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SUMMARY
We present a spatiotemporal adaptive multiscale algorithm, which is based on the Multiscale Finite
Volume method. The algorithm offers a very efficient framework to deal with multiphysics problems and
to couple regions with different spatial resolution. We employ the method to simulate two-phase flow
through porous media. At the fine scale, we consider a pore-scale description of the flow based on the
Volume Of Fluid method. In order to construct a global problem that describes the coarse-scale behavior,
the equations are averaged numerically with respect to auxiliary control volumes, and a Darcy-like coarse-
scale model is obtained. The space adaptivity is based on the idea that a fine-scale description is only
required in the front region, whereas the resolution can be coarsened elsewhere. Temporal adaptivity relies
on the fact that the fine-scale and the coarse-scale problems can be solved with different temporal
resolution (longer time steps can be used at the coarse scale). By simulating drainage under unstable flow
conditions, we show that the method is able to capture the coarse-scale behavior outside the front region
and to reproduce complex fluid patterns in the front region.
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 Introduction

Multiphase flow through porous media is characterized by a variety of scales. Multiscale methods (e.g.

the Multiscale Finite Volume (MsFV) method (Jenny et al., 2003)) have been developed to efficiently

deal with situation in which these scales are coupled and traditional upscaling techniques are not effec-

tive. Recently, the MsFV method has been extended (Tomin and Lunati, 2013) for multiphysics (hybrid)

applications, and it has been used to dynamically couple a Darcy-scale model to a pore-scale model that

aims at describing the flow with sub-pore spatial resolution.

Although, the two-phase flow patterns may be very complex (Ferrari and Lunati, 2013), particularly

for unstable flow regimes, it is always possible to identify regions where the fluid distribution does not

significantly change, while active redistribution takes place in a front region, which characterized by

a typical length lf. If lf � LΩ (where LΩ is the domain size) a detailed (pore-scale) description of the

flow is not required in most of the domain and methods that employ an adaptive spatial resolution (Fig. 1)

become very attractive as they allow a substantial reduction of the computational costs (Lee et al., 2009;

Künze and Lunati, 2012; Künze et al., 2014).

The main idea of spatially adaptivity is to coarsen the description far from the front region, while keeping

a finer resolution where active fluid redistribution takes place. The use of different spatial scales implies

the use of different temporal scales, and we have recently proposed a spatiotemporal adaptive MsFV

method (Tomin and Lunati, 2014), which relies on a local-global splitting of the original system of

equations. In this framework, we define a set of local problems that are coupled through their boundary

conditions, which are obtained by the solution of global problem and the use of numerically computed

interpolators. The local-global splitting allows us to retain the original degree of coupling in the local

subdomain and makes it easier to locally employ different descriptions as required by the actual flow

conditions.

Governing equations

We consider the flow of two incompressible phases trough a rigid solid matrix. At the pore-scale the flow

is described by the whole-domain formulation (see, e.g., Scardovelli and Zalesky (1999); Lafaurie et al.

(1994)), which treats the two-phase system as a single fluid with properties that vary in space depending

on the phase that is present. The phase distribution is described by a fluid function, α , which represents

the volumetric fraction of one of the two phases (e.g., phase 1). The density and the viscosity are

ρ = αρ1 +(1−α)ρ2, μ = αμ1 +(1−α)μ2, (1)

respectively, where ρi is the constant density and μi is the constant viscosity of the i-phase.

Figure 1 A pictorial representation of adaptive resolution for multiphysics problems.
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 The flow is described by the following conservation equations:

1. The total mass conservation equation,

∇ ·uuu = 0, (2)

which is expressed in form of a volume conservation equation and reduces to a divergence-free

condition on the velocity.

2. The momentum balance equation

∂ρuuu
∂ t

=−∇p+∇ ·μ
(
∇uuu+∇uuuT )+ γκ∇α, (3)

where the last term on the right-hand side accounts for the surface force acting at the fluid-fluid

interface (γ is the surface tension, and κ =−∇ ·nnnα = ∇ · (∇α/|∇α|) is the total curvature of the

interface) and where we have neglected the non-linear term since the Reynolds number is small.

3. The mass conservation equation for phase 1,

∂α
∂ t

+∇ · (αuuu) = 0, (4)

which has the form of a simple advection equation for the fluid function α .

To be solved for pressure, p, velocity, uuu, and fluid funtion, α , Eqs. 2–4 have to be supplemented with

appropriate boundary conditions. On the solid boundary, ∂Ωs, the no-slip condition is imposed for the

velocity,

uuu|∂Ωs = 0, (5)

whereas the normal to the fluid-fluid interface, nnnα , is fixed and determined by the contact angle, θeq,

to describe the effects of wetting. The pore-scale simulations presented in the following are performed

with a modified implementation of the open-source software package OpenFOAM (2012).

Local-global splitting

The main idea is to decompose the original problem into a set of local problems that are solved on

subdomains, Ω̄i, defined by the cells of an auxiliary coarse grids (Fig. 2), and coupled through the

boundary conditions. The set of localized problems can be written in matrix form as

A�x = r+(A�−A)xbc, (6)

Figure 2 Coarse grid (solid) and dual grid (dashed). (The underlying fine grid that resolve the pore
space is not shown here.)
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 where x =
[

p u α
]T

is the vector of the unknowns; A is the matrix representing the discretization

of the orginal problem; r is the right-hand-side vector; A� is the operator which is constructed from A
by removing the connections across coarse cells and contains all the decoupled local problems (Lunati

and Lee, 2009); and xbc is the vector from which the boundary conditions of the local problems are

computed.

The vector xbc is obtained by solving a global problem, which is constructed by projecting the fine-scale

problem onto the coarse grid, i.e.,

χAxbc = χr, (7)

where the restriction operator χ sums up all fine-scale values corresponding to the same coarse cell. In

following we assume that only coarse pressure values, pg, are relevant degrees of freedom at the global

scale (Tomin and Lunati, 2013), and we write

xbc =

⎡
⎣

pbc

ubc

αbc

⎤
⎦=

⎡
⎣

Bp

Bu

0

⎤
⎦ pg +C r. (8)

where C is the correction function operator (Lunati and Jenny, 2008; Lunati and Lee, 2009); and the

columns of the basis-function operators, Bp and Bu, contain the interpolators of the pressure and the

velocity, respectively, and are computed by simultaneous solution of Eqn. 2–3 for each degree of free-

dom. The construction of interpolators is briefly discussed in the next section; we refer to (Tomin and

Lunati, 2013) for further details.

Taking into account the hyperbolic nature of Eq. 4, no interpolator is introduced for fluid function (Bα =
0), and the boundary conditions for localized transport problems, αbc, are obtained from the solution at

previous time. Formally this is described by applying the correction-function operator to the right-hand

side, r, which contains αbc at the previous time.

Substituting Eq. 8 into Eq. 7, we have the global-pressure problem

(χpAB)pg = χp(I −AC )r, (9)

where we have added the subscript to χp to indicate that only the global equation for pressure is con-

structed. This equation can be written in a simple Darcy-like form

∑
j �=i

Ti j (pg,i − pg, j) = Fi, i = 1..Nc, (10)

where the coarse transmissibilities, Ti j, can be seen as an extension of Darcy-scale total mobilities as

they depend on the fine-scale distribution of the fluids and also include relaxation effects since the basis-

functions are obtained by solving time-dependent equations.

Once the global problem is solved, the boundary conditions for the full system of equations are con-

structed from Eq. 8 and used to locally solve the full system of pore-scale equations 2–4 on coarse

cells (Fig. 3). The solvability is ensured by the consistency between the integral pore-scale and coarse-

scale fluxes, and by the fact that momentum always can be dissipated on solids.

Definition of interpolators

The interpolators are calculated on the dual coarse cells, Ω̃e, (Fig. 2) and provide a numerical closure to

the coarse problem (generalizing Darcy’s law). In each dual cell, Ω̃e, we use the decompositions

pbc =
Ne

c

∑
i=1

pg,iφ e
i +φ e

0 , and uuubc =
Ne

c

∑
i=1

pg,iψψψe
i +ψψψe

0. (11)
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Figure 3 Local sub-problems are coupled by boundary fluxes.

where Ne
c is the number of dual-cell nodes (Ne

c = 2d in case of a Cartesian grid, where d is the number

of dimensions); φ e
i and ψψψe

i are the basis functions, and φ e
0 and ψψψe

0 the correction functions for pressure

and velocity, respectively. The constrains

Ne
c

∑
i=1

φ e
i = 1, and

Ne
c

∑
i=1

ψψψe
i = 000, (12)

allow us to solve only Ne
c independent problems for the interpolators (Ne

c − 1 basis functions and one

correction function).

For a given distribution of the fluid function, α , and with initial and boundary conditions summarized in

Tab. 1, pressure and velocity basis functions are the local solutions in each dual cell, Ω̃e, of the system

⎧⎨
⎩

∇ ·ψψψe
i = 0,

ρ(α)
ψψψe

i
Δt

=−∇φ e
i +∇ · [μ(α)

(
∇ψψψe

i +∇ψψψeT
i
)]
,

(13)

whereas the correction functions are obtained by solving

⎧⎨
⎩

∇ ·ψψψe
0 = 0,

ρ(α)
ψψψe

0 − v̌vv
Δt

=−∇φ e
0 +∇ · [μ(α)

(
∇ψψψe

0 +∇ψψψeT
0

)]
+ γκ∇α.

(14)

where v̌vv is the velocity at previous time step. The treatment of the time derivative used above is similar

to the one proposed to simulate compressible Darcy flow (Hajibeygi and Jenny, 2009). An example of

pressure and velocity basis functions is shown in Fig. 4.

(φ ,ψψψ)1−Ne
c (φ ,ψψψ)0

Initial conditions ψψψ i = 000 ψψψ0 = v̌vv

Boundary conditions

φi = 1 for node i, φi = 0 for all other

nodes of Ω̃e, linear φi bet-ween the

nodes

φ0 = 0

zero normal gradient for ψψψ i

Surface tension γ = 0 γ �= 0

Table 1 The summary of initial and boundary conditions for interpolators.
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Figure 4 Pressure (left) and velocity (right) basis functions.

Spatial adaptivity

In the MsFV framework, interpolators are selectively updated based on total-mobility variations in fine

cells (Jenny et al., 2004, 2006; Lunati and Jenny, 2006; Lee et al., 2009). This fine-scale criterion is

efficient only for moderate ratios between fine-cell and coarse-cell sizes. In case of large ratios, which

is usually the case in multiphysics applications (Tomin and Lunati, 2013), the large-scale effects of

fine-scale changes might be negligible and criteria based on coarse-scale quantities must be devised.

Therefore, we update the interpolators based on coarse-scale variations of the average saturation.

In addition to the selective update of the interpolators, we employ an adaptive spatial resolution: outside

the front region, local problems are not solved and only a coarse-scale solution is computed. To identify

the front region and decide where a fine-scale resolution is required, we monitor time evolution of the

fluid saturation in the cell Ω̄i. Therefore, we coarsen the resolution if

∣∣∣∣
ΔSi

Δt

∣∣∣∣< εt . (15)

where Si =
∫

Ω̄i
α dV is the saturation of the cell i, and ΔSi is its variation over the time step Δt. (The

criterion in Eq. 15 is similar to the one employed in (Lee et al., 2009) for adaptive transport, but we

consider the time derivative and not the absolute change of saturation.)

Temporal adaptivity

As a consequence of the different spatial scales, the typical time scale of fine and coarse problems are

different, which suggests to use different time step for the local problems and for the global problem.

Indeed, local problems require smaller time steps, Δtl , to correctly describe the dynamics of two phases

in the pore space. However, it is in general not necessary to frequently update the global solution, pg,

which can be computed with larger time step, ΔTg. This means that the first term in right-hand side of

Eq. 8 is updated only every G = ΔTg/Δtl ≥ 1 local time steps. To decide whether boundary conditions

have to be updated, we employ a criterion based on pressure-gradient changes, which provide an indirect

estimate of coarse-scale mobility changes (Tomin and Lunati, 2014). Therefore, we construct and solve

the coarse problem to update the boundary conditions if

max
i

∣∣Δ〈∇p〉Ω̄i

∣∣∣∣〈∇p〉Ω̄i

∣∣ = max
i

∣∣Δ∮
∂ Ω̄i

pnnndS
∣∣

∣∣∮
∂ Ω̄i

pnnndS
∣∣ > ε∇p. (16)

This criterion requires that the relative change in the net pressure force applied at the cell boundary, ∂ Ω̄i,

does not exceed a certain threshold value, ε∇p. Since total fluxes across the boundary are fixed, changes

in net applied force imply changes in the total mobility of the coarse cell Ω̄i. The temporal adaptivity is

investigated in great details in (Tomin and Lunati, 2014). Notice that updating the boundary conditions
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Figure 5 Tracer transport problem: reference solution (left) and adaptive multiscale solution (right).

for the fluid function does not require solving the global problem because they are simply extracted from

the fluid-function distribution at the previous time; therefore, they are updated at every fine-scale time

step.

Numerical simulations

Tracer transport

First, we test the adaptive resolution algorithm for an ideal tracer transport problem. The tracer is

injected at the top boundary and then transported in accordance to the fixed velocity field. The pore

geometry is idealized by circular obstacles and its properties are summarized in Tab. 2. To avoid large

numerical dispersion, an artificial compression term is added in Eq. 4 (Rusche, 2002). The coarse

grid in the multiscale solution has 8× 8 cells. The value of the adaptivity threshold is εt = 10−2. The

fine-scale reference solution and solution of the adaptive multiscale approach are shown in Fig. 5. They

are in very good agreement with each other and they qualitatively agree with experiments for similar

geometries (Birovljev et al., 1994; de Anna et al., 2014).

Two-phase flow

Next, we simulate drainage in the same pore geometry. Since the stable displacement regime is trivial,

we focus on unstable regime, in which the viscosity ratio is slightly unfavorable, i.e., M = μnw/μw = 0.2.

The non-wetting fluid is injected at the top boundary at constant inlet velocity vin = 10−2 m/s, whereas

the pressure is fixed at the outlet, pout = 0. The pore-scale Reynolds number is Re ∼ 0.01, and the

capillary number is Ca ∼ 0.1.

We present the results for two values of the spatial adaptivity thresholds: εt = 10−2 and εt = 10−3.

A pore to pore comparison is not very informative for unstable regimes because small differences grow

with time; therefore, we evaluate the results in terms of vertical saturation profiles, which are obtained

by averaging the fluid distribution horizontally (Fig. 6). The reference solution is obtained by direct

fine-scale simulation. The coarse grid in the multiscale solution has 9× 10 cells. Although the lowest

Table 2 Pore geometry properties.
Domain size Mean obstacle size Mean pore throat size Number of obstacles Number of cells Permeability Porosity

45 mm × 56.8 mm 0.6 mm 0.4 mm 2 507 711 720 10−8 m2 70%
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Figure 7 Fraction of the domain that has to be
refined as a function of time for two adaptivity
thresholds.

adaptivity threshold values yield slightly more accurate results, the main flow characteristics (e.g., the

penetration depth) are well captured by using both thresholds. At the same time, εt = 10−2 leads to the

refinement of only about 18% of the domain, and this value remains almost constant with time (green

line in Fig. 7); in contrast, εt = 10−3 requires refining in average 35% of the domain and the refined

fraction clearly increases with time (blue line in Fig. 7). In both cases, we used δ∇p = 0.2 for temporal

adaptivity, which improves the efficiency and leads to the average time-step ratio G = 20.2 in case of

more refined solution, εt = 10−3, and G = 41.8 when εt = 10−2 is used.

Finally, the adaptive multiscale solution at the end of the simulation (obtained with εt = 10−2 and δ∇p =
0.2) is compared with the fine-scale reference in Fig. 8, which shows the fluid-function distributions.

The two solutions are in good agreement and the main flow characteristics observed in the reference

solution are satisfactorily reproduced by the adaptive multiscale algorithm.

Figure 8 Two-phase flow: reference solution (left) and adaptive multiscale solution (right).
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 Conclusions

We have presented an adaptive multiphysics algorithm, which is based on the MsFV method. As we

employ a local-global splitting of the original system of equations, we are able to use a scheme that is

adaptive in space and time and can effectively describe unstable flow regimes. Space adaptivity mostly

rely on the coarsening of the solution outside a front region. For the case considering here, this allows

us to use a pore-scale description of the flow in the front region, while a Darcy-like description is used

elsewhere. Temporal adaptivity is motivated by the simple observation that the characteristic time of the

global (coarse-scale) problem is longer than characteristic time of the local (fine-scale) problems. This

allows us to update the boundary condition less frequently, and improves the efficiency of the algorithm

by reducing the number of times that the global pressure solution has to be calculated.

The numerical solutions obtained with the adaptive method are in good agreement with the reference

solutions obtained with a fine-scale solver. The proposed method is very efficient when the front region

is relatively compact and much smaller than the entire domain.
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