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A B S T R A C T   

Background: As we enter the era of precision medicine, the role of adaptive designs, such as response-adaptive 
randomisation or enrichment designs in drug discovery and development, has become increasingly important 
to identify the treatment given to a patient based on one or more biomarkers. Tailoring the ventilation supply 
technique according to the responsiveness of patients to positive end-expiratory pressure is a suitable setting for 
such a design. 
Methods: In the setting of marker-strategy design, we propose a Bayesian response-adaptive randomisation with 
enrichment design based on group sequential analyses. This design combines the elements of enrichment design 
and response-adaptive randomisation. Concerning the enrichment strategy, Bayesian treatment-by-subset 
interaction measures were used to adaptively enrich the patients most likely to benefit from an experimental 
treatment while controlling the false-positive rate. 
The operating characteristics of the design were assessed by simulation and compared to those of alternate 
designs. 
Results: The results obtained allowed the detection of the superiority of one treatment over another and the 
presence of a treatment-by-subgroup interaction while keeping the false-positive rate at approximately 5\% and 
reducing the average number of included patients. In addition, simulation studies identified that the number of 
interim analyses and the burn-in period may have an impact on the performance of the scheme. 
Conclusion: The proposed design highlights important objectives of precision medicine, such as determining 
whether the experimental treatment is superior to another and identifying wheter such an efficacy could depend 
on patient profile.   

1. Background 

In recent years, adaptive designs have become increasingly popular 
because of their flexibility as an alternative to fixed randomised clinical 
trials. Adaptive design allows ongoing clinical trials to be modified 
based on information gathered during the trial without compromising 
the integrity and validity of the trial. These designs are attractive to 
investigators, sponsors,and even patients, as they can shorten the 
duration of trial, limiting the number of patients receiving ineffective/ 
inferior treatments and increasing the chances of subsequent success in 
drug development. This was exemplified during the COVID-19 
pandemic, which has fostered rapid completion of these studies, 

allowing us to obtain answers that rapidly influenced clinical manage
ment [1–3]. 

In addition to enabling early stopping due to efficacy issues or fu
tility, adaptive designs allow for changes in operational characteristics 
during trials, such as dropping an arm or changing the probability of 
randomisation between arms. Those designs, known as response- 
adaptive randomisation (RAR) designs, are increasingly considered a 
In addition to enabling early stopping due to efficacy issues or futility, 
adaptive designs allow for changes in operational characteristics during 
trials, such as dropping an arm or changing the probability of random
isation between arms. Those designs, known as response-adaptive ran
domisation (RAR) designs, are increasingly considered as an alternative 
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to fixed randomisation in controlled trials. The goal of these RAR designs 
is to maximise the number of patients receiving optimal treatment by 
sequentially updating treatment allocation probabilities based on 
accumulated outcome data. Therefore, RAR can be considered more 
ethical than equal randomisation (ER) because it allows more patients to 
receive better treatment [4–6]while providing information on treatment 
efficacy. Nevertheless, the use of RAR in confirmatory trials has been 
questioned, notably for two-arm trials, where it may have poorer per
formances than fixed randomisation [7,8] 

Moreover, whichever the number of arms, it is often criticized for 
operational issues into the running of the trial, with high probability of 
resulting in extreme imbalances. However, its use in multiarm trials has 
been shown to reach similar or better operating characteristics in terms 
of power and type 1 error rate in the detection of the best treatment 
among all [9–12].In the area of precision medicine, tailori ng the 
treatment given to a patient according to one or more personal char
acteristics appears desirable. Indeed, the plausible heterogeneity in pa
tient response cannot always be addressed using traditional designs. It is 
necessary to create new statistical methodologies that best address this 
issue [13]. 

Thus, to restrict the inclusion to a subset of patients who are likely to 
benefit the most from the treatment during trial accrual, enrichment 
designs have been proposed [14,15]. The response-adaptive random
isation is potentially used by these models [16,17]. All these 
adaptive-randomisation designs that use biomarker or multi-marker 
predictive signature information differ notably according to the un
availability at the trial onset of any classifier or if the patient population 
may be divided into biomarker-defined subgroups in which the efficacy 
of the treatment is supposed to differ. In the former case, the design and 
analysis must incorporate a cross-validation signature for identifying 
sensitive patients before providing any enrichment and adaptive ran
domisation, such as that recently proposed by Xia et al. [17]. In the latter 
case, where the subsets are known at the trial onset, several proposals 
have been published for those so-called “stratified trial designs” or 
“marker-stratified designs” [18,19]. In this setting, Bayesian proposals 
are aimed at optimising the adaptation rules throughout the decision, 
framework [16] or using dynamic borrowing to assess the evidence for 
efficacy in a specific subgroup and an overall positive effect [20]. 

We placed ourselves in the setting of Marker-based Strategy Designs 
(MSD) [19,21,22], that is, where the trial is designed to further assess 
the benefit of stratifying the population into nonoverlapping subgroups, 
and each patient is randomly assigned either to have therapy deter
mined by their marker status or to receive therapy independent of 
marker status [23]. We aimed at (i) evaluating the benefit of treatments 
in terms of a binary outcome measure and (ii) to test whether such an 
effect could depend on a patient profile. 

The contributions of this paper are as follows. First, we proposed a 
Bayesian hybrid adaptive randomisation design for clinical trials eval
uating a marker-based strategy, with sequential rules for assessing the 
efficacy of both the stratification and the treatment effect. This is the 
first novelty of our proposal, given previous MSD often placed them
selves in a frequentist framework, by maximising the power of some test 
to detect the predictive marker effect [21,22]. Moreover, to perform 
response-adaptive-randomisation (RAR) we used the optimal allocation 
criterion proposed by Rosenberger [24], modified by plugging Bayesian 
estimates [25]. Such a RAR also differs from that proposed by Zhou et al. 
[48] and Gu et al. [26], who directly derived the allocation ratio from 
the estimated posterior mean of response rates. It also differs from the 
proposed ratio of posterior probability of superiority [27] that appears 
inappropriate in the setting of MSD, where the “treatment” superiority 
relies, rather than on whether the biomarker is of interest for treatment 
choice, on the two treatments to be compared. Otherwise our design 
allows for early decision rules, not only to stop recruitment if the 
treatment under study is likely to be beneficial (rather than unlikely in 
Ref. [28]), but also in case of predictive biomarker, measured on the 
subset-by-treatment interaction. Such a detection used Bayesian 

measures of heterogeneity in treatment effect across the biomarker 
strata, allowing indirect enrichment. In that sense, it differs from the 
previous designs, while it takes advantage of our previous work [29]. 
Last, while most of the previous works have considered the use of tar
geted treatments where many biomarkers may be of interest, we were 
only interested in one marker related to a specific setting of intensive 
care. Indeed, we considered mechanically ventilated patients, for whom 
how ventilation strategy may use patient profile is debated. The moti
vating randomised clinical trial designed in intensive care patients 
aimed at evaluating the benefit of the ventilation supply technique ac
cording to the responsiveness of patients to positive end-expiratory 
pressure (PEEP). None of the available designs appeared to directly 
apply to this trial. 

To get further insights into our proposed approach, a simulation 
study was conducted to assess its operating characteristics. 

2. Methods 

2.1. Trial setting 

Despite the best supportive care, acute respiratory distress syndrome 
(ARDS) still kills 35–46% of the 3 million patients affected annually. In 
the absence of specific treatments, providing safe and efficient me
chanical ventilation (MV) is key to survival. There are still open ques
tions regarding the best approach to MV. The PESETAS (PEep SElection 
Test in ArdS) trial aims to test adults admitted to the intensive care unit 
(ICU) with moderate or severe ARDS, a personalised approach to set 
positive end-expiratory pressure (PEEP). We hypothesised that i) pa
tients with greater amounts of recruitable lung may benefit from higher 
PEEP levels, provided that at-tention is paid to drive pressure, ii) setting 
PEEP based on the results of a PEEP-responsiveness test improves sur
vival compared to the systematic use, independent of the patient 
response, of either a low- (“minimal distension”, further denoted a) or a 
high-PEEP (“maximal recruitment”, denoted b) strategy. The main 
outcome was 28-day all-cause mortality after inclusion. 

Therefore, the PESETAS trial aims to evaluate whether the ventila
tion strategy, that is, the choice of these two techniques a or b, depends 
on the patient PEEP responsiveness. Thus, based on the response to the 
PEEP-responsiveness test (PRT) within the first 30 min, two subsets of 
interest within the trial population will be defined, either R = 1 in case 
of response and R = 0 otherwise. 

Therefore, to assess the benefit of tailoring the ventilation supply 
method to the patient PEEP-responsiveness, a Marker-Based Strategy 
Design was used. Patients were randomly allocated between three ran
domisation arms, namely, (i) Arm A, where all allocated patients, 
regardless of their PEEP responsiveness, were ventilated using a minimal 
distension strategy, a, which corresponds to the standard of care; (ii) 
Arm B, where all allocated patients, regardless of their PEEP respon
siveness, were ventilated using a maximal recruitment strategy, b; and 
(iii) Arm C, where the results of a PRT were used to tailor the ventilatory 
strategy, i.e., patients with a negative PRT were ventilated with the same 
strategy a as patients randomised to comparator Arm A, and patients 
with a positive PRT were ventilated with the same strategy b as patients 
randomised to comparator Arm B. The study design is summarised in 
Fig. 1. 

The main objectives of the trial were to compare the effect of each 
intervention (a vs. b) on the patient outcome overall and to test whether 
such an effect could depend on patient PEEP responsiveness. We further 
decided to use a Bayesian hybrid response-adaptive randomisation 
design, as described below. 

2.2. Basic concepts for Bayesian adaptive design 

Let pj, j = a, b denote the 28-day mortality rates in patients who 
received the ventilation supply a or b, respectively. We consider the 
three-arm (A, B, C) randomised clinical trial described above. 
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Let Yik denote the binary outcome of the ith patient in arm k = A, B, C, 
i = 1, 2, …, nk, and nk is the number of patients enrolled in arm k: Yik = 1 
in case of patient death at day 28, and Yik = 0 otherwise. The total 
number of 28-day deaths in arm k is denoted sk =

∑nk
i=1Yik.We consider a 

Bayesian framework, whe re the 28-day mortality rate in arms A, B and 
C, πk = (πA, πB and πC), respectively, had a uniform non informative prior 
distribution Beta(1, 1). The use of such a flat non informative prior was 
motivated by several considerations. First, it allows the posterior to be 
dominated by the data rather than by any prior overoptimistic views 
regarding the experimental arms. Thus, it ensures that a critical amount 
of clinical information is required as a basis for deciding whether the 
experi-mental arm will be allocated to a large number of patients. In 
addition, such domination by the data allows the trial results to be used 
by others who have their own priors. 

After observing sk deaths at day 28 from nk patients, the posterior 
probability of 28-day death, πk|sk, in arm k followed a beta distribution 
Beta(1 + sk, 1 + nk − sk) due to the natural conjugate property of the beta 
family for binomial sampling. 

2.3. Decision rules 

Let τR = Pr(R = r), denote the prevalence of subset r ∈ {0, 1} (that is, 
of the PRT result). Let θR denote the treatment effect in patient subset R, 
measured in terms of absolute outcome difference, θR = |πa|R − πb|R|, 
where πt|R is the probability of 28-day death in patients who received the 
ventilation supply t (= a, b) from subset r ∈ {0, 1}. As described above, 
the posterior distribution of that probability will be sequentially 
computed for each intervention (a vs. b). The resulting decision criteria 
and one-sided stopping rule defined at the mth stage can be summarised 
as follows:  

• Stop the trial if there is sufficient information on the benefit of 
intervention b At each interim analysis, the trial can be stopped early 
for efficacy if the posterior probability of observing at least the 
minimum expected treatment difference in mortality between in
terventions in favour of b is higher than a predetermined threshold, 
computed with equation (1) described below. If this probability ex
ceeds a certain threshold, the trial is stopped early due to demon
strated efficacy in favour of intervention b. 

P (pa − pb > Δ|ski, nki, k = A,B,C) > ν (1)  

where Δ is the minimal expected treatment difference and ν denotes the 
threshold for stopping decision.  

• Detection of subset (R) by treatment (a vs b) interaction for 
enrichment 

If the previous stopping rule is not fulfilled, the interaction between 
the patient subset (PRT) and the intervention effect is estimated with the 
measures proposed by Ref. [29] computed from equations (2) and (3). If 
the posterior probability of these measures exceeding a predefined 
cutoff η is high enough and clinically relevant, then the trial population 
is enriched in the subset of interest. 

P (θR=1/θR=0 > η|θR=1 ≥ θR=0, ski, nki) > ε (2)  

P (θR=0/θR=1 > η|θR=0 ≥ θR=1, ski, nki) > ε (3)  

where η is the threshold for interaction and ε denote the threshold for 
enrichment decision. ν and ε are set at stringent values, as recommended 
by Harrel [30]. 

2.4. Allocation probabilities 

If the trial was not stopped at this interim analysis, the allocation 
probabilities are updated for the next cohort of patient. We propose the 
following Bayesian hybrid response-adaptive randomisation with 
eNrichment desiGn (BRING). The algorithm is summarised in the 
following box. 

The BRING algorithm is summarised below. 
A sample of N patients is to be enrolled, and randomly allocated to 3 

marker-based strategy arms, A, B, and C. 
A total of m interim analyses are scheduled to be performed once 

after N/m patients have been enrolled, with available outcome measure.  

2.4.1. Step 1: Initialisation 
First, patients are assigned to either arm k = A, B, C, with proba

bilities of 
( 1

3,
1
3, 

1
3
)

that is, using a 1:1:1 balance fixed-randomisation 
design. After a burn-in enrolment period, patient outcomes will be 
recorded. Then, interim analysis can be performed as described below 

2.4.2. Step 2: Estimation 
Then, data collected on the first cohort of enrolled patients are used 

to calculate the posterior mean of the 28-day death rate in each arm k, 
given accumulated data on n =

∑
nk, that is: 

π̂k = E(πk|sk, nk), k = A,B,C (4)  

2.4.3. Step 3: Optimal allocation computation 
To allocate the randomisation arm k to n patients, we aimed to 

minimise the expected number of treatment failures (here, 28-day 
deaths), for a fixed asymptotic variance – which reflects the power of 
the test of comparing the benefit of each marker strategy against all 
others [24]. Thus, we used the allocation proportions ρ∗k(πA, πB, πC) and 
k = A, B, C, as proposed by Hu and Zhu [31]. 

Fig. 1. Study Design of the PESETAS trial 
PRT denotes the PEEP-Responsiveness Test, a denotes the minimal distension strategy, and b the maximal recruitment strategy. 

V. Vinnat et al.                                                                                                                                                                                                                                  



Contemporary Clinical Trials Communications 33 (2023) 101141

4

The Bayesian posterior mean estimates of failure rates were plugged 
in the allocation ratio, as previously proposed [25,24] minimising the 
total number of deaths over the trial sample: 

ρ∗
k(πA, πB, πC) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − π̂k

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − π̂A

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − π̂B

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − π̂C

√ (5)  

where π̂A, π̂B, π̂C are mean posterior estimates of πA, πB, πC. 
We then considered that interim analyses are scheduled to be per

formed after every n patients have been allocated to either arm, A, B and 
C. Let define the optimal allocation probability function ψk proposed by 
Jeon and Hu [32] as the probability of allocation arm k: 

ψk =
ρ∗

k

(
ρ∗k
nk
n

)γ

∑C
k=Aρ∗

k

(
ρ∗k
nk
n

)γ (6) 

with γ = 2, tuning parameters for controlling the degree of 
randomness [33] and where nk is the sample size in arm k after n 
enrolled patients. Although equations (4)–(6) could be computed after 
each patient’s outcome is available, this design only plan to update the 
allocation probabilities at each pre-planed interim analysis. 

All this processes are repeated until the sample size has been reached 
or any stopping rule is fulfilled, at which point the trial is stopped. 

2.5. Simulation study design 

Through simulations, we evaluated the operating characteristics of 
our trial design across a range of scenarios corresponding to various 

reasonable sizes of the treatment effect in each intervention and the 
treatment-by-subset interaction. The simulation setting aimed to mimic 
the PESETAS trial setting under various realistic underlying scenarios, 
described in Table 1. Scenario 1 refers to the null hypotheses of no 
treatment effect and no treatment-by-subset interaction; Scenario 2 re
fers to the benefit of strategy b over a in the whole population (no 
treatment-by-subset interaction); Scenario 3 refers to situations with a 
benefit of b over a, which is increased in patients with positive PRT (r =
1) compared to those with negative PRT (r = 0). While scenario 4 in
dicates the situation where there is a benefit of the intervention of b 
compared to a, which is increased in patients with a negative PRT (r = 0) 
compared to those with a positive PRT (r = 1); finally, in Scenarios 5 and 
6, a qualitative treatment-by-subset interaction exists, with b beneficial 
in patients with positive PRT, while a is favoured in those with negative 
PRT. 

The maximum sample size of 1200 patients was computed to detect a 
mortality difference of 5%–10% for any of the interventions, assuming a 
death rate at day 28 in the control arm ranging from 0.3 up to 0.45, with 
a power ranging from 72% up to 99%. The simulation procedure in
cludes a burn-in period with a fixed equal allocation ratio. Then, interim 
analyses were conducted based on a prespecified number of recruited 
patients, checking the efficacy boundaries based on each intervention’s 
posterior probabilities of death. If the trial was not stopped, the ran
domisation allocation ratio was updated based on the algorithm 
described above. Decision thresholds and stopping boundaries were 
defined and selected by simulations to ensure that the false-positive rate 
under the null was close to 5%. The minimal expected treatment dif
ference Δ was set at 0.05, the threshold for interaction η was set at 1.05, 

Step 1: Assign the first n = N/m patients to arms A, B, C with probabilities of 1/3 each. Record patient outcomes. 

At the time of the first interim analysis, based on those n patients, and unless no event has 

been observed, proceed to Step 2. 

Step 2: Calculate the posterior mean of the 28-day death rate in each arm as well as posterior 

probabilities of quantities of interest. 

If there is evidence of any treatment effect, stop the trial; otherwise, go to Step 3. 

Step 3: Calculate the optimal allocation proportion for each arm using equation (5). 

Update the allocation probability function using equation (6). 

Assign n further patients to the arm with the highest allocation probability. 

Repeat Steps 2 and 3 until the sample size N has been reached orany stopping rule is fulfilled, at which point the trial is stopped.  

Table 1 
Description of the simulated scenarios.  

Scenarios 28-day death probability 

Treatment (t) πt|R=1 πt|R=0 πA πB πC pa pb 

Scenario 1 (a) 0.400 0.400 0.400 0.400 0.400 0.400 0.400 
(b) 0.400 0.400      

Scenario 2 (a) 0.400 0.400 0.400 0.350 0.375 0.400 0.350 
(b) 0.350 0.350      

Scenario 3 (a) 0.400 0.400 0.400 0.325 0.350 0.400 0.316 
(b) 0.300 0.350      

Scenario 4 (a) 0.400 0.400 0.400 0.325 0.375 0.400 0.333 
(b) 0.350 0.300      

Scenario 5 (a) 0.400 0.300 0.400 0.325 0.275 0.333 0.300 
(b) 0.250 0.400      

Scenario 6 (a) 0.600 0.300 0.400 0.325 0.275 0.400 0.300 
(b) 0.250 0.400      

a refers to the minimal distension strategy, b to the maximal recruitment strategy, r denotes the PEEP-responsiveness Test (PRT), with r = 1 in case of responsiveness 
and 0 otherwise. πk denotes the 28-day mortality rates in Arms k = A, B, C, and pa ans pb, denote the 28-day mortality rates in patients allocated to minimal or maximal 
recruitment strategy, respectively.  
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and ν and ε denote thresholds for stopping decisions, set at stringent 
values, that was, ν = 0.80, and ε = 0.75, respectively. 

The performance of the algorithm was then evaluated based on trial 
efficiency and patient ethics. Trial efficiency was measured by (i) the 
false positive rate or “type I error rate”, estimated under the null sce
nario, by the proportion of simulation runs where treatment arm b was 
considered superior to arm a in terms of outcome, whichever the ran
domisation A, B, and C, and the underlying interaction, (ii) the true- 
positive rate, or “power” estimated under Scenarios 2–6, by the pro
portion of simulation runs with conclusion of treatment efficacy (b over 
a), note also that, given we only considered one-sided differences 
favouring the experimental arm b, there were no false positive decisions. 
(iii) the mean bias, normalised relatively to the true event rates and (iv) 
the relative mean square error (RMSE) of the mortality rates of the two 
interventions a and b. 

Patient ethics considerations were measured by the sample size and 
the proportion of patients assigned to the best arm in terms of 28-day 
mortality rate, throughout allocation probabilities. In addition to the 
mean values of these measures, their standard deviations are provided to 
better understand the performance variability of the design. All analyses 
were performed using R version 4.0.1 [34] and the package “R2jags” 
[35]. It allowed to compute the measures of subset interactions, from 
equations (2) and (3). 

2.6. Sensitivity analyses 

We evaluated the robustness of the propos ed design to the burn-in 
sample size, allocation update frequency, and subset prevalence. 

2.7. Comparison to alternative designs 

In addition to the Bayesian response-a daptive randomisation algo
rithm with enrichment (BRING), a Bayesian fixed equal allocation 
without stopping rules (Fixed ER) design, a Bayesian response adaptive 
randomisation (AR) and a Bayesian equal allocation with enrichment 

(ERENCH) were also included in the simulation to serve as comparisons 
to the proposed scheme. 

3. Results 

The operating characteristics of the p roposed design BRING in 
comparison to the alternate designs are summarised in Table 2. 

In Scenario 1, expectedly, the false-positive rates were similar among 
the three different algorithms, while in the fixed equal allocation design, 
the false positive rate decreased to 0.005. In the other scenarios, the 
fixed equal randomisation design and the Bayesian adaptive random
isation without enrichment design (AR) had lower true-positive rates 
than designs allowing enrichment; that is, the Bayesian adaptive ran
domisation and equal randomisation with enrichment designs (BRING 
and ERENCH), with the exception of Scenario 2. In the other scenarios, 
the fixed equal randomisation design and the Bayesian adaptive ran
domisation without enrichment design (AR) had lower true-positive 
rates than designs allowing enrichment; that is, the Bayesian adaptive 
randomisation and equal randomisation with enrichment designs 
(BRING and ERENCH), with the exception of Scenario 2. Concerning the 
fixed design, the true-positive rate was always lower than those of the re- 
maining designs. Moreover, except in Scenarios 3, 4 and 6, the differ
ence in the sample size among all three allocated arms was very small. 
This is mainly because in these scenarios, there was a qualitative 
interaction that was quickly detected by the treatment-by-subset inter
action measure and that allowed an enrichment in the subgroup of in
terest and thus increased the probability of early stopping for efficiency 
in later analyses. 

Otherwise, the bias and the mean square errors were somewhat low, 
indicating good performances of our design in estimating the probability 
of death in each treatment group and in each subset. However, bias 
tends to remain relatively higher from BRING than other designs in all 
the scenarios. However, regarding patient ethics criteria, the patient 
probability to be assigned to the most effective arm was not particularly 
different between response-adaptive and equal randomisation designs. 

Table 2 
Operating characteristics of the proposed design for the three-arm trial.  

Scenarios Algorithm Number of analyses False/True Positive rate Sample size mean (SD) Allocation probability 
Mean 

Bias pa Bias pb RMSE pa RMSE pb  

A B C     

Scenario 1 Fixed ER 1 0.005 1200 (0) 0.333 0.333 0.333 0.000 0.000 0.000 0.001 
ERENCH 4 0.055 1155 (192) 0.333 0.333 0.333 0.000 0.001 0.000 0.002 
AR 4 0.057 1154 (193) 0.335 0.332 0.333 0.002 0.002 0.002 0.001 
BRING 4 0.055 1157 (193) 0.335 0.332 0.333 0.000 0.002 0.000 0.002 

Scenario 2 Fixed ER 1 0.201 1200 (0) 0.333 0.333 0.333 0.000 0.001 0.001 0.001 
ERENCH 4 0.366 957 (368) 0.333 0.333 0.333 0.018 − 0.016 0.002 0.002 
AR 4 0.379 953 (368) 0.320 0.347 0.333 0.018 − 0.015 0.002 0.002 
BRING 4 0.372 952 (370) 0.320 0.347 0.333 0.020 − 0.016 0.002 0.002 

Scenario 3 Fixed ER 1 0.644 1200 (0) 0.333 0.333 0.333 0.001 0.004 0.001 0.001 
ERENCH 4 0.772 695 (381) 0.333 0.333 0.333 0.025 − 0.022 0.002 0.003 
AR 4 0.760 695 (383) 0.314 0.346 0.340 0.024 − 0.018 0.003 0.003 
BRING 4 0.773 691 (382) 0.313 0.346 0.340 0.025 − 0.023 0.003 0.003 

Scenario 4 Fixed ER 1 0.405 1200 (0) 0.333 0.333 0.333 0.001 0.003 0.001 0.001 
ERENCH 4 0.619 821 (390) 0.333 0.333 0.333 0.023 − 0.028 0.002 0.003 
AR 4 0.577 833 (393) 0.316 0.357 0.327 0.021 − 0.021 0.003 0.003 
BRING 4 0.615 821 (390) 0.315 0.357 0.328 0.023 − 0.028 0.003 0.003 

Scenario 5 Fixed ER 1 0.068 1200 (0) 0.333 0.333 0.333 0.000 0.001 0.001 0.001 
ERENCH 4 0.526 937 (332) 0.333 0.333 0.333 0.040 − 0.021 0.004 0.004 
AR 4 0.208 1056 (310) 0.312 0.324 0.364 0.012 − 0.014 0.002 0.002 
BRING 4 0.517 945 (177) 0.316 0.320 0.364 0.038 − 0.024 0.004 0.004 

Scenario 6 Fixed ER 1 0.835 1200 (0) 0.333 0.333 0.333 0.001 0.003 0.001 0.001 
ERENCH 4 0.998 469 (197) 0.333 0.333 0.333 0.103 − 0.056 0.005 0.004 
AR 4 0.860 592 (360) 0.274 0.335 0.391 0.014 − 0.025 0.003 0.003 
BRING 4 0.996 471 (203) 0.270 0.337 0.393 0.089 − 0.059 0.005 0.005 

BRING, Bayesian response-adaptive randomisation algorithm with enrichment; Fixed ER, Bayesian fixed equal allocation; AR, Bayesian response-adaptive random
isation; ERENCH, Bayesian equal allocation with enrichment; Max sample size = 1200, burn-in period = 300, allocation update frequency = every 300 subjects, 
efficacy stopping boundary = 0.80, interaction stopping boundary = 0.75, simulation iteration = 10,000. Bias and RMSE correspond to the mean normalised bias and 
the mean square error of the 28-day mortality rates in patients allocated to intervention a or b, respectively. 
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A strong treatment effect was indeed required to observe a clear-cut 
difference in favour of the best arm, as exemplified in Scenarios 4 and 6. 

Sensitivity analyses are summarised in Table 3 and Figs. 2 and 3. 
Table 3 shows that the number of interim analyses, with a fixed burn- 

in period of 300 patients, with equal and balanced randomisation, did 
not have a marked impact on the false positive rate of our proposal 
design. In fact, the false-positive rate increased as the number of interim 
analyses increased, ranging from 0.047 for one interim analysis to 0.066 
for 9 interim analyses. 

Concerning the sensitivity to the prevalence of the subset (that is, of 
PEEP responders), Fig. 2 illustrates that the subset prevalence had no 
marked impact on the total study population in Scenarios 1 and 2. The 
results were consistent with the scenarios set up, as there was no 
interaction in these two scenarios. By contrast, in Scenarios 3, 5, and 6, 
the sample size decreased as the prevalence of the subset increased. 

Moreover, the impact was increased in the case of a qualitative 
interaction, as shown in Scenarios 5 and 6. In contrast, in Scenario 4, the 
sample size increased as the prevalence of the subset increased. These 
results are consistent with the scenario set up, as there was, in this case, a 
quantitative interaction in favour of the subgroup with patients not 
responding to the PEEP test. 

The reliability of our design was affected by the burn-in period 
length and the frequency of interim analyses. As described in Fig. 3, in 
Scenario 1, a shorter burn-in period yielded an increased number of 
interim analyses and an inflation of the false-positive rate. When the 
burn-in size period was set at 100 patients, the false-positive rate was 
approximately 15% while it decreased to 2% when it was set to 700 
patients. Similarly, the same trend was observed in Scenarios 2 to 5, 
where the true-positive rate decreased as the burn-in period increased 
and the number of intermediate analyses decreased. 

For Scenario 6, the results were similar regardless of the burn-in 
period because the difference in treatment between the two in
terventions in favour of intervention b was marked and quickly detect
able by our proposed design. 

4. Discussion 

In precision medicine, drugs are developed to target subgroups of 
patients with specific biomarkers, such as clinical-pathological, molec
ular, or genetic variations. In recent years, there has been much work on 
developing designs in this setting, often focused on identifying and 
validating biomarker subgroups [36–40]. Once the subgroups are 
identified, the objective is to detect which response allows us to reach 
the best response to the experimental treatment. 

We have proposed a Bayesian adaptive-randomisation design with 
enrichment to address this challenge. Using the PESETAS trial as a 
motivating example, we defined the process involved in constructing the 
design, described the adaptive-randomisation allocation, stopping and 
enrichment rules and studied the behaviour of the design through its 

operating characteristics across a range of scenarios and in comparison 
with alternate designs. 

Using the Bayesian adaptive design, we elaborated several decision 
rules for detecting treatment efficacy and treatment-by-subset interac
tion to ensure a false-positive rate close to 5%, updated the random
isation allocation in favour of the most effective arm, and enriched the 
trial by enrolling more patients in the Arm that were most likely to 
benefit from the most effective treatment. Our design performed better 
than the competing ones with a higher power and decreased average 
sample size than the fixed and Bayesian response-adaptive random
isation designs without enrichment. In contrast, the use of RAR gener
ally offered similar power and average sample size to the adaptive 
designs that employed equal randomisation, which is consistent with the 
results discussed by Du et al. [41] However, our design appears more 
ethical for patients and maximises the number of patients receiving the 
optimal treatment. 

Table 3 and Fig. 3 illustrate that the interim analysis frequency and 
burn-in period had the most critical impacts on the false positive and 
true positive rates. Simulation studies are essential for choosing the 
appropriate number of interim analyses and burn-in period to evaluate 
this impact. Based on these results, we recommend a burn-in period of 
300 and a frequency of interim analyses performed every 200–300 pa
tients. Our results also showed that an enrichment strategy allowed the 
oversampling of sensitive patients and the undersampling of non- 
sensitive patients that benefited trial participants and thus reduced the 
average sample size of the study. This could be of interest in other set
tings where the patient condition under study is rare. This could be of 
interest in the setting fo histology-agnostic targeted therapeutic agents, 
based on specific genomic or molecular alterations, possibly resulting in 
very small sample sizes [42], or in the comparison of three drugs 
commonly used to treat various forms of isolated skin vasculitis [43]. 

The enrichment strategy described here achieves findings previously 
reported by other biomarker adaptive designs [17,44,45]. For example, 
the proposed enriched biomarker stratified design and the 
auxiliary-variable- enriched biomarker stratified design also showed 
that applying an enrichment strategy can result in a more cost efficient 
design in terms of power and reduce the average sample size [46,47] 

There are however, important disadvantages and risks of adaptive 
designs. The limited practicability of the RAR is a main issue, with 
complicated logistic compared to those of standard trials. Indeed, such 
designs require real-time information on treatment responses to update 
the randomisation allocation probabilities, which can limit its practi
cality in certain settings. It points out the practical issue of updating the 
allocation probabilities to take place during the course of random
isation. This requires that database of marker, treatment, and outcome 
data, must be connected to the software that makes the treatment 
assignment. It also needs to know how to handle delayed responses 
when defining the allocation rate over time. This further justifies the use 
of interim analyses rather than continuous monitoring, as well as its use 

Table 3 
Operating characteristics of the proposed design for the three-arm trial.  

Scenarios Allocation Update 
frequency 

Number of 
analyses 

False/True Sample size mean 
(SD) 

Allocation probability Bias pa Bias 
pb 

RMSE 
pa 

RMSE 
pb 

Positive 
rate 

Mean  

A B C     

Scenario 1 900 2 0.047 1160 (186) 0.335 0.332 0.333 0.001 0.001 0.002 0.002 
450 3 0.049 1162 (177) 0.335 0.332 0.333 0.000 0.002 0.002 0.002 
300 4 0.055 1157 (193) 0.335 0.332 0.333 0.000 0.002 0.002 0.002 
225 5 0.058 1154 (191) 0.334 0.332 0.334 0.001 0.002 0.002 0.002 
180 6 0.062 1151 (198) 0.335 0.332 0.333 0.000 0.002 0.002 0.002 
150 7 0.063 1150 (200) 0.334 0.332 0.334 0.000 0.002 0.002 0.002 
100 10 0.066 1148 (202) 0.335 0.332 0.333 0.000 0.000 0.001 0.002 

Max sample size = 1200, algorithm = RING, burn-in period = 300, efficacy stopping boundary = 0.80, interaction stopping boundary = 0.75, simulation iteration =
10,000. Bias and RMSE correspond to the mean normalised bias and the root mean square error of the 28-day mortality rates in patients allocated to intervention a or b, 
respectively. 
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in settings where long recruitment periods during which sufficient 
number of immediate or moderately delayed responses are accumu
lated, such as in cancer. One other concern is information leakage, with 
modifications that occur during the trial may convey information 
outside the sphere of confidentiality of the Data and Safety Monitoring 
Board (DSMB) and affect the types of patients who are accrued to the 

trial. Although of reported interest in multiarmed trials [48], it achieves 
a loss of power in paired comparisons. 

Although our design provides some advantages, some limitations 
cannot be ignored. In fact, our design was designed for the PESETAS 
trial. According to the context of the study, it is essential to elaborate 
appropriate decision rules and stopping boundaries to control the false 

Fig. 2. Influence of the prevalence of the subset of PEEP responders defined on the PEEP-Responsiveness test (PRT) on the total enrolled sample size; Max sample 
size = 1200, algorithm = BRING, burn-in period = 300, allocation update frequency = every 300 subjects, prevalence of the subset of PRT = {0.3, 0.4, 0.5, 0.6, 0.7}, 
efficacy stopping boundary = 0.80, interaction stopping boundary = 0.75, simulation iteration = 10,000. 

Fig. 3. Impact of the burn-in period on the proportion of trial conclusion in terms of overall treatment efficacy (a versus b) 
Max sample size = 1200, algorithm = BRING, burn-in period = {100, 300, 500, 700}, allocation update frequency = every 100 subjects, efficacy stopping boundary 
= 0.80, interaction stopping boundary = 0.75, simulation iteration = 10,000. 
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positive rate. The time needed to assess the patient biomarkers should be 
short enough, as patient treatment allocation depends on the determi
nation of the marker profile. In the motivating example, a PEEP- 
responsiveness test is performed within 30 min of admission to the 
intensive care unit, but this can take much longer depending on the 
biomarker. In addition, the time for outcome assessment must be rela
tively short so that the decision based on updated data can provide 
appropriate guidance for subsequent treatment assignments. If a trial 
has a fast accrual rate, many patients may have been enrolled in the trial 
before the outcome data became available to provide helpful informa
tion for the adaptive randomisation. Therefore, quick and easily 
computed end points and slow to moderate accrual rates (relative to the 
outcome assessment time) are most suitable for designs with response- 
adaptive randomisation. Last, we only considered one marker, though 
the design could be extended to the use of more than one marker. Note 
however, that this design is mostly dedicated to a situation where one 
wish to assess the interest of segregating treatment across a known 
marker. 

In conclusion, adaptive designs are exciting and promising for 
answering questions of clinical interest as quickly as possible, but they 
need to ensure that their conclusions are controlled for decision errors. 
We have proposed a Bayesian hybrid adaptive randomisation with an 
enrichment design to be applied to the search for the benefit of in
terventions that may differ between the patient subgroups. Such an 
approach appears promising in the large context of stratified or precision 
medicine. 
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