
Automatic detection and multi-
component segmentation of brain 
metastases in longitudinal MRI
Vincent Andrearczyk1,2, Luis Schiappacasse3, Daniel Abler1,4, Marek Wodzinski1, 
Andreas Hottinger4, Matthieu Raccaud5, Jean Bourhis3, John O. Prior2, Vincent Dunet5 & 
Adrien Depeurnge1,2

Manual segmentation of lesions, required for radiotherapy planning and follow-up, is time-consuming 
and error-prone. Automatic detection and segmentation can assist radiologists in these tasks. This 
work explores the automated detection and segmentation of brain metastases (BMs) in longitudinal 
MRIs. It focuses on several important aspects: identifying and segmenting new lesions for screening 
and treatment planning, re-segmenting lesions in successive images using prior lesion locations 
as an additional input channel, and performing multi-component segmentation to distinguish 
between enhancing tissue, edema, and necrosis. The key component of the proposed approach is to 
propagate the lesion mask from the previous time point to improve the detection performance, which 
we refer to as “re-segmentation”. The retrospective data includes 518 metastases in 184 contrast-
enhanced T1-weighted MRIs originating from 49 patients (63% male, 37% female). 131 time-points 
(36 patients, 418 BMs) are used for cross-validation, the remaining 53 time-points (13 patients, 100 
BMs) are used for testing. The lesions were manually delineated with label 1: enhancing lesion, label 
2: edema, and label 3: necrosis. One-tailed t-tests are used to compare model performance including 
multiple segmentation and detection metrics. Significance is considered as p < 0.05. A Dice Similarity 
Coefficient (DSC) of 0.79 and F1-score of 0.80 are obtained for the segmentation of new lesions. On 
follow-up scans, the re-segmentation model significantly outperforms the segmentation model (DSC 
and F1 0.78 and 0.88 vs 0.56 and 0.60). The re-segmentation model also significantly outperforms 
the simple segmentation model on the enhancing lesion (DSC 0.76 vs 0.53) and edema (0.52 vs 0.47) 
components, while similar scores are obtained on the necrosis component (0.62 vs 0.63). Additionally, 
we analyze the correlation between lesion size and segmentation performance, as demonstrated in 
various studies that highlight the challenges in segmenting small lesions. Our findings indicate that 
this correlation disappears when utilizing the re-segmentation approach and evaluating with the 
unbiased normalized DSC. In conclusion, the automated segmentation of new lesions and subsequent 
re-segmentation in follow-up images was achievable, with high level of performance obtained for 
single- and multiple-component segmentation tasks.
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Brain metastases Brain metastases (BMs) originate from cancer cells that spread to the brain from other 
sites, frequently breast, lung, kidney, and melanoma1. Despite recent advances in screening and care, BMs 
remain a major cause of morbidity and mortality. Treatments include one or a combination of medication, 
surgery, stereotactic radiosurgery (SRS) and whole-brain radiation. Contrast-enhanced T1-weighted magnetic 
resonance imaging (MRI), recently using 3D magnetisation-prepared rapid gradient echo (MPRAGE), is 
commonly used for diagnosis, treatment planning and follow-up. Manual detection and segmentation of lesions, 
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required for radiotherapy planning and follow-up, is time-consuming and error-prone. Automatic detection and 
segmentation can assist radiologists in these tasks.

Automated brain metastases segmentation Several works have reported promising results for the automatic 
detection and segmentation of BMs from T1 MRI2,3, T1 and CT4, multiple T1s and FLAIR5, using standard 2D, 
2.5D and 3D Deep Learning (DL) models.

Charron et al.6 were among the first to apply DL to BM segmentation, using adapted 3D and 2D models on 
T1 and FLAIR images. Huang et al.7 proposed a DL model utilizing the contrast difference between consecutive 
images as a temporal prior, with the emergence or growth of high contrast an indicator for BMs. Zhang et 
al.2 used a region-based model (Faster R-CNN) for the detection of BMs in T1 images. In a recent survey, 
Wang et al.8 underlined the superiority of U-Net and its variants in BMs segmentation accuracy. Across all 
referenced studies, the lesion-wise Dice Similarity Coefficient (DSC) ranged from 0.55 to 0.915 and the lesion-
wise sensitivity from 0.58 to 0.98.

Grøvik et al.9 proposed a method with input dropout to handle missing MRI sequences in multi-modal DL 
models for BM segmentation. Zhou et al.10 proposed a 2-stage algorithm for BM segmentation, with a single-
shot detector to first detect regions containing metastases, followed by a DL model to segment the metastases 
from those regions. Three-dimensional U-Net convolutional neural network for detection and segmentation 
of intracranial metastases11 3D UNet, T1w images. Most studies agree that small lesions pose a challenge in 
detection, leading to a high false negative rate. In particular,3,10 observe a DSC of 0.31/0.17 for lesions < 3 
mm and 0.87/0.87 for ≥ 6 mm.9,12,13 observe a large performance drop for lesions < 10 mm3, < 15 mm and 
< 0.06mL, respectively. Dikici et al.12 focused on detecting small lesions (< 15 mm) in T1 images by selecting 
candidates and using DL classification on cropped regions around them. Bousabarah et al.13 trained a model 
exclusively on small lesions to achieve sensitive predictions and ensembled them with predictions from other 
models trained on all lesions. Finally, BM segmentation on pre-treatment images was the main task of the Brain 
Tumor Segmentation - Metastases (BraTS-METS 2023) challenge14. The top-performing algorithm reached an 
average lesion-wise DSC of 0.65 ± 0.25 across the three component enhancing tumor, tumor core and whole 
tumor.

Several gaps remain to address in the existing literature, in particular multi-component segmentation and 
re-segmentation in follow-up images.

Longitudinal (re-)segmentation Studies on longitudinal data lesion segmentation primarily address the 
detection of new lesions (e.g. in multiple sclerosis lesions15). Examples include incorporating auxiliary tasks 
like image registration16, and utilizing multiple time-points as inputs7,17. These works do not address the re-
segmentation of brain lesions in follow-up images. This problem is tackled for instance in whole-body CT scans 
for tracking soft-tissue lesions18, by inputting a region around the lesion from the previous time-point after 
registration.

In this work, we explore multiple scenarios of DL for automated detection and segmentation of BMs in 
pre- and post-treatment T1 MRI images motivated by clinical applications and research. An overview of the 
study, put in a clinical context, is illustrated in Fig. 1. This includes the automatic detection and segmentation 
of BMs prior to treatment, and the re-segmentation on consecutive post-treatment images. We also evaluate 
the benefit of adding the T2 sequence for the segmentation of edema. The research questions are (i) Can prior 
knowledge on previously contoured lesions improve re-segmentation of BMs in follow-up images ? (ii) Can a 
DL model segment separately the enhancing lesion, edema and necroses ? The novelty is therefore two-fold. We 
incorporate a BM location prior as input to the DL model to re-segment previously contoured lesions, and we 
propose a model for 3-label segmentation of relevant BM components including enhancing lesion, edema and 
necrosis, using a dataset specifically annotated for this purpose.

Materials and methods
Tasks
We define different tasks for corresponding clinical scenarios. Task 1 is the detection and segmentation of lesions, 
particularly focused on the initial appearance of lesions, imaged before treatment. Task 2 is the re-segmentation 
of lesions on consecutive images for patient follow-up. During follow-ups, these two tasks are run in parallel, as 
shown in Fig. 1, to re-segment previously existing lesions, and detect the appearance of new ones. Both tasks are 
divided into sub-tasks for the segmentation of a single label and multiple labels. Three labels are available from 
the annotations; label 1: enhancing lesion, label 2: edema, and label 3: necrotic part of the lesion (not all lesions 
present edema or necrosis).

• Task 1.1: detection and segmentation of whole lesions (union of labels 1 and 3).
• Task 1.2: multi-label detection and segmentation of lesions (labels 1, 2 and 3 separately).
• Task 2.1: re-segmentation of whole lesions (union of labels 1 and 3).
• Task 2.2: multi-label re-segmentation of lesions (labels 1, 2 and 3 separately).The targeted clinical and research 

goals include detection and segmentation for new SRS treatment, follow-up for automatic RANO-BM19 or 
volume assessment, and radiomics studies for prediction of response to treatment.

Data
The anonymized dataset originates from a retrospective, single-center, longitudinal study at CHUV20, in 
accordance with the Declaration of Helsinki, the Swiss legal requirements and the principles of Good Clinical 
Practice. The protocol, including the requirement for informed consent from all patients whose data was utilized 
in the study, was approved by the Research Ethics Committee of Vaud Canton, Switzerland (No. 2024-00100).

The dataset comprises 184 time-points from 49 patients and a total of 518 BMs. The inclusion criteria require 
patients diagnosed with BMs originating from a melanoma primary cancer, treated with SRS, and imaged with 
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a post-contrast MPRAGE T1-weighted MRI. Patients with meningeal metastases were excluded. Patients and 
treatments characteristics are summarized in Table 1.

After training with a senior neuroradiologist (14 years experience), a master student delineated the lesions on 
the post-contrast T1 with label 1: enhancing lesion, label 2: edema, and label 3: necrosis, using ITK-SNAP21. The 
enhancing lesion and necrosis were delineated on the T1 sequence, the edema on the T2 sequence, superimposed 
with the T1. The delineations were verified by the senior neuroradiologist. Examples of manually delineated 
labels are illustrated in Fig. 2, 4th column.

The average number of time-points per patient is 3.7 ± 3.0 (median 2). There is an average of 2.8 ± 2.6 
(median 2) lesions across all patients and time-points. The percentage of lesions with edema and necrosis is 57% 
and 23%, respectively. The average volume of all enhancing lesions is 890 ± 2342 mm3 (median 171). That of 
edemas is 7908 ± 17556 mm3 (median 1367), and necrosis 1089 ± 2546 mm3 (median 158). Examples of lesions 
are illustrated in Fig. 2, 1st column, showing the heterogeneity of the data in terms of lesion size, location in the 
brain, structure (enhancing, edema, necrosis), and appearance.

Pre-processing
For the re-segmentation models, pairs of consecutive images are co-registered using the ANTS toolbox22, 
specifically an affine transformation followed by deformable transformation, with cross-correlation optimization 
metric. Brain masks, obtained with HD-BET23, restrict the registration within the brain. The labels from the 
previous time-point are aligned using the resulting transform to use as additional input alongside the MRI.

Figure 1. Overview of the scenarios for different clinical and research applications. In this example, new 
lesions are detected as a single label (Task 1.1) and are then re-segmented in follow-up images with three labels 
(Task 2.2, enhancing lesion, edema and necrosis).
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The registration is also used as a potential re-segmentation method itself, directly using the aligned labels as 
predictions.

For all tasks, the images are pre-processed following the nnUNet pipeline24, including z-score normalization, 
1 mm3 resampling of the images (3rd order spline) and ground truth labels (nearest-neighbor).

Models and training
We use the publicly available 3D nnUNet framework24, a commonly used semantic segmentation model 
developed to adapt to a given dataset. The model contains an encoder path, consisting of a standard convolutional 
network (including convolutions, activations, max pooling etc.), and a decoder path.

Demographics

 Gender

  Females 18 (36.7%)

  Males 31 (63.3%)

 Age (years)

  Average 65.78

  Median 66

  Standard deviation 11.96

Diagnosis

 Primary site of melanoma

  Trunk 15 (30.6%)

  Lower limb 9 (18.4%)

  Head and neck 7 (14.3%)

  Upper limb 6 (12.2%)

  Mucosal 2 (4.1%)

  Choroid 1 (2%)

  Unknown 9 (18.4%)

Treatments

 Technique of radiosurgery (number of treatments) [a]

  CyberKnife 48

  Gamma Knife 26

Systemic treatments, number (%) of patients receiving

 Checkpoint inhibitors

  Ipilimumab (anti-CTLA-4) 27 (55.1%)

  Nivolumab (anti-PD1) 21 (42.8%)

  Relatlimab (LAG-3 inhibitor) 4 (8.2%)

 Oncolytic viral immunotherapy

  Talimogene laherparepvec (T-VEC) 2 (4.1%)

  BRaf- and MEK-selective inhibitors 9 (18.4%)

 BRAF inhibitors

  Vemurafenib 14 (28.6%)

  Dabrafenib 12 (24.5%)

 MEK inhibitors

  Trametinib 15 (30.6%)

  Cobimetinib 3 (6.1%)

 Tyrosine kinase inhibitors

  Sorafenib 3 (6.1%)

  Lapatinib 1 (2%)

  Pazopanib 1 (2%)

 Chemotherapies

  Temozolomide 11 (22.4%)

  Dacarbazine 9 (18.4%)

  Carboplatin-Taxol 5 (10.2%)

  Nab-paclitaxel 3 (6.1%)

  Fotemustine 2 (4.1%)

Table 1. Characteristics of patients and treatments. [a] 19 (38.8%) patients received more than one 
radiosurgery treatment.
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Various methods are evaluated and compared including (i) nnUNet given the image at a single time-point as 
input (single input channel); (ii) labels propagated from a previous time-point via registration (as described in 
“Pre-processing”, only for Task 2); (iii) re-segmentation using nnUNet with labels propagated from the previous 
time-point as an additional input channel (only for Task 2). Besides, we are interested in the segmentation of 
each lesion as a single structure and three separate components. Accordingly, we use models with a single output 
label or three output labels. Methods (ii) and (iii) constitute important novelty when compared to previously 

Figure 2. Qualitative results (2D axial views) of the automatic BM segmentation in T1 images. The second 
column shows the ground truth for a single whole lesion label (labels 1+3). The third column is the contoured 
prediction of the detection and segmentation model (Task 1.1). The fourth column shows the ground truth 
with the three individual labels, namely 1: enhancing lesion (green), 2: edema (blue), 3: necrosis (red). The last 
column illustrates the prediction of the re-segmentation model with these three labels (Task 2.2). The first row 
illustrate a very small lesion missed by the segmentation model without prior information on previous time-
point.
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proposed approaches, which did not considered the propagation of the lesion masks from the previous time 
points.

We follow the standard nnUNet training, with random initial weights, involving a 5-fold cross-validation 
trained with Dice and cross-entropy loss for a total of 1000 epochs, a stochastic gradient descent optimizer 
with Nesterov momentum. Sliding windows (160 × 128 × 112) are used with patch overlap and standard 
data augmentation (e.g. rotation, scaling, noise). As implemented in the nnUNet, ensembling is performed by 
choosing the best combination of models on the cross-validation for final prediction on the test set.

Images from 131 time-points (36 patients, 418 BMs) are used for the cross-validation, the remaining 53 time-
points (13 patients, 100 BMs) are used for testing. All time-points of a patient are in the same split. The splits are 
designed to maintain a relatively constant average number of time-points.

For Task 1, we train and evaluate using the entire dataset. Since this model is specifically developed for the 
segmentation of new lesions, we also evaluate it on a subset containing pre-treatment lesions only which are 
larger and easier to detect than treated lesions. For Task 2, the goal is to re-segment BMs already contoured 
at a previous time-point. Thus, we consider for this task only pairs of consecutive images where there is no 
appearance of new lesion (36 test pairs). To use all possible data for training (131 time-points), we “augment” the 
remaining images by artificially creating fictitious “previous” labels for new BMs using random dilation, erosion 
and translation in all three axes (ranges [0,6] voxels, [0,3] voxels and [− 6,+6] voxels, respectively). We do not 
augment the test set to evaluate only on real consecutive follow-up images. While future work could explore 
learning the distribution of transformations reflecting lesion evolution, using a simple heuristic method yielded 
satisfactory results.

Evaluation
We employ multiple detection and segmentation metrics for the evaluation of the predictions.

Overall segmentation metrics The DSC is computed as follows.

 
DSC = 2TP

2TP + FP + FN
, (1)

where TP, FP and FN are true positive, false positive and false negative voxels, respectively.

DSC is biased to yield greater values for larger lesions25. The normalized DSC (nDSC) is introduced in26 to de-
correlate the DSC with the lesion load and obtain an unbiased metric of performance. The nDSC is particularly 
relevant for comparing the segmentation of lesions of different sizes, and the correlation of lesion size with 
segmentation performance without bias. Let p = FP

TP  and n = FN
TP .

 nDSC = 2(2 + κp + n)−1, κ = h(r−1 − 1), (2)

where h represents the ratio between the positive and negative predicted classes, and 0 < r < 1 is the occurrence 
rate of the positive class averaged across all samples (i.e. total number of lesion voxels across divided by total 
number of voxels).

The DSC and nDSC are computed for all images (possibly containing multiple lesions) and averaged. The two 
metrics are also computed per ground-truth lesion (only in “Correlation lesion volume and performance”) to 
evaluate the correlation with lesion size.

Detection metrics The F1-score evaluates the detection performance, i.e. at the lesion level.

 
F1 = TPl

TPl + 0.5(FPl + FNl)
. (3)

A predicted lesion that overlaps (intersection over union) for more than 25% with a ground-truth lesion is 
considered a match to calculate the true positive, false positive and false negative lesions (TP , FP  and FN ).

True positive rate (TPR) and false discovery rate (FDR) are defined as follows.

 
TPR = TPl

TPl + FNl
, (4)

 
FDR = FPl

TPl + FPl
. (5)

Statistical tests
Metrics means are reported with standard deviation and statistical tests are performed with a one-tailed t-test to 
compare models performance. Correlation between lesion volume and model performance is performed with a 
Spearman correlation. Significance is considered as p < 0.05.

The SciPy library is employed to conduct the statistical tests and correlation analyses.
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Results
Detection and segmentation
The performance of the models evaluated on Task 1, detection and segmentation on a single image, are reported 
in Table 2 for single-label and multi-label. As illustrated in Fig. 2, some very small lesions are missed by the 
model. Small lesions are often the result of effective treatment. Since the analysis performed here is dedicated to 
newly appeared lesions, we also evaluate on the more clinically relevant first appearance of each lesion, resulting 
in a higher DSC of 0.79 and F1-score of 0.80 (vs. 0.64 and 0.68, respectively on the full test set). These results 
are reported as “full” and “pre-treatment” test sets in Table 2. Other lesions that can be tracked in follow-up 
images, often shrunk after treatment, are more accurately segmented using the re-segmentation algorithm in 
“Re-segmentation in follow-ups”). These two models can be run in parallel on follow-up images to optimize both 
detection of new lesions and re-segmentation.

To provide a reference, we present the mean Dice Similarity Coefficient DSC and F1-score achieved on the 
single-label training dataset, yielding values of 0.85 ± 0.13 and 0.92 ± 0.15, respectively.

Qualitative results with single label (Task 1.1) are reported in Fig. 2, columns 2 and 3.

Re-segmentation in follow-ups
The results of the re-segmentation (Task 2) with location prior are reported in Table 3 and compared with the 
segmentation results without prior. Note that the results of the latter are different from those in Table 2 because 
the test set does not contain exactly the same cases, see “Data”. Additionally, we report results obtained solely 
via registration (see “Pre-processing”), without re-segmentation. These results are only reported for single-label 
Task 2.1 because registration cannot predict the appearance of necrosis or edema.

For comparison, the DSCs and F1-scores on the entire 3-labels training set are label 1: 0.92 ± 0.06, 0.98 ± 
0.10; label 2: 0.65 ± 0.38, 0.51 ± 0.37; and label 3: 0.96 ± 0.10, 0.97 ± 0.11.

Labels Model Mean DSC ↑ mean nDSC ↑ F1-score ↑ TPR ↑ FDR ↓

1+3

Seg. 0.56 ± 0.43 0.57 ± 0.44 0.60 ± 0.47 0.60 ± 0.47 0.01 ± 0.06

Regis. 0.74∗  ± 0.18 0.82∗  ± 0.14 0.93∗  ± 0.23 0.94∗  ± 0.23 0.07 ± 0.23

Re-seg. 0.78∗  ± 0.26 0.81∗  ± 0.27 0.88∗  ± 0.32 0.88∗  ± 0.32 0.07 ± 0.23

1
Seg. 0.53 ± 0.41 0.52 ± 0.42 0.56 ± 0.47 0.56 ± 0.48 0.05 ± 0.19

Re-seg. 0.76∗  ± 0.25 0.77∗  ± 0.27 0.86∗  ± 0.32 0.87∗  ± 0.32 0.11 ± 0.29

2
Seg. 0.47 ± 0.28 0.47 ± 0.25 0.22 ± 0.25 0.15 ± 0.18 0.35 ± 0.45

Re-seg. 0.52∗  ± 0.26 0.51 ± 0.23 0.38∗  ± 0.32 0.38∗  ± 0.37 0.45 ± 0.37

3
Seg. 0.63 ± 0.25 0.62 ± 0.24 0.73 ± 0.40 0.82 ± 0.39 0.21 ± 0.36

Re-seg. 0.62 ± 0.25 0.60 ± 0.24 0.79 ± 0.38 0.82 ± 0.39 0.14 ± 0.31

Table 3. Results on Task 2, the re-segmentation of previously existing lesions. Results of two sub-tasks are 
reported, separated by a double horizontal line, for the segmentation of a single label (whole lesion, Task 2.1) 
and three labels (Task 2.2). The re-segmentation model with prior (re-seg.) is compared to the segmentation 
model without prior developed for Task 1 (seg.). For the single label segmentation, the results obtained with 
a simple non-rigid registration are also reported (regis.). For the multi-label segmentation, the average results 
on labels 2 and 3 are computed for images containing a ground truth volume of the corresponding label 
(36 and 20 images, respectively) to avoid boosting the results with perfect predictions resulting from true 
negatives. The asterisk (*) denotes statistical significance, investigating the superiority of performance of the 
re-segmentation (and registration-only approach) over segmentation without prior.

 

Labels Test set Mean DSC ↑ Mean nDSC ↑ F1-score ↑ TPR ↑ FDR ↓

1+3
Full 0.64 ± 0.41 0.64 ± 0.41 0.68 ± 0.44 0.66 ± 0.44 0.01 ± 0.05

Pre-treat. 0.79 ± 0.31 0.78 ± 0.31 0.80 ± 0.33 0.78 ± 0.34 0.02 ± 0.05

1
Full 0.62 ± 0.38 0.60 ± 0.39 0.66 ± 0.43 0.66 ± 0.44 0.05 ± 0.16

Pre-treat. 0.81 ± 0.22 0.79 ± 0.23 0.86 ± 0.26 0.83 ± 0.27 0.03 ± 0.10

2
Full 0.52 ± 0.29 0.51 ± 0.26 0.28 ± 0.32 0.23 ± 0.30 0.42 ± 0.44

Pre-treat. 0.55 ± 0.29 0.52± 0.26 0.39 ± 0.40 0.38 ± 0.40 0.57 ± 0.38

3
Full 0.67 ± 0.25 0.66 ± 0.24 0.78 ± 0.34 0.85 ± 0.36 0.20 ± 0.35

Pre-treat. 0.80 ± 0.12 0.77 ± 0.12 0.93 ± 0.12 1.00 ± 0.00 0.11 ± 0.18

Table 2. Results on task 1, detection and segmentation. Results of two sub-tasks are reported, separated by a 
double horizontal line, for the segmentation of a single label (whole lesion, Task 1.1) and three separate labels 
(Task 1.2). Results are reported separately for all test cases (full, 53 images), and for pre-treatment images only 
(15 images).
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The lowest results are obtained for the edema, difficult to delineate using only T1 sequences. Training another 
re-segmentation model with T1 and T2 inputs, despite the missing T2 data (10% of the entire data, all comprised 
in the training set, T2 is available for all test cases) replaced by zero values, leads to a significant increase in 
performance for edema segmentation (DSC = 0.62∗ (p < 0.05) and F1-score = 0.42, vs DSC = 0.52 and F1-score 
= 0.38 with the single T1 sequence).

Qualitative results for Task 2.2 are illustrated in Fig. 2. The first row depicts a small lesion missed by the 
segmentation model and correctly segmented by the re-segmentation model. Other examples of lesions of 
different sizes and with different components are also illustrated.

Correlation lesion volume and performance
For single-label segmentation (Task 1.1), the Spearman correlation between lesion volume and DSC is 0.73 
(significant) when considering all lesions, new and previously treated. Note that Pearson correlation is lower 
than Spearman on these evaluations. The correlation decreases to 0.31 with the nDSC (unbiased towards lesion 
size), yet remains statistically significant due to false negative small lesions. Notably, when focusing on the initial 
appearance of lesions in baseline images, which is more relevant to Task 1 and encompasses larger lesions than 
the treated ones, no correlation is found using the nDSC (p = 0.19).

With the resegmentation model, no significant correlation (Pearson or Spearman) is observed between the 
nDSC and the lesion volume (coefficients − 0.17 and − 0.07, respectively).

Discussion
Detection and re-segmentation
Previous studies3,5,6,12 reported the challenge in detecting small lesions (e.g., < 15 mm diameter) with standard 
models. Our experimental results confirm this observation through the strong correlation between lesion volume 
and segmentation performance. This correlation, however, vanished when using the prior for re-segmentation 
and evaluating with the nDSC. The proposed re-segmentation model with location prior significantly improves 
the segmentation of small treated lesions, as depicted in Fig. 2 (first row) and reported in the overall segmentation 
results (Task 2.1, Table 3, with DSC and F1-score of 0.78 and 0.88, respectively, vs 0.56 and 0.60 with the simple 
segmentation model). These results show that an excellent detection of new lesions and re-segmentation in 
consecutive follow-up images can be obtained by coupling two models specifically trained on Task 1 and Task 
2 respectively.

Comparison with registration
Employing registration alone for re-segmenting lesions in consecutive time-points leads to seemingly good 
results (Table 3 3rd row). The F1-score is high (0.93) because all lesions are present in the previous time-point 
and matched after registration (overlap > 25%). However, the boundary often largely deviates from the actual 
lesion border due to the variation in size and shape across post-treatment images. Moreover, this method cannot 
handle multiple labels and fails to address lesions that have completely disappeared, resulting in false positives 
with important consequences in patient follow-up. These drawbacks limit the utility of registration-based re-
segmentation. However, local registration and rules for detecting complete responses could be used in the future 
to improve results using registration only.

Multi-label segmentation
Depending on the clinical application (lesion detection, treatment planning, patient follow-up, radiomics 
studies), different sublesional components may be needed. The proposed models can be used with good 
performance to segment the whole lesions as a single label, as performed in other studies, or three separate 
labels (enhancing lesion, edema and necrosis) which is particularly relevant for the follow-up of patients via 
a quantitative treatment response assessment. The boundary of the edema is difficult to locate on T1 images. 
Including the T2 sequence as additional input, despite missing data, significantly improves its segmentation. 
However, a drop of performance is observed for the other labels. As the lesion is more important clinically than 
the edema, we primarily reported the results without T2. More sophisticated handling of the missing data, or an 
ensembling of predictions may be used in the future for an optimal compromise.

Limitations
Interestingly, carefully inspecting the predictions in the cross-validation allowed us to detect some BMs that were 
not manually contoured (similarly to3) and to correctly re-delineate them. Limitations of segmentation metrics27 
also emerged from the evaluation and visualization of predictions and manual delineations. These observations 
motivate a comprehensive user study of segmentation quality for better evaluation of clinical readiness.

The study’s limitations include potential dataset biases, which may affect the model’s generalization to 
other populations or lesion types (e.g. generalization to other centers and non-melanoma primary cancers). 
Finally, the segmentation of edema was the most challenging. While this performance can be improved with 
additional sequences (T2, as reported in “Re-segmentation in follow-ups”), it is also less clinically relevant than 
the enhancing lesion and necrosis.

Clinical significance
The improved segmentation accuracy, particularly for small lesions, has a significant impact on clinical decision-
making. Precise lesion delineation enhances treatment planning by ensuring accurate radiation targeting, 
which may reduce side effects and improve patient outcomes. Additionally, it enables reliable tracking of lesion 
progression, facilitating timely treatment adjustments. Automatic segmentation, in particular, supports the use 
of volumetric measurements, which may better represent lesion size and progression than the standard 2D 
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axial measurements. Additionally, the reduced need for manual corrections by radiologists improves workflow 
efficiency and minimizes human error, leading to a more streamlined and effective clinical workflow.

Integration with radiomics and predictive analytics
Automatic segmentation enables the extraction of radiomic features essential for training predictive models, 
such as 12-month response, radionecrosis, or brain disease-free survival (DFS). This also supports the modeling 
of volume trajectories to identify response populations, allowing for personalized patient management by 
adjusting follow-up frequency and SRS treatment plans to optimize the balance between tumor response and 
radionecrosis risk. For instance, Peng et al.28 demonstrated that radiomic features from segmented lesions 
improve the distinction between progression and radionecrosis after SRS. Accurate delineation by our model 
could further enhance such predictions and support precision medicine. In future work, we plan to use these 
models to automatically segment the BMs in a larger cohort to conduct a large-scale radiomics study for 
automatic response assessment and outcome prediction, without the need for manual annotation.

Conclusion
In this study, we presented a deep learning model for the detection and segmentation of brain metastases in 
longitudinal MRI, demonstrating significant improvements in accuracy, particularly in handling small lesions 
and complex multi-component segmentation tasks. The main novelty of our approach is to propagate the 
segmentation from the previous time-point, referred to as “re-segmentation”, allowing to significantly improve 
the detection performance. Our model’s precise delineation of lesions enhances clinical decision-making by 
enabling more accurate treatment planning, reliable tracking of lesion progression, and efficient workflow 
integration. The reduced need for manual corrections not only minimizes human error but also results in 
substantial time savings, which is critical in high-volume clinical environments.

Despite the promising results, we acknowledge certain limitations, such as dataset biases, which may affect the 
model’s generalizability. Future research should focus on addressing these limitations by expanding the dataset. 
Additionally, the potential integration of our segmentation model with radiomics and predictive analytics tools 
holds promise for advancing personalized medicine, offering automated and more accurate assessments of 
treatment response and patient outcomes.

Our findings underscore the potential of advanced segmentation models to not only improve clinical 
workflows but also to contribute to more effective and personalized patient care.

Data availibility
The datasets generated and/or analyzed during the current study are not publicly available as not permitted by 
the ethics agreement. However, the corresponding author can be contacted for any inquiries or requests related 
to the data. Interested researchers are encouraged to reach out to the corresponding author for further informa-
tion.
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