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Abstract

In this paper we develop Quasi-Monte Carlo techniques for the evaluation
of high-dimensional integrals that occur in financial applications, namely
in the pricing of default-risky catastrophe-linked bonds in a model in-
cluding stochastic interest rates, basis risk and default risk. It is shown
that these techniques clearly outperform classical Monte Carlo integra-
tion in terms of efficiency. The methods are based on number-theoretic
low-discrepancy sequences such as Halton, Sobol and Faure sequences.

1 Introduction

Quasi-Monte Carlo integration has turned out to be a powerful tool for integrals
occurring in various branches of applied mathematics (see e.g. [1,2,24]). In this
paper we investigate the efficiency of Quasi-Monte Carlo techniques for pricing
default-risky catastrophe-linked bonds in a model including stochastic interest
rates, basis risk and default risk. In Section 2 we describe the Quasi-Monte
Carlo (QMC) method in general. In Section 3 we develop a suitable contingent
claim model for these bonds. Section 4 discusses implementation issues and
gives numerical illustrations of the superiority of QMC methods over classical
Monte Carlo. Furthermore the sensitivity of CAT bond prices with respect to
various model parameters is investigated.

2 Multivariate Integration using QMC Sequences

After suitable transformation of the integration domain, an s-dimensional in-
tegral can be written in the form

10) = [ £ (1)
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where f is a function defined on the s-dimensional unit cube U* = [0, 1]*.
The basic idea of Monte Carlo integration is now to choose N integration
points X1, ..., X, randomly in U® and to approximate the integral I(f) by the
arithmetic mean

1 N
IN) = 5 3 Fx0).

Chebyshev’s inequality gives a probabilistic bound on the integration error of
Monte Carlo integration

g

where Var(f(x)) is the variance of f(£), and the probable error thus turns
out to be proportional to 1/ V/N and is independent of the dimension s (see
e.g. [15]). A crucial aspect, however, is the availability of an efficient pseudo-
random number generator.

The use of deterministic uniformly distributed point sequences (instead of
pseudo-random sequences) has proven to be an efficient alternative to classical
Monte Carlo, especially for dimensions s < 30. Such nonrandom sequences are
called Quasi-Monte Carlo sequences. A well-known measure for the uniform-
ness of the distribution of a sequence {y,},, < in U? is the star-discrepancy
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where J is the set of all intervals of the form [0, 77) = [0,7:) % [0,72) . ..x[0,7s)
with 0 < 7 < 1,4 = 1,...,s and A(yn;I) is the number of points of the
sequence {yn};<,<n that lie in I. A (I) denotes the s-dimensional Lebesgue-
measure of I.

The notion of discrepancy can be used for obtaining an upper bound for the
error of Quasi-Monte Carlo integration, since by the Koksma-Hlawka inequality

1 N
NS = [ @] SVODR yy), (29)
n=1 s

where V(f) is the total variation of f in the sense of Hardy and Krause (see
e.g. Drmota and Tichy [10]). This error bound is deterministic (in contrast to
the probabilistic error bound (2.2)).
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The Koksma-Hlawka inequality can be viewed as an error bound in the sense of
worst case analysis. In order to establish an error bound in the sense of average
case analysis we have to introduce the LP-discrepancy for p > 1 defined by

D) = ([ Al

N m---7s
The star-discrepancy corresponds to p = co. Furthermore, the LP-discrepancy
and the star-discrepancy are related by the following inequality (C(s,p) denot-
ing an explicitly known constant depending only on s and p):

P 1/p

P
s+p

DY < Dy < C(s,p) (DY)

which is due to Niederreiter, Tichy and Turnwald [23]. The central problem of
average case analysis of numerical integration is to determine the minimal cost
for approximation of I(f) with error < € for a given class F of functions, where
F is equipped with a probability measure. A very convenient choice for F is the
class of continuous functions equipped with the Wiener measure. The average
complexity of numerical integration can be expressed as the expectation with
respect to Wiener measure p,, of the number of function evaluations and the
number of operations necessary for the computation of In(f). Wozniakowski
[27] computed the average case error in terms of the L2-discrepancy:

1/2

D -yn) = ([ (1) - v () ) (2.4

where 1 = (1,...,1).

In particular for s not too large, certain Quasi-Monte Carlo sequences have
turned out to be superior to crude probabilistic Monte Carlo techniques in
many applications. This is the case for so-called low discrepancy sequences,
i.e. sequences for which

(log N)*
N

holds with an explicitly computable constant Cs. The best known low discrep-
ancy sequences satisfy a discrepancy bound of type (2.5). However, for the
L?-discrepancy bounds of better asymptoptic order in N are known. Recently
Chen and Skriganov [5] explicitly constructed a sequence (z,) such that

Dy (yn) <Cs (2.5)
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which is the best possible asymptotic order by the following general lower
bound due to Roth [25]:

From Roth’s bound and (2.4) it can immediately be deduced that the average
case complexity of numerical integration (on the space of continuous functions
equipped with Wiener measure) satisfies a bound of the order O(e~!(loge —

1)%), where € is the error in the approximation of I(f) by In(f) (see [27]).

For the star-discrepancy only slight improvements of Roth’s bound are known.
The most recent one is due to Baker [3]:

Dy >c¢

, (log N)*T ( log log N >ﬁ
s N logloglog N

for N Z N().

Bounds for the constants Cs are usually pessimistic and often the actual error
made by Quasi-Monte Carlo integration is much lower than the bound implied
by Cs (see e.g. [4]).

However, for applications in mathematical finance the dimensions s may be
quite big (several hundreds). Thus discrepancy bounds in s and N are of
interest. Recently this problem was successfully attacked by Heinrich, Novak,
Wasilkowski and Wozniakowski [14]. They considered the quantity

disc(N, s) = inf D
( ) (Y1,---yN)E[0,1] Vs N(yn)

and obtained the estimate
disc(N,s) < CstN™2

with an absolute constant C. The proof depends on probabilistic methods
and can be generalized to LP-discrepancies. As a consequence the minimum
number K(s,¢€) of points y, (1 < n < N) satisfying disc(N,s) < e fulfills a
bound of the type K (s,e) = O(se 2). Thus the problem of finding points with
disc(N, s) < e can be solved in polynomial time.

The following low discrepancy sequences will be used in the sequel:
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e The Halton sequence [13] is defined as a sequence of vectors in U*® based
on the digit representation of n in base p;

&n = (bp1(7l)’bp2(71)7"' ’bps(71))> (2'6)

where p; is the ith prime number and b,(n) is the digit reversal function
for base p given by

o o
bp(n) =D ™, n=) et
k=0 k=0

where the nj are integers. One could also use pairwise coprime base
numbers, but the error estimate turns out to be best possible for prime
bases p,. For Halton sequences C tends to infinity super-exponentially
for s = .

Better error bounds can be obtained for low-discrepancy sequences based on
(t,m,s)-nets. These nets are based on the b-adic representation of vectors
in U®. Instead of optimizing the discrepancy itself, only the discrepancy
with respect to elementary intervals J in base b is considered, i.e. J =
[1i_[aib~%, (a; + 1)b~%) with integers d; > 0 and integers 0 < a; < b% for
1 <1 < s, and point sequences in U?® are constructed such that the discrepancy
with respect to these intervals J is optimal for subsequences of length N = b™.
Let #(J, N) denote the number of points of a sequence {y, }, ., that liein J.
A point set P with card(P) = b™ is now called a (¢, m, s)-net, if #(J,b™) = b
for every elementary interval J with A\;(J) = b'~™. The parameter ¢ is a qual-
ity parameter. For ¢ = 0 we have the minimal discrepancy of the point set P
with respect to the family of elementary intervals.

For an integer ¢ > 0, a sequence &1,&s,... of points in U? is called a (¢,s)-
sequence in base b, if for all integers k > 0 and m > ¢, the point set consisting
of the &, with kb™ < n < (k+ 1)b™ is a (t,m, s)-net in base b.

e The Sobol sequence is a (¢, s)-sequence in base 2 with values ¢ that de-
pend on s. For a construction of this sequence we refer to [26]. The
corresponding constant C is much lower than for the Halton sequence.

e The Faure sequence [12] is a (0, s)-sequence with an even lower constant
Cs.
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Since Quasi-Monte Carlo methods are especially competitive for low dimensions
(s < 30), the best numerical performance can be achieved by implementing hy-
brid Monte Carlo techniques, i.e. Quasi-Monte Carlo sequences for the initial
dimensions and the remaining dimensions are then simulated by crude Monte
Carlo.

3 A Model for Pricing Catastrophe-Linked Bonds

We now apply the QMC technique to a particular problem of mathematical
finance, namely the pricing of a catastrophe-linked bond (CAT bond for short),
which is a liability hedge instrument for insurance companies. As an alternative
to traditional reinsurance, an insurer can issue (i.e. sell) these bonds under the
condition of debt-forgiveness triggers in case the aggregate claims to be paid by
the insurer (or a certain composite index of losses among various companies)
exceeds a specified threshold K. In that way the issuer of these bonds avoids
credit risk that might arise with traditional reinsurance concepts. Since during
the last decades the insurance losses due to natural catastrophes have increased
dramatically, CAT bonds have become a popular hedging tool and one of the
key issues is to correctly price these financial instruments (see e.g. [7,8,18]).
A crucial step in determining a fair price of the CAT bond is to model the
dynamics of the assets and the losses of the insurer as well as the dynamics of
the (stochastic) interest rate. In this paper we adopt the approach of Lee and
Yu [17], which also includes the consideration of default risk (cf. Section 3.2)
and basis risk (cf. Section 3.3). For convenience, we briefly repeat the relevant
specifications of the model from [17]:

The asset dynamics of the insurer are modeled by

% =padt+ ¢dry+oadWay, (3.1)
where A; is the value of the insurer’s total assets at time ¢, 7; is the instan-
taneous interest rate at time ¢ (with ¢ denoting the interest rate elasiticity),
Wa, is the Wiener process representing the risk orthogonal to interest rate
risk (frequently referred to as credit risk), and g4 and o4 are the drift and
volatility due to this credit risk of the insurer. The stochastic interest rate r;
is assumed to follow the Cox-Ingersoll-Ross process [6]

dry = k(m — r¢) dt + va/ry dZy,
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where k, m and v are given parameters and Z; is a Wiener process independent
of Wa,. Under the risk-neutral pricing measure (), the process can thus be
written as IA
Tt = redt + pu\/ridZ; + o4 dW), (3.2)
t

where W} ; and Z; are independent Wiener processes under () and
dry = K*(m* — 1) dt + vy/ri dZf (3.3)
represent the dynamics of the interest rate process under () with

Ary/TE
K =K+ A, m = — and dZ = dZ, + Y at,
K+ A v

where ), denotes the market price of interest rate risk (cf. [17]).
The loss process is assumed to follow a compound Poisson process

N(t)
Cr=)> Xj, (3.4)
j=1

where X; denotes the amount of losses caused by the jth catastrophe for the
issuing insurance company during the specific period and N(t) is a homoge-
neous Poisson process with intensity A. Thus C} represents the aggregate loss
at time ¢ for the issuing firm. It is shown in [17] that the above aggregate loss
process retains the original distribution characteristics when changing from the
physical to the risk-neutral probability measure Q).

Under the risk-neutral pricing measure, the value of the CAT bond price is
given by the discounted expectation of its various payoffs in the risk-neutral
world. In the following subsections we will specify the payoffs of the CAT
bonds under three different scenarios:

3.1 Default-free CAT Bonds

First we consider the simple case where there is no default risk. The payoff
Poar(T) at maturity time 7' is then given by

1 if Cr<K
Poar(T) = { b if Ci S K (3.5)

where K is the trigger level in the CAT bond provisions and p is the proportion
of the principal that has to be paid to bondholders when the amount of losses
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exceeds K. The face amount of any CAT bond considered in this paper is
assumed to be 1. Under the assumptions of the model, the CAT bond price at
time 0 is then given by

- AT - AT
Poar(0) = A(0,T)e BT [Ze”’%w(mﬂa (1—2&”’!1?] (K))] :
j=0 =0
_ (3.6)
where F/(K) = Pr(X; + ...+ X; < K) denotes the jth convolution of the
claim size distribution F' and

9velm*+7)T/2 26mm” 12 2(e7T _ 1
A(0,T) = e BT = 1)
(5* +7) (e — 1) + 2y (5* +7) (e — 1) + 2y

with v = Vk*2 + 202,

3.2 Default-Risky CAT Bonds Without Basis Risk

We now include the possibility of insolvency of the insurer in our model. Typi-
cally, CAT bondholders have priority for salvage over other debtholders. How-
ever, in this case bondholders still might only be repaid part of the principal
and thus the default risk will lower the bond price. The payoff of the CAT
bond in a model including default risk is thus given by

1 if CTSKa.ndCTSAT—(J,L
Pdef(T) = p if K<Cr<Arp —pal, (37)
w otherwise,
where K and p are defined as in Section 3.1, L is the face amount of the issuing
firm’s total debts including the face amount of the CAT bonds and a is the
ratio of the total CAT bonds’ face amount over total outstanding debts.
The CAT bond price at issuing time 0 is then given by

T
Pies(0) = Egle Jo (e Pyer(T)],

where Fg denotes the expectation with respect to the risk-neutral pricing
measure Q).

3.3 Default-Risky CAT Bonds With Basis Risk

In the preceding model the issuing firm obviously has the incentive to settle
claims more generously when the incurred loss is close to the trigger level (an
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effect known as moral hazard). To circumvent this problem, an alternative
design of a CAT bond is to define the forgiveness triggers as a function of
a composite index of losses (among various firms exposed to the same catas-
trophic events)
N(t)
Cinde:c,t = Z Xinde:c,ja (38)
j=1

rather than on the individual aggregate loss process C} of the issuing firm. Here
Xindex,j denotes the amount of losses relevant for the index caused by the jth
catastrophe. X; and Xjpges, j, respectively, for j = 1,..., N(t) are assumed to
be iid random variables with (marginal) distribution function F', whereas X;
and Xjpdes,; are dependent according to some given copula structure (in [17] the
dependence structure is modeled by correlation coefficients for the logarithm
of lognormal marginals; our copula approach allows to generalize this approach
to arbitrary marginal distributions; moreover the well-known deficiency of the
correlation coefficient being a measure of linear dependence only is avoided
(see e.g. [11])). In this paper we choose Frank’s copula and Spearman’s rank
correlation coefficient p as the measure of positive dependence (0 < p < 1), see
e.g. [21]. The gap between the insurer’s actual loss and the composite index
of losses (called the basis risk) may cause the insurer to default on his debt.
Thus basis risk affects the bond price. The amount of basis risk is represented
by p (with larger basis risk for smaller values of p).
The payoff of a default-risky CAT bond including basis risk is given by

1 if Cindeac,T S K and CT S AT —alL
Pindem(T) = p if K< Cz'nde:c,T < AT - paL, (39)
—maX{AaTg Cr.,0} otherwise.

Accordingly, the corresponding CAT bond price at issuing time 0 is given by

T
F’indew(o) = EQ [6_ ‘fo r(t)dt Pindes (T)]

4 Numerical Analysis

In this section we first briefly discuss some implementation techniques needed
to exploit and optimize the numerical advantages of Quasi-Monte Carlo inte-
gration for our pricing model of CAT bonds. We then present numerical results
and compare the various solution methods in terms of efficiency.
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The following refined version of the Koksma-Hlawka inequality (2.3) shows that
one can improve the performance of QMC algorithms, if the first dimensions of
the QMC sequences (which in most constructions have a lower discrepancy in
the lower-dimensional faces, see e.g. [22]) are assigned to those variables which
are responsible for most of the integrand’s variation:

s—1
<33 Dy () Ve, (4

=0 F

1 N
‘N 3 1) - /[0,1)3 f (u)du

where the second sum is extended over all (s — [)-dimensional faces Fj of the
form y;, = .-+ = y;, = 1, the discrepancy D}‘V(ygFl)) is computed in the face
of [0,1])* containing (y%Fl)), and V= (f(F1)) is the variation (in the sense of

Vitali) of the restriction f(FV) of f to Fj (see e.g. [10]).

For this reason, in the algorithms designed in this paper the first QMC dimen-
sion is always used to determine the number N(T') of claims occurring until
maturity. Our required distribution is calculated from the uniform distribution
by standard inversion techniques (cf. [9]).

Let us first consider the case of default-free CAT bonds. Equations (3.5) and
(3.6) show that determining the corresponding price reduces to simulating a
compound Poisson process (i.e. the number and size of claims in the given
time interval). Since catastrophic events are rare, this problem therefore has
rather low dimension from the perspective of numerical integration; for the pa-
rameter values chosen in this paper, the dimension typically is between 3 to 5
(note that calculating the expected value of an s-dimensional random variable
is equivalent to evaluating an s-dimensional integral).

The dimension of the problem increases considerably, when default risk of the
bonds is included in the model. Due to the dependence between the asset
process A; and the stochastic interest rate process r; one has to simulate the
interest rates explicitly (opposed to the case of default-free bonds, where a
suitable choice of numeraire led to (3.6)). In accordance with [17], we discretize
the stochastic differential equation (3.3) to

Tiv1 = 1 + K (" — 1) (b1 — i) +va/ri(tivg — t) Ziga, (4.2)

where the time span ;11 — t; is a week, which for 7" = 1 year introduces 52
dimensions. Here Z; (i=1..52) are iid random variables with standard normal
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distribution. A well-known problem in this context is that due to (4.2) negative
interest rates are possible. However, this only happens for a negligible fraction
of sample paths and thus it seems safe to ignore these paths (i.e. not to
use them in the calculations). For the asset process, we solve the stochastic
differential equation (3.2) to obtain

t
g

#2072 2 !
A; = Agexp l(l— )/rudu——(t—s)—l—qﬁu/\/EdZZ—i—UWt*5],
S

2 2

S

where ¢ > s, and discretize the solution in the following way

2,,2

Aiy1 = Ajexp [(1 — S (b — ) T — (b — 1) +
VTir1+4/Ti
+ T T8 Zigr 4 0/ — tz‘)Wi+1] :

where W; are iid standard normal random variables (i = 1,...,52), mutually
independent of Z; (i = 1,...,52). Therefore we face a problem with dimension
larger than 100.

In view of (2.3) and (2.5), theoretically QMC integration should lead to good
results for small dimensions only. However, empirically it turns out that QMC
techniques can be very effective also for high dimensional numerical integra-
tion. One explanation is the low effective dimension of many integrands. This
concept (introduced in [4]) formalizes the idea that only a few variables are re-
sponsible for most of the variation of the integrand. One well-known technique
for reducing the effective dimension of the integrand when simulating a Wiener
process is to use Brownian bridges (cf. [20]), which is based on a reordering
of the discretization points and using conditional distributions to calculate the
corresponding sample paths (see also [16]). We will implement and compare
this technique in the sequel.

As indicated in Section 2, in many practical situations QMC methods turn out
to be particularly effective, if QMC sequences are used for the ”effective” di-
mensions only and the remaining dimensions are then simulated using pseudo-
random numbers. This hybrid Monte Carlo approach increases the simulation
speed of pure QMC, while the convergence speed of the relative error in terms
of N is nearly unafffected. Throughout this paper, all QMC algorithms are
hybrid algortihms with 30 QMC dimensions, and we use the Mersenne Twister
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Figure 1: Approximation of default-free CAT bond prices (Lognormal claims):
Relative error as a function of the sample size N (left) and calculation time ¢
(right)

as our pseudorandom number generator, which basically is an optimized ver-
sion of a multiplicative congruential algorithm (see [19]). In our calculations,
the first QMC dimension is always used to generate the number of losses N (T'),
and the following initial dimensions are used to generate the catastrophic loss
amounts X (resp. Xjnder ;). For consistency of the convergence analysis it is
important to fix the number of QMC dimensions reserved for the loss amounts.
The remaining QMC dimensions are then assigned to the most important vari-
ates of the asset process and the interest rate process, respectively.

The introduction of basis risk makes it necessary not only to generate claim
amounts (of the index) Xjpgeq, j, but also random variables X; dependent on
Xindex,j according to the specified copula structure (see Section 3.3). This
can be achieved by implementing a modified inversion technique involving the
partial derivatives of the copula function (see e.g. [21], Chapter 2). The
dimension of this model is slightly bigger than without basis risk.

Table 1 now gives the parameter values used in the calculations below. For the
catastrophic claim size distribution, the heavy-tailed Lognormal and Weibull
distributions are chosen with typical parameters in practical situations.

Figure 1 depicts least-squares linear regression fits of the relative error of QMC
and Monte Carlo techniques as a function of the sample size N and the calcu-
lation time ¢ (measured in seconds), respectively. The ”"exact” value, in lack of
an analytic solution, is obtained by a Monte Carlo simulation over 50 million
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T term of the contract (in years) 1
oA volatility of credit risk 0.05
¢ interest elasticity of asset -3
Ao/L  asset/liability ratio 1.1
70 initial instantaneous interest rate 0.05
k magnitude of mean reverting force 0.2
long run mean of interest rates 0.05
v volatility of interest rates 0.1
Ar market price of interest risk -0.01
K trigger level 100
P ratio of principal paid back in case 0.5

the trigger has been pulled

a ratio of amount of CAT bonds to total debts 0.1
L insurer’s total amount of debts 100
Claim size distribution density
o _(log==2)?
Lognormal f(z) = Toean €
Weibull f(z) = 0.3240:96¢—0-162"%°

Table 1: Parameter values and catastrophic claim size distributions

sample paths. For every N, the estimate of the Monte Carlo error was obtained
by averaging the error of 25 runs with N sample paths each. The plot shows
that the QMC algorithms outperform crude Monte Carlo significantly, both
for a given number of sample paths N and given calculation time ¢. The latter
plot also contains the following information: for a given calculation time ¢,
what is the relative error of the estimate that can be achieved by each of these
methods? In the case of default-free CAT bonds, the Sobol sequence seems to
be best suited for the corresponding integrand.

Figure 2 shows a comparison of MC and QMC algorithms for the estimation
of the price of default-risky CAT bonds without basis risk. The subscript
B refers to the Brownian bridge algorithm of the respective QMC technique.
Again the QMC algorithms turn out to be much more effective, both in terms
of N and t. The Brownian bridge approach discussed above leads to a slight
improvement over the respective plain QMC algorithm. Note that the dimen-
sion of the problem in Figure 2 is much higher than that of Figure 1. Especially
for large values of N and ¢, the Sobol and Halton sequences seem to be partic-
ularly competitive.
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Default-free CAT bonds
CDh N MC Sobol Halton Faure
Lognormal | 27° | 4.7E-03 | 1.2E-03 | 7.4E-04 | 4.6E-03
A=2 2% | 9.8E-04 | 5.3E-04 | 2.2E-04 | 1.1E-04
220 | 15E-04 | 4.9E-06 | 1.6E-05 | 2.8E-06

Default-risky CAT bonds without basis risk

CD N MC Sobol Halton Faure SBB Hgar Fgp

LN 219 1 1.08-02 | 4.9E-03 | 1.1E-03 | 1.0E-02 | 3.8E-03 | 7.5E-05 | 9.9E-03
A=2 | 2!% | 2.3E-03 | 5.5E-05 | 2.2E-04 | 2.2E-04 | 1.0E-04 | 1.8E-04 | 5.1E-04
220 | 39E-04 | 1.6E-04 | 1.2E-04 | 1.0E-04 | 8.8E-05 | 8.4E-05 | 5.5E-06
Weibull | 2™ | 8.6E-03 | 1.1E-03 | 7.1E-03 | 1.8E-02 | 2.1E-03 | 5.7E-03 | 2.0E-02

A=4 | 2'% | 1.8E-03 | 1.5E-03 | 1.3E-03 | 8.2E-04 | 1.8E-03 | 7.1E-04 | 6.8E-04
220 | 1.9E-04 | 2.6E-05 | 8.9E-05 | 1-2E-04 | 8.4E-05 | 8.4E-05 | 8.0E-05

Default-risky CAT bonds with basis risk
CDh N MC Sobol Halton Faure SeB Hpp Fgr
LN 2™ | 1.1E-02 | 4.4E-03 | 6.5E-03 | 9.5E-04 | 1.3E-03 | 2.2E-03 | 2.4E-04

p=0.5 | 2'5 | 2.5E-03 | 8.8E-05 | 4.7E-04 | 1.4E-03 | 2.9E-04 | 4.6E-04 | 7.8E-04
A=2 | 2?0 | 4.3E-04 | 3.6E-05 | 6.3E-05 | 3.3E-05 | 5.8E-05 | 7.0E-05 | 1.4E-04
Weibull | 21 | 6.2E-03 | 4.6E-03 | 1.9E-03 | 1.8E-02 | 3.0E-03 | 1.4E-04 | 1.7E-02
p=0.8 | 2'° | 1.4E-03 | 4.4E-04 | 9.0E-04 | 1.5E-05 | 1.1E-04 | 1.5E-03 | 3.9E-04
A=4 | 2?0 | 3.2E-04 | 1.5E-04 | 1.0E-04 | 2.7E-05 | 7.4E-05 | 2.7E-05 | 7.9E-05
Weibull | 2™' | 5.5E-03 | 4.1E-04 | 2.0E-03 | 1.6E-02 | 6.9E-04 | 6.7E-04 | 1.5E-03
p=03 | 21° | 1.6E-03 | 8.7E-04 | 1.3E-03 | 3.2E-03 | 1.1E-03 | 1.8E-03 | 1.4E-04
A=4 | 2?0 | 3.3E-04 | 2.7E-05 | 9.6E-05 | 6.6E-05 | 9.9E-05 | 3.3E-05 | 1.1E-04

Table 2: Relative errors of MC and QMC algorithms for given claim distribu-
tions (CD) and values of p and .

Figure 3 captures the situation in the case of default-risky CAT bonds includ-
ing basis risk for various dependence levels p. Again, Monte Carlo methods
are always beaten by their deterministic alternatives. Some of the QMC se-
quences outperform the Monte Carlo approach by several orders of magnitude.
Note that the size of the relative error in all these plots is very small, which
further emphasizes the competitiveness of QMC techniques (e.g. for Weibull
distributed claims and p = 0.8, using the Sobol Brownian bridge technique, a
relative error of 5-10~* can be achieved in about 0.1 seconds!).

As a numerical illustration, Table 2 gives relative errors of our MC and QMC
algorithms in all three models for various parameter choices and increasing V.
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Figure 2: Approximation of default-risky CAT bond prices without basis risk
(Lognormal claims (above) and Weibull claims (below)): Relative error as a
function of N (left) and calculation time ¢ (right)

Note that it can happen that QMC estimates are closer to the exact value
for lower values of N. This may happen since the actual estimate for a given
N may be above or below the average behavior represented by the regression
fit. This effect does not occur for the Monte Carlo approach, since we already
average over 25 simulation runs.

Finally, Figure 4 depicts the CAT bond prices in the presence of basis risk
as function of the dependence parameter p (representing the amount of basis
risk) and the ratio a of the total CAT bonds’ face value over total outstanding
debts. Moreover the CAT bond prices as a function of p and trigger level K
are given. Numerical illustrations are given in Table 3. An increase in basis
risk leads to considerably lower CAT bond prices, which shows that neglecting
basis risk can be very dangerous for holders of these bonds.
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Figure 3: Approximation of default-risky CAT bond prices with different levels
of basis risk (Lognormal claims, p = 0.5 (top); Weibull claims, p = 0.8 (middle)
and Weibull claims, p = 0.3 (bottom)): Relative error as a function of N (left)
and calculation time ¢ (right).
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a Spearman p K Spearman p
0 0.2 0.5 0.8 1 0 0.2 0.5 0.8 1
0.1 | 0.695 | 0.700 | 0.709 | 0.722 | 0.758 80 | 0.682 | 0.687 | 0.697 | 0.711 | 0.740
0.3 | 0.683 | 0.688 | 0.698 | 0.712 | 0.747 90 | 0.689 | 0.694 | 0.703 | 0.717 | 0.750
0.5 | 0.668 | 0.674 | 0.684 | 0.699 | 0.729 100 | 0.695 | 0.699 | 0.708 | 0.722 | 0.757
0.7 | 065 | 0.656 | 0.666 | 0.681 | 0.705 110 | 0.700 | 0.704 | 0.713 | 0.726 | 0.762
0.9 | 0.624 | 0.631 | 0.641 | 0.655 | 0.672 120 | 0.704 | 0.709 | 0.717 | 0.730 | 0.764

Table 3: CAT bond prices for various levels of basis risk (p), ratio a and trigger
levels K.

Figure 4: Default-risky CAT bond prices as a function of basis risk (p) and
ratio a of CAT bonds in total debt (left), respectively trigger level K (right).

References

[1]

H. Albrecher, R. Kainhofer: Risk theory with a non-linear dividend
barrier, Computing 68 (2002), 289-311.

H. Albrecher, R. Kainhofer, R.F. Tichy: Simulation methods in
ruin models with non-linear dividend barriers, Math. Comput.
Simulation (2002), to appear.

R.C. Baker: On irregularities of distribution II J. London Math.
Soc. (2) 59 (1999), 50-64.

R.E. Caflisch: Monte Carlo and Quasi-Monte Carlo methods,
Acta Numerica (1998), 1-46.

W.W. Chen, M.M. Skriganov: Ezplicit constructions in the clas-
sical mean squares problem in irregularities of point distribution,
J. Reine Angew. Math. 545 (2002), 67-95.



18

[12]

[13]

[14]

[15]
[16]

[17]

[18]

H. Albrecher, J. Hartinger, R.F. Tichy

J. Cox, J. Ingersoll, S. Ross: The Term Structure of Interest Rates,
Econometrica 53 (1985), 385-407.

S.H. Cox, H.W. Pederson: Catastrophe Risk Bonds, North Amer-
ican Actuarial Journal 4 (2000), 56-82.

N.A. Doherty: Financial Innovation in the Management of Catas-
trophe Risk, Journal of Applied Corporate Finance 10 (1997),
134-170.

L. Devroye: Non Uniform Random Variate Generation, Springer,
1986.

M. Drmota, R.F. Tichy: Sequences, Discrepancies and Applica-
tions, Lecture Notes in Mathematics 1651, Springer, New York,
1997.

P. Embrechts, A. McNeil, D. Straumann: Correlation and De-
pendence in Risk Management: Properties and Pitfalls, In: Risk
Management: Value at Risk and Beyond (2002), ed. M. Demp-
ster, Cambridge Univ. Press, 176-223.

H. Faure: Discrépance de suites associées a un systéme de
numération (en dimension s), Acta Arithmetica 41 (1982), 337—
351.

J.H. Halton: On the efficiency of certain quasi-random sequences
of points in evaluating multidimensional integrals, Numer. Math.
(1960), 84-90.

S. Heinrich, E. Novak, G. Wasilskowski, H. Wozniakowski: The
inverse of the star-discrepancy depends linearly on the dimension,
Acta Arithm. XCVT (2001), 279-302.

M.H. Kalos, P.A. Whitlock: Monte Carlo Methods, John Wiley,
New York, 1986.

G. Larcher, G. Leobacher: Tractability of the Brownian bridge
algorithm, preprint, 2002.

J.P. Lee, M.T. Yu: Pricing default-risky CAT bonds with moral
hazard and basis risk, Journal of Risk and Insurance 69 (2002),
25-44.

H. Loubergé, E. Kellezi, M. Gilli: Using Catastrophe-linked Secu-
rities to diversify Insurance Risk, Journal of Insurance Issues 22
(1999), 125-146.



Multivariate Approximation Methods for the Pricing of CAT Bonds 19

[19]

[20]
[21]

[22]

[23]

[24]
[25]

[26]

[27]

M. Matsumoto and T. Nishimura: Mersenne Twister: A 623-
dimensionally equidistributed uniform pseudorandom number gen-
erator, ACM Trans. on Modeling and Computer Simulation 8
(1998), 3-30.

W. Morokoff: Generating Quasi-Random Paths for Stochastic
Processes, SIAM Review 40 (1998), 765-788.

R. Nelsen: An Introduction to Copulas, Lecture Notes in Statistics
139, Springer, Berlin, 1999.

H. Niederreiter: Random Number Generation and Quasi-Monte
Carlo Methods, Society for Industrial and Applied Mathematics,
Philadelphia, 1992.

H. Niederreiter, R.F. Tichy, G. Turnwald: An inequality for differ-
ences of distribution functions, Arch. Math. (Basel), 54 (1990),
166-172.

S.H. Paskov, J.F. Traub: Faster Valuation of Financial Deriva-
tives, Journal of Portfolio Management (1995), 113-120.

K.F. Roth: On irregularities of distribution, Mathematika 1
(1954), 73-79.

I.M. Sobol’: On the distribution of points in a cube and the ap-
prozimate evaluation of integrals, USSR Comput. Math. Math.
Phys. (1967), 86-112.

Wozniakowski: Awverage case complexity of multivariate integra-
tion, Bull. Amer.Math.Soc. (N.S.) 24 (1991), 185-191.

Address(es):

Hansjorg Albrecher, Jiirgen Hartinger and Robert F. Tichy
Graz University of Technology

Department of Mathematics

8010 Graz, Austria



