
A Constrained Randomized Shortest-Paths

Framework for Optimal Exploration

(draft manuscript submitted for publication and subject to changes)

Bertrand Lebichot1, Guillaume Guex1,
Ilkka Kivimäki1,2 & Marco Saerens1,3

1ICTEAM and Machine Learning Group (MLG)
Université catholique de Louvain (UCLouvain), Belgium

2Department of Computer Science
Aalto University, Helsinki, Finland

3IRIDIA Laboratory
Université Libre de Bruxelles (ULB), Belgium

July 13, 2018

Abstract

The present work extends the randomized shortest-paths framework
(RSP), interpolating between shortest-path and random-walk routing in
a network, in three directions. First, it shows how to deal with equality
constraints on a subset of transition probabilities and develops a generic
algorithm for solving this constrained RSP problem using Lagrangian du-
ality. Second, it derives a surprisingly simple iterative procedure to com-
pute the optimal, randomized, routing policy generalizing the previously
developed “soft” Bellman-Ford algorithm. The resulting algorithm allows
balancing exploitation and exploration in an optimal way by interpolating
between a pure random behavior and the deterministic, optimal, policy
(least-cost paths) while satisfying the constraints. Finally, the two algo-
rithms are applied to Markov decision problems by considering the process
as a constrained RSP on a bipartite state-action graph. In this context,
the derived “soft” value iteration algorithm appears to be closely related
to dynamic policy programming [9, 10] as well as “Kullback-Leibler” and
“path integral” control [76, 66, 27, 43, 74, 73], and similar to the rein-
forcement learning exploration strategy recently introduced in [7, 8]. This
shows that this strategy is optimal in the RSP sense – it minimizes ex-
pected path cost subject to relative entropy constraint. Simulation results
on illustrative examples show that the model behaves as expected.

1 Introduction

1.1 General introduction

The present work aims to study randomized shortest-paths (RSP) problems
with equality constraints on the transition probabilities issued from a subset of

1

ar
X

iv
:1

80
7.

04
55

1v
1 

 [
cs

.L
G

] 
 1

2 
Ju

l 2
01

8



nodes, in the context of a single source and a single destination. This extension
allows to fix some transition probabilities and then finding the optimal pol-
icy which is compatible with these probabilities. It therefore extends previous
work dedicated to the RSP [68, 80, 48], initially inspired by stochastic traffic
assignment models developed in transportation science [4].

The studied problem can be described informally as follows. Our aim is
to find the optimal policy for reaching a goal node from a source node in a
network by minimizing the expected cost of paths connecting these two nodes,
where costs are associated to local decisions/actions. Usually, deterministic and
stochastic shortest-path algorithms provide pure deterministic policies: when
standing in a given state, we just choose the best path leading to minimal ex-
pected cost. In this work, we investigate the possibility of optimally randomizing
the policy (exploration) while fixing a subset of transition probabilities. More
precisely, the agent chooses a path to the goal node within a bag of paths ac-
cording to an optimal probability distribution minimizing expected cost of paths
subject to a relative entropy constraint, while satisfying transition probabilities
constraints on a subset of nodes. In other words, the policy is expressed in terms
of paths to the goal node. Interestingly, it can be shown that this method actu-
ally defines an optimal, biased, Markov chain in which the agent is “attracted”
by the goal node (see later for details).

The degree of randomness is controlled by a temperature parameter allowing
interpolating between the least-cost solution given by the (constrained) shortest-
path algorithm and a random behavior provided by a predefined, reference, ran-
dom policy (a reference random walk). Randomizing the policy thus introduces
a continual exploration of the network. Standard Markov decision problems are
a special case of this framework.

The originality of the work, in comparison with other models, lies in the
fact that we adopt a paths-based formalism with entropy regularization. That
is, the quantities of interest are defined on the set of full paths (or trajectories)
connecting the source node to the goal node in the network. By using this
paths-based formalism, as in the standard RSP [68, 48] and some models in
transportation science [4], it is shown that the optimal randomized policy (both
at the path level and at the edge level) can be computed by either (i) itera-
tively solving a system of linear equations or (ii) using a soft Bellman-Ford-like
iteration algorithm.

1.2 Why consider randomized policies?

In practice, randomization corresponds to the association of a probability dis-
tribution on the set of admissible decisions in each node ([68], choice random-
ization or mixed strategy in game theory). If no randomization is present, only
the best policy is exploited. Randomization thus appears when this probabil-
ity distribution is no more peaked on the best choice: the agent is willing to
sacrifice efficiency for exploration. Note that randomized choices are common
in a variety of fields [68]; for instance game theory (mixed strategies; see for
instance [58]), computer sciences [54], Markov games [51], decision sciences [63],
reinforcement learning [70], etc. A comprehensive related work and a detailed
discussion of the reasons for randomizing the policy can be found in [68, 2, 1],
which are quickly summarized here:

2



I It is sometimes necessary to explore the environment, for instance when
performing exploration in reinforcement learning [70].

I If the environment is changing over time (non-stationary), the system
could benefit from randomization by performing continual exploration.

I A deterministic policy would lead to a totally predictable behavior; on
the contrary, randomness introduces unpredictability and therefore ren-
ders interception more difficult. Randomization (randomized, or mixed,
strategies) has proved to be useful for this reason in game theory [58].

I A randomized policy spreads the traffic over multiple paths, therefore
reducing the danger of congestion.

I In some applications, like social networks analysis, computing a distance
accounting for all paths – and thus integrating the concept of high connec-
tivity – could provide better results than relying on the optimal, shortest,
paths only [26].

I In computer gaming, it is often desirable to be able to adapt the strength
of the digital opponent [31]. This allows modeling the behavior of incom-
pletely rational players.

Within the context of the RSP framework, the randomness associated to
paths connecting the source node and the goal node is quantified by the relative
entropy, or Kullback-Leibler divergence (see, e.g., [22]), between the probability
distribution defined on the paths and their likelihood according to a reference
random walk on the graph – usually following a uniform distribution on the set
of available decisions. This relative entropy captures the degree of randomness
of the system. The optimal randomized policy is then obtained by minimiz-
ing the free energy – the expected cost plus the relative entropy weighted by
temperature. As already mentioned, in this work, constraints are added to the
optimisation problem by considering equality constraints on some transition
probabilities, which are assumed provided by the environment and which have
to be verified exactly.

1.3 Integrating constraints to the RSP framework

Being able to deal with constraints on the transition probabilities is important
in a number of applications. Indeed, we do not always have a complete control
on the behavior of the system: some state transitions are intrinsically stochastic
and the model has to integrate this fact. For instance, in Markov decision
processes (MDP), part of the environment is stochastic and is modeled by a
Markov chain. By the way, it will be shown that our introduced constrained ran-
domized shortest-paths formalism subsumes simple Markov decision processes
in Section 6.

Based on this constrained RSP formalism, a first, generic, algorithm for
solving the constrained problem is developed by exploiting Lagrange duality.
Then, a simple, easy-to-implement, iterative algorithm, related to the “soft”
Bellman-Ford algorithm [28, 29], is derived and its convergence to a fixed point
is proved.

3



As an illustrative example, the framework is then used in order to solve
randomized MDP problems, therefore providing a randomized policy. Markov
decision processes [61, 62, 70, 75], also called stochastic shortest-path prob-
lems [12, 14], are currently used in a wide range of application areas including
transportation networks, medical imaging, wide-area network routing, artificial
intelligence, to name a few (see, e.g., [62, 70, 77, 78, 79]).

Interestingly, when applied to MDPs, the derived Bellman-Ford-like iterative
algorithm – called here the soft value iteration – is closely related to dynamic
policy programming [9, 10] as well as Kullback-Leibler and path integral control
[76, 66, 27, 43, 74, 73]. It is also similar to the exploration strategy recently
introduced in [7, 8]. This shows that this proposed exploration strategy is
globally optimal in the following sense: it minimizes expected cost subject to
constant relative entropy of paths probabilities when the goal state is absorbing
and reachable from any other state. Interestingly, as in [28, 29] for the standard
RSP without constraints, the soft value iteration algorithm extends the Bellman-
Ford value iteration algorithm by simply replacing the minimum operator by
a soft minimum operator. Note that still another way of solving the problem
was developed in [16], but this algorithm is not included here because it is less
generic.

1.4 Contributions and organization of the paper

In brief, this work contains the following contributions:

I It extends randomized shortest paths to problems with constrained tran-
sition probabilities on a subset of nodes.

I A generic algorithm solving the problem is introduced.

I An alternative, simple and easy-to-implement, iterative algorithm for com-
puting the optimal randomized policy is derived.

I The constrained randomized shortest-paths framework is applied to solve
standard Markov decision problems by introducing a soft value iteration
algorithm.

I Simulations on concrete problems show that the algorithms behave as
expected.

As far as the organization of the paper is concerned, Section 2 introduces the
standard randomized shortest-paths framework. Section 3 considers randomized
shortest-path problems with constraints on transition probabilities, which are
then solved in Section 4 by using Lagrange duality. Section 5 then develops an
alternative iterative algorithm, reminiscent from the Bellman-Ford recurrence,
for computing the free energy and the optimal randomized policy. In Section
6, the standard Markov decision problem is recast as a constrained randomized
shortest-path problem on a bipartite graph and a soft value iteration algorithm is
developed for solving it. Section 7 shows some simulation examples and Section
8 is the conclusion.

4



2 The standard randomized shortest-path frame-
work

As already stated, our formulation of the problem is based on the randomized
shortest-path (RSP) framework defining, among others, a dissimilarity mea-
sure interpolating between the shortest-path distance and the commute-cost
distance1 in a graph [80, 68, 48]. The RSP framework relies on full paths in-
stead of standard “local” flows [3].

In this section, we start by providing the necessary background and nota-
tion. Then, we proceed with a short summary of the randomized shortest-path
formalism before introducing, in the next section, randomized shortest paths
with constraints on the transition probabilities.

2.1 Some background and notation

Let us consider a weighted directed graph or network, G, with a set of n nodes V
(or vertices) and a set of arcs E (or edges). The graph is assumed to be strongly
connected and is represented by its n×n adjacency matrix A, containing binary
values if the graph is unweighted or non-negative, local, affinities between nodes
in the case of a weighted graph. To each edge linking node i to node j, we also
associate a non-negative number cij representing the immediate cost of following
this edge. The costs should be non-negative and are gathered in matrix C.
Note that self-loops are forbidden; in other words, the diagonal elements of the
adjacency matrix are equal to 0. Similarly, diagonal elements of the cost are
equal to ∞.

Moreover, a reference random walk (Markov chain) on G is defined in the
usual manner. The choice to follow an edge from node i will be made according
to a probability distribution (transition probabilities) defined on the set Succ(i)
of successor nodes of i. These transition probabilities, defined on each node i,
will be denoted as

pref
ij = Pref

(
s(t+ 1) = j|s(t) = i

)
=

aij∑
k∈Succ(i) aik

(1)

where aij is element i, j of the adjacency matrix and s(t) is a random variable
representing the node visited by the random walker at time t. Furthermore,
Pref will be the matrix containing the transition probabilities pref

ij as elements.
For consistency, if there is no edge between i and j (aij = 0), we consider that
cij takes a large value, denoted by ∞; in this case, the corresponding transition
probability must also be equal to zero, pref

ij = 0.
Finally, in this work, we will assume that there is a unique goal node, which

will be the last node n. This goal node is turned into an absorbing, killing,
state in the corresponding Markov chain. Thus, any transition from this node is
forbidden, that is, pref

nj = 0 for all j – the random walker is killed after reaching
goal state n.

1On an undirected graph, the commute-cost distance appears to be proportional to the
commute-time distance [25, 48] and to the effective resistance [18] (also called resistance
distance [49]) for a given graph – see [26] for a discussion.

5



2.2 The standard randomized shortest-path formalism

The main idea behind the RSP is as follows [68, 80, 48, 28, 29]. We consider the
set of all hitting paths, or walks, ℘ ∈ P from node 1 to the (unique) absorbing
and killing node n on G (a bag of paths). Since the original graph is strongly
connected, state n can be reached from any other node of the graph. Each path
℘ consists in a sequence of connected nodes starting in node 1 and ending in n.
Then, we assign a probability distribution P(·) (denoted as P for convenience)
on the set of paths P by minimizing the relative free energy2 of statistical
physics [40, 59, 65],

minimize
{P(℘)}℘∈P

φ(P) =
∑
℘∈P

P(℘)c̃(℘)

expected cost

+T
∑
℘∈P

P(℘) log

(
P(℘)

π̃(℘)

)
relative entropy

subject to
∑
℘∈P P(℘) = 1

(2)

where c̃(℘) =
∑t
τ=1 cs(τ−1)s(τ) is the total cumulated cost along path ℘ when

visiting the sequence of nodes, or states, (s(τ))
t
τ=0 and t is the length of path ℘.

Furthermore, π̃(℘) =
∏t
τ=1 p

ref
s(τ−1)s(τ) is the product of the reference transition

probabilities (see Equation (1)) along path ℘ connecting node 1 to hitting node
n – the likelihood of path ℘. It defines a reference probability distribution over
paths as

∑
℘∈P π̃(℘) = 1 [28, 29]. Note that, instead of a pure random walk, the

reference probabilities pref
ij can also be set according to some prior knowledge.

The objective function in Equation (2) is a mixture of two dissimilarity terms
with the temperature T balancing the trade-off between their relative contribu-
tions. The first term is the expected cost for reaching goal node from source
node (favoring shorter paths – exploitation). The second term corresponds to
the relative entropy [22, 45], or Kullback-Leibler divergence, between the path
probability distribution and the path likelihood distribution (introducing ran-
domness – exploration). When the temperature T is low, shorter paths are
favored while when T is large, paths are chosen according to their likelihood
in the reference random walk on the graph G. Note that we should add non-
negativity constraints on the path probabilities, but this is not necessary as
the resulting quantities will automatically be non-negative [22, 45]. Note that,
instead of minimizing free energy, it is equivalent to minimize expected cost
subject to a fixed relative entropy constraint [28, 26, 29].

This argument, akin to maximum entropy [40, 22, 44, 45], leads to a Gibbs-
Boltzmann distribution on the set of paths (see, e.g., [28, 29] for a detailed
derivation),

P∗(℘) =
π̃(℘) exp[−θc̃(℘)]∑

℘′∈P
π̃(℘′) exp[−θc̃(℘′)]

=
π̃(℘) exp[−θc̃(℘)]

Z (3)

2Alternatively, we can adopt a maximum entropy point of view, which is equivalent when
the reference probability distribution is uniform [39, 41]. Moreover, the free energy could

also be defined as φ(P) =
∑
℘∈P P(℘)(c̃(℘) − c∗) + T

∑
℘∈P P(℘) log

(
P(℘)
π̃(℘)

)
where c∗ is the

least cost from starting node 1 to goal node n. In this case, costs are computed relatively
to the shortest-path cost. This choice leads to the same probability distribution over paths
(Equation (3)).

6



where θ = 1/T is the inverse temperature and the denominator Z =∑
℘∈P π̃(℘) exp[−θc̃(℘)] is the partition function of the system.
This equation defines the optimal randomized policy at the paths level,

in terms of probabilities of choosing a particular path or trajectory, P∗(℘). It
has be shown that this set of path probabilities is exactly equivalent to the one
generated by a Markov chain with biased transition probabilities p∗ij favouring
shorter paths, depending on the temperature T (see Equations (A.8), (A.17)
and [68] for details). Contrary to (3) defined at the path level, these transition
probabilities define the optimal policy at the local, edge, level in terms of prob-
abilities of choosing an edge in each node. Note that a method for computing
the RSP on large sparse graphs by restricting the set to paths with a finite
predefined length was developed in [52, Section 4].

Several important quantities can easily be computed from this framework by,
e.g., taking the partial derivative of the minimum free energy (see Equation (A.1)
and [80, 68, 48, 28, 29, 26]). The quantities of interest that will be needed in
this paper are introduced in the Appendix A. Readers who are not familiar with
the RSP framework are invited to go through this appendix before continuing
the reading.

3 Randomized shortest paths with constrained
transition probabilities

Interestingly, the randomized shortest-path formulation just introduced in pre-
vious Section 2.2 can easily be extended to account for some types of constraints.
The goal here will thus be to determine the best randomized policy – the optimal
transition probabilities p∗ij transporting the agent to the goal state n with min-
imum expected cost for a given level of relative entropy, and subject to equality
constraints on some transition probabilities. We therefore have to derive the
equivalent of the optimal biased transition probabilities provided by Equations
(A.8), (A.17) in the standard RSP, but dealing now with equality constraints.
This new model will be called the constrained RSP. As for the standard RSP,
the goal node n is made absorbing and killing so that all the other nodes are
transient.

As already discussed, constraints on transition probabilities are common in
real-life applications where, in some (unconstrained) nodes, the agent has the
control on the probability of choosing the next node while, in some other (con-
strained) nodes, the transition probabilities are provided by the environment
and cannot be changed. An obvious example is Markov decision processes,
which will be studied in the light of constrained RSP in Section 6. The con-
strained RSP therefore extends the range of applications of the standard RSP
framework.

More concretely, we proceed as in previous section with the standard RSP,
but we now constrain the transition probabilities associated to some nodes to
be equal to predefined values provided by the user. In other words, we fix the
relative flow passing through the edges incident to the nodes belonging to the
subset of nodes C ⊂ V\{n} (the absorbing goal node is excluded). These nodes
will be called the constrained, transient, nodes. The optimal transition prob-
abilities on the remaining, unconstrained and transient, nodes (the equivalent

7



of Equation (A.8) to be adapted for the constrained RSP) define the optimal
policy that has to be adopted by the agents at the edge level. The subset of
transient, unconstrained, nodes will be denoted as U = V\(C ∪ {n}).

3.1 The Lagrange function

More precisely, from Equation (A.8), the considered constraints on the nodes
i ∈ C state that, on these nodes, the optimal randomized policy (transition
probabilities) followed by an agent (i.e., the relative flow passing through an
edge (i, j)) should be equal to some given values qij ,

p∗ij(T ) =
n̄ij(T )

n̄i(T )
= qij for the edges starting in nodes i ∈ C (4)

which should be independent of the temperature T . Here, n̄i(T ) is the expected
number of visits through node i and n̄ij(T ) is the expected number of passages
through edge (i, j), when choosing trajectories thanks to the Gibbs-Boltzmann
distribution in Equation (3) (see Equations (A.2) and (A.7)). The fixed tran-
sition probabilities qij must be specified by the user for all the nodes in C. Of
course, we have to assume that these constraints are feasible. In particular, we
must have

∑
j∈Succ(i) qij = 1 for all i ∈ C with Succ(i) being the set of successor

nodes of i.
Moreover, the RSP model (see Equation (2)) implies that, when T →∞, we

should recover a pure random walk behavior with reference probabilities pro-
vided by Equation (1). Therefore, to be consistent, these reference probabilities
and the qij must verify pref

ij = p∗ij(T =∞) = qij for nodes i ∈ C. Therefore the
constrained transition probabilities qij must be equal to the reference transition
probabilities pref

ij on these constrained nodes. It will be assumed that this is the
case in the sequel.

Consequently, let us consider the following Lagrange function integrating
equality constraints (4)

L (P,λ) =
∑
℘∈P

P(℘)c̃(℘) + T
∑
℘∈P

P(℘) log

(
P(℘)

π̃(℘)

)
relative free energy, φ(P)

+µ

(∑
℘∈P

P(℘)− 1

)

+
∑
i∈C

∑
j∈Succ(i)

λij

[∑
℘∈P

P(℘) η
(
(i, j) ∈ ℘

)
n̄ij(T )

−qij
∑
℘∈P

P(℘) η(i ∈ ℘)

n̄i(T )

]
(5)

where, as before, P is the set of paths connecting node 1 to node n, and
with η

(
(i, j) ∈ ℘

)
being the number of times edge (i, j) appears on path ℘.

In a similar way, η
(
i ∈ ℘

)
is the number of visits to node i when follow-

ing path ℘. Therefore, the last term in the previous equation states that
the constraints (4) must be verified on each node i ∈ C. Note that in our
paths-based formalism, the expected number of visits to node i is expressed by
n̄i(T ) =

∑
℘∈P P(℘) η(i ∈ ℘) and the number of passages through edge (i, j) by

n̄ij(T ) =
∑
℘∈P P(℘) η

(
(i, j) ∈ ℘

)
(see Equation (A.2)).

8



Now, the Lagrange function can be rearranged as

L (P,λ) =
∑
℘∈P

P(℘)

[
c̃(℘) +

∑
i∈C

∑
j∈Succ(i)

λij η
(
(i, j) ∈ ℘

)
−
∑
i∈C

η(i ∈ ℘)
∑

j′∈Succ(i)
qij′ λij′

c̃′(℘)

]

+ T
∑
℘∈P

P(℘) log

(
P(℘)

π̃(℘)

)
+ µ

(∑
℘∈P

P(℘)− 1

)

=
∑
℘∈P

P(℘)
∑
i∈V

∑
j∈Succ(i)

η
(
(i, j) ∈ ℘

) [
cij + δ(i ∈ C)λij − δ(i ∈ C)

∑
j′∈Succ(i)

qij′ λij′

]
augmented costs c′ij

+ T
∑
℘∈P

P(℘) log

(
P(℘)

π̃(℘)

)
+ µ

(∑
℘∈P

P(℘)− 1

)

=
∑
℘∈P

P(℘)c̃′(℘) + T
∑
℘∈P

P(℘) log

(
P(℘)

π̃(℘)

)
free energy φ′(P) based on augmented costs, c̃′(℘)

+µ

(∑
℘∈P

P(℘)− 1

)
(6)

where we used the Kronecker delta δ(i ∈ C) which is equal to 1 when i ∈ C
and 0 otherwise, as well as η(i ∈ ℘) =

∑
j∈Succ(i) η

(
(i, j) ∈ ℘

)
and c̃(℘) =∑

i∈V
∑
j∈Succ(i) η

(
(i, j) ∈ ℘

)
cij the total cost along path ℘. Thus, in (6) the

local costs cij are redefined as

c′ij =


cij + λij −

∑
j′∈Succ(i)

qij′λij′

extra cost ∆ij

= cij + ∆ij when node i ∈ C

cij when node i ∈ U

(7)

and C′ will be the matrix containing these new costs c′ij where the extra costs

are defined as ∆ij , λij −
∑
j′∈Succ(i) qij′λij′ .

These new costs c′ij , augmented by the extra costs coming from the Lagrange
mutipliers, will be called the augmented costs. We observe that Equation (6)
is exactly a randomized shortest-paths problem (see Equation (2)) containing
augmented costs instead of the initial costs, which can be solved by a standard
RSP algorithm.

We further observe that the weighted (by transition probabilities) means of
the extra costs must be equal to zero on each node i ∈ C:∑

j∈Succ(i)
qij∆ij = 0 for each i ∈ C (8)

In other words, the extra costs are centered with respect to the weights qij on
each constrained node. Interestingly, this implies that the weighted average of
the augmented costs is equal to the weighted average of the original costs on
each constrained node i,

∑
j∈Succ(i) qijc

′
ij =

∑
j∈Succ(i) qijcij . In this case, the

perceived cost (cost plus extra cost) when visiting any node using the augmented
costs is exactly the same in average as the perceived real cost (cost only) as in
the case where no constraint is introduced.

9



Thus, in Equation (6), everything happens as if the costs have been redefined
by taking into account the Lagrange parameters. The extra costs, depending on
these Lagrange parameters, can therefore be interpreted as extra virtual costs
necessary to exactly satisfy the equality constraints, in the same way as when
considering the dual problem in linear programming [35].

Let φ′(P) =
∑
℘∈P P(℘)c̃′(℘) + T

∑
℘∈P P(℘) log

(
P(℘)
π̃(℘)

)
be the relative free

energy obtained from these augmented costs (see Equation (6)). We now address
the problem of computing the Lagrange parameters λij and the extra costs ∆ij
by Lagrange duality.

4 Solving constrained RSP problems by La-
grange duality

In this section, we will take advantage of the fact that, in our formulation of
the problem, the Lagrange dual function and its gradient with respect to a set
of Lagrange parameters associated to a node are easy to compute. Indeed, the
situation is equivalent to maximum entropy problems under constraints (see,
e.g., [39, 41]), so that the same methodology can be used for optimising the
objective function. This will provide a generic algorithm for solving constrained
RSP problems based on Lagrange duality.

As the objective function is convex and all the equality constraints are linear,
there is only one global minimum and the duality gap is zero [13, 23, 35]. The
optimum is a saddle point of the Lagrange function and a common optimiza-
tion procedure ([13, 23, 35], related to the Arrow-Hurwicz-Uzawa method [6])
consists in sequentially (i) solving the primal while considering the Lagrange
parameters as fixed, which provides the dual Lagrange function L ∗(λ), and
then (ii) optimizing the obtained dual Lagrange function (which is concave)
with respect to a subset of Lagrange parameters (a block B) until convergence.

In our context, this provides the two following steps [35], which are computed
iteratively on blocks of Lagrange parameters B,

L ∗(λ(t)) = min
P≡{P(℘)}℘∈P

L (P,λ(t)) (compute the dual Lagrange function)

λ
(t+1)
ij = arg max

λ
(t)
ij ∈B(t)

L ∗(λ(t)) for λ
(t)
ij ∈ B(t) (maximize the dual Lagrange function)

λ
(t+1)
ij = λ

(t)
ij for λ

(t)
ij /∈ B(t) (keep the other Lagrange parameters)

(9)
and the first maximization is performed subject to non-negativity and sum-to-
one constraints. This is the procedure that will be followed, where the dual
function will be maximized through a simple block coordinate ascend on La-
grange parameters. Each block at a given step t of the iteration will contain the
Lagrange parameters associated to the node i processed at that time step (the
edges incident to node i, B(t) = Succ(i)) and the procedure is iterated on the
set of constrained nodes (i ∈ C).

10



4.1 Computing the dual Lagrange function

We already know from (3) that in the first step in Equation (9) the optimal
probability distribution is obtained with

P∗(℘) =
π̃(℘) exp[−θc̃′(℘)]∑

℘′∈P
π̃(℘′) exp[−θc̃′(℘′)]

=
π̃(℘) exp[−θc̃′(℘)]

Z ′ (10)

where c̃′(℘) is the augmented cost of path ℘.
Then, from Equations (A.1) and (6), the dual Lagrange function can easily

be computed in function of the partition function defined from the augmented
costs [41],

L ∗(λ) = −T logZ ′ (11)

and will be maximized at each time step with respect to the {λij} with i ∈ C
and j ∈ Succ(i). In addition, by extension of Equation (A.1) to any transient
nodes (see Equation (A.14)), the minimum free energy from any node i (see
[48, 28, 29] for details) is given by

φ∗i = −T log zin = − 1
θ log zin (12)

where the backward variable zin (element i, n, of the fundamental matrix Z,
see Equation (A.5)) is now computed from the augmented costs.

4.2 Maximizing the dual Lagrange function

Let us now maximize the dual function by using a simple block coordinate as-
cend. Because n̄i(T ) =

∑
j∈Succ(i) n̄ij(T ), by following the reasoning of previous

subsection (see Equation (A.2)), we obtain for constrained nodes i ∈ C

∂L ∗(λ)

∂λij
=
∂(−T logZ ′)

∂λij
=

∑
j′∈Succ(i)

∂(−T logZ ′)
∂c′ij′

∂c′ij′

∂λij

=
∑

j′∈Succ(i)
n̄ij′(T )(δjj′ − qij) = n̄ij(T )− qij n̄i(T ) (13)

Quite naturally, and similarly to maximum entropy problems [45], setting
the result to zero provides the constraints on nodes i ∈ C,

n̄ij(T )

n̄i(T )
= qij (14)

and we now have to solve these equations in terms of the Lagrange parameter
λij .

11



Algorithm 1 Computing the optimal randomized policy of a constrained RSP
problem.

Input:
– The n×n adjacency matrix A of a strongly connected directed graph, containing
non-negative edge affinities. Node 1 is the starting node and node n the goal node.
– The n× n cost matrix C of the graph, containing non-negative edge costs.
– The set of unconstrained nodes U and constrained nodes C.
– The positive inverse temperature parameter θ.

Output:
– The (n−1)×n matrix P∗ containing optimal transition probabilities (the policy).

1. D← Diag(Ae) . the diagonal out-degree matrix; e is a vector full of 1’s
2. Pref ← D−1A . the n× n reference transition probabilities matrix
3. C′ ← C . initialise the augmented costs matrix
4. Set row n of Pref to 0T . row n set to zero: node n is made absorbing and

killing
5. repeat . main iteration loop
6. for each i ∈ C do . loop on constrained nodes in C
7. W ← Pref ◦ exp[−θC′] . compute the auxiliary matrix W in terms

of current augmented costs; ◦ is the elementwise matrix product
8. Solve (I −W)zb = en with respect to zb . compute the backward

variable zb = Zen (column n of the fundamental matrix Z = (I−W)−1)
where en is a vector full of 0’s except element n which is equal to 1

9. φ∗ ← − 1
θ

log zb and then φ∗n ← 0 . elementwise natural logarithm:
compute the vector of free energies, and force 0 on the goal node n

10. for each j ∈ Succ(i) do . update the augmented costs on edges
incident to constrained node i

11. c′ij ← −φ∗j +
∑
k∈Succ(i)) p

ref
ik (cik + φ∗k) . augmented cost update

for edge (i, j)
12. end for
13. end for
14. until convergence of the free energy vector
15. Q ← Pref ◦ exp[−θ(C′ + e(φ∗)T)] . compute the numerator of the optimal

transition probabilities matrix
16. Remove row n of matrix Q . delete the zero row corresponding to the absorbing,

goal, node n
17. s← Qe . the row sums vector for normalization
18. P∗ ← Q÷

(
seT

)
. the (n− 1)× n optimal transition probabilities matrix (the

policy); ÷ is the elementwise division. We divide each row of Q by its sum.
19. return P∗

4.3 Computing the Lagrange parameters and the aug-
mented costs

Recalling that n̄i(T ) =
∑
j∈Succ(i) n̄ij(T ) and Equations (A.6)-(A.7), we obtain

by imposing the constraint (14) for a node i ∈ C and j ∈ Succ(i),

pref
ij exp[−θc′ij ]zjn∑

j′∈Succ(i) p
ref
ij′ exp[−θc′ij′ ]zj′n

=
pref
ij zjn exp[−θcij ] exp[−θ∆ij ]∑

j′∈Succ(i) p
ref
ij′ zj′n exp[−θcij′ ] exp[−θ∆ij′ ]

= qij (15)

12



The goal now is to compute the new augmented cost (and thus the new extra
costs ∆ij and the Lagrange parameters λij , see Equation (7)) corresponding to
node i ∈ C by isolating the ∆ij with j ∈ Succ(i) in the previous Equation (15).
In Appendix B, it is shown that we obtain (see Equation (B.4))

∆ij = −(cij + φ∗j ) +
∑

k∈Succ(i)
pref
ik (cik + φ∗k), for each j ∈ Succ(i) (16)

which allows to directly compute the new augmented costs

c′ij = cij + ∆ij =
∑

k∈Succ(i)
pref
ik (cik + φ∗k)− φ∗j , for each j ∈ Succ(i) (17)

and, after convergence, this expression must be exactly verified by the aug-
mented costs on all the constrained nodes.

Equation (17) suggests the following updating rule (bloc coordinate ascend)
to be applied on all the edges incident to i at each iteration

c′ij ←
∑

k∈Succ(i)
pref
ik (cik + φ∗k)− φ∗j , for each j ∈ Succ(i) (18)

to be repeated on all constrained nodes (one constrained node i processed at
each iteration step) until convergence.

Moreover, it can easily be shown from the previous results that the Lagrange
multipliers are given3 by

λij = −(cij + φ∗j ) (19)

Let us now summarize the whole procedure.

4.4 The complete procedure

Therefore, after specifying a parameter θ and initializing the augmented costs
c′ij to the real costs cij , the final block coordinate ascend procedure iterates the
following steps for updating the augmented costs associated to a constrained
node i:

1. The elements of the fundamental matrix are computed thanks to Equation
(A.4) from the current augmented costs c′ij (defined in Equation (7)) and
from the transition matrix of the natural random walk on G (Equation
(1)), where goal node n is made absorbing and killing, Z = (I −W)−1

with W = Pref ◦ exp[−θC′].

2. Compute the minimum free energies on node i and its adjacent nodes
(j ∈ Succ(i)) thanks to Equation (12), φ∗i = − 1

θ log zin.

3. The augmented costs are updated on all edges incident to node i (j ∈
Succ(i)) thanks to Equation (18), c′ij ←

∑
k∈Succ(i)) p

ref
ik (cik + φ∗k) − φ∗j .

Then, go back to step 1 and proceed with another constrained node i.

3Up to the addition of a constant, as they must be centered.

13



The previous steps are thus performed repeatedly on the constrained nodes
i ∈ C and the whole procedure is iterated until convergence. Then, the optimal
policy is obtained from Equation (A.17) by using the augmented costs c′ij instead
of cij (also for computing the backward variables zin). This provides the optimal
transition probabilities p∗ij(T ) on the unconstrained nodes – for the constrained
nodes, the optimal transition probabilities are of course equal to the reference
transition probabilities. The resulting algorithm is presented in Algorithm 1.
Note that in this algorithm (line 8), instead of computing the fundamental
matrix Z, we prefer to simply calculate the backward variables vector zb = Zen
containing the elements zin.

Let us now present an alternative, iterative, procedure, reminiscent of the
Bellman-Ford formula for finding the shortest-path distance in a graph and
the value iteration in Markov decision problems, solving the constrained RSP
problem.

5 Solving constrained RSP problems by a sim-
ple iterative algorithm

This section introduces an alternative way of solving constrained randomized
shortest-paths problems, based on an extension of Equation (A.15) computing
the free energy from each transient node to the goal node [28, 29]. Once the free
energy has been computed for all nodes, the optimal policy is easily obtained
by the closed-form expression (A.17).

5.1 An optimality condition in terms of free energy

Recall that the quantity φ∗i (T ) = − 1
θ log zin with θ = 1/T (see Equation (12)),

where zin is the backward variable introduced in Equation (A.5), is called the
(minimum) relative, directed, free energy potential4 of the constrained RSP
system associated to the different nodes i ∈ V. As before, the dependence of
the free energy on T will be omitted.

Inspired by the standard bag-of-paths framework [28, 29], it is shown in
Appendix C that, at optimality, the recurrence relations computing the minimal
free energy of the constrained RSP system are of the following form

φ∗i =


− 1
θ log

[ ∑
j∈Succ(i)

pref
ij exp

[
− θ
(
cij + φ∗j

)]]
if i ∈ U∑

j∈Succ(i)
pref
ij

(
cij + φ∗j

)
if i ∈ C

0 if i = n

(20)

where, as usual, Succ(i) is the set of successor nodes of node i in the network
and U , C are resectively the sets of unconstrained and constrained nodes. This
equation states the necessary optimality conditions for the constrained RSP in
terms of the free energy. The first line of this equation is simply the optimality
condition previously obtained for the standard RSP (see Equation (A.15) or [28,

4Often simply called the free energy.

14



29]), which should apply on unconstrained nodes. The second line also makes
sense as it corresponds to the recurrence expression for computing expected cost
for reaching goal node n from constrained node i (transition probabilities are
fixed on these nodes) [46, 57, 72].

5.2 Computing the randomized policy

The previous Equation (20) suggests a simple fixed-point iteration algorithm
for computing the solution of the constrained RSP by replacing the equality
“=” by an update “←”. The update is iterated until convergence to a fixed
point, in the same way as the value iteration algorithm in Markov decision
processes, eventually providing the values of the free energy on each node. Then,
the optimal, local, randomized policy can be obtained by Equation (A.17) for
unconstrained nodes i ∈ U . For constrained nodes, the transition probabilities
are of course fixed to pref

ij = qij .
In [71], it was shown that the iterative update of an expression similar (but

somewhat simpler) to Equation (A.15) converges and its limit is independent of
the initial values. We prove the same property for the iteration of Equation (20)
in Appendix D by using a fixed-point theorem point of view, showing that the
update of (20) is a contraction mapping. Besides theoretical convergence, we
observed empirically in all our experiments that both techniques (the iterative
and the generic constrained RSP procedures) converge and provide exactly the
same policies.

6 Markov decision processes as a constrained
RSP on a bipartite graph

The previous sections developed all the needed tools for computing an optimal
randomized policy on a Markov decision process (MDP), which is done in this
section.

Recall that, as in [14], we assume that there is a special cost-free goal state
nS ; once the system has reached that state, it simply disappears (killing state
– state nS has no outgoing link). As in [68], we will also consider a problem
structure such that termination is inevitable. Thus, the horizon is in effect
finite, but its length is random and it depends on the policy being used. The
conditions for which this is true are, basically, related to the fact that the goal
state can be reached in a finite number of steps from any potential initial state;
for a rigorous treatment, see e.g. [14, 15].

The main objective is thus, as before, to design a randomized policy mini-
mizing the expected cost-to-go subject to an (relative) entropy constraint con-
trolling the total randomness spread in the Markov process, and therefore the
exploration effort. In other words, we are looking for an optimal policy or, in our
case, the optimal transition probabilities matrix of a finite, first-order, Markov
chain minimizing the expected cost needed to reach the goal state from the ini-
tial state, while fixing the entropy spread in the chain as well as the transition
probabilities provided by the environment.

Therefore, the solution is obtained by the algorithms described in Sections
4 and 5, solving the constrained RSP, applied to a bipartite graph, as described
now.

15



States Actions

k ∈ S a ∈ A

1

2

. . .

k

. . .

nS

nS + 1

nS + 2

. . .

a

. . .

nS + nA

prefak

prefk(nS+nA)

Pref
SA

Pref
AS

Figure 1: A simple Markov decision process modeled as a bipartite graph Gb

with states on the left side (S) and control actions on the right (A). Node 1 is
the initial state while node nS is the absorbing, goal, state of the process. The
reference transition probabilities from states to actions prefka (the reference policy)
are gathered in matrix Pref

SA while the transition probabilities from actions to
states prefak , provided by the environment, are gathered in matrix Pref

AS .

6.1 The basic model

The Markov decision process is now viewed as a constrained randomized short-
est paths problem on a bipartite graph (see Figure 1). Let us first describe the
structure of this bipartite graph. Then, we examine how the reference transi-
tion probabilities, corresponding to the natural random walk on this graph, are
defined. Finally, the way to compute the optimal randomized policy is detailed.

6.1.1 Definition of the bipartite graph

The process can be modeled as a directed bipartite graph Gb (Figure 1) in
which the left nodes are the original states S and the right nodes correspond to
the possible actions associated to the states, A = A(1)∪A(2)∪ . . .∪A(nS − 1)
where A(k) is the set of actions available in state k. Note that the last, goal,
state nS is absorbing and has no associated action. We thus have nS = |S| left
nodes (called states or state nodes) and nA = |A| right nodes (called actions or
action nodes).

Note that each action associated to a state is a node of Gb, even if the same
action is also available in some other states. In other words, action nodes are
duplicated for each state in which they appear. Therefore, the number of such
right states is |A| = |A(1)|+ |A(2)|+ · · ·+ |A(nS − 1)| = nA.

Moreover, it is assumed that, in this bipartite graph Gb, the nodes cor-
responding to states S are numbered first (from 1 to nS) and actions A are

16



following (from nS + 1 to nS + nA). Moreover, the set of available actions in
any state k is nothing else that the successor nodes of k in Gb, A(k) = Succ(k).

6.1.2 Defining reference probabilities on the bipartite graph

We will now describe how the reference transition probabilities (see Equation
(1))) as well as the constrained nodes are assigned on our graph Gb. In the case
of a pure, natural, random walk on Gb, corresponding to T → ∞ in Equation
(2)), we consider that agents are sent from the initial state 1 and that, at each
state s = k (nS states in total), they choose an action a with probability mass
pref
ka , k ∈ S and a ∈ A(k). When no prior information on the system is available,

these are usually set to pref
ka = 1/|A(k)|, a uniform distribution. Agents in state

k then jump to some action node a with probability pref
ka , meaning that they

perform the action a and incur a finite cost cka associated to the execution of
action a in state k.

Furthermore, the agent then moves from action node a to the next state
s = l with a reference transition probability pref

al provided by the environment
as in standard Markov decision processes, where l ∈ S, depending on the chosen
action. These transition probabilities from action nodes to state nodes cannot
be controlled or changed, and correspond therefore to the constrained transition
probabilities, qal, as discussed in the previous section describing the constrained
RSP.

Thus, in our bipartite graph Gb, the set of state nodes S is nothing else
than the set of unconstrained nodes U , together with the absorbing, goal, node
nS , in the constrained RSP framework. Conversely, the set of action nodes A
corresponds exactly to the constrained nodes C because the transition probabil-
ities are fixed by the environment. Consequently, the transition and the cost
matrices defined on the bipartite graph Gb are

Pref =

[ S A
S O Pref

SA
A Pref

AS O

]
, Cb =

[ S A
S O C
A O O

]
, (21)

where O is a 0 matrix of the appropriate size.
Note that, as for standard Markov decision processes, it is assumed that

there is a non-negative cost associated to the transitions between state nodes
and action nodes (the cost of choosing the action in the state), while no cost is
associated to the transitions between action nodes and state nodes5.

6.1.3 Computing the optimal randomized policy

Now that the bipartite graph Gb is defined, solving the MDP problem simply
aims at applying the constrained RSP procedure defined in the Section 4 on Gb

(see Algorithm 1). This procedure returns matrix P∗, containing the optimal
randomized policy p∗ka(T ) for each state node k. More precisely, the elements
{p∗ka(T ) : (k ∈ S)∧(a ∈ A(k))} contain, for each state k, an optimal probability

5Note that an additional cost could also be assigned to the transition to state node, after
action a is performed, as, e.g., in [70], but in this work we adopt the simpler setting where
the cost is a function of the action a only. However, our algorithm can straightforwardly be
adapted to costs on actions-to-states [61, 70, 75].

17



distribution on the set A(k) of actions available in this state, provided by Equa-
tion (A.17), and gradually biasing the walk towards the optimal, deterministic,
policy when temperature is low. Indeed, when the temperature T decreases, the
agents are more and more exploiting good policies while still exploring the en-
vironment – they interpolate between a purely random behavior (guided by the
reference probabilities) and the best, deterministic, policy solving the Markov
decision process, provided, e.g., by the well-known value iteration algorithm
[62, 70, 12, 14]. This policy is optimal in the sense that it minimizes expected
cost for a given degree of relative entropy (see Equation (2)).

In summary, the MDP problem tackled in this section simply corresponds to
a constrained randomized shortest-path problem (RSP) on Gb. We now describe
a more direct way for obtaining the optimal randomized policy avoiding the
construction of Gb, and inspired by the value iteration algorithm. It is derived
as a special case of the iterative procedure for solving constrained RSP problems
developed in Section 5.

6.2 A soft value iteration algorithm

Interestingly and surprisingly, we will show in this section that, as for the stan-
dard RSP (see Equation (A.15) and its discussion below), replacing the min-
imum operator by a softmin operator (A.16) in the standard value iteration
algorithm recovers exactly the iterative procedure solving the constrained RSP
of Section 5 – and providing an optimal randomized policy in the RSP sense
to our Markov decision problem. This was already observed in the context of
the standard RSP where we obtained a randomized Bellman-Ford recurrence
expression where the min operator is replaced by a softmin operator [28, 29].

This implies that the recent propositions of using the softmin function for
exploration in reinforcement learning [9, 10, 7, 8, 66, 27, 43, 74, 73] are globally
optimal in that they minimize expected path cost subject to a fixed total rela-
tive entropy of paths constraint (see Equation (2)), at least in our setting of a
absorbing, goal, node nS reachable from any other node of the graph.

Interestingly, from Equations (A.10) and (A.13), the cost function
(2) can be rewritten at the local, edge, level as

∑
i,j∈V\n n̄ijcij +

T
∑
i∈V\n n̄i

∑
j∈Succ(i) pij log(pij/p

ref
ij ) where n̄ij is the expected flow through

edge (i, j) and n̄i the expected number of visits to i (see [5, 11, 36] and [68], sec-
tion 6.2). In this expression, the entropy term defined on each node is weighted
by the expected number of visits to the node. The policy can thus also be
obtained by minimizing this “local” cost function in function of the transition
probabilities defined on unconstrained nodes.

6.2.1 The standard value iteration algorithm

Let us first recall the standard value iteration procedure, computing the ex-
pected cost until absorption by the goal state nS [62, 70, 12, 14] when starting
from a state k ∈ S, denoted by vk, based on the following recurrence formula
verified at optimality

vk =


min
a∈A(k)

{
cka +

∑
l∈Succ(a)

pref
al vl

}
if k ∈ S \ {nS}

0 if k = nS

(22)

18



where vk is the value (expected cost) from state k and pref
al is element a, l (with

a ∈ A and l ∈ S) of the transition matrix of the reference random walk on
the bipartite graph. This expression is iterated until convergence, which is
guaranteed under some mild conditions, for any set of nonnegative initial values
(see, e.g., [61, 62, 70, 12, 14] for details).

6.2.2 The soft value iteration algorithm

Let us start from the standard softmin-based expression computing the free
energy directed distance in a regular graph (Equation (A.15); see also [28, 29,
26]). We observe that it corresponds to the Bellman-Ford expression providing
the shortest-path distance in which the min operator has been replaced by the
softmin operator defined in Equation (A.16).

Substituting in the same way the min operator (A.16) for the softmin, with
the pref

ka playing the role of the weighting factors qi, in the value iteration up-
date formula (22) provides a “soft” equivalent of the Bellman-Ford optimality
conditions on the set of state nodes S,

φSk =


− 1
θ log

 ∑
a∈A(k)

pref
ka exp

[
− θ
(
cka +

∑
l∈Succ(a)

pref
al φ

S
l

)] if k ∈ S \ {nS}

0 if k = nS
(23)

In the case of our bipartite graph of Figure 1, this equation can exactly be
obtained by applying the recurrence expression computing the free energy in the
constrained RSP (Equation (20)), after recalling that the cost of the transition
between an action node and a state node is equal to zero. More precisely, we
simply substitute φ∗j in the first line of Equation (20) by the expression in the

second line, φ∗j =
∑
l∈Succ(j) p

ref
jl

(
0+φ∗l

)
, which directly provides Equation (23).

Recall that the pref
ka , k ∈ S and a ∈ A(k), correspond to the reference, prior,

policy commonly set to a uniform distribution on the possible actions in state
k, pref

ka = 1/|A(k)|. Conversely, the pref
ak with a ∈ A and k ∈ S are provided by

the environment.
Note that it can easily be shown by following the same reasoning as in

the appendix of [28, 29] that this recurrence formula reduces to the standard
optimality conditions for Markov decision processes (Equation (22)) when θ →
∞. Conversely, when θ → 0+, it reduces to the expression allowing to compute
the expected cost until absorption by the goal state nS , also called the average
first-passage cost [46, 57, 72], φk =

∑
a∈A(k) p

ref
ka (cka +

∑
l∈Succ(a) p

ref
al φl).

The idea is to iterate (23) until convergence of the free energies to a fixed
point where the optimality conditions (23) are verified (no change occurs any
more). The procedure converges to a unique solution as it corresponds to a par-
ticular case of the iterative procedure for solving the constrained RSP (Equation
(20)); see Appendix D for the proof. Then, the optimal policy for each state
k ∈ S, k 6= nS , is computed thanks to Equation (A.17), which provides the
probability of choosing action a within state k.

This procedure, involving the iteration of Equation (23) and the compu-
tation of the optimal policy from Equation (A.17), will be called the soft
value iteration algorithm. As already stated, such soft variants of value it-
eration already appeared in control [76] and exploration strategies for which

19



1 2 3 4

5 6 7

8 9 10 11

Figure 2: The maze problem. The goal of the agent is to reach node 11 from
node 1. Notice that some transitions with no resulting displacement are possible
(example in node 1: going west or south). The costs related to the actions are
detailed in the text.

an additional Kullback-Leibler cost term is incorporated in the immediate cost
[66, 27, 43, 74, 73, 9, 10]. It was also recently proposed as an operator guid-
ing exploration in reinforcement learning, and more specifically for the SARSA
algorithm in [7, 8]. The present work therefore provides a new interpretation
to this exploration strategy. We apply this algorithm in the next Section 7 in
order to solve simple Markov decision problems, for illustration.

6.3 Markov decision processes with discounting

Finaly, let us briefly discuss the concept of MDP with discounting. In this
setting, we still consider the random walk on the graph Gb with reference tran-
sition probabilities Pref . However, in contrast with our previous setting, here,
no goal node is defined – the Markov chain defining the random walk is regular.
In addition, a discounting factor γ ∈ ]0, 1[ is introduced to decrease the im-
pact of future costs with time [70]: immediate costs are more important than
postponed ones.

In standard MDPs, the introduction of the discounting factor can be inter-
preted from two different points of view:

I each future cost, for instance appearing at time step t, is reduced by a
factor γt.

I at each time step, the random walker has a small chance (1−γ) of quitting
the process (the contract is cancelled, the agent is killed, etc).

In the case of standard MDPs, these two interpretations lead to the same model;
however, in the RSP framework, they take distinct forms. They are left for
further work, but we quickly introduce the intuition behind them.

The first interpretation leads to a new soft value iteration expression that has
to be iterated for paths with increasing length. This can be done by unfolding
the network in time and then apply the RSP on this new directed acyclic graph,
as described in [52]. For the second interpretation, the problem can be tackled
by introducing a cemetery node (a killing, absorbing state). The agent then
has a (1− γ) probability of being teleported to this cemetery state with a zero
cost after choosing any action. The soft value iteration expression (23) can be
adapted to this new setting. These two RSP with discounting models will be
investigated in further work.

20



-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
θ

0

50

100

150

200

250

300

M
ea

n 
co

st

0

10

20

30

40

50

60

70

80

M
ea

n 
en

tro
py

Evolution of mean cost and entropy with θ

Figure 3: Results, averaged over 106 runs, obtained by simulating the policy
provided by the constrained RSP when increasing θ (in log scale). The blue
curve depicts the evolution of the average cost (mean number of turns to reach
square 11 – the smaller the best) in function of θ. The red curve indicates the
corresponding entropy of the state nodes (entropy of the randomized policies).
Naturally, the largest entropy and average cost are achieved when θ is small and
are minimum when θ is large.

7 Some simulations: a simple illustration on the
maze problem

This section illustrates the application of constrained randomized shortest paths
to Markov decision problems. Several simulations were run on four different
problems [50] but, in order to save space and because the conclusions are similar,
we decided to report only one simple application: the probabilistic maze game
inspired by [67], as illustrated in Figure 2.

An agent, initially starting on square 1, is asked to reach square 11 in a
minimum number of time steps (see Figure 2) and incurs some additional costs
described below. To do so, the agent can choose between four actions in each
square:

I Go north. However, a bug (for instance due to adverse wind conditions)
can occur when the agent decides to go north so that it has only a 0.8
probability to actually go north (no bug). When this bug occurs (0.2
probability), it then has a 0.5 probability to go east (globally, a 10%
chance) and a 0.5 probability to go west (also a 10% chance globally).

I Go east, west or south with probability one.

A unit cost is associated to each time step and, in addition, the cost for visiting
square 7 is +100. This implies that if the above mentioned bug occurs on square
7 and the agent is redirected to east, the cost is increased again by +100 because
the agent re-enters square 7. Indeed, if the agent selects a direction which leads
nowhere (a wall), for example selecting “go east” or “go west” in square 5, it
stays in its current position, but incurs (again) the cost associated to the current
square.

21



NNNNNNNNNNNNNNNNN E S W

0

25

50

75

100

N E S WWWWWWWWWWWWWWWWW
0

25

50

75

100

N E S WWWWWWWWWWWWWWWWW
0

25

50

75

100

N E S WWWWWWWWWWWWWWWWW
0

25

50

75

100

NNNNNNNNNNNNNNNNN E S W

0

25

50

75

100

N E SSSSSSSSSSSSSSSSS W

0

25

50

75

100

N E SSSSSSSSSSSSSSSSS WWWWWWWWWWWWWWWWW
0

25

50

75

100

N EEEEEEEEEEEEEEEEE S W

0

25

50

75

100

N EEEEEEEEEEEEEEEEE S W

0

25

50

75

100

N EEEEEEEEEEEEEEEEE S W

0

25

50

75

100

GOAL

(a) ↑ Inverse temperature θ = 10−2.5.

NNNNNNNNNNNNNNNNN E S W

0

25

50

75

100

N E S WWWWWWWWWWWWWWWWW
0

25

50

75

100

N E S WWWWWWWWWWWWWWWWW
0

25

50

75

100

N E S WWWWWWWWWWWWWWWWW
0

25

50

75

100

NNNNNNNNNNNNNNNNN E S W

0

25

50

75

100

N E SSSSSSSSSSSSSSSSS W

0

25

50

75

100

N E SSSSSSSSSSSSSSSSS WWWWWWWWWWWWWWWWW
0

25

50

75

100

N EEEEEEEEEEEEEEEEE S W

0

25

50

75

100

N EEEEEEEEEEEEEEEEE S W

0

25

50

75

100

N EEEEEEEEEEEEEEEEE S W

0

25

50

75

100

GOAL

(b) ↑ Inverse temperature θ = 10−1.

NNNNNNNNNNNNNNNNN E S W

0

25

50

75

100

N E S WWWWWWWWWWWWWWWWW
0

25

50

75

100

N E S WWWWWWWWWWWWWWWWW
0

25

50

75

100

N E S WWWWWWWWWWWWWWWWW
0

25

50

75

100

NNNNNNNNNNNNNNNNN E S W

0

25

50

75

100

N E SSSSSSSSSSSSSSSSS W

0

25

50

75

100

N E SSSSSSSSSSSSSSSSS WWWWWWWWWWWWWWWWW
0

25

50

75

100

N EEEEEEEEEEEEEEEEE S W

0

25

50

75

100

N EEEEEEEEEEEEEEEEE S W

0

25

50

75

100

N EEEEEEEEEEEEEEEEE S W

0

25

50

75

100

GOAL

(c) ↑ Inverse temperature θ = 10+0.5.

Figure 4: Optimal randomized policy obtained after convergence of the soft
value iteration algorithm for three different, increasing, values of the inverse tem-
perature parameter θ. In each square, the agent has to choose between going
north (N), east (E), south (S) and west (W). A larger θ corresponds to a more
deterministic policy. Note that the optimal deterministic policy is indicated in
bold in each case.

22



Concerning the reference probabilities pref
ij , these are defined by the envi-

ronment on action nodes and are set to 1/4 on state nodes (a purely random
policy).

Note that the optimal policy from square 1 is 1 → 5 → 8 → 9 → 10 → 11.
We ran a large number of simulations of the process until the agent reaches the
goal node (each simulation from initial state 1 to goal state 11 is called a run),
for a range of randomized policies (depending on the parameter θ) obtained
after running the soft value iteration algorithm (23).

Figure 3 represents the evolution of the mean cost to reach goal node 11 and
the entropy (computed only on state nodes, thus on the randomized policies) in
function of θ. The results are averaged over 106 runs for each value of θ, with
the policy obtained after convergence of the soft value iteration algorithm for
this θ (see Equation (23)). We observe that the largest average cost and entropy
are achieved when θ is small, and are smallest when θ is large. The resulting
functions are both logistic-shaped between two bounds:

I When θ is small, entropy is maximum as each action has approximately
a 1/4 probability to be chosen and therefore the expected scores are the
same as for a pure random walk.

I When θ becomes large, entropy and expected cost (as well as the policy)
are almost the same as for the standard value iteration algorithm providing
the optimal deterministic policy.

Moreover, the optimal randomized policies obtained after convergence of the
soft value iteration algorithm for three different, increasing, values of the inverse
temperature parameter θ are illustrated in Figure 4. This example clearly shows
that using a randomized strategy allows to balance the strength of the player.

8 Conclusion

This work presented two procedures for solving constrained randomized
shortest-paths problems, together with an application to randomized Markov
decision processes where the problem is viewed as a bipartite graph. The main
objective is to reach a goal node from an initial node in a graph while minimiz-
ing expected cost subject to a relative entropy equality constraint and transi-
tion probabilities constraints on some edges. The model provides a randomized
policy encouraging exploration, balancing exploitation and exploration. The
amount of exploration is monitored by the inverse temperature parameter.

The problem is expressed in terms of full paths connecting the initial node
to the goal node and can easily be solved. The solution is a Gibbs-Boltzmann
probability distribution on the set of paths with virtual extra costs associated
to the constrained edges.

Two algorithms for computing the local policy at the edge level are devel-
oped. The first algorithm is based on Lagrange duality and requires solving
iteratively the standard randomized shortest-paths problem until convergence.
The second algorithm is reminiscent of Bellman-Ford’s algorithm for solving the
shortest-path distance problem. It simply aims to replace the min operator by a
softmin operator in Bellman-Ford’s recurrence relation to update the expected
cost on unconstrained nodes. For the constrained nodes, because the transition

23



probabilities are fixed, we simply use the expression for computing the expected
cost until absorption in a Markov chain. The convergence of the procedure is
guaranteed for the two algorithms.

The usefulness of these algorithms is then illustrated on standard Markov
decision problems. Indeed, a standard Markov decision process can be reinter-
preted as a randomized shortest-paths problem on a bipartite graph. Standard
Markov decision problems can thus easily be solved by the two introduced al-
gorithms: they provide a randomized policy minimizing expected cost under
entropy and transition probabilities constraints.

This shows that the exploration strategy using the softmin instead of the min
in the value iteration algorithm is optimal in the predefined sense. Therefore it
justifies the previous work [7, 8, 9, 10, 27, 43, 66, 74, 73, 76] from a randomized
shortest-paths point of view.

Future work will focus on extending the randomized shortest-paths model
in order to deal with other types of constraints. In particular we will work
on inequality constraints on transition probabilities, as well as flow equality
and inequality constraints, on both node flows and edge flows. Another inter-
esting extension of the randomized shortest-paths model is the multi-sources
multi-destinations randomized optimal transport on a graph generalizing the
deterministic optimal transport on a graph problem. We also plan to investi-
gate constrained randomized shortest paths with a discounting factor as well
as average-reward Markov decision processes which were recently studied in the
light of entropy regularization [56].

Acknowledgements

This work was partially supported by the Immediate and the Brufence projects
funded by InnovIris (Brussels region), as well as former projects funded by
the Walloon region, Belgium. We thank these institutions for giving us the
opportunity to conduct both fundamental and applied research.

We also thank Benjamin Blaise, a former Master student, who helped us to
investigate the randomized Markov decision processes during his masters thesis
at UCLouvain [16], as well as Prof. Fabrice Rossi for his useful remarks.

Appendix: Additional material and proofs of the
main results

A Computing quantities of interest

In this appendix, several important quantities derived from the standard ran-
domized shortest-paths (RSP) framework, and which will be needed in the
paper, are detailled. The material is mainly taken from the previous work
[80, 68, 48, 28, 29, 26].

24



The minimum free energy. Interestingly, if we replace the probability dis-
tribution P by the optimal distribution P∗ provided by Equation (3) in the
objective function (2), we obtain for the minimum free energy between node
1 and node n

φ∗1(T ) = φ(P∗) =
∑
℘∈P

P∗(℘)c̃(℘) + T
∑
℘∈P

P∗(℘) log

(
P∗(℘)

π̃(℘)

)
=
∑
℘∈P

P∗(℘)c̃(℘) + T
∑
℘∈P

P∗(℘)
(
− 1
T c̃(℘)− logZ

)
= −T logZ = − 1

θ logZ (A.1)

The expected number of passages through edges. For the expected num-
ber of passages through an edge (i, j) at temperature T = 1/θ, that is, the flow
in (i, j), we obtain from last result (A.1) and the definition of the partition
function Z (Equation (3)),

∂φ∗1
∂cij

=
∂(− 1

θ logZ)

∂cij
= − 1

θZ
∂Z
∂cij

= − 1

θZ
∑
℘∈P

π̃(℘) exp[−θc̃(℘)](−θ)∂c̃(℘)

∂cij

=
∑
℘∈P

π̃(℘) exp[−θc̃(℘)]

Z
∂c̃(℘)

∂cij
=
∑
℘∈P

P∗(℘) η
(
(i, j) ∈ ℘

)
, n̄ij(T ) (A.2)

where we used ∂c̃(℘)/∂cij = η
(
(i, j) ∈ ℘

)
, with η

(
(i, j) ∈ ℘

)
being the number

of times edge (i, j) appears on path ℘ at temperature T . Therefore, we have for
the flow in (i, j)

n̄ij(T ) = −T ∂ logZ
∂cij

(A.3)

Computation of the partition function. Now, it turns out that the par-
tition function can easily be computed in closed form (see, e.g., [68, 47, 26] for
details). Let us first introduce the fundamental matrix of the RSP system,

Z = I + W + W2 + · · · = (I−W)−1, with W = Pref ◦ exp[−θC] (A.4)

where C, Pref are respectively the cost and the reference transition probabilities
matrices (see Equation (1)) while ◦ is the elementwise (Hadamard) product.
Elementwise, the entries of the W matrix are wij = [W]ij = pref

ij exp[−θcij ],
except for the goal node where wnj = 0 for all j (killing, absorbing, node). Note
that this matrix is sub-stochastic because the costs are non-negative and node
n is absorbing and killing (row n contains only 0 values).

Then, the partition function is simply Z = [Z]1n = z1n (see [80, 68, 48,
28, 29]). More generally [30, 28], it can be shown that the elements zin of the
fundamental matrix correspond to

zin =
∑
℘∈Pin

π̃(℘) exp[−θc̃(℘)] (A.5)

with znn = 1, and where Pin is the set of hitting paths starting in node i and
ending in killing absorbing node n. The zin quantities are usually called the
backward variables. They can be interpreted as probabilities of surviving during
a killed random walk with transition matrix W, that is, reaching hitting node
n without being killed during the walk (see, e.g., [28, 29] for details).

25



Computation of the expected number of passages and visits. More-
over, the flow in (i, j) can be obtained from (A.4) and the expression
∂M−1/∂x = −M−1(∂M/∂x)M−1 (see, e.g., [37]),

n̄ij(T ) = − 1
θ

∂ logZ
∂cij

=
z1ip

ref
ij exp[−θcij ]zjn

z1n
=
z1iwijzjn
z1n

(A.6)

and because only the first row and the last column of Z are needed, two systems
of linear equations can be solved instead of matrix inversion in Equation (A.4).

From the last equation and zin =
∑n
j=1 wijzjn + δin (the elementwise form

of (I −W)Z = I), the expected number of visits to a node j can be computed
from

n̄i(T ) ,
n∑
j=1

n̄ij(T ) + δin =
z1izin
z1n

for i 6= n (A.7)

where we assume i 6= n for the last equality because we already know that
n̄n(T ) = 1 at the goal node, which is absorbing and killing.

The optimal randomized policy. Furthermore, from (A.6)-(A.7), the op-
timal transition probabilities of following an edge (i, j) with i 6= n are

p∗ij(T ) =
n̄ij(T )

n̄i(T )
= pref

ij exp[−θcij ]
zjn
zin

=
wijzjn
zin

=
wijzjn∑

j′=Succ(i) wij′zj′n
(A.8)

because pref
ij exp[−θcij ] = wij and zin =

∑
j=Succ(i) wijzjn for all i 6= n (the

elementwise form of (I−W)Z = I, coming from Equation (A.4)). This expres-
sion defines a biased random walk on G – the random walker is “attracted”
by the goal node n. These transition probabilities define a first-order Markov
chain and do not depend on the source node. They correspond to the optimal,
randomized, “routing” strategy, or policy, minimizing free energy from the cur-
rent node. This policy will therefore be called the randomized policy in the
sequel (a mixed policy or strategy in game theory [58]).

The expected cost until destination. In addition, the expected cost until
reaching goal node n from node 1 is [68, 47, 26]

〈c̃〉 =
∑
℘∈P

P∗(℘)c̃(℘) =
∑
℘∈P

π̃(℘) exp[−θc̃(℘)]

Z c̃(℘) (A.9)

After defining the matrix containing the expected number of passages
through the edges by N with [N]ij = n̄ij(T ), it can be shown by proceeding in
the same way as for Equation (A.2) (see [68] for details) that the expected cost
spent in the network is

〈c̃〉 = −∂ logZ
∂θ

= eT(N ◦C)e (A.10)

where e is a column vector of 1s and ◦ is the elementwise (Hadamard) ma-
trix product. This quantity is just the cumulative sum of the expected
number of passages through each edge times the cost of following the edge,∑n−1
i=1

∑
j∈Succ(i) n̄ij(T )cij [30].

26



The entropy of the paths. In Equation (2), the relative entropy of the set
of paths, for the optimal probability distribution, was defined as

J(P∗|π̃) =
∑
℘∈P

P∗(℘) log

(
P∗(℘)

π̃(℘)

)
(A.11)

and, from Equations (2), (A.1) and (A.10), can be computed thanks to

J(P∗|π̃) = −(logZ + 1
T 〈c̃〉) (A.12)

where the partition function Z = [Z]1n = z1n.
In addition, it can be shown that the total entropy of the set of paths is

[5, 68]

J(P∗) = −
∑
℘∈P

P∗(℘) log P∗(℘) = −
n−1∑
i=1

n̄i
∑

j∈Succ(i)
p∗ij(T ) log(p∗ij(T )) (A.13)

which sums the local entropies over the transient (non-absorbing) nodes
weighted by the expected number of visits to each node.

The free energy distance. It was already shown in Equation (A.1) that the
minimal free energy (A.1) at temperature T is provided by

φ∗1(T ) = φ(P∗) = −T logZ = − 1
θ log z1n (A.14)

In [28, 29], it was proved that the free energy from any starting node i to
absorbing, goal, node n, φ∗i (T ) = − 1

θ log zin, can be computed thanks to the
following recurrence formula to be iterated until convergence

φ∗i (T ) =


− 1
θ log

 ∑
j∈Succ(i)

pref
ij exp[−θ(cij + φ∗j (T ))]

 if i 6= n

0 if i = n

(A.15)

This equation is an extension of Bellman-Ford’s formula for computing the
shortest-path distance in a graph (see, e.g., [14, 19, 21, 33, 42, 64, 69]). More-
over, the recurrence expression (A.15) is also a generalization of the distributed
consensus algorithm developed in [71], considering binary costs only.

It was also shown [28, 29] that this minimal free energy interpolates be-
tween the least cost (T = θ−1 → ∞; φ∗i (∞) = minj∈Succ(i){cij + φ∗j (∞)}
and φ∗n(∞) = 0) and the expected cost before absorption (T = θ−1 → 0+;
φ∗i (0) =

∑
j∈Succ(i) p

ref
ij (cij + φ∗j (0)) and φ∗n(0) = 0) [48, 28, 29]. In addition,

this quantity defines a directed distance between any node and absorbing
node n [48, 28, 29]. This directed free energy distance has a nice interpretation:
it corresponds (up to a scaling factor) to minus the logarithm of the probability
of reaching node n without being killed during a killed random walk defined
by the sub-stochastic transition probabilities wij = pref

ij exp[−θcij ] [28, 29]. In
other words, it is minus the logarithm of the probability of surviving during the
walk. Still another interesting result is that, when computing the continuous
time – continuous state equivalent to the RSP model by densifying the graph,
the free energy becomes a potential attracting the agents to the goal state [32].

27



The softmin operator. In fact, as discussed in [28, 29], this last expression
(A.15) is obtained by simply substituting the min operator by a weighted version
of the softmin operator ([20]; also called the log-sum-exp function [17, 55,
71]) in the Bellman-Ford recurrence formula,

softminq,θ(x) = − 1
θ log

( n∑
j=1

qj exp[−θxj ]
)
, with all qj ≥ 0 and

∑n
j=1 qj = 1

(A.16)
which is a smooth approximation of the min operator and interpolates between
weighted average and minimum operators, depending on the parameter θ [20,
71]. This expression also appeared in control [76] and exploration strategies for
which an additional Kullback-Leibler cost term is incorporated in the immediate
cost [66, 27, 43, 74, 73, 9, 10]. Moreover, this function6 was recently proposed as
an operator guiding exploration in reinforcement learning, and more specifically
for the SARSA algorithm [7, 8] – see these references for a discussion of its
properties.

The randomized policy in terms of free energy. Note that the optimal
randomized policy derived in Equation (A.8) can be rewritten in function of the
free energy as

p∗ij(T ) =
pref
ij exp[−θcij ]zjn∑n

j′=1 p
ref
ij′ exp[−θcij′ ]zj′n

=
pref
ij exp[−θ(cij + φ∗j (T ))]∑n

j′=1 p
ref
ij′ exp[−θ(cij′ + φ∗j′(T ))]

(A.17)
because zin = exp[−θφ∗i (T )] and zin =

∑n
j=1 wijzjn =

∑n
j=1 p

ref
ij exp[−θcij ]zjn

for all i 6= n. This corresponds to a multinomial logistic function.

B Solving the system of logistic equations

In this appendix, we are mainly interested in deriving the solution of a simple
system of multinomial logistic equations. Assume we have to solve the following
equations

γi exp[−θxi]∑n
j=1 γj exp[−θxj ]

= qi with each qi, γi ≥ 0 (B.1)

with respect o the xi, together with the following equality constraints{∑n
i=1 qi = 1∑n
i=1 qixi = 0

(B.2)

The multinomial logistic function in (B.1) is often encountered in applied
statistics, for instance it forms the main functional form of the multivariate
logistic model [38]. In this appendix, we derive the solution x∗ of this equation
satisfying the given constraints and then use it in order to solve Equation (15).
The second equality constraint in (B.2) is introduced because any shift of a
solution vector, x∗ − c, is also a solution. Adding this second constraint solves
the problem of degeneracy.

6They actually study the softmax counterpart.

28



Taking the ratio between the two equations (B.1) involving qi and qj and
taking − 1

θ log of both sides gives xi − xj = − 1
θ [log(qi/γi) − log(qj/γj)]. This

provides n−1 independent equations and a common practice is to set one value
to 0, for instance xn = 0 [38]. Here, we will instead force the second equality
constraint (B.2). Multiplying both sides by qj and summing over j provides
xi−

∑n
j=1 qjxj = − 1

θ [log(qi/γi)−
∑n
j=1 qj log(qj/γj)] (recall that the qi sum to

1 and
∑n
i=1 qixi = 0) gives

xi = − 1
θ

(
log(qi/γi)−

n∑
j=1

qj log(qj/γj)
)

(B.3)

We now apply this result in order to solve Equation (15) with xj = ∆ij

(we condition the computation on an arbitrary node i). By comparing (15)
with (B.1) as well as recalling that pref

ij = qij and φ∗i = − 1
θ log zin (Equation

(12)), we observe that γj = pref
ij exp[−θcij ]zjn and therefore − 1

θ log(qj/γj) =
1
θ log(exp[−θcij ]zjn) = −(cij+φ∗j ). Injecting this result in (B.3) finally provides
for constrained nodes

∆ij = −(cij + φ∗j ) +
∑

k∈Succ(i))
pref
ik (cik + φ∗k) (B.4)

which is the require result.

C Derivation of the iterative algorithm

In order to compute the optimal policy p∗ij , we observe from Equation (A.17)
that we need to find the free energy φ∗j = − log zjn, and thus the backward
variable zjn starting from a node j,

p∗ij ∝ pref
ij exp[−θ(cij + φ∗j )]

where ∝ means “proportional to”. The quantity p∗ij then needs to be normalized
so that

∑
j∈Succ(i) p

∗
ij = 1. We will therefore have to compute the backward

variable zjn for the two sets of nodes of interest, the constrained nodes C and
the unconstrained nodes U .

From the definition of the backward variable (Equation (A.5), but now in-
cluding the augmented costs on constrained nodes), we obtain by decomposing
the paths i  n into the first step i → j, and then the remaining steps j  n
(see [30] for a related derivation),

zin =
∑

℘in∈Pin
π̃(℘in) exp[−θc̃′(℘in)]

=
∑

j∈Succ(i)

∑
℘jn∈Pjn

pref
ij π̃(℘jn) exp[−θ(c′ij + c̃(℘jn))]

=
∑

j∈Succ(i)
pref
ij exp[−θc′ij ]

∑
℘jn∈Pjn

π̃(℘jn) exp[−θc̃′(℘jn)]

zjn

=
∑

j∈Succ(i)
pref
ij exp[−θc′ij ]zjn (C.1)

29



where ℘in is a path starting in a node i and ending in the killing, absorbing,
node n. We will now express this recurrence formula in terms of the free energy,
which will lead to an interesting extension of the Bellman-Ford formula.

Taking − 1
θ log of this last expression and recalling that φ∗i = − 1

θ log zin
yields, for any node i 6= n,

φ∗i = − 1
θ log

∑
j∈Succ(i)

pref
ij exp[−θ(c′ij + φ∗j )] (C.2)

The remainder of the development depends on the type of node i; we there-
fore continue with the unconstrained nodes, followed by the constrained ones.

C.1 Computation of the free energy on unconstrained
nodes

For unconstrained nodes, c′ij = cij and we simply have

φ∗i = − 1
θ log

∑
j∈Succ(i)

pref
ij exp[−θ(cij + φ∗j )] for each i ∈ U (C.3)

because there is no augmented cost associated to the transitions from an un-
constrained node – they are not part of the set of constrained transitions (see
Subsection 6.1). This corresponds to the standard recurrence formula for com-
puting the free energy in the RSP framework (see Equation (A.15) or [28, 29]).
Let us now compute this quantity on constrained nodes.

C.2 Computation of the free energy on constrained nodes

In the case of constrained nodes, we have to use the augmented costs c′ij in
order to ensure that the relative flow in the edge (i, j) is equal to the predefined
transition probability pref

ij provided by the environment. Remember that the
value of these augmented costs can be expressed in function of the free energy,
c′ij =

∑
l∈Succ(i) p

ref
il (cil + φ∗l ) − φ∗j (Equation (17)). Injecting this result in

Equation (C.2) provides

φ∗i = − 1
θ log

∑
j∈Succ(i)

pref
ij exp[−θ(c′ij + φ∗j )]

= − 1
θ log

∑
j∈Succ(i)

pref
ij exp

[
− θ
( ∑
l∈Succ(i)

pref
il (cil + φ∗l )

)]

= − 1
θ log

[
exp

[
− θ
( ∑
l∈Succ(i)

pref
il (cil + φ∗l )

)]( ∑
j∈Succ(i)

pref
ij

)]

=
∑

l∈Succ(i)
pref
il (cil + φ∗l ), for each i ∈ C (C.4)

Moreover, for the goal node n, znn = 1 so that φ∗n = 0. This last result as well
as Equations (C.3)-(C.4) therefore justify the recurrence formula (20).

30



D Convergence of the iterative algorithm

In this appendix, the convergence of the iteration algorithm based on Equation
(20) is shown based on the fixed point theorem.

First, let us observe that the solution to the recurrence relation (20) (two
first lines of the equation) is invariant up to a translation of the origin of the
free energy. Indeed, it can easily be shown that if φ∗ is a solution of (20), a
shift of the free energy by a quantity α, that is φ∗i

′ = φ∗i + α for each i, is also
a solution to (20). To overcome this underdetermination, the free energy is set
to zero on the absorbing, goal, node n, φ∗n = 0.

We will now study the following fixed point iteration after permuting the
index of the nodes so that the unconstrained nodes appear before the constrained
nodes,

φ∗i ←



− 1
θ log

 n∑
j=1

pref
ij exp

[
− θ
(
cij + φ∗j

)] if 1 ≤ i ≤ |U|

n∑
j=1

pref
ij

(
cij + φ∗j

)
if |U|+ 1 ≤ i ≤ |U|+ |C|

0 if i = n

(D.1)
Then, it is well-known that this kind of fixed-point iteration converges to a

unique solution in a convex domain (here, the positive quadrant) if the Jacobian
matrix, J, of the transformation has a matrix norm (for instance its spectral
radius) strictly smaller than 1 everywhere in this domain [24, 60]. In that case,
the fixed-point transformation is what is called a contraction mapping. We will
thus compute the spectral radius of the Jacobian matrix and verify that it is
smaller than one for all non-negative values of φ∗.

The element i, j of this Jacobian matrix can easily be computed from Equa-
tion (D.1). For unconstrained nodes,

[J]ij =
∂φ∗i
∂φ∗j

=
pref
ij exp

[
− θ
(
cij + φ∗j

)]
n∑
k=1

pref
ik exp

[
− θ
(
cik + φ∗k

)] for 1 ≤ i ≤ |U| (D.2)

For constrained nodes,

∂φ∗i
∂φ∗j

= pref
ij for |U|+ 1 ≤ i ≤ |U|+ |C| (D.3)

and of course ∂φ∗n/∂φ
∗
j = 0 for all j.

Then, we can verify that this Jacobian matrix J is sub-stochastic. Indeed,
row sums are equal to 1 for rows 1 to (n − 1), and the last row sum (for node
n) is strictly less that 1 (it is equal to 0). Consequently, because, in addition,
all the elements of the matrix are non-negative, J is sub-stochastic [53]. Thus,
J defines a transition probability matrix of a killing, absorbing, Markov chain
with a killing absorbing node n [26].

Now, from the definition of the Jacobian matrix (D.2)-(D.3), the graph in-
duced by J connects the n nodes in exactly the same way as the original graph

31



G: node i and node j are connected if and only if they are connected in the
original graph (the connectivity pattern is induced by pref

ij ).
Moreover, as it is assumed that the original graph G is strongly connected,

the absorbing, killing, node n can be reached from any initial node of the graph
and this property is kept for J. This means that, exactly as in the case of a stan-
dard absorbing Markov chain, the total probability mass in the transient states
of the network (nodes 1 to n − 1) will gradually decrease and limt→∞ Jt → 0
[34]. This implies that the spectral radius of the Jacobian matix J is strictly
less than 1 [53]. Therefore, as the spectral radius is a matrix norm, the itera-
tion (D.1) converges to a unique solution independently of the (positive) initial
conditions [24, 60].

References

[1] Y. Achbany, F. Fouss, L. Yen, A. Pirotte, and M. Saerens. Optimal tuning of
continual exploration in reinforcement learning. Proceedings of the 16th Interna-
tional Conference on Artificial Neural Networks (ICANN 06). Lecture notes in
Computer Science, LNCS 4131:734–749, 2006.

[2] Y. Achbany, F. Fouss, L. Yen, A. Pirotte, and M. Saerens. Tuning continual
exploration in reinforcement learning: an optimality property of the Boltzmann
strategy. Neurocomputing, 71:2507–2520, 2008.

[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: Theory, algorithms,
and applications. Prentice Hall, 1993.

[4] T. Akamatsu. Cyclic flows, markov process and stochastic traffic assignment.
Transportation Research B, 30(5):369–386, 1996.

[5] T. Akamatsu. Decomposition of path choice entropy in general transport net-
works. Transportation Science, 31(4):349–362, 1997.

[6] K. Arrow, L. Hurwicz, and H. Uzawa. Studies in linear and non-linear program-
ming. Stanford University Press, 1958.

[7] K. Asadi and M. L. Littman. An alternative softmax operator for reinforcement
learning. ArXiv preprint arXiv:1612.05628, 2016.

[8] K. Asadi and M. L. Littman. An alternative softmax operator for reinforcement
learning. In Proceedings of the International Conference on Machine Learning
(ICML), pages 243–252, 2017.

[9] M. G. Azar, V. Gómez, and B. Kappen. Dynamic policy programming with
function approximation. In International Conference on Artificial Intelligence
and Statistics (AISTAT), pages 119–127, 2011.

[10] M. G. Azar, V. Gómez, and H. J. Kappen. Dynamic policy programming. Journal
of Machine Learning Research, 13(Nov):3207–3245, 2012.

[11] F. Bavaud and G. Guex. Interpolating between random walks and shortest paths:
a path functional approach. In Proceedings of the International Conference on
Social Informatics (SocInfo 2012), pages 68–81. Springer, 2012.

[12] D. P. Bertsekas. Network optimization: continuous and discrete models. Athena
Scientific, 1998.

[13] D. P. Bertsekas. Nonlinear Programming, 2nd ed. Athena Scientific, 1999.

32



[14] D. P. Bertsekas. Dynamic programming and optimal control. Athena Scientific,
2000.

[15] D. P. Bertsekas and J. Tsitsiklis. Neuro-dynamic programming. Athena Scientific,
1996.

[16] B. Blaise. Randomized markov decision processes: a study of two new algorithms.
Master’s thesis, Universite de Louvain, 2013. Superviser: Prof. Marco Saerens.

[17] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press,
2004.

[18] A. K. Chandra, P. Raghavan, W. L. Ruzzo, R. Smolensky, and P. Tiwari. The
electrical resistance of a graph captures its commute and cover times. Annual
ACM Symposium on Theory of Computing, pages 574–586, 1989.

[19] N. Christofides. Graph theory: An algorithmic approach. Academic Press, 1975.

[20] J. Cook. Basic properties of the soft maximum. Unpublished manuscript available
from www.johndcook.com/blog/2010/01/13/soft-maximum, 2011.

[21] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to algorithms, 3th
ed. The MIT Press, 2009.

[22] T. M. Cover and J. A. Thomas. Elements of information theory, 2nd ed. John
Wiley and Sons, 2006.

[23] J. Culioli. Introduction a l’optimisation. Ellipses, 2012.

[24] G. Dahlquist and A. Bjorck. Numerical methods. Prentice-Hall, 1974.

[25] F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens. Random-walk computation
of similarities between nodes of a graph, with application to collaborative recom-
mendation. IEEE Transactions on Knowledge and Data Engineering, 19(3):355–
369, 2007.

[26] F. Fouss, M. Saerens, and M. Shimbo. Algorithms and models for network data
and link analysis. Cambridge University Press, 2016.

[27] R. Fox, A. Pakman, and N. Tishby. G-learning: taming the noise in reinforcement
learning via soft updates. In Proceedings of the 22nd Conference on Uncertainty
in Artificial Intelligence (UAI 2016), pages 202–211, 2001.

[28] K. Françoisse, I. Kivimäki, A. Mantrach, F. Rossi, and M. Saerens. A bag-of-paths
framework for network data analysis. ArXiv preprint arXiv:1302.6766, 2013.

[29] K. Françoisse, I. Kivimäki, A. Mantrach, F. Rossi, and M. Saerens. A bag-of-paths
framework for network data analysis. Neural Networks, 90:90–111, 2017.

[30] S. Garćıa-Dı́ez, F. Fouss, M. Shimbo, and M. Saerens. A sum-over-paths extension
of edit distances accounting for all sequence alignments. Pattern Recognition,
44(6):1172–1182, 2011.

[31] S. Garćıa-Dı́ez, J. Laforge, and M. Saerens. Rminimax: an optimally randomized
minimax algorithm. IEEE Transactions on Systems, Man and Cybernetics, part
B: Cybernetics, 43(1):385–393, 2013.

[32] S. Garćıa-Dı́ez, E. Vandenbussche, and M. Saerens. A continuous-state version of
discrete randomized shortest-paths. Proceedings of the 50th IEEE International
Conference on Decision and Control (IEEE CDC 2011), pages 6570–6577, 2011.

[33] M. Gondran and M. Minoux. Graphs and algorithms. John Wiley & Sons, 1984.

[34] C. Grinstead and J. L. Snell. Introduction to probability. The Mathematical
Association of America, 2nd edition, 1997.

[35] I. Griva, S. Nash, and A. Sofer. Linear and nonlinear optimization. SIAM, 2nd
edition, 2008.

33



[36] G. Guex and F. Bavaud. Flow-based dissimilarities: shortest path, commute time,
max-flow and free energy. In B. Lausen, S. Krolak-Schwerdt, and M. Bohmer, edi-
tors, Data science, learning by latent structures, and knowledge discovery, volume
1564 of Studies in Classification, Data Analysis, and Knowledge Organization,
pages 101–111. Springer, 2015.

[37] D. A. Harville. Matrix algebra from a statistician’s perspective. Springer-Verlag,
1997.

[38] D. Hosmer and S. Lemeshow. Applied logistic regression, 2nd ed. Wiley, 2000.

[39] T. Jaakkola, M. Meila, and T. Jebara. Maximum entropy discrimination. In
Advances in Neural Information Processing Systems 16 (NIPS 2000), pages 470–
476. MIT Press, 2000.

[40] E. T. Jaynes. Information theory and statistical mechanics. Physical review,
106:620–630, 1957.

[41] T. Jebara. Machine learning, discriminative and generative. Kluwer Academic
Publishers, 2004.

[42] D. Jungnickel. Graphs, networks, and algorithms, 3th ed. Springer, 2008.

[43] H. J. Kappen, V. Gómez, and M. Opper. Optimal control as a graphical model
inference problem. Machine learning, 87(2):159–182, 2012.

[44] J. N. Kapur. Maximum-entropy models in science and engineering. Wiley, 1989.

[45] J. N. Kapur and H. K. Kesavan. Entropy optimization principles with applications.
Academic Press, 1992.

[46] J. G. Kemeny and J. L. Snell. Finite Markov chains. Springer-Verlag, 1976.

[47] I. Kivimäki, B. Lebichot, J. Saramäki, and M. Saerens. Two betweenness central-
ity measures based on randomized shortest paths. Scientific Reports, 6:srep19668,
2016.

[48] I. Kivimäki, M. Shimbo, and M. Saerens. Developments in the theory of ran-
domized shortest paths with a comparison of graph node distances. Physica A:
Statistical Mechanics and its Applications, 393:600–616, 2014.

[49] D. J. Klein and M. Randic. Resistance distance. Journal of Mathematical Chem-
istry, 12:81–95, 1993.

[50] B. Lebichot. Network analysis based on bag-of-paths: classification, node crit-
icality and randomized policies. PhD thesis, Ecole Polytechnique, Université
catholique de Louvain, Belgium, 2018. Superviser: Prof. Marco Saerens.

[51] M. L. Littman. Markov games as a framework for multi-agent reinforcement
learning. In Proceedings of the 11th International Conference on Machine Learn-
ing (ICML-94), pages 157–163, 1994.

[52] A. Mantrach, N. V. Zeebroeck, P. Francq, M. Shimbo, H. Bersini, and M. Saerens.
Semi-supervised classification and betweenness computation on large, sparse, di-
rected graphs. Pattern recognition, 44(6):1212–1224, 2011.

[53] C. D. Meyer. Matrix analysis and applied linear algebra. SIAM, 2000.

[54] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge University
Press, 1995.

[55] K. Murphy. Machine learning: a probabilistic perspective. MIT Press, 2012.

[56] G. Neu, A. Jonsson, and V. Gómez. A unified view of entropy-regularized markov
decision processes. ArXiv preprint arXiv:1705.07798, 2017.

[57] J. Norris. Markov chains. Cambridge University Press, 1997.

[58] M. J. Osborne. An introduction to game theory. Oxford University Press, 2004.

34



[59] L. Peliti. Statistical mechanics in a nutshell. Princeton University Press, 2011.

[60] G. Phillips and P. Taylor. Theory and applications of numerical analysis, 2nd ed.
Academic Press, 1996.

[61] W. Powell. Approximate dynamic programming, 2nd ed. John Wiley and Sons,
2011.

[62] M. Puterman. Markov decision processes: discrete stochastic programming. John
Wiley and Sons, 1994.

[63] H. Raiffa. Decision analysis. Addison-Wesley, 1970.

[64] R. Rardin. Optimization in operations research. Prentice Hall, 1998.

[65] L. Reichl. A modern course in statistical physics, 2nd ed. Wiley, 1998.

[66] J. Rubin, O. Shamir, and N. Tishby. Trading value and information in MDPs,
pages 57–74. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[67] S. Russell and P. Norvig. Artificial intelligence: A modern approach, 3d ed.
Prentice-Hall, 2010.

[68] M. Saerens, Y. Achbany, F. Fouss, and L. Yen. Randomized shortest-path prob-
lems: Two related models. Neural Computation, 21(8):2363–2404, 2009.

[69] R. Sedgewick. Algorithms, 4th ed. Addison-Wesley, 2011.

[70] R. S. Sutton and A. G. Barto. Reinforcement learning: an introduction, 2nd ed.
Draft manuscript in progress. The MIT Press, 2017.

[71] A. Tahbaz and A. Jadbabaie. A one-parameter family of distributed consensus
algorithms with boundary: from shortest paths to mean hitting times. In Pro-
ceedings of IEEE Conference on Decision and Control, pages 4664–4669, 2006.

[72] H. M. Taylor and S. Karlin. An introduction to stochastic modeling, 3th Ed.
Academic Press, 1998.

[73] E. Theodorou, D. Krishnamurthy, and E. Todorov. From information theoretic
dualities to path integral and kullback-leibler control: Continuous and discrete
time formulations. In The Sixteenth Yale Workshop on Adaptive and Learning
Systems, 2013.

[74] E. A. Theodorou and E. Todorov. Relative entropy and free energy dualities:
Connections to path integral and kl control. In Proceedings of the 51st IEEE
Conference on Decision and Control (CDC 2012), pages 1466–1473. IEEE, 2012.

[75] H. C. Tijms. A first course in stochastic models. John Wiley and Sons, 2003.

[76] E. Todorov. Linearly-solvable markov decision problems. In Advances in Neural
Information Processing Systems 19 (NIPS 2006), pages 1369–1375. MIT Press,
2006.

[77] D. White. Real applications of Markov decision processes. Interfaces, 15(6):73–83,
1985.

[78] D. White. Further real applications of Markov decision processes. Interfaces,
18(5):55–61, 1988.

[79] D. J. White. A survey of applications of Markov decision processes. Journal of
the Operational Research Society, 44(11):1073–1096, 1993.

[80] L. Yen, A. Mantrach, M. Shimbo, and M. Saerens. A family of dissimilarity
measures between nodes generalizing both the shortest-path and the commute-
time distances. In Proceedings of the 14th SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 2008), pages 785–793, 2008.

35


	1 Introduction
	1.1 General introduction
	1.2 Why consider randomized policies?
	1.3 Integrating constraints to the RSP framework
	1.4 Contributions and organization of the paper

	2 The standard randomized shortest-path framework
	2.1 Some background and notation
	2.2 The standard randomized shortest-path formalism

	3 Randomized shortest paths with constrained transition probabilities
	3.1 The Lagrange function

	4 Solving constrained RSP problems by Lagrange duality
	4.1 Computing the dual Lagrange function
	4.2 Maximizing the dual Lagrange function
	4.3 Computing the Lagrange parameters and the augmented costs
	4.4 The complete procedure

	5 Solving constrained RSP problems by a simple iterative algorithm
	5.1 An optimality condition in terms of free energy
	5.2 Computing the randomized policy

	6 Markov decision processes as a constrained RSP on a bipartite graph
	6.1 The basic model
	6.1.1 Definition of the bipartite graph
	6.1.2 Defining reference probabilities on the bipartite graph
	6.1.3 Computing the optimal randomized policy

	6.2 A soft value iteration algorithm
	6.2.1 The standard value iteration algorithm
	6.2.2 The soft value iteration algorithm

	6.3 Markov decision processes with discounting

	7 Some simulations: a simple illustration on the maze problem
	8 Conclusion
	A Appen000
	B Appen00
	C Appen01
	C.1 Computation of the free energy on unconstrained nodes
	C.2 Computation of the free energy on constrained nodes

	D Appen02

