1, and
L is the coupling coefficient of the electrokinetic current
in m2 V−1 s−1. The electrokinetic current density JS ¼
�Crp acts as a source term for electromagnetic dis-
turbances in the Maxwell equations. Combining the
constitutive Eq. (1) and the continuity equation r � J ¼ 0
stating that the current density is conservative under the
static or quasi-static conditions, one obtains a Poisson-
type equation for the electrical potential:

r sr’ð Þ ¼ r Lrpð Þ ¼ =; ð3Þ

where ℑ represents the volumetric density of the current
source in A m−3.

Table 1 Average hydrochemistry for C2 borehole water, which can be classified as being of type Ca>Mg; SO4

Sample date pH Temperature °C Electrical
Conductivity
μS cm–1

K
mg L–1

Mg
mg L–1

Ca
mg L–1

Na
mg L–1

Cl
mg L–1

SO4
mg L–1

HCO3
mg L–1

26/08/2005 6.8 22.5 2,990 8.5 94.8 537.1 87.7 76.0 1,536.8 219.0
30/08/2005 6.75 23.1 2,990 7.4 89.1 552.5 89.1 77.0 1,550.3 211.1
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sity of Neuchâtel, unpublished
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Equation 3 can be simplified by assuming steady-state
equilibrium conditions as well as negligible surface
conductivity along the mineral grains. These assumptions
are generally valid for laminar capillary flow and in
absence of significant amounts sheet-silicates such as
clays or mica. As indicated by Eq. 3, the gradient of
electrokinetic potential ∇8 is then directly related to the
corresponding pressure gradient ∇p:

r’ ¼ Crp; ð4Þ

where C is the electrokinetic potential coupling coefficient
defined in Eq. 2. Equation 4 is the well-known Helmholtz-
Smoluchowski equation. In can be shown that for laminar
capillary flow, C is defined as (e.g., Overbeek 1952):

C ¼ "f �

�f �f
ð5Þ

where ɛf is the dielectric permittivity of the fluid in F m–1,
σf the fluid electrical conductivity in S m–1, ηf the fluid
viscosity in Pa s, and ζ the so-called zeta potential of the
double layer in V. Although the above expression for the
electrokinetic coupling coefficient is strictly valid only for
laminar capillary flow, there is increasing evidence to
suggest that, for practical intents and purposes, it provides
a good approximation for laminar groundwater flow
regimes in general, including laminar flow in fractured
media (e.g., Beamish and Peart 1998; Gorelik 2004;
Moore and Glaser 2007).

Equation (5) illustrates that the form of the relation
between the self-potential signal and the pressure variation
will depend mainly on the zeta potential. Unfortunately,
there are no core samples or cuttings available and hence
it was not possible to directly measure the zeta potentials
of various lithologies encountered along the borehole in
the laboratory. The zeta potential is a key parameter in
electrokinetic self-potential studies characterizing the
fluid/mineral interface generated by the chemical interac-
tion of the minerals and the fluid. This parameter is,
essentially, the reflection of the distribution of surface
charges along the fluid/mineral interface and thus of the
diffuse double layer, which in turn depends on a number
of parameters, like the fluid electrical conductivity or the
pH. Evidently, this tends to make self-potential measure-
ments delicate to interpret, both quantitatively and
qualitatively (e.g., Crespy et al. 2007). This is particularly
true for carbonates for which the magnitude of the zeta
potential is inherently variable and its sign can be both
positive and negative (Vdovic 2001; Moulin and Roques
2003). Most importantly for the present study, the zeta
potential of most carbonates tends to be close to zero for
pH-values around 7 (Guichet et al. 2006). Conversely, the
zeta potentials of both quartz and gypsum are clearly
negative. For an ionic strength equal to 0.07 M, a fluid
electrical conductivity equal to 0.3 S m–1, and pH equal to
6.8, Johnson (1999), found that zeta potential for quartz
particles ranged between –30 mV and –16 mV, whereas

Titiz-Sargut et al. (2007) reports a zeta potential equal to –
12.5 mV for gypsum particles.

Based on the hydrochemical evidence outlined above,
one can therefore assume that the zeta potential along the
considered borehole at the Combioula hydrothermal site is
most likely to be negative and its absolute value to range
between 10 and 30 mV. This then allows one to determine
the sign of the pressure variation associated with the
hydraulically active fractures based on the observed self-
potential anomalies as well as to obtain a first-order
estimate of the pressure change along the fractures (Eqs. 4
and 5). The observed electrical potentials discussed in the
following are measured with respect to a reference
electrode, which in this case study corresponds to the
steel cable along which the logging tool is suspended. As
this reference electrode is also located inside the borehole,
a positive self-potential anomaly is indicative of a drop in
the water pressure and thus implies that water flows out of
the borehole into the fracture, whereas a negative self-
potential anomaly corresponds to an increase in pressure
and thus implies that water flows through the fracture into
the borehole.

Results

Measurements of the self-potential, complemented by
measurements of fluid electrical conductivity corrected
for temperature and normalized to the standard tempera-
ture of 25°C, fluid temperature, and the borehole diameter
or caliper, were performed along borehole C2 at an
increment of 5 cm (Fig. 4c through f) using Mount Sopris
borehole logging equipment. At the time of the measure-
ments, the water level was located at 6.2 m below surface
and the temperature increased from ~10°C at the surface
to ~24°C at the bottom of the well.

The temperature log and the corresponding temperature
gradient log indicate two major changes, one at ~40 m
depth and another one at ~100 m depth (Fig. 4e). The
relatively small change in temperature at ~40 m depth,
more visible as a pronounced variation of its gradient,
corresponds to the transition from the overlying alluvium
to the underlying basement. The fluid electrical conduc-
tivity and its gradients also point to a major change in
water chemistry near the base of the surficial alluvial
aquifer at ~40 m depth where the conductivity jumps from
0.11 S m–1 to 0.22 S m–1 and then gradually increases to
0.27 S m–1 at bottom of the borehole at 260 m depth
(Fig. 4f). This indeed indicates that there are two separate
aquifer systems, a surficial one alimented by local
infiltration through the alluvium and a second deeper
one in the underlying carbonates forming part of large-
scale, deep-reaching groundwater circulation system.
Although the borehole casing down to ~50 m depth
should effectively isolate the deeper carbonate aquifer
from the surficial alluvial aquifer, the temperature and
fluid electrical conductivity logs both provide evidence to
the contrary, which implies that the casing is likely to be
permeable in the depth range between ~35 and ~45 m.
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The temperature log shows the most significant
variation at ~100 m depth, which essentially divides the
thermal regime observed along the borehole into two
regions: the region above ~100 m depth, where the

temperature increases rapidly from ~10 to ~24°C and a
gradient of ~15°C per 100 m, and the region below
~100 m depth, where the temperature increases very
slowly with a gradient of ~1°C per 100 m. This
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pronounced change in temperature at ~100 m depth could
be most easily reconciled with important inflows and/or
outflows of water in the same depth range. This is turn
would suggest that the first ~100 m of water inside the
borehole are likely to represent a mix between colder and
more resistive meteoric water from the surficial alluvial
aquifer and warmer and more conductive water from the
deeper carbonate aquifer prevailing in the lower part of
the borehole. Interestingly, the rather dramatic change in
the thermal regime at ~100 m does not find any reflection
in the electrical conductivity of the water and its gradients,
whereas the pronounced jump in the fluid electrical
conductivity at the base of the surficial alluvial aquifer at
~40 m is only associated with relatively weak change in
temperature. At present, there is no conclusive explanation
for this seemingly inconsistent stratification of the water
column inside the borehole with regard to temperature and
fluid electrical conductivity.

The self-potential measurements are depicted in
Fig. 4c. The first ~50 m of the self-potential log are not
shown here because the strong redox potential associated
with the metallic casing (Fig. 4a) perturbed the measure-
ments too much. Therefore only the measurements made
below the bottom of the metallic casing are discussed.
Moreover, given that for the borehole logging system used
in this study the reference electrode corresponds to the
steel cable suspending the logging tool, self-potential
measurements continue to be influenced by the steel
casing for another ~20 m below its base. A rough
qualitative comparison between the self-potential and the
borehole diameter or caliper logs (Fig. 4c and d) shows
that the self-potential measurements correlate with some
of the individual enlargements of the caliper. In the given
geological context, caliper enlargements are likely to be
indicative of laterally pervasive fractures or, alternatively,
of lateral cavities of limited lateral extent. A comparison
of the caliper and self-potential logs should thus allow one
to distinguish hydraulically active fractures from cavities
or hydraulically inactive fractures.

Two major self-potential domains of fundamentally
differing signal character can be observed: the first domain
ranges from the bottom of the casing to ~140 m depth and
is characterized by a strongly fluctuating and apparently
rather noisy self-potential signal, whereas in the second
domain, from ~140 to ~260 m depth, the self-potential
signal is much smoother (Fig. 4c). Interestingly, there does
seem to be a remarkable correspondence in the overall
nature of the self-potential and caliper logs in the two
domains identified above. In the first domain from ~50 to
~140 m depth, the seemingly noisy self-potential log is
associated with a caliper log that is characterized by a
large number and dense spacing of generally smaller
enlargements of the borehole diameter. Conversely, in the
second domain from ~140 to ~260 m depth both the self-
potential and caliper logs shows relatively few, but
generally rather prominent anomalies superimposed onto
a smooth, largely noise-free background. This in turn
suggests that the differing nature of the self-potential log
in the upper and lower parts of the borehole could

possibly be a direct reflection of fundamentally differing
fracture and flow regimes in the two domains.

In the first domain ranging from ~50 to ~140 m depth,
five significant self-potential anomalies are present: one at
88.05 m, a second one at 99.75 m and a third one at
127.85 m (Fig. 4c). Two additional, somewhat less
obvious, anomalies are present at ~80 and 91 m depth.
At 88.05 m depth the self-potential reaches a maximum
that it is not correlated with any changes in the borehole
diameter and/or fluid electrical conductivity and temper-
ature. This variation could be correlated with the transition
from gypsum/anhydrite to dolomitic limestone or it could
be part of a broader and more complex signal related to an
outflow of water around 91 m depth, which is possibly not
associated with a single discrete fracture. The latter
interpretation would be consistent with the corresponding
change in the fluid electrical conductivity and its gradient.
Similarly, the noisy minimum of the self-potential log at
~80 m depth, which coincides with a fracture in the
litholog, a caliper enlargement and a change in the fluid
electrical conductivity, is likely to correspond to another
fluid inflow. The local self-potential minimum at 99.75 m
depth is associated with a single caliper deviation and
coincides with the boundary between the upper and lower
thermal regimes in the water column of the borehole,
discussed above, but has no clear correspondence in the
electrical conductivity log. This anomaly is therefore
likely to correspond to a pronounced inflow of warm
water. The self-potential anomaly at 127.85 m is negative
indicating that water is flowing into borehole and
associated with a corresponding deviation of the borehole
diameter. Interestingly, this fracture has no clear signature
in the temperature and fluid electrical conductivity
measurements, which suggests that the water entering
the borehole must have the same temperature and
electrical conductivity as the water in the borehole. In
the first domain not all caliper enlargements and/or
fractures depicted in the litholog could be related to the
self-potential data, which is likely to be largely due to
their inherently noisy nature in this depth range.

The second domain from ~140 to ~270 m depth shows
four significant self-potential anomalies at 148.95, 195.85,
234.0 and 255.3 m depth, all of which are negative
indicating that there are inflows of water from the
surrounding formation into the borehole. These self-
potential minima are indeed generally well correlated with
deviations in the borehole diameter as well as, albeit very
small, variations of the temperature and/or fluid electrical
conductivity gradients. The latter seems to indicate that
the water column in the lower part of the borehole, below
~100 m depth, is very close to a thermal and hydro-
chemical equilibrium. At 255.3 m depth, the self-potential
signal is associated with two closely spaced, prominent
borehole diameter enlargements. As these two prominent
caliper deviations occur within ~1 m of each other, it is
difficult to assess whether the associated self-potential
anomaly represents the integration of two distinct water
inflows thus illustrating the inherently limited vertical
resolution of self-potential logs or whether only one of the

1326

Hydrogeology Journal (2008) 16: 1319–1328 DOI 10.1007/s10040-008-0302-5



caliper enlargements is associated with a hydraulically
active fracture. As the fluid temperature and the fluid
electrical conductivity show only one discrete variation in
this depth range, the latter hypothesis does, however, seem
to be more probable. Interestingly, the largest caliper
deviation at 236.95 m is not associated with a maximum
or minimum in the self-potential signal and hence most
likely does not correspond to a hydraulically active
fracture. When the borehole was drilled in 1986, a
significant water loss was observed at this depth (Bureau
d’Etudes Géologiques S.A., unpublished data, 1987). One
can therefore suppose that at the depth of 236.95 m, the
drill bit crossed at a large empty cavity, probably of karstic
nature and origin, which filled up in the process and since
then has remained hydraulically passive. Between the
anomalies related to hydraulically active fractures, the
self-potential signal is smooth and more or less stable
around 0 mV except for a positive long-wavelength
anomaly between 160 and 190 m depth. This could, for
example, be indicative of a redox potential due to the
presence of trace mineralizations of pyrite or hematite,
which tend to be relatively common in the given
geological context. The overall groundwater flow pattern
inferred from the self-potential measurements outlined
above is entirely with today's, albeit still rather patchy,
knowledge of the regional hydrogeology (Vuataz, 1983;
Ladner, University of Neuchâtel, unpublished data, 2005).

Finally, using the simplified relationship between the
self-potential signals and the pressure variation (Eqs. 4
and 5), it is possible to obtain a rough, first-order estimate
of the range of pressure changes associated with the active
fractures. Based on the observed self-potential signals and
using the two end-member estimates for the zeta potential
of –30 and –12.5 mV, pressure variations were obtained
ranging between –0.85 and –1.15 MPa and between –2.05
and –2.75 MPa, respectively. Although these estimates
must at present be regarded as inherently speculative in
nature until verified by proven traditional hydrological
techniques such as packer tests and flowmeter measure-
ments, they do potentially provide critical constraints for
the quantitative characterization of fractured aquifers.

Conclusion

A combined geophysical and hydrochemical study was
performed along a 260-m-deep borehole penetrating a
fractured carbonate aquifer at the Combioula hydrother-
mal site in the southwestern Swiss Alps. Self-potential
signals and hydrochemical analyses were complemented
by temperature, fluid electrical conductivity and borehole
diameter or caliper logs in order to explore the sensitivity
of this method for the detection and characterization of the
groundwater flow inside the fractures. Overall, the self-
potential signals were found to show a good correlation
with the caliper, water temperature and fluid electrical
conductivity logs, which made it possible to link the self-
potential signals to the fracture network and to distinguish
the hydraulically active fractures from inactive ones. A

particularly interesting outcome of this study is that the
evidence provided by the hydrochemical analyses proved
to be critical for a unique determination of the sign of the
zeta potential as well as an approximate estimation of its
magnitude. This in turn proved to be essential for a correct
interpretation of the direction of the fluid flow inside the
fractures as well as for tentative first-order estimates of the
pressure changes associated with hydraulically active
fractures. The results of this study therefore suggest that,
in conjunction with hydrochemical constraints, the self-
potential borehole logging method is a potentially useful
tool for the detection and characterization of hydraulically
active fractures as well as for the overall understanding of
complex fluid flow patterns in fractured aquifers. Future
research should therefore aim at testing and exploring the
quantitative validity of the predictions inferred from the
self-potential measurements and developing comprehen-
sive numerical models for the self-potential response for
laminar flow in fractured media. Combined with tradi-
tional hydrological techniques such as flowmeter measure-
ments and/or pumping and packer tests, the information
provided by self-potential logs could therefore prove to be
an effective means for developing quantitative hydraulic
models, which are critically needed to allow for a
sustainable use of the inherently complex but increasingly
important class of fractured aquifers and geothermal
reservoirs.
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