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Abstract 

The ground-penetrating radar (GPR) geophysical method has the potential to provide valuable 

information on the hydraulic properties of the vadose zone because of its strong sensitivity to 

soil water content. In particular, recent evidence has suggested that the stochastic inversion of 

crosshole GPR traveltime data, which contain detailed information about the spatial 

distribution of water content at the field scale, can allow for a significant reduction in 

uncertainty regarding subsurface van-Genuchten-Mualem (VGM) parameters. Much of the 

previous work on the stochastic estimation of VGM parameters from crosshole GPR 

traveltime data has considered the case of steady-state infiltration conditions, which represent 

only a small fraction of practically relevant scenarios. Here, we explore in detail the dynamic 

infiltration case, specifically examining to what extent time-lapse zero-offset-profile crosshole 

GPR traveltimes, measured during a forced infiltration experiment at the Arreneas field site in 

Denmark, can help to quantify VGM parameters and their uncertainties in a layered medium, 

as well as the corresponding soil water retention curves and unsaturated hydraulic 

conductivity functions. To do this, we use a Bayesian Markov-chain-Monte-Carlo (MCMC) 

stochastic inversion approach. We first explore the advantages and limitations of this 

approach with regard to a representative and realistic synthetic example before applying it to 

field measurements. In our analysis, we also consider the effects of different degrees of prior 

information on the posterior results. Our findings indicate that the stochastic inversion of the 

time-lapse GPR traveltime data does indeed allow for a substantial refinement in the inferred 

posterior VGM parameter distributions compared to the corresponding priors, which in turn 

significantly improves knowledge of the soil hydraulic properties. Overall, the results 

obtained in our work therefore clearly demonstrate the value of the information contained in 

time-lapse GPR traveltime data for characterizing vadose zone dynamics. 
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1. Introduction 

Accurate modeling of vadose zone flow and transport processes requires detailed knowledge 

of subsurface unsaturated hydraulic properties, namely the soil water retention curve and 

hydraulic conductivity function. Traditionally, such information is obtained using a variety of 

methods ranging from laboratory tests on representative samples from the field to in situ 

monitoring techniques involving tensiometer, time-domain reflectometry (TDR), and/or 

neutron probe measurements (e.g., Smith and Mullins, 1991). A critical drawback of all of 

these methods is their small support volume; that is, being made at essentially the point scale, 

the corresponding measurements are subject to significant variability and may not adequately 

represent larger-scale vadose zone processes (e.g., Binley et al., 2002). Geophysical methods, 

such as ground-penetrating radar (GPR) and electrical resistivity tomography (ERT), have 

gained much interest in hydrology as they allow for the estimation of subsurface properties at 

a larger, more relevant integral scale (e.g., Hubbard and Rubin, 2005). A trade-off associated 

with the use of such methods in a hydrological context, however, is that they are sensitive to, 

and therefore give us information regarding, geophysical properties in the subsurface and not 

directly the hydrological properties of interest. It is well known that petrophysical 

relationships between geophysical quantities and those controlling flow and transport tend to 

be site-specific, non-unique, and extremely difficult to establish (e.g., Day-Lewis et al., 2005).  

One increasingly popular means of dealing with the above issue, and thus making 

more effective use of geophysical methods for subsurface hydraulic property estimation, 

involves first connecting the geophysical data with one or more hydrological state variables, 

such as water content or solute concentration, to which the data are sensitive and linked in a 

well established manner. Knowledge of the state variables, combined with a process-based 

hydrological model, can then be used to infer values for the governing hydraulic properties 

(e.g., Kemna et al., 2002; Day-Lewis et al., 2003; Singha and Gorelick, 2005). In this regard, 
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direct coupling of the geophysical and hydrological models, where the numerical models for 

the geophysical and hydrological processes are linked together such that the geophysical data 

are inverted directly for the hydraulic properties of interest, is often preferred to separated or 

uncoupled inversion (e.g., Rucker and Ferre, 2004; Lambot et al., 2006; Looms et al., 2008a) 

because it avoids issues related to the formation of geophysical images and their dependence 

upon the style and amount of regularization used, which can significantly affect the 

hydrological estimates obtained (e.g., Day-Lewis et al., 2005). Stochastic inversion 

approaches are also being employed with increasing frequency in such work because the 

corresponding problems tend to be highly non-linear and difficult to address with 

deterministic methods (e.g., Kowalsky et al., 2004, 2005; Hinnell et al., 2010; Irving and 

Singha, 2010). Moreover, stochastic inverse methods readily allow for the assessment of 

uncertainty in the estimated hydraulic parameters, which is critical for the evaluation of risk 

and the development of effective management and/or remediation strategies.  

In an attempt to quantify vadose zone hydraulic properties in situ at the field scale, a 

number of researchers have recently investigated the stochastic inversion of crosshole GPR 

traveltime data within the above framework. Specifically, by linking these data first to 

subsurface water content, a state variable upon which the GPR measurements are strongly 

dependent and connected in a relatively straightforward manner, the estimation of unsaturated 

hydraulic properties can be performed using a model for infiltration. Binley and Beven 

(2003), for example, used zero-offset-profile (ZOP) crosshole GPR traveltime data to 

constrain the changes in moisture content caused by natural loading in the vadose zone during 

a two-year monitoring period. Assuming a 1D layered subsurface and steady-state infiltration 

conditions, as justified by the observational evidence, the GPR-derived moisture content 

profiles were then considered in a pseudo-Bayesian Generalized Likelihood Uncertainty 

Estimation (GLUE) inversion strategy to identify “behavioral” sets of van-Genuchten-
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Mualem (VGM) parameters (Mualem, 1976; van Genuchten, 1980) that all fit the data to 

within a prescribed degree of uncertainty. Binley et al. (2004) and Cassiani and Binley (2005) 

built on this work and used a similar inversion strategy to estimate the VGM parameters in a 

layered medium under steady-state conditions where the layer boundaries were stochastically 

defined. In all of these studies, only field data were considered and broad uniform prior 

parameter distributions were assumed. Although the corresponding results did show a slight 

improvement in the estimation of the VGM parameters through the incorporation of the 

geophysical data, the benefits were marginal and unequivocal estimation of the parameters 

was not possible. Further, without synthetic testing, it was not possible to truly validate the 

effectiveness of the proposed methodologies. Recently, Scholer et al. (2011) examined the 

steady-state infiltration problem of Cassiani and Binley (2005) in further detail, testing on 

both synthetic and field GPR traveltime data whether a formal Bayesian Markov-chain-

Monte-Carlo (MCMC) inversion approach could be used to successfully reduce uncertainty 

regarding the VGM parameters in a layered subsurface medium. Quite importantly, their 

study also explored the effects of different prior parameter distributions, which ranged from 

uniform and non-informative to more realistic, informed priors derived from soil property 

databases. The analysis of Scholer et al. (2011) clearly demonstrated that the considered GPR 

traveltime data contained valuable information regarding the VGM parameters in each 

subsurface layer. Further, significantly better results were obtained when the data were 

combined with a realistic, informative prior in the stochastic inversion procedure. Similar 

conclusions were drawn by Mertens et al. (2004) and Scharnagl et al. (2011), who inverted 

TDR water content measurements for soil VGM parameters and also investigated the impact 

of different priors on the estimated posterior parameter distributions. For excellent summaries 

of this and other works on the inversion for soil hydraulic properties in a non-geophysical 

context, see the recent papers of Scharnagl et al. (2011) and Wöhling and Vrugt (2011). 
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In this paper, we extend the research of Scholer et al. (2011) and investigate the use of 

time-lapse ZOP crosshole GPR traveltime data to estimate the VGM parameters in a layered 

subsurface medium for the case where steady-state infiltration conditions cannot be assumed. 

Indeed, steady-state conditions are the exception, rather than the norm, in the vadose zone and 

thus consideration of the dynamic infiltration case is critical (Nimmo, 2005). Further, 

dynamic measurements have the potential to significantly improve VGM parameter estimates 

past the steady-state case because they provide a means of monitoring infiltration behavior 

through a range of water content values (e.g., Binley and Beven, 2003). To this end, we 

explore the application of a Bayesian MCMC stochastic inversion strategy to time-lapse 

crosshole GPR traveltime data acquired by Looms et al. (2008b) over the course of a forced 

infiltration experiment at the Arrenaes field site in Denmark. Looms et al. (2008a) already 

performed a preliminary stochastic exploration of these data using a GLUE-type inversion 

approach, which involved examination of the misfits of ~4000 random VGM parameter 

configurations drawn from broad uniform distributions. Contrary to their expectations, 

however, the corresponding findings were largely inconclusive with regard to the value of the 

dynamic GPR traveltime data for constraining the VGM parameters and improving 

predictions of unsaturated hydraulic behavior. Hence our goal in this paper is to consider their 

database in further detail, and in particular to determine whether greater clarity on this issue 

can be obtained through (i) the use of a formal Bayesian inference methodology; (ii) more 

efficient and comprehensive exploration of the posterior model parameter space through 

MCMC sampling and the consideration of a significantly greater number of model parameter 

realizations; (iii) extensive testing on realistic and representative synthetic data; and (iv) 

investigating the effect of incorporating different degrees of prior information into the 

inversion procedure. We also extend the work of Scholer et al. (2011) by assessing all 
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inversion results not only in terms of the posterior VGM parameter distributions, but also in 

terms of the corresponding water retention and unsaturated hydraulic conductivity functions. 

In the following, we first describe the hydrological and geophysical forward models 

and Bayesian MCMC inversion methodology employed in this work. Next, we provide details 

on the Arrenaes field site and forced infiltration experiment that was conducted there, along 

with the time-lapse crosshole GPR traveltime measurements that were acquired during 

infiltration. Within a synthetic example mimicking the Arrenaes field site, we then examine to 

what extent the time-lapse GPR traveltime data allow us to estimate the VGM parameters in 

the subsurface in the case of three different degrees of prior information, as well as to refine 

the corresponding water retention and unsaturated hydraulic conductivity functions. Finally, 

we apply the same analysis methodology to the field data collected at the Arrenaes site. 

 

2. Methodology 

2.1 Geophysical and hydrological models 

In order to estimate subsurface VGM parameters from a set of crosshole GPR traveltime 

measurements, we require a link between the VGM parameters and the traveltime data. The 

development of this link involves the coupling of geophysical and hydrological forward 

models through the state variable water content. Scholer et al. (2011) describe this link for 

the steady-state infiltration case assuming 1D vertical flow. Building on their work to now 

consider dynamic conditions, we have as our governing hydrological process model the 

following form of Richards’ equation (Richards, 1931) describing 1D variably saturated flow 

in porous media:  

 (1) 

where K is the unsaturated hydraulic conductivity, h is the pressure head, θ is the water 

content, z is depth, and t is time. With the VGM model (Mualem, 1976; van Genuchten, 
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1980), the water retention, expressed in terms of effective saturation Se (dimensionless), is 

given by: 

 

 

for h≤0 
for h>0 

(2) 

where qr and qs are the residual and saturated water contents, respectively, and α, m, and n are 

empirical shape factors with m = 1-1/n. The unsaturated hydraulic conductivity as a function 

of pressure head is then given by  

 (3) 

where Ks is the saturated hydraulic conductivity. A total of five model parameters, θs, θr, α, 

Ks, and n, therefore describe the soil hydraulic properties with the VGM model. 

  To solve equation (1) for the time-varying, 1D water content distribution during 

infiltration corresponding to a given set of subsurface VGM parameters and specified 

boundary and initial conditions, we use the program HYDRUS-1D (Simunek et al., 2008), 

which is based on a Galerkin-type linear finite-element scheme and is capable of dealing with 

an arbitrary number of subsurface layers. To link the resulting water content data to a set of 

crosshole GPR traveltimes, we then determine the soil relative dielectric permittivity, εr, 

versus depth for each measurement time using the Topp equation (Topp et al., 1980): 

. (4) 

Our use of the Topp equation is consistent with the work of Looms et al. (2008a), who found 

that it provides an adequate petrophysical link between water content and dielectric 

permittivity for the high-porosity soils at the Arrenaes field site. Next, the different profiles of 

soil permittivity are transformed to GPR velocity, v, using the following high-frequency, low-

loss approximation that is valid in most environments amenable to GPR wave propagation 

(e.g., Annan, 2005):   
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 (5) 

where c is the free-space electromagnetic wave velocity. Finally, to determine the crosshole 

GPR traveltimes corresponding to the water content profile at a particular measurement time, 

we solve the eikonal equation for the corresponding 1D velocity field: 

 (6) 

where T is the traveltime of first-arriving energy from the transmitter antenna to the receiver 

antenna at location r through the slowness field s(r)=1/v(r). For ZOP measurements, the 

antennas are placed at the same depth in two adjacent boreholes and the traveltime between 

them is determined versus depth. We solve equation (6) using a MATLAB version of the 

PRONTO eikonal software of Aldridge and Oldenburg (1993), which accounts for bending of 

the radar wavefront at interfaces across which velocities change. Indeed, the 1D water content 

profiles cannot be simply converted to traveltime by assuming the purely horizontal 

propagation of radar energy (Rucker and Ferré, 2004). 

 

2.2 Bayesian MCMC inversion 

As outlined earlier, we employ a Bayesian MCMC inversion approach in this study to 

estimate subsurface VGM parameters from a given set of dynamic ZOP GPR traveltime 

measurements. In general notation, the use of Bayes’ theorem to combine prior information 

regarding a set of model parameters with observed data in order to yield a posterior 

probability density function can be expressed as follows: 

 (7) 

where vectors m and dobs represent the model parameters and data, respectively. The 

conditional distribution p(dobsIm) is known as the model likelihood and can be regarded as a 
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measure of how well a particular model fits the observed data. Under the assumption that the 

data residuals should be independent and identically normally distributed, p(dobsIm) is given 

by the following weighted least-squares misfit equation (Mosegaard and Tarantola, 1995): 

 (8) 

where N is the number of data, σr is the estimated standard deviation of the residuals, and 

g(m) represents the forward model linking m and dobs. In our case, g(m) corresponds to the 

previously described hydrological and geophysical models connecting the VGM parameters 

to a set of dynamic ZOP GPR traveltime measurements. The term p(m) in equation (7) is the 

prior probability distribution for the model parameters, which expresses our uncertainty about 

these parameters before the data, for example the observed GPR traveltimes, have been taken 

into account (e.g., Curtis and Lomax, 2001; Scales and Tenorio, 2001). The marginal 

probability of the observed data, p(dobs), in equation (7) can be regarded as a normalization 

constant that ensures that the posterior probability distribution integrates to unity (e.g., 

Tarantola, 2005).  

Because of the complexity of the forward models in most geophysical and 

hydrological problems, obtaining an analytical expression for the Bayesian posterior 

probability distribution in equation (7), and its associated moments, is generally not possible. 

However, the equation provides us with a way of calculating the posterior probability of 

occurrence of a set of model parameters, which means that MCMC methods can be used to 

generate samples that are effectively “drawn” from this distribution. These samples can then 

be used to calculate posterior uncertainties and make predictions. Gilks et al. (1996) provide 

an excellent introduction to the MCMC approach, whereas Mosegaard and Tarantola (1995) 

describe its application to Bayesian geophysical inverse problems. In our case, we perform 

MCMC sampling from the Bayesian posterior distribution by first drawing a random set of 
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model parameters, m, from their prescribed prior distributions. This forms the starting point 

for the Markov chain. Next, a new set of model parameters, m¢, is proposed, conditional on 

the current set m, by drawing from a proposal density function, Q(m¢Im). In our work, 

Q(m¢Im) is symmetric and defined to be a bounded uniform probability distribution centered 

on m whose width is chosen such that the size of the model perturbations allows for a 

reasonable rate, typically around 30%, of accepted transitions in the MCMC procedure (Gilks 

et al., 1996).  Next, we decide whether or not to replace the current parameter set m with the 

proposed set m¢ using the Metropolis decision rule (Metropolis et al., 1953), for which the 

acceptance probability is given by:  

 (9) 

In other words, if the product of the prior and likelihood probabilities for the proposed set of 

model parameters is greater than that for the current set, the proposal is always accepted and 

the next step of the Markov chain becomes m¢. If this is not the case, then the proposal is 

accepted with a probability equal to the ratio of the two products, which is practically 

achieved by drawing a random number  and accepting only if α < Pacc. If the 

proposal is rejected, then the next step in the Markov chain is set to be the current model m. 

The process of proposing a perturbed set of model parameters and then accepting or rejecting 

is repeated to obtain successive samples in the Markov chain. 

 After an initial number of iterations, known as the burn-in period, the procedure 

outlined above can be proven to converge and generate samples from the Bayesian posterior 

distribution of model parameters. In other words, the Markov chain is guaranteed to 

eventually become independent of the starting values of the model parameters, and samples 

generated after this point can be collected and analyzed in terms of their posterior statistics. 

Hence, a first critical step in any application of MCMC methods is to determine the length of 
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the burn-in period. Unfortunately, there is no way to predict the number of burn-in iterations 

prior to running an MCMC inversion. As a result, a number of numerical tools for 

determining when burn-in has been achieved, which generally involve the calculation of 

metrics based on the outputs of a number of MCMC chains running in parallel, have been 

developed (e.g., Gelman and Rubin, 1992). Cowles and Carlin (1996) provide an excellent 

review of these methods. Another common and conceptually simpler means of estimating 

burn-in, which we implement in our work, involves visual inspection of the values of each 

model parameter versus iteration number for several parallel-running chains and assessing 

when the chains reach a similar equilibrium state (e.g., Gilks et al., 1996; Hassan et al., 2009).  

Once burn-in has been reached and the samples from the Markov chain up to that 

point have been discarded, the next critical step in a Bayesian MCMC inversion is to 

determine the number of iterations that are required to generate enough statistically 

independent samples to properly characterize the posterior distribution. This will depend on 

the dimension of the model parameter space, the information content of the prior, and the 

degree of correlation between adjacent samples in the Markov chain that results from the 

bounded nature of the proposal density function. Indeed, if the posterior chain exhibits a long 

autocorrelation lag, then a greater number of iterations is required after burn-in to produce a 

sufficient number of independent posterior samples. We determine an appropriate length for 

the posterior Markov chain after burn-in using the strategy proposed by Gilks et al. (1996), 

which involves comparing ergodic averages for the various model parameters between a 

number of parallel-running chains and stopping when the averages are in good agreement. 

 

3. Arrenaes field site and infiltration experiment  

The Arrenaes field site in Denmark was developed to study flow and transport processes in 

the vadose zone (Looms et al., 2008b).	Figures 1a and 1b show the location of this site and the 
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eight boreholes that have been installed there, respectively. Along each line of the cross 

indicated in Figure 1b, the outer two boreholes (7 m apart) were equipped for crosshole 

electrical measurements whereas the two inner boreholes (5 m apart) were intended for 

crosshole GPR measurements. 

The water table at the Arrenaes site is located at approximately 30 m depth and the 

overlying sediments consist primarily of successive layers of alluvial sands with varying 

fractions of silt and clay (GEUS, 2011). Figure 1c shows a model of the layering of the 

sediments for the first 12 m, which were identified by Looms et al. (2008a) based on 

granulometric analyses of samples from a nearby well provided by Copenhagen Energy. The 

top, 1.75-m-thick, sediment layer consists of sandy clay, which is followed by a layer of 

coarse sand (~1.75 to ~4 m depth), a layer of finer sand (~4 to ~7.75 m depth), a thin layer of 

silt (~7.75 to ~8.25 m depth), and again coarse sand (~8.25 to ~12 m depth). In order to 

estimate in situ the VGM parameters of these five different layers at the field scale, Looms et 

al. (2008b) performed a forced infiltration experiment in the autumn of 2005, which they 

monitored with geophysical methods. Over a period of 20 days, ~95,000 liters of clean water 

were irrigated through 484 drippers over an area of ~7 x 7 m. During that time, 14 crosshole 

ERT and GPR data sets were collected. Here, we focus on the ZOP GPR traveltime 

measurements that were acquired between boreholes GPR1 and GPR3. These data were 

obtained using a Sensors and Software PulseEkko borehole radar system with 100 MHz 

antennae and a vertical antenna increment of 0.25 m in the interval between 1.5 and 12 m 

depth. This yielded 43 ZOP traveltime measurements per data set. The data were collected 

once per day until Day 10, after which they were collected on Days 13, 15, 17, and 20. 

Figure 2a shows the various ZOP traveltime-versus-depth curves obtained during the 

Arrenaes infiltration experiment compared with the background curve acquired before the 

experiment began (Day 0). Notice the marked change in these curves with time over the 
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interval from ~1.5 to 8 m depth, which is caused by an overall increase in water content, and a 

corresponding increase of the GPR traveltime, due to infiltration. Below 8 m depth, however, 

the traveltime curves can be seen to undergo only minimal changes during the infiltration 

period. Because of the different hydraulic properties of the various layers, the high loading of 

the system, and the limited lateral extent of the infiltration domain, the flow induced by the 

forced infiltration experiment was not exclusively vertical. Indeed, a significant amount of the 

infiltrated water was diverted out of the area of interest as a result of lateral spreading at the 

silt layer interface at ~8 m depth. This is clearly seen in Figure 2b, which shows the calculated 

cumulative amount of water added to the subsurface volume over time based on the GPR 

traveltime data and assuming only 1D vertical flow. To create this figure, the traveltime 

curves in Figure 2a were first used to obtain profiles of water content versus depth using 

equations (4) and (5). The background water content profile for Day 0 was then subtracted 

from these data and the resulting difference profiles were integrated in depth to estimate the 

total amount of water added for that day. For the first five days, when the flow was indeed 

predominantly vertical, the increase in the calculated amount of added water in Figure 2b is 

seen to be linear. After Day 5, however, when the water front reached the silt layer and began 

to spread laterally, the calculated values are seen to fall short of this linear trend. Figure 2b 

also indicates that the calculated water accumulation rate over the course of the first five days 

of 0.0576 m/d is smaller than the infiltration rate of 0.0884 m/d used by Looms et al. (2008b) 

in the field. This is explained by the presence of clay in the uppermost 1.5 m of the soil 

profile, which resulted in additional lateral spreading of the infiltrated water near the surface.  

To fully account for all of the above effects in a Bayesian MCMC analysis of the 

entire dynamic data set from the Arrenaes site, a 3D unsaturated flow model would be 

required. However, because of the computational expense of 3D flow simulations and the 

extremely large number of forward model calculations that are required for MCMC-based 
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inversions, this was not feasible. Indeed, when performing any stochastic inversion of 

geophysical or hydrological data, forward model accuracy must always be sacrificed to some 

degree for the sake of computational tractability (e.g., Irving and Singha, 2010). As a result, 

we chose to use a simpler 1D numerical flow model in this study to perform our inversions, 

and we consider only the GPR traveltime data from the first five measurement days,during 

which 1D vertical flow conditions prevail, as evidenced by the linear trend in Figure 2b. This 

provides us with a set of time-lapse geophysical data exhibiting large water content changes 

down to ~8 m depth and no significant water content changes below this depth. In addition, as 

an upper boundary condition for this 1D flow model, we consider an effective infiltration rate 

corresponding to that obtained from the GPR traveltime measurements under the assumption 

of purely vertical flow (Figure 2b), rather than the true infiltration rate from the field which is 

affected by lateral spreading near the surface. 

 

4. Results 

4.1 Synthetic feasibility study 

4.1.1 Experiment and data 

In the following, we consider a synthetic example closely based on the Arrenaes field case, 

wherein we perform the stochastic inversion of simulated time-lapse ZOP crosshole GPR 

traveltime data, which serve as a proxy for 1D water content dynamics, in order to estimate 

the subsurface VGM parameters and corresponding hydraulic properties. The consideration of 

a pertinent synthetic example allows us to assess the utility and information content of the 

GPR traveltime data for estimating the VGM parameters in the case where the parameter 

values are known and the boundary conditions can be strictly controlled. Table 1 shows the 

“true” VGM parameters that were assigned to each layer for this synthetic example assuming 

the same five-layer geological structure as at the Arreneas field site (Figure 1c). These values 
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were drawn from probability distributions for the corresponding materials derived by Carsel 

and Parrish (1988) from soil property databases. Please note that, although Layers 2, 3, and 5 

at the Arrenaes field site are expected to be characterized by differing values of the VGM 

parameters, the corresponding layers in the synthetic example were assigned identical 

parameter values. This was done for simplicity and has no impact on our analysis, as the 

VGM parameters in each of the five layers were estimated separately in the Bayesian MCMC 

inversion procedure. Moreover, the use of identical parameter values for Layers 2, 3, and 5 

allows us to compare how well the same hydraulic properties can be resolved at different 

depth levels.   

To create a set of “observed” time-lapse ZOP GPR traveltime data corresponding to 

the “true” VGM parameter configuration described in Table 1, we first used a realistic 

unsaturated flow model to obtain the time-varying distribution of water content in the 

subsurface over the course of a synthetic infiltration experiment. To this end, the program 

VS2D (Lappala et al., 1987) was employed to solve Richards’ equation in 2D cylindrical 

coordinates assuming radial symmetry about the z-axis. The use of VS2D instead of a 1D 

flow model like HYDRUS-1D allows us to adequately account for the lateral spreading 

observed in the Arrenaes field data, which provides a significant degree of realism for the 

synthetic example. Note, however, that, as mentioned previously, purely vertical infiltration 

was assumed in the subsequent Bayesian MCMC inversion procedure because running VS2D 

within this context was not computationally tractable. The considered simulation domain for 

the VS2D modeling was a cylinder of radius 7 m and height 30 m. The vertical and horizontal 

discretization intervals were set equal to 0.03 m and 0.15 m, respectively. The infiltration 

domain along the upper model boundary was limited to a circle of radius 3.6 m centered on 

the cylindrical symmetry axis, in order to yield a similar infiltration area to that used by 

Looms et al. (2008b) in the field. A constant input flux of 0.0884 m/d was prescribed over this 
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area, again to match the field experiment. The lower model boundary at 30 m depth was 

defined to be the water table. The two boreholes for the GPR measurements were considered 

to be located 5 m apart and in the center of the cylinder  

(i.e.,  at r = 2.5 m, φ = 0º and r = 2.5 m, φ = 180º). 

After simulating infiltration over 20 days, the water content distributions obtained 

from VS2D were converted to GPR velocity using equations (4) and (5). We considered the 

same measurement times as in the field case, that is, one measurement per day until Day 10 

and then subsequent measurements on Days 13, 15, 17 and 20. We then used the PRONTO 

eikonal equation solver with a grid discretization of 0.1 m to simulate the corresponding ZOP 

GPR traveltimes, and we added Gaussian random noise with a standard deviation equal to 1% 

of the mean traveltime to emulate more realistic conditions. Figure 3a shows the resulting 

synthetic time-lapse ZOP GPR traveltime curves, whereas Figure 3b shows the total amount 

of added water that was calculated as a function of time from these data using the same 

methodology as described previously. As expected, the traveltime profiles Figure 3a show 

less structure with depth than those in Figure 2a because the same VGM parameters used for 

Layers 2 and 3 in our synthetic example. In Figure 3b we see that, for the first 10 days of 

infiltration, the increase in the calculated amount of added water is seen to be linear, which 

indicates that flow through the subsurface is predominantly vertical. After Day 10, however, 

when the water front reaches the silt layer at 7.75 m depth, lateral spreading begins to occur 

which causes the calculated values to fall short of this linear trend. Because of this, we 

consider only the GPR traveltime data from the first 10 days of infiltration in our Bayesian 

MCMC analysis, where vertical, 1D flow conditions can be safely assumed and the use of 

HYDRUS-1D is justified. Also notice in Figure 3b that the calculated water accumulation rate 

of 0.0394 m/d over the first 10 days is smaller than the true infiltration rate of 0.0884 m/d, 

which is due to additional lateral spreading induced by the lower-permeability sediments near 
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the surface and necessitates modifying the upper boundary condition in the stochastic 

inversion procedure. The difference between the calculated and true infiltration rates is greater 

than that seen in Figure 2b, which suggests that the hydraulic parameters of Layer 1 in the 

synthetic example are representative of finer and less permeable sediments than those at the 

Arrenaes field site. 

 

4.1.2 Prior distributions 

As mentioned previously, Scholer et al. (2011) investigated the effects of different amounts of 

prior information in their Bayesian MCMC inversion of ZOP crosshole GPR traveltime data 

to estimate soil VGM parameters under steady-state conditions. This analysis was shown to 

be highly useful, as it helped not only to assess the information content of the traveltime data 

regarding the VGM parameters, but also to reveal what kind of information could be 

recovered from these data when they were combined with empirical prior information derived 

from soil property databases. In a similar fashion, we consider three different prior 

distributions when inverting the time-lapse GPR traveltime data in our synthetic example. 

These priors are specified for all of the VGM parameters except the saturated water content, 

θs, which is considered to be known and equal to 0.41 based on porosity measurements on 

core samples from the Arrenaes site (Looms et al., 2008a). Although fixing θs does neglect 

some of the uncertainty in soil hydraulic properties in the inversion procedure, it importantly 

allows us to compare our results with the previous work of Looms et al. (2008a) on the 

Arrenaes field data, who also considered θs as known. The three priors that we consider for 

the remaining VGM parameters, α, n, Ks, and θr, are the following:   

 
1) The VGM parameters in each layer are assigned uniform prior distributions whose 

limits are defined in Table 2. The chosen bounds for these parameters are broad and 

consistent with previous work (e.g., Binley and Beven, 2003; Cassiani and Binley, 
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2005; Looms et al., 2008a; Scholer et al., 2011). More importantly, such broad, 

uniform priors allow us to assess the information with regard to the VGM parameters 

contributed by the GPR traveltime data alone. Note that the same uniform priors are 

considered for all of the subsurface layers in the MCMC inversion procedure, with the 

exception of θr, where we defined it to have a smaller uniform range in Layers 2-5 

than in Layer 1, because this parameter must be smaller than the initial water content. 

Indeed, in the first layer, the initial water content was defined to be higher than in the 

other layers, which is consistent with observed soil water content profiles. Also note 

that the saturated hydraulic conductivity, Ks, is sampled in the log10 transformed space 

because of the inherently wide range of variability of this parameter. 

2) The VGM parameters in each layer are assumed to follow empirical prior distributions 

as determined by Carsel and Parrish (1988) for the corresponding soil type based on 

the laboratory analysis of hundreds of different samples. Here, the prior sampling 

domain is significantly restricted when compared to the uniform priors, which allows 

us to assess how combining the GPR traveltime data with refined prior information 

affects estimation of the VGM parameters. In their work, Carsel and Parrish (1988) 

presented the empirical VGM parameter distributions in terms of a set of Johnson 

variable transformations (Johnson and Kotz, 1970), and the means, standard 

deviations, and correlation coefficients for the corresponding transformed, normally 

distributed variables. These data are shown in Table 3 for sand, silt, and sandy clay, 

which are the three soil types identified in the upper 12 m at the Arrenaes field site. 

We used this information to reconstruct the VGM parameter distributions for the three 

soil types, which were then used in equation (9) when deciding to accept or reject 

proposed transitions in the Bayesian MCMC procedure. In the case of this particular 
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refined prior, we assume that the VGM parameters are statistically uncorrelated and 

thus ignore the joint relationships provided by the correlation matrices in Table 3.  

3) The VGM parameters in each layer are prescribed the same marginal prior statistics 

from Carsel and Parrish (1988) for the corresponding soil type as described above, but 

this time we even further restrict the sampling domain by including the full parameter 

correlation information provided in Table 3.  

 

4.1.3 Bayesian MCMC inversion 

The previously described Bayesian MCMC inversion methodology was used to estimate the 

VGM parameters in each of the five layers from the synthetic time-lapse ZOP GPR traveltime 

data shown in Figure 3a. Again, only the data from the first 10 days were considered, where 

infiltration could be safely assumed to be predominantly vertical. For the corresponding flow 

modeling with HYDRUS-1D, we used a vertical discretization interval of 0.03 m. The upper 

model boundary was set to the effective infiltration rate 0.0394 m/d, which was determined 

from the GPR traveltimes over the first 10 days (Figure 3b). Although this value is different 

from the actual infiltration rate of 0.0884 m/d used to create the synthetic data, it better 

represents the true vertical flow rate through the medium and thus provides consistently better 

estimates of the subsurface VGM parameters. The lower model boundary at 30 m depth was 

specified to be the water table. For the simulation of GPR traveltimes with the PRONTO 

eikonal equation solver, a spatial discretization of 0.1 m was used. The residual uncertainty 

term in equation (8) was set in accordance with the errors prescribed to the GPR traveltime 

data plus an estimated contribution related to model structural errors caused by our 

assumption of purely 1D flow. Three different Bayesian MCMC inversions were performed 

for each prior scenario using different random starting points. For the case of the uniform 

prior, burn-in was achieved after 50,000 iterations, and 200,000 iterations were determined to 
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adequately sample the posterior parameter space. In the case of both refined priors, burn-in 

was achieved after 20,000 iterations and only 125,000 subsequent iterations were necessary. 

The uniform and refined prior inversions took 10 and 7 days on a 3.16 GHz desktop 

computer, respectively.  

Figure 4 shows the marginal prior and posterior histograms obtained for the different 

VGM parameters in each layer for the case of the uniform prior scenario. The true values of 

the parameters are also shown. Notice in this figure that, in many instances, the posterior 

distributions are noticeably more refined compared to the priors, which indicates that the 

time-lapse GPR traveltime data contain important information regarding the subsurface VGM 

parameters. Indeed, through the MCMC inversion of these data, we obtain significant 

reductions in uncertainty for Ks in each layer, and many smaller but still noticeable reductions 

in uncertainty for θr, n, and α. Also notice that the GPR traveltime data allow us to refine the 

VGM parameters in all of the layers, despite the fact that (i) there are no ZOP GPR traveltime 

data from 0 to 1.5 m depth, and (ii) the traveltime curves below ~8 m depth do not change 

over the first 10 days because the water has not yet infiltrated to this depth range (Figure 3a). 

Because the hydraulic properties of Layer 1 control how water is able to enter Layer 2, we are 

able to constrain these properties without actually having GPR measurements in Layer 1. In 

Layer 5, on the other hand, we see that although parameter refinement occurs through 

consideration of the GPR traveltime data, the true parameter values do not fall within the 

regions of high posterior probability as they do for the other layers where changes occur in the 

GPR traveltime data with time. Nevertheless, given the fact that water content does not 

change from the initial conditions in Layer 5, it is surprising that the GPR data provide us 

with any information. We believe that it is the fact that the water content does not change in 

Layer 5 over the 10-day period that allows us to constrain some of its hydraulic properties; 
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that is, knowing that this layer retains its initial water content over the 10 days provides us 

with information regarding the VGM parameters. 

In Figure 5, we show the marginal prior and posterior histograms obtained for the 

VGM parameters in each layer for the case of the refined uncorrelated and correlated prior 

scenarios. Here we observe that the inclusion of more detailed prior information allows for a 

substantial reduction in uncertainty regarding the parameters compared to the case where 

uniform prior distributions were considered. Indeed, the posterior histograms in Figure 5 

exhibit more clearly defined peaks than those in Figure 4 and there is much less ambiguity 

with respect to the true VGM parameter values in all layers, especially for n, θr, and α. 

Clearly, the refined priors of Carsel and Parrish (1988) provide a substantial amount of useful 

information to the inverse problem. Notice, however, that they do not provide us with 

everything, as evidenced by the marked improvement that occurs between many of the prior 

and posterior histograms in Figure 5. In other words, despite using significantly more refined 

priors in this case, we see that the GPR traveltime data still bring important additional 

information for constraining the subsurface hydraulic properties. Indeed, for the Bayesian 

MCMC inversion approach pursued in this study, it is the combination of the geophysical data 

with a refined, yet realistic, prior that yields the best results. In addition, note that using such 

refined priors helps to sample sets of VGM parameters that are consistent with the geological 

environment of interest, thus improving the efficiency of the stochastic inversion procedure 

by not testing unrealistic parameter combinations. Finally, notice in Figure 5 that the posterior 

distributions often change significantly between the uncorrelated and correlated cases. 

Including correlation in the prior provides better posterior estimates of the VGM parameters, 

which is consistent with recent work (e.g., Scharnagl et al., 2011; Scholer et al., 2011) and 

suggests that constraints on parameter correlation, if they are available, should be accounted 

for in Bayesian-type inversions for optimal results. 
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Figures 6 and 7 illustrate a more insightful way of quantifying how much benefit is 

brought to characterizing vadose zone hydraulic behavior through the inversion of the time-

lapse ZOP GPR traveltime data in our synthetic example. Here, we examine the prior and 

posterior inversion results presented in Figures 4 and 5 in terms of the corresponding 

hydraulic properties (e.g., Scharnagl et al., 2011). In Figure 6, we show the soil water 

retention curves that were computed from the different sets of prior and posterior realizations. 

Figure 7 shows the corresponding unsaturated hydraulic conductivity functions. Note that 

these figures actually show the shaded density of the different prior and posterior curves 

plotted all together, such that regions with a white or yellow color in the figures represent 

places where a large number of prior or posterior curves overlap, respectively. We observe in 

Figures 6 and 7 that, for the case of the uniform prior, the posterior curves for Layers 2, 3, and 

5 are significantly better constrained and centered around the true values than the prior curves, 

especially with regard to the water retention functions. These layers all correspond to sand 

having the same VGM parameters (Table 1). Notice, however, that the hydraulic behavior in 

Layer 5 is less well constrained by the GPR traveltime data than in Layers 2 and 3 because 

there is no corresponding variation in water content in this layer during the observation 

period. Also note for the case of the uniform prior that Layers 1 and 4, after consideration of 

the traveltime data, exhibit significantly different water retention behavior than Layers 2, 3 

and 5, which confirms that these layers correspond to different soil types. All of this clearly 

demonstrates that the GPR traveltime data contain important information regarding the 

hydraulic behavior of each layer. When the refined priors are considered, a substantial further 

reduction in uncertainty is observed for the soil hydraulic properties. We now see that the 

posterior water retention curves and unsaturated hydraulic conductivity functions become 

closely centered around the true curves for all layers, and that the incorporation of the GPR 

traveltime data still brings important information. Regarding the uncorrelated and correlated 
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cases, we again observe that accounting for correlation between the VGM parameters in the 

prior helps to better refine the hydraulic behavior. 

 

4.2 Inversion of the Arrenaes field data 

We now apply the Bayesian MCMC inversion methodology to the time-lapse ZOP GPR 

traveltime data collected at the Arrenaes field site (Figure 2a). We ran the inversion procedure 

considering the same three priors that were used in the synthetic example (Tables 2 and 3). 

Again, the uniform priors, which were prescribed relatively broad bounds, allow us to assess 

the information content of the traveltime data with respect to the VGM parameters, whereas 

the refined priors based on the work of Carsel and Parrish (1988) allow us to examine how 

combining these data with empirical prior information can help to further constrain estimates 

of these parameters. For the inversions, the residual uncertainty term in equation (8) was 

again set in accordance with estimated errors on the GPR traveltime measurements of 0.4 ns 

(Looms et al., 2010) plus an estimated contribution from model structural errors. For each 

prior scenario, three independent parallel Markov chains with randomly chosen starting points 

were again initiated. A sufficient burn-in period for the field data was determined to be 60,000 

iterations for the uniform prior and 20,000 iterations for both the uncorrelated and correlated 

refined priors. A total of 220,000 iterations for the uniform prior and 150,000 iterations for 

both refined priors were run for each parallel chain in order to properly sample the posterior 

parameter space. Running these inversions took 12 days and 8 days on the same 3.16 GHz 

desktop computer, respectively. 

Figures 8 and 9 show the marginal prior and posterior histograms obtained for the 

different VGM parameters in each layer for the case of the uniform and refined prior 

distributions, respectively. In Figure 8 we see that, through the inversion of the time-lapse 

GPR traveltime data, the uncertainty in the VGM parameters in each layer is noticeably 
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reduced compared to the corresponding uniform prior distributions, which is consistent with 

our findings in the synthetic example. There are significant reductions in uncertainty for Ks 

and n, and smaller, but again still important, refinements for θr and α. The trends in Ks with 

depth seen in the posterior results are also consistent with observations of the grain size 

characteristics of the different soils (Figure 1) (Looms et al., 2008a). That is, the posterior 

values of Ks in Layers 2 and 3, which correspond to sand, are considerably higher than those 

in Layers 1 and 4, which contain signficant amounts of finer material and are thus expected to 

have a lower permeability (Figure 1). All of this indicates that the GPR traveltime data 

contain valuable information with regard to constraining the VGM parameters at the Arrenaes 

field site. It is important to note that, in their preliminary stochastic analysis of the Arrenaes 

data using similar uniform prior distributions for the VGM parameters, Looms et al. (2008a) 

found that they could also constrain Ks and n in Layers 1, 2 and 3, although to a lesser extent 

than is shown in Figure 8. Looms et al. (2008a) were not, however, able to constrain any of 

the other VGM parameters, nor could they see any refinement in these parameters in Layers 4 

and 5, which led to a lack of clarity regarding the utility of the GPR traveltime measurements 

for constraining subsurface hydrological behavior. Through the use of a formalized Bayesian 

inversion framework with efficient MCMC sampling from the posterior distribution and 

consideration of a substantially greater number of model parameter realizations, we have 

significantly improved on these findings and are able to conclusively show the valuable 

information that is contained in the time-lapse GPR data regarding the VGM parameters at the 

Arrenaes site. This represents a substantial step forward. 

For the case of the uncorrelated and correlated refined prior distributions, Figure 9 

demonstrates that, as could be expected, we obtain a significant reduction in posterior 

uncertainty regarding all of the VGM parameters compared to the uniform prior case. 

However, as was found in the synthetic example, the GPR traveltime data still bring important 
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information to the inverse problem that is not contained in the refined priors. For example, 

Layers 2 and 3 were assigned the same refined prior distributions, corresponding to sand, in 

the Bayesian MCMC inversion procedure (Table 2). The resulting posterior distributions, 

however, clearly show lower values of Ks in Layer 3 than in Layer 2, which is consistent with 

the granulometric analysis of Looms et al. (2008a) that indicated the presence of finer, and 

thus less permeable, sand in Layer 3 than in Layer 2. Without the use of a refined, realistic, 

prior, this subtle differentiation between the sands in Layers 2 and 3 would not be possible in 

the context of the considered Bayesian MCMC inversion approach. Indeed, neither our work 

nor the previous work of Looms et al. (2008a) was able to identify this textural difference 

through the use of a uniform prior distribution. Additionally, we see in Figure 9 that 

accounting for parameter correlation in the inversion procedure further reduces our 

uncertainty regarding the VGM parameters as compared to the uncorrelated case.  

Finally, we investigate how the soil hydraulic properties are refined for each of the 

different priors through the incorporation of the Arrenaes field data. Figure 10 shows the 

water retention curves for each layer corresponding to the three different prior and posterior 

parameter distributions shown in Figures 8 and 9, whereas Figure 11 shows the corresponding 

hydraulic conductivity functions. For the case of the uniform prior, we see that the curves 

generated from the posterior parameter realizations exhibit significantly more consistent 

behavior than the curves generated from the prior realizations. We also clearly observe that 

Layers 1 and 4 show strongly different hydraulic behavior than Layers 2, 3 and 5, which all 

show similar behavior that is typical for sand. Given the the fact that the same uniform priors 

were assumed for all layers, this again demonstrates that the GPR traveltime data contain 

important information regarding the hydraulic characteristics of the different soils at the 

Arrenaes field site. In the case of the uncorrelated refined prior distribution, we see a lesser 

reduction in uncertainty in the hydraulic properties between the prior and posterior compared 
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to the case of the correlated refined prior distribution. We also see in all cases more 

uncertainty in the water retention curves in Layer 5 than in Layers 2 and 3, because the water 

front does not reach Layer 5 over the considered infiltration period. 

 

5. Discussion and Conclusions  

We have demonstrated in this paper that time-lapse ZOP crosshole GPR traveltime data, 

collected while infiltration occurs so as to observe changes in subsurface water content,  can 

be used to successfully constrain the hydraulic properties and behavior of the vadose zone 

through a stochastic inversion approach. This was done in the context of the forced infiltration 

experiment conducted by Looms et al. (2008b) at the Arrenaes field site using both synthetic 

and field data. Whereas the previous work of Looms et al. (2008a) involving the same field 

data and using a preliminary Monte-Carlo-type inversion approach yielded inconclusive 

results regarding the value of the GPR traveltime data for estimating VGM parameters, our 

analysis has clearly shown the pertinent information content of these data and their potential 

hydrological value. This in turn suggests that a formalized Bayesian inversion framework 

with efficient MCMC sampling from the posterior distribution represents a promising 

methodology for extracting key information from time-lapse geophysical data. Although our 

efforts in this study were focused on dynamic ZOP traveltime measurements acquired at the 

Arrenaes field site, the corresponding findings are likely to have general applicability to other 

types of geophysical data and field environments. We are currently investigating the use of 

crosshole ERT and multiple-offset-gather (MOG) GPR traveltime data from the Arrenaes 

field site in this regard. 

Our consideration of different degrees of prior information in the stochastic inverse 

problem allowed us to systematically investigate a number of important issues. First, through 

the use of non-informative uniform prior distributions for the VGM parameters in each 
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subsurface layer, we were able to assess the information content of the time-lapse GPR 

traveltime data. In both the synthetic and field cases, our analysis clearly showed that these 

data alone provide valuable information about the VGM parameters, most importantly 

regarding Ks. Secondly, through the use of more refined prior distributions based on soil 

property databases, we were able to examine how the information contained in the traveltime 

data could be best exploited when combined with realistic prior information within a Bayesian 

framework. In this case, we observed that the posterior parameter estimates and 

corresponding hydraulic behavior and predictions were significantly improved over the case 

where a uniform prior was considered. More importantly, subtle information that could not be 

revealed through the use of a uniform prior came to light when using the refined priors. In 

addition, we found that realistic parameter correlation, which is rarely used in the context of 

the prior information for Bayesian investigations, allowed the greatest reduction of 

uncertainty.  

Despite the considerable success that we observed through the use of refined prior 

distributions in this study, it is important to keep in mind that considering such priors must be 

done with caution. Indeed, great care must be taken in order to ensure that the priors are not 

overly specific or unrealistic, such that posterior results become strongly biased. Although we 

feel that the priors derived from soil property databases such as the work of Carsel and Parrish 

(1988) or the ROSETTA soils database (Schaap et al., 2001; Scharnagl et al., 2011) can 

provide useful information about the VGM parameters in vadose zone investigations, it must 

be acknowledged that the scale of the core samples that are used to create such databases 

differs from the support volume of the GPR traveltime data. As a result, additional work 

regarding the suitability of such priors and their scale-dependence is required. Further, a 

preliminary stochastic analysis involving the use of non-informative prior information, as was 

done in our work, is generally highly recommended because it can demonstrate a clear 
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incompatibility between prior assumptions and the information contained in the considered 

geophysical data. 

 Another important and complementary aspect of the work presented in this paper is 

the investigation of the results not only in terms of the VGM parameters, which has been the 

focus of previous related research efforts in hydrogeophysics (e.g., Binley and Beven, 2003; 

Cassiani and Binley, 2005; Looms et al., 2008a; Scholer et al., 2011), but also in terms of the 

underlying hydraulic properties that actually determine the pertinent flow behavior. Although, 

clearly, the water retention curves and unsaturated hydraulic conductivity functions shown in 

Figures 6, 7, 10, and 11 were computed from the different sets of VGM parameters in each 

case, there is an important difference between examination of the parameters themselves and 

examination of these functions. Subtle changes in the distribution of one of the VGM 

parameters, for example, may have a significant impact on the hydraulic properties. Similarly, 

changes in the joint distribution of the different VGM parameters, which are not easily 

observed in histogram plots like Figures 4, 5, 8, and 9, may also have considerable impact on 

these properties. In both our synthetic and field examples, the inversion of the time-lapse GPR 

traveltime data significantly helped to characterize the water retention curves and unsaturated 

hydraulic conductivity functions in each subsurface layer. Indeed, even when using a uniform 

prior, we could identify distinct differences in hydraulic behavior between the layers. 

 Finally, a critical issue that should be discussed in the context of Bayesian 

investigations, and which was not thoroughly addressed in this study, is that of model error. 

As mentioned previously, when performing any stochastic inversion of geophysical or 

hydrological data, forward model accuracy must always be sacrificed to some degree for the 

sake of computational tractability. In general, this is accomplished through the use of reduced 

parameterizations and/or simplified forward models. In our case, for example, a 1D 

unsaturated flow model combined with a 5-layer subsurface parameterization were assumed 
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for the Arrenaes field site in the Bayesian MCMC inversion procedure. Clearly, these 

assumptions, in particular that of 1D flow, are an approximation of the true behavior, as 

evidenced by the lateral spreading that was seen to exist at layer interfaces in both our 

synthetic example and field application. Such model errors, if not properly accounted for, 

have the potential to strongly bias posterior parameter uncertainties and yield correspondingly 

unreliable results. Nevertheless, we were able to deal with these errors in our work to a 

reasonable degree through the use of an effective infiltration rate calculated from the GPR 

traveltime data, and by considering only those data that were acquired over a time period 

where infiltration was predominantly 1D. However, future work should definitely involve 

more detailed study of model errors, their effects on the posterior statistics obtained, and how 

they may be accounted for through the Bayesian likelihood function.  
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TABLES 

Table 1: VGM parameters prescribed to the different layers in the synthetic example. 

 Ks (cm.h-1) n α (cm-1) θs θr 

Layer 1 (sandy clay) 0.12 1.6 0.015 0.41 0.08 

Layers 2, 3, and 5 (sand) 34.7 2.75 0.14 0.41 0.04 

Layer 4 (silt) 0.17 1.5 0.02 0.41 0.05 
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Table 2:  Upper and lower bounds of the prior uniform distributions assumed for the VGM 

parameters in the Bayesian MCMC inversion procedure. 

Layer VGM parameters Lower bound Upper bound 

1 

θr 
α (cm-1) 

n 
Log10(Ks (cm.h-1)) 

0 
0 

1.1 
-2 

0.1 
0.2 
4.81 

2 

2-5 

θr 
α (cm-1) 

n 
Log10(Ks (cm.h-1)) 

0 
0 

1.1 
-2 

0.06 
0.2 
4.81 

2 
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Table 3: Johnson transformation type and limits of variation, along with the means (μ), 

standard deviations (σ), and correlation matrices for the transformed VGM parameters as 

determined by Carsel and Parrish (1988) for sand, sandy clay, and silt. The log-normal and 

log-ratio Johnson variable transformations are defined in the bottom row of the table. 

 

 
Johnson 

transformation 
and limits of variation 

μ σ  Correlation matrix 

Sand  A B   θr α (cm-1) n Ks (cm.h-1) 
θr Log-normal   -0.12 0.224 1 0.12 -0.85 -0.51 

α (cm-1) Log-ratio 0 0.25 0.378 0.439  1 0.29 0.74 
n Log-normal   0.978 0.100   1 0.84 

Ks (cm.h-1) Log-ratio 0 70 -0.39 1.150    1 
          

Silt      θr α (cm-1) n Ks (cm.h-1) 
θr -   0.042 0.015 1 -0.20 -0.61 -0.20 

α (cm-1) -   0.017 0.006  1 0.55 0.98 
n -   1.38 0.037   1 0.46 

Ks (cm.h-1) Log-normal   -2.20 0.700    1 
          

Sandy clay      θr α (cm-1) n Ks (cm.h-1) 
θr Log-ratio 0 0.12 1.72 0.700 1 0.93 0.95 0.97 

α (cm-1) Log-normal   -3.77 0.563  1 0.93 0.92 
n Log-normal   0.202 0.078   1 0.93 

Ks (cm.h-1) Log-normal   -4.04 2.020    1 

Log-normal Johnson variable transformation:  Y = ln(X) 
Log-ratio Johnson variable transformation:  Y = ln[(X-A)/(B-X)] 
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FIGURES 

 

 

 

Figure 1: (a) Location of the Arrenaes field site, (b) the boreholes that have been installed 

there, and (c) the assumed layered geological structure in the study region. Modified from 

Looms et al. (2008b). 
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Figure 2: (a) ZOP crosshole GPR traveltime data acquired by Looms et al. (2008a) at the 

Arrenaes field site between boreholes GPR1 and GPR3 over the course of the 20-day 

infiltration experiment (black), compared with the traveltime data collected before infiltration 

began (grey). (b) Water added as a function of time calculated from the GPR data assuming 

1D vertical flow. The black line shows the linear trend for the first 5 days.   
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Figure 3: (a) Simulated time-lapse ZOP crosshole GPR traveltime data for the synthetic 

example (black), compared with the traveltime data that were simulated before infiltration 

began (grey). (b) Water added as a function of time calculated from the GPR data assuming 

1D vertical flow. The black line shows the linear trend for the first 10 days.   



 42 

 

 
 

Figure 4: Uniform prior (grey) and corresponding posterior (black) histograms for the VGM 

parameters in each layer for the synthetic example. The black dots represent the true values.  
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Figure 5: Refined prior (grey) and corresponding posterior histograms for the VGM 

parameters in each layer for the uncorrelated (blue) and correlated (red) scenarios for the 

synthetic example. The black dots represent the true values. 
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Figure 6: Water retention functions for each layer corresponding to the prior and posterior 

VGM parameter distributions shown in Figures 4 and 5. The true water retention functions are 

shown in blue. 
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Figure 7: Hydraulic conductivity functions for each layer corresponding to the prior and 

posterior VGM parameter distributions shown in Figures 4 and 5. The true hydraulic 

conductivity functions are shown in blue. 
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Figure 8: Uniform prior (grey) and corresponding posterior (black) histograms for the VGM 

parameters in each layer for the case of the Arrenaes field data. 
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Figure 9: Refined prior (grey) and corresponding posterior histograms for the VGM 

parameters in each layer for the uncorrelated (blue) and correlated (red) scenarios for the case 

of the Arrenaes field data. 
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Figure 10: Water retention functions for each layer corresponding to the prior and posterior 

VGM parameter distributions shown in Figures 8 and 9. 
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Figure 11: Hydraulic conductivity functions for each layer corresponding to the prior and 

posterior VGM parameter distributions shown in Figures 8 and 9. 

 


