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Summary 

The increasing affordability of sequencing technologies offers many new and exciting 

opportunities to address a diverse array of biological questions. This is evidenced in 

entomological research by numerous genomics and transcriptomics studies that attempt to 

decipher the often complex relationships amongst different species or orders and to build ‘omics’ 

resources to drive advancement of the molecular understanding of insect biology. Being able to 

gauge the quality of the sequencing data is of critical importance to understanding the potential 

limitations on the types of questions that these data can be reliably used to address. This 

chapter details the use of the Benchmarking Universal Single-Copy Orthologue (BUSCO) 

assessment tool to estimate the completeness of transcriptomes, genome assemblies, and 

annotated gene sets in terms of their expected gene content. 
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1   Introduction 

 

Advances in genomics technologies mean that high-throughput nucleotide sequencing has 

become a relatively low-cost and thus widely accessible tool with numerous applications in 

biological research. Nevertheless, as researchers in the field know only too well, technical 

issues, e.g. sample preparation, as well as biological complexities, e.g. large genome sizes, 

can present substantial challenges to successfully building high-quality genomics resources (1). 

Most leading technologies offer in-house sequencing accuracy estimates, and several 
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computational tools allow for detailed assessments of the performance of sequencing and 

assembly strategies, e.g. QUAST (2) and REAPR (3) genome assembly quality evaluators. 

Metrics such as contig or scaffold N50 values (half of the total assembly span is made up of 

contigs or scaffolds of length N50 or longer) offer a summary-statistic view of genome assembly 

contiguity. Scaffold counts and N50 values from a representative selection of recently published 

draft insect genomes show that some are currently rather fragmented and will require 

considerable improvement efforts to reach near-chromosomal-level status (Table 1). However, 

as a major goal of many genomics studies is to catalogue the complete repertoire of protein-

coding genes to facilitate subsequent detailed molecular biology experiments, it is important to 

also assess the quality of these resources with respect to their completeness in terms of their 

expected gene content. 

Organism Species 
Assembly 

size (Mbps) 

Number of 

Scaffolds 

Scaffold 

N50 (Kbps) 

BUSCO 

Completeness 
Publication 

Fruit fly 
Drosophila 

serrata 
198.3 1,360 942.6 

C:94.1% 

F:2.5%, M:1.3% 

Allen et al. 

2017 (4) 

Postman 

butterfly 

Heliconius 

melpomene 
275.2 795 2,103 

C:81.6% 

F:11.1%, M:7.3% 

Davey et al. 

2016 (5) 

Tobacco 

hornworm moth 

Manduca 

sexta 
419.4 20,871 664 

C:86.4% 

F:8.4%, M:5.2% 

Kanost et al. 

2016 (6) 

Mycalesine 

butterfly 

Bicyclus 

anynana 
475.4 10,800 638 

C:98.3% 

F:0.9%, M:0.8% 

Nowell et al. 

2017 (7) 

Mediterranean 

fruit fly 

Ceratitis 

capitata 
479 1,806 4,118 

C:95.6% 

F:3.4%, M:1.0% 

Papanicolaou et al. 

2016 (8) 

Bed bug 
Cimex 

lectularius 
650.5 1,402 7,173 

C:78.6% 

F:14.0%, M:7.4% 

Benoit et al. 

2016 (9) 

Asian longhorned 

beetle 

Anoplophora 

glabripennis 
710 10,473 659 

C:85.7% 

F:11.0%, M:3.3% 

McKenna et al. 

2016 (10) 

Banded 

demoiselle 

Calopteryx 

splendens 
1,630 8,896 422 

C:53.5% 

F:31.8%, M:14.7% 

Ioannidis et al. 

2017 (11) 

 

Table 1 Assembly statistics and BUSCO assessment results from a representative selection 

of recently published draft insect genomes. BUSCO completeness: C, complete; F, 

fragmented; and M, missing. Species are ordered from the smallest to the largest assembly size 

and all reported values were retrieved directly from each of the publications listed. 
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The Benchmarking Universal Single-Copy Orthologue (BUSCO) assessment tool (12, 13) 

implements such quantifications of completeness for assembled genomes and transcriptomes, 

as well as annotated protein-coding gene sets. The assessment tool identifies matches to sets 

of genes that are expected to be present as single-copy orthologues in a given taxonomic group. 

This expectation is defined by surveying major species clades with numerous sequenced and 

annotated genomes to identify near-universally-present single-copy orthologues, using the 

OrthoDB (14) catalogue of orthologues (http://www.orthodb.org). For arthropods, BUSCO 

currently provides five assessment lineages: Arthropoda, Insecta, Endopterygota, 

Hymenoptera, and Diptera (http://busco.ezlab.org). The evolutionary filter for genes that are 

almost always present as single-copy orthologues across a given clade, i.e. genes evolving 

under ‘single-copy control’ (15, 16), means that they are expected to be present in any newly 

sequenced species from the same taxonomic group. Quantifying proportions of BUSCOs that 

can be reliably identified from different genomic resources therefore provides like-for-like 

estimates of their relative completeness that complement other quality metrics. Importantly, this 

means that even if a draft genome assembly is still rather fragmented, good BUSCO 

completeness results allow researchers to proceed with confidence knowing that they have 

managed to capture most of the expected protein-coding gene repertoire. The examples in 

Table 1 illustrate how scaffold counts or N50 values are not necessarily predictive of BUSCO 

completeness, highlighting the importance of such assessments to ensure transparent and 

intuitive genomic resource quality measures for the benefit of the entire research community. 

 

This chapter presents step-by-step examples of using BUSCO to assess the completeness of 

different insect genomics resources, with sufficient detail to allow even those unfamiliar with 

command line computing to run their own assessments. The assessment process consists of 

running a computational pipeline to identify and then classify BUSCO matches from genome 

assemblies, annotated gene sets, or transcriptomes, using HMMER (17) hidden Markov 

models (HMMs). For transcriptomes the longest open reading frames are assessed, while for 

genome assessments, gene models are first built using ab initio gene prediction with 

Augustus (18) for the potential matches identified using tBLASTn (19) searches. Matches 

that meet the BUSCO HMM score cut-offs are classified as ‘complete’ if their lengths fall within 

BUSCO profile length expectations, and if found more than once they are classified as 

‘duplicated’. Those that do not meet the length requirements are considered as partial matches 

and are classified as ‘fragmented’, and BUSCOs without matches that pass the thresholds are 

classified as ‘missing’. In this way, the assessments provide an intuitive quantification of the 

completeness of different genomics datasets in terms of expected gene content.  

 

http://www.orthodb.org/
http://busco.ezlab.org/
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2   Materials 

 

Before running BUSCO assessments, users are required to first set up the BUSCO software 

and its dependencies on their computer system and make sure that the data they wish to 

analyse adhere to the correct formats. These are outlined below, and users are encouraged to 

visit the website and read the user guide for further detailed information (http://busco.ezlab.org). 

 

2.1 Software setup 

 

1. BUSCO has been developed in Python and tested on Linux operating systems and it is 

therefore recommended to use a Linux machine for running BUSCO and its 

dependencies. 

2. The software distribution is available from a public GitLab project where it can be 

downloaded or preferably (see Note 1) cloned using a git client: 

$ git clone https://gitlab.com/ezlab/busco.git 

3. As well as Python, the following software packages are BUSCO dependencies and thus 

must also be installed on the system: 

HMMER (v3.1b2) from http://hmmer.org 

NCBI BLAST+ from https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+ (see Note 2)  

Augustus (v3.2.1 or above) from http://bioinf.uni-greifswald.de/augustus (see Note 3) 

4. BUSCO v3 is installed on the system by executing the setup.py script (see Note 4): 

$ sudo python setup.py install  (with root privileges) 

$ python setup.py install --user  (with only user privileges) 

5. BUSCO v3 setup is controlled with a user-editable configuration file. The 

config.ini.default file in the BUSCO ‘config’ directory must first be copied to 

config.ini before editing. In this copied file, users must declare the paths to all 

dependencies (this simply tells BUSCO where they are installed on your system). Users 

may also use this config.ini file to define the input parameters for a particular analysis, 

but should be aware that providing input parameters through the command line will 

override those defined in the config.ini file. 

6. Users without access to a Linux machine or cluster may instead use the BUSCO virtual 

machine (VM). The BUSCO VM was built using OSboxes (http://www.osboxes.org), it 

comes with the BUSCO software and its dependencies already pre-installed and can be 

downloaded from http://busco.ezlab.org. To run the VM, users need to first download and 

install a VM manager that is compatible with their system (e.g. Windows, Linux, 

http://busco.ezlab.org/
http://hmmer.org/
https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+
http://bioinf.uni-greifswald.de/augustus
http://www.osboxes.org/
http://busco.ezlab.org/
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Macintosh, or Solaris etc.) such as VMware (https://www.vmware.com) or VirtualBox 

(https://www.virtualbox.org). 

7. It is highly recommended to first run a test using the sample data provided as part of the 

BUSCO software distribution. Execute the following commands and compare the final 

output ‘run_TEST’ with the provided files in ‘sample_data/run_SAMPLE’. 

$ python scripts/run_BUSCO.py --in sample_data/target.fa --out TEST 

--lineage_path sample_data/example --mode genome 

 

 

2.2   Input data 

 

1. This chapter details the assessment of several publicly available mosquito genome 

assemblies and their annotated gene sets from genome sequencing projects (20–22) that 

can all be downloaded from VectorBase (23) (https://www.vectorbase.org/downloads). 

2. The examples used for running transcriptome assessments were selected from publicly 

available hymenopteran datasets generated as part of large-scale insect transcriptomics 

studies (24, 25) that can all be downloaded from the NCBI’s Transcriptome Shotgun 

Assembly (TSA) Sequence Database (https://www.ncbi.nlm.nih.gov/genbank/tsa).  

3. Input sequence data for genome, transcriptome, or gene set assessments should be 

provided in standard FASTA format. Files that contain non-standard nucleotides or amino 

acids in the sequence lines, or non-alphanumeric or non-ASCII characters in the header 

lines, could cause errors and therefore these should be avoided wherever possible. 

4. Pre-processing of the input data is required in order to obtain true estimates of the 

numbers of duplicated BUSCOs for annotated gene sets and transcriptomes, these 

should be pre-processed to select just one representative transcript per gene (see Note 

5). 

5. The lineage datasets used for BUSCO assessments are not provided with the software 

distribution. Instead, users should download the appropriate lineage dataset(s) from 

http://busco.ezlab.org  (see Note 6). For example, this chapter uses genomic data from 

dipterans and hymenopterans, so: 

$ wget http://busco.ezlab.org/datasets/diptera_odb9.tar.gz 

$ wget http://busco.ezlab.org/datasets/hymenoptera_odb9.tar.gz 

6. Each downloaded lineage dataset will need to be unpacked and decompressed before it 

can be used, for example: 

$ tar -xf diptera_odb9.tar.gz 

$ tar -xf hymenoptera_odb9.tar.gz 

 

 

https://www.vmware.com/
https://www.virtualbox.org/
https://www.vectorbase.org/downloads
https://www.ncbi.nlm.nih.gov/genbank/tsa
http://busco.ezlab.org/
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3   Methods 

 

With the BUSCO software and its dependencies correctly set up, the relevant BUSCO lineage 

datasets downloaded and unpacked, and some example insect genomics datasets downloaded 

and pre-processed (if required), genome, gene set, and transcriptome assessments can now 

be performed. 

 

 

3.1   Genome assessments 

 

1. To run genome mode assessments BUSCO needs to know the location of the 

Augustus configuration directory so the ‘config’ path must first be declared as an 

environment variable (see Note 3):  

$ export AUGUSTUS_CONFIG_PATH="/path/to/AUGUSTUS/augustus-3.2.3/config/" 

2. The command to launch a genome assembly assessment is made up of four mandatory 

argument-value pairs that follow the python call to the run_BUSCO.py script: 

--in SEQUENCE_FILE  path to your FASTA file, here your genome 

--out NAME   a short name that identifies your analysis run 

--lineage_path LINEAGE path to the BUSCO lineage dataset directory 

--mode MODE   specify which analysis mode to run, here ‘genome’ 

So to launch an assessment of the genome assembly of the Anopheles arabiensis 

mosquito using the dipteran lineage dataset the command would be (see Note 7): 

$ python /path/to/busco/scripts/run_BUSCO.py 

--in /path/to/mosquito/genomes/Anopheles-arabiensis-D1-genome.fs  

--out AARAD1  

--lineage /path/to/lineage/dataset/diptera_odb9  

--mode genome 

3. There are several additional argument-value pairs that are optional and allow users to 

change the default values of various settings, e.g. if the user’s system has access to 

multiple computing cores then they can take advantage of this using the --cpu argument 

(CPU, central processing unit), or the e-value cut-off for tBLASTn searches can be 

changed with the --evalue argument (see Note 8). 

4. One of the most important optional arguments to consider for genome assembly 

assessments is the choice of AUGUSTUS pre-trained species-specific gene prediction 

parameters. Each BUSCO lineage dataset has a predefined default selection, e.g. for 
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the Diptera lineage the default is ‘fly’, which are AUGUSTUS gene prediction 

parameters pre-trained on the fruit fly, Drosophila melanogaster (see Note 9).  

5. Running the above assessment of the 246.6 megabasepair (Mbp) Anopheles arabiensis 

genome assembly using the dipteran lineage dataset on 12 CPUs with otherwise default 

options should take approximately four hours (see Note 10). 

 

 

3.2   Gene set assessments 

 

1. Launching an assessment of an annotated gene set follows the same basic rules as for 

genome assemblies, with the same four mandatory argument-value pairs that follow the 

python call to the run_BUSCO.py script: 

--in SEQUENCE_FILE  path to your FASTA file, here your proteins 

--out NAME   a short name that identifies your analysis run 

--lineage_path LINEAGE path to the BUSCO lineage dataset directory 

--mode MODE   specify which analysis mode to run, here ‘proteins’ 

So to launch an assessment of the Anopheles arabiensis annotated gene set (version 

AaraD1.6) using the dipteran lineage dataset the command would be: 

$ python /path/to/busco/scripts/run_BUSCO.py 

--in /path/to/mosquito/genesets/Anopheles-arabiensis-D1-proteins-1.6.fs  

--out AARAD16  

--lineage /path/to/lineage/dataset/diptera_odb9  

--mode proteins 

2. Running this assessment of the 13,452 Anopheles arabiensis (AaraD1.6) protein-coding 

genes using the dipteran lineage dataset on 4 CPUs with otherwise default options should 

take approximately forty minutes (see Notes 10,11). 

 

 

3.3   Transcriptome assessments 

 

1. Transcriptome assessments are launched with the same four mandatory argument-value 

pairs that follow the python call to the run_BUSCO.py script: 

--in SEQUENCE_FILE  path to your FASTA file, here your transcripts 

--out NAME   a short name that identifies your analysis run 

--lineage_path LINEAGE path to the BUSCO lineage dataset directory 

--mode MODE   specify which analysis mode to run, here ‘transcriptome’ 
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So to launch an assessment of the transcriptome from an adult Pelecinus polyturator 

parasitoid wasp (NCBI BioProject: PRJNA252202) using the hymenopteran lineage 

dataset the command would be: 

$ python /path/to/busco/scripts/run_BUSCO.py 

--in /path/to/wasp/transcriptomes/Pelecinus_polyturator.fs  

--out PPOLY  

--lineage /path/to/lineage/dataset/hymenoptera_odb9  

--mode transcriptome 

2. Running this assessment of the 35,969 Pelecinus polyturator transcripts using the 

hymenopteran lineage dataset on 4 CPUs with otherwise default options should take 

approximately two hours and forty minutes (see Note 10). For this analysis the 

transcriptome was not pre-processed to remove highly-similar transcripts (see Note 5). 

 

 

3.4   Understanding the results 

 

1. Successful assessments will each produce a simple summary results file that reports the 

full command used to launch the assessment (this is useful in order to be able to re-run 

the same analysis), as well as the percentages and counts of ‘complete’ (single-copy and 

duplicated), ‘fragmented’, and ‘missing’ BUSCOs. For example, the results of the 

Anopheles arabiensis genome assembly assessment: 

C:98.2%[S:98.1%,D:0.1%],F:0.7%,M:1.1%,n:2799 

2750 Complete BUSCOs (C) 

2746 Complete and single-copy BUSCOs (S) 

4  Complete and duplicated BUSCOs (D) 

19 Fragmented BUSCOs (F) 

30 Missing BUSCOs (M) 

2799 Total BUSCO groups searched 

2. All three assessment modes will also produce a ‘full_table’ file with classification 

results for each BUSCO, a ‘missing_busco_list’ file with the missing BUSCOs, 

and a ‘hmmer_output’ directory with the full results of the HMM searches. In addition, 

genome and transcriptome mode assessments will report the results of tBLASTn 

searches, and genome mode results include the details for all the Augustus gene 

predictions as well as Augustus training parameters and the nucleotide and protein 

sequences of the identified complete single-copy BUSCOs (see Note 12). 

3. The BUSCO plotting tool enables users to visualise their results as a simple bar chart, 

allowing for clear comparisons of different datasets (see Note 13). To generate a chart, 

users must first copy the short summary results files from each assessment that they want 
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to visualise into a single directory. The generate_plot.py script can then be launched 

pointing to this directory to automatically produce the chart. For example, the commands 

below will plot the results from the Anopheles arabiensis genome (AARAD1) and gene 

set (AARAD16) assessments, producing the image file busco_figure.png in the same 

directory where the summary results were copied: 

$ mkdir arabiensis_results 

$ cp run_AARAD1/short_summary_AARAD1.txt arabiensis_results/. 

$ cp run_AARAD16/short_summary_AARAD16.txt arabiensis_results/. 

$ python /path/to/busco/scripts/generate_plot.py –wd arabiensis_results/ 

4. Repeating the steps outlined above to assess a total of 15 publicly available mosquito 

genome assemblies and their annotated gene sets and then plotting the results enables 

the like-for-like comparison of these genomic resources, where all but five datasets are 

more than 95% ‘complete’ (Figure 1). Furthermore, these mosquito genomics resources 

all show very low levels of duplications, indicating that the assemblies are likely mostly 

free of haplotype regions (see Note 14). In addition, the genome assembly results 

generally mirror those of the gene sets, with the assemblies usually performing slightly 

better apart from a few cases where the assembly appears substantially better than the 

gene set (see Note 15). These estimates of ‘complete’, ‘fragmented’, and ‘missing’ 

BUSCOs (see Note 16) provide intuitive metrics with which to gauge the relative quality 

of these genomic resources in terms of their expected gene content.  

5. Repeating the steps outlined above for the assessments of many more publicly available 

hymenopteran transcriptomes and plotting the resulting completeness scores against the 

numbers of transcripts demonstrates their highly variable completeness (Figure 2). 

Transcriptomes may well be expected to show rather variable completeness scores as 

the total repertoire of RNAs that are sequenced and assembled will often reflect the type 

of biological sample, e.g. a pooled sample from multiple tissues and life-stages will 

probably capture more than a sample from a specialised tissue (see Note 17). 

 

 

 

 

 

 

 

4   Notes 

 

1. Users are encouraged to use the git client option to retrieve the BUSCO software as this 

will make installation of future updates much simpler and easy to manage. Additionally, 
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the GitLab project ‘issues’ page is worth consulting as it is a good source of tips and 

discussions from BUSCO users. 

2. It has been reported that when running BUSCO using multiple cores, the tBLASTn step 

from BLAST+ versions 2.4, 2.5, and 2.6 may occasionally fail to complete and thus the 

BUSCO assessment will fail with an error message to this effect. To avoid this problem, 

use an earlier BLAST+ version or run using only a single core. 

3. Users only need to install Augustus if they plan to assess genome assemblies. As 

Augustus has dependencies of its own, e.g. Perl, users should consult the Augustus 

documentation for the correct installation procedures. If working on a system where 

Augustus has already been installed by an administrator and the user does not have 

‘write permission’ to the Augustus ‘config’ directory, users can simply recursively copy 

the entire ‘config’ directory to a location where they do have ‘write permission’ and then 

re-set the ‘config’ path variable to this location: 

$ cp -r /path/to/AUGUSTUS/augustus-3.2.3/config /my/home/augustus/config 

$ export AUGUSTUS_CONFIG_PATH="/my/home/augustus/config/" 

4. This was not a requirement for BUSCO v1 or v2. The v3 update refactored the 

underlying analysis code to make it more modular and extendable and thus it must be 

installed using the setup.py script. 

5. For annotated gene sets the transcript-to-gene relationships are defined in the annotation 

files, e.g. General Feature Format (GFF) files, so the longest protein-coding transcript can 

be selected for each gene with multiple annotated transcripts. For de novo transcriptomes, 

i.e. those without a reference genome, transcript-to-gene relationships are not defined so 

users have two options: (i) run the assessments without pre-processing and acknowledge 

the fact that estimates of duplicated BUSCOs are likely to be inflated by the presence of 

multiple transcripts from the same gene, or (ii) pre-process the transcriptome with a 

sequence identity (or similarity) and length filter to select just one representative from sets 

of highly similar transcripts, e.g. using CD-Hit (26).  

6. There are currently 16 bacterial lineage datasets and 28 eukaryotic lineage datasets. 

Users would normally select the most specific lineage available, i.e. the most recent 

ancestor of the species whose data is to be assessed. For example, for assessing ant 

data one would select the ‘hymenoptera’ lineage rather than the ‘arthropoda’ lineage. 

However, if there are a large number of species/strains/versions etc. to be assessed then 

to minimise runtime (at the expense of resolution) one might select a less specific (more 

ancestral) lineage dataset with fewer BUSCOs, at least for the initial rounds of 

assessments. 

7. BUSCO outputs the running log details to the default standard output (user’s terminal), 

in order to instead send these details to a file users can simply end the launch command 
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with a redirect command, and as BUSCO assessments can take some time it is useful to 

run them in the background, i.e. end launch command with: >& my_log_file.txt & 

8. The optional arguments for launching a BUSCO assessment give the user flexibility over 

many aspects, some specific to running in genome mode and others applicable in any 

mode, all of which are described in full in the user guide. Some useful options to consider 

employing include (i) --force, this will force the results to overwrite results from an 

analysis run with the same name (ii) --tarzip, this will package and compress the 

results from steps that can produce many output files; (iii) --augustus_options, this 

allows users to pass Augustus-specific parameters for gene prediction, e.g. to use 

alternative codon translation tables. 

9. Augustus comes with pre-trained gene prediction parameters for many species (see 

Augustus documentation for up-to-date details), so if parameter sets are available for 

the species to be assessed then they should be selected e.g. for the Florida carpenter 

ant, the parameter set to use can be specified by adding the argument ‘--species 

camponotus_floridanus’ to the launch command. For many other species, pre-

trained gene prediction parameters are not yet available so users should select the closest 

species for which such parameters are available, or run the assessment with the pre-

selected default parameters. For the sake of reproducibility it is important to specify which 

one was selected when reporting BUSCO results. 

10. Assessment runtimes will vary according to the exact system setup. Assessments of 

genome assemblies require the initial steps of first identifying genomic regions that 

potentially harbour BUSCO matches and then predicting gene models in these regions. 

These are computationally intensive tasks and therefore genome assembly assessments 

will take substantially longer than transcriptome or gene set assessments. Note also that 

the searches and gene predictions are performed in two rounds: (i) searches with 

consensus sequences built from BUSCO HMMs followed by gene predictions using the 

selected Augustus pre-trained parameter set; (ii) then for BUSCOs that were classified 

as ‘fragmented’ or ‘missing’ after the first round, searches with variant consensus 

sequences followed by gene predictions using parameters trained on ‘complete’ 

BUSCOs identified in round one. Thus if the first round identifies a high proportion of 

‘complete’ BUSCOs then the second round will be relatively quick, but if there are many 

‘fragmented’ or ‘missing’ BUSCOs after the first round then the second round will take 

considerably longer. 

11. The Anopheles arabiensis AaraD1.6 annotation contains 13,452 protein-coding genes 

with 13,640 transcripts so the protein FASTA file downloaded from VectorBase was first 

pre-processed to select the longest protein per gene. Performing this pre-processing step 

on annotated gene sets is not obligatory, but it ensures that BUSCO estimates of the 
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numbers of duplicated genes will be true assessments that are not inflated by alternative 

transcripts that would be reported as gene duplicates.  

12. During genome assessments the second round of gene predictions uses parameter sets 

built from the ‘complete’ BUSCOs identified in the first round. These Augustus 

retraining parameters are saved in the ‘augustus_output’ results directory. They are 

ideal for use during whole genome annotation procedures that employ Augustus, 

especially when parameter sets for the species to be annotated or those of a close relative 

are not already available. In addition, the GenBank or GFF formatted ‘complete’ BUSCO 

annotations provided in the results directory can be used to train other gene predictors, 

e.g. SNAP (27).   

13. The BUSCO plotting tool uses R (https://www.r-project.org) and the ggplot2 library 

(http://ggplot2.org), so these must be installed and accessible on the system in order to 

produce the image. Alternatively, adding the optional argument --no_r to the command 

will simply produce the R script required to build the image and users can then run this R 

script on any system where R and ggplot2 are installed. This also gives the user the 

opportunity to edit the R script to tailor the resulting image, e.g. changing the default fonts, 

labels, or colours etc. 

14. If high levels of complete duplicates are reported for a genome assembly then this could 

suggest that the assembly procedure has failed to correctly collapse haplotype regions, 

resulting in numerous pairs of highly-similar duplicate gene copies. This would warrant 

further investigations to determine if this is indeed the case and if alternative assembly 

strategies need to be employed or if such regions can be removed or collapsed. However, 

knowledge of the biology of the sample itself can also offer explanations: e.g. assessing 

the Aedes albopictus C6/36 cell line genome assembly and annotated gene set suggested 

that most BUSCOs were duplicated, but cytogenetic studies have shown that this cell 

line does have aberrant karyotypes, which could explain the numerous duplicates (28). 

15. Differences in the results from assessing a genome assembly versus its annotated gene 

set may be due to several factors. In both cases BUSCO attempts to classify the matches 

to a set of protein-coding gene annotations: for genomes these annotations are built by 

BUSCO using AUGUSTUS gene predictions with BUSCO HMMs, whereas for gene 

sets they have usually been built by genome annotation pipelines (e.g. MAKER (29)) that 

incorporate evidence from several gene predictors and different sources of gene model 

support. Thus when results from assembly assessments appear to be better than for their 

gene sets it suggests that the targeted approach taken by BUSCO has produced better 

gene models than a more generalist annotation pipeline (at least for the subset of genes 

that make up the BUSCO lineage dataset). Conversely, if a gene set appears more 

complete than its genome this suggests that the multiple sources of evidence used by the 

https://www.r-project.org/
http://ggplot2.org/
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annotation pipeline have resulted in generally better annotations than the single-predictor 

approach taken by BUSCO. 

16. When interpreting BUSCO results, users should be aware that the classification 

procedure (described in the introduction) results in the labels ‘complete’, ‘fragmented’, and 

‘missing’, which are by necessity simplifications that reflect the most likely scenario. For 

example, the label ‘missing’ is applied to BUSCOs with no matches (probably truly 

absent from the dataset), but also to matches that do not meet the HMM score cut-offs. 

These below-cut-off matches could mean that these BUSCOs are in fact partially present 

in the dataset but there is simply not enough matching sequence be confident of the partial 

match and classify them as ‘fragmented’. 

17. BUSCO assessments are usually performed to demonstrate the good completeness 

levels of the genomic resources generated and analysed in a particular study. However, 

if the aim of a transcriptomics experiment is to sample a specific tissue or life-stage where 

the repertoire of transcripts is expected to be highly specialised, then low completeness 

scores would in fact offer support that such targeted sampling was successful. 
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Figures 

 

 

Fig. 1 BUSCO results from the assessments of 15 Anopheles mosquito genomes and their 

annotated gene sets. The chart was produced using the BUSCO plotting tool and 

demonstrates the intuitive visualisation of side-by-side genome and gene set results from 

multiple species. Gene set results (e.g. AARAD16) are plotted directly beneath genome 

assembly results (e.g. AARAD1) for each species with numbers indicating dataset versions: An. 

arabiensis (AARAD), An. atroparvus (AATRE), An. coluzzii (ACOLM), An. culicifacies (ACULA), 

An. dirus (ADIRW), An. epiroticus (AEPIE), An. farauti (AFARF), An. funestus (AFUNF), An. 

gambiae (AGAMP), An. merus (AMERM), An. minimus (AMINM), An. quadriannulatus 

(AQUAS), An. sinensis (ASINS), An. stephensi Indian (ASTEI), An. stephensi SDA-500 

(ASTES).  

 

 



Waterhouse et al.  Page 17 of 17 

 

 

Fig. 2 BUSCO completeness results from the assessments of 103 hymenopteran 

transcriptomes from Peters et al. 2017 (24) and Petersen et al. 2017 (25) compared to the 

number of transcripts in each transcriptome. Transcriptomes with many transcripts are not 

necessarily the most complete, and those with fewer transcripts can still score relatively well in 

terms of completeness. Several example species are labelled either directly to the left or right 

of the data point or centred directly above or below it. 

 


