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Abstract
The analysis of causal mortality provides rich insight into changes in mortality trends that are hidden
in population-level data. Therefore, we develop and apply a multinomial logistic framework to
model causal mortality. We use internationally classified cause-of-death categories and data obtained
from the World Health Organization. Inherent dependence amongst the competing causes is
accounted for in the framework, which also allows us to investigate the effects of improvements in,
or the elimination of, cause-specific mortality. This has applications to scenario-based forecasting
often used to assess the impact of changes in mortality. The multinomial model is shown to be more
conservative than commonly used approaches based on the force of mortality. We use the model to
demonstrate the impact of cause-elimination on aggregate mortality using residual life expectancy
and apply the model to a French case study.
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1. Introduction

Mortality rate improvements have significantly impacted life insurance as well as private and public
pension systems. Cause-of-death data provides additional insight into these improvement trends. We
add to the area of causal mortality modelling by developing and applying the multinomial logistic
model. This allows a better understanding of the potential impact of the various causes of death on
aggregate mortality. The multinomial logistic model provides a framework for cause-elimination that
is easy to employ and complements current methods used in practice. It offers a new perspective on
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the potential impact of medical innovation. It has applications in life insurance for insurers that are
developing mortality scenarios, and is particularly relevant with recent developments in Solvency 2
regulations. It can also be applied to investigate the impact of possible future mortality trends in
current European pension reforms.

The multinomial logistic model (also known as multinomial logit model) is typically used to detect
factors that significantly influence a polytomous response; that is, a response with several competing
outcomes. Several applications of the multinomial logistic model have been undertaken with respect
to cause-of-death analysis over the past 10–20 years. Examples include Eberstein et al. (1990), who
used eight categorical and continuous independent variables, including marital status, education, and
birth weight, to model five infant cause-specific mortality rates. Lawn et al. (2006) applied the
multinomial logistic framework to model the distribution of neonatal deaths in countries with poor
data (see Johnson et al., 2010; Liu et al., 2012 for related work). Bradshaw et al. (2003) and Shahraz
et al. (2012) employed a multinomial model to redistribute unknown or ill-defined deaths (see
Murray et al., 2006 for a related application to ill-defined causes). Park et al. (2006) incorporated the
multinomial logistic framework in the modelling process in order to take into account the impact of
the tenth revision of the international classification of diseases (ICD).

However, none of these studies have investigated cause-specific mortality over the entire age range.
Previous applications have been solely on infant mortality. As mentioned by Foreman et al. (2012),
“current techniques do not allow for us to take advantage of such modelling advances within a
multinomial framework”. As past studies were mainly interested to find the variables that have the
largest impact on cause-specific mortality, many variables were included in the model, and thus
computational power issues arose. However, this is not an issue when relatively few regressors are
included in the model. Our focus is on utilising a framework that accounts for the nature of
competing risks, that provides additional insights to existing research based on joint risk factors,
frailties, hazard rates, and copulas. As cause-specific mortality data typically include two variables of
interest, namely age and time, the multinomial logistic model is easy to employ. More importantly,
the multinomial logistic framework parsimoniously quantifies the impact in the event that a cause is
(partially) eliminated; for example, in case a cure is found for a specified disease. This significantly
increases the applicability of the model framework.

The competing nature of cause-of-death mortality rates has challenged many researchers over the
past. Indeed, the study of competing risks brings necessarily the interesting question of dependence.
To put our work in perspective, we briefly review various other cause-specific mortality studies that
have been interested in the dependence/independence assumptions over the past few decades. The
regularly used independence assumption is among the limitations of cause-specific mortality studies.
For a broader discussion on the benefits, limitations, and risks of decomposing mortality by cause of
death, see, for example, Tuljapurkar (1998), Gutterman & Vanderhoof (1998), Tabeau et al. (2001),
Booth & Tickle (2008), and Richards (2009).

The benefits of forecasting mortality for each cause in isolation and then aggregating them to forecast
total mortality rates has been an area of interest. Such studies assume that the causes of death are
independent and, as such, can be forecast independently from one another. For example, McNown
& Rogers (1992) used univariate ARIMA models to forecast the parameters of a multi-exponential
function fitted to the age pattern of mortality. Based on data from 1960 to 1975, they forecast four
main causes of death (heart diseases, cancer, vascular diseases, and accident and violence) until 1985.
Similar studies include studies by Caselli (1996) and Wilmoth (1996), who considered the impact on

Daniel H. Alai et al.

168

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S174849951400027X
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 14:28:47, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S174849951400027X
https:/www.cambridge.org/core


projections of modelling mortality rates by cause; study by Rogers & Gard (1991), who illustrated
several applications of the Heligman–Pollard function, one of them used to forecast cause-specific
mortality; study by Wilmoth (1995), who demonstrated that for specific models, such as the Lee–Carter
model, overall mortality forecasts were consistently lower than the sum of mortality forecasts based on
a cause-specific approach; and studies by Caselli et al. (2006) and Tabeau et al. (1999), who compared
several forecasting approaches applied to aggregate as well as cause-specific mortality rates.

Various models have been developed that attempt to account for the dependence between causes. For
example, cause-specific mortality rates have been correlated through joint dependence on individual
risk factors (covariates) (see e.g. Manton, 1986; Rosen, 2006). Frailties have also been widely
employed to account for heterogeneous populations, where the dependence assumptions between the
various causes are determined by the joint distribution of the frailties (see e.g. Vaupel & Yashin,
1983; Hougaard, 1984; Manton et al., 1986). Multiple cause-of-death data allow the investigation
of links between various causes and help to determine a pattern of failure, defined as a combination
of causes that result in death (see e.g. Manton et al., 1976, 1980b; Manton & Poss, 1979; Manton &
Myers, 1987). More recently, copulas have been used to model the dependence between competing
risks. Kaishev et al. (2007) investigated (partial) cause-elimination by extending the double-decrement
results of Carriere (1994) to include up to four causes. Dimitrova et al. (2013) generalised the copula
approach to include cause-elimination by ignoring and eliminating causes using the definition of these
terms introduced in Elandt-Johnson (1976). See Lo & Wilke (2010) for related work.

However, in practice cause dependence is not generally taken into account. Using individual risk
factors or multiple causes requires significant additional data that may not be readily available,
whilst the frailty model and the copula framework are more complex and thus less convenient to
apply. Therefore, the most widely used approach is still based on a model developed more than
40 years ago by Chiang (1968), in which causal forces of mortality are used and which provides insight
into causal trends and partially addresses dependency issues (see e.g. Prentice et al., 1978). For
example, this approach has been widely used in past cause-elimination and cause-delay models (see e.g.
Keyfitz, 1977; Tsai et al., 1978; Manton et al., 1980a; Olshansky, 1987, 1988; Manton, 1991,
amongst others). Since 1968, the US decennial life tables have been published with a special report that
focuses on the impact of eliminating causes using Chiang’s approach, which will also be referred to as
the force of mortality approach or the instantaneous approach (see Bayo, 1968; Greville et al., 1975;
Curtin & Armstrong, 1988; Anderson, 1999). US official projections and forecasts of the Institute of
Actuaries of Australia are both performed under the force of mortality approach (see Wong-Fupuy &
Haberman, 2004 and LIWMPC Longevity Research Group, 2010, respectively).

This paper aims to provide a soundly based, and relatively easy to apply, alternative to complement
Chiang’s traditional approach. For that purpose, the multinomial logistic model is a natural choice
as causal mortality data are necessarily polytomous in nature. Furthermore, the simplicity of the
model specification will allow for the incorporation of a diverse range of cause-specific mortality
dependence. We assume a simple and intuitive relationship between the cause-of-death mortality
rates, based on a probabilistic approach. The model provides a convenient tool for cause-elimination
studies and scenarios analysis. To emphasise the complementary nature of the two approaches, we
provide a comparison between the multinomial approach combined with probabilistic point of view
(further referred only as the multinomial approach) and the method developed by Chiang.

After introducing the methodology with respect to the multinomial logistic model and life expectancy
calculation in section 2, the probabilistic approach is presented in section 3. Total and partial
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cause-eliminations are introduced by shocking causal mortality. It is shown that survival increases
comparatively more in the force of mortality approach than in the multinomial logistic approach.
In section 4, we illustrate the model in a case study using data for France obtained from the World
Health Organization (WHO). Section 5 concludes the paper.

2. Methodology

In this section we provide the theoretical details of the proposed causal mortality model. We also
outline the construction of residual life expectancy using an abridged life table.

2.1. Multinomial logistic model

Multinomial logistic regression techniques are catered to modelling probabilistic response variables
for competing outcome categories (see e.g. Borooah, 2002; Menard, 2002). The model describes a
polytomous response by using a sequence of binary responses. For example, survival or death is the
first binary response; if death, death by cancer or not, could be the second binary response, etc.

Let Di(x, t) denote the random deaths from cause i for age x at time t and let L(x, t) denote the
subsequent survivors that complement the deaths. Consider n causes and define Y(x, t) to be the
vector of cause-specific deaths and survival. We have

Yðx; tÞ ¼ ðD1ðx; tÞ;D2ðx; tÞ; ¼ ;Dnðx; tÞ;Lðx; tÞÞ0

We assume Y(x, t) follows a multinomial distribution, whose probability mass function, omitting the
arguments (x, t), is given by

Pr½D1 ¼ d1; ¼ Dn ¼ dn; L ¼ l� ¼ E !

d1 ! � � � dn ! l ! q
d1
1 � � � qdnn pl

where Xn
k¼ 1

qkðx; tÞ + pðx; tÞ ¼ 1

such that qk(x, t) describes the probability of death as a result of cause k, p(x, t) the probability of
survival, and

Eðx; tÞ ¼ lðx; tÞ +
Xn
k¼ 1

dkðx; tÞ

where l(x, t), d(x, t) are realisations of the random variables L(x, t), D(x, t), and the resulting measure
of initial exposure is given by E(x, t). We adopt survival as the baseline category in the multinomial
logistic framework. The baseline-category logit model produces the following:

log
qiðx; tÞ
pðx; tÞ ¼ Xðx; tÞβi; i ¼ 1; ¼ ; n

where X(x, t) is the design matrix and βi the vector of regression parameters, especially suited to
cause i. The design matrix, X(x, t), contains values of explanatory variables; these may be indicator
or numerical variables for categorical or continuous covariates, respectively. The product of the
design matrix and the vector of regression parameters is called the linear predictor, or the regression
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formula, which we outline in section 2.2 below. Given the regression parameters and the design
matrix, we apply the logistic function to obtain the probabilities of interest, which are given as follows:

qiðx; tÞ ¼ exp Xðx; tÞβif g
1 +

P
k exp Xðx; tÞβkf g ; i ¼ 1; ¼ ; n (1)

pðx; tÞ ¼ 1
1 +

P
k exp Xðx; tÞβkf g (2)

Notice that the form of the survival probability, p(x, t), differs from the probabilities of death, qi(x, t),
as survival is designated as the baseline category.

2.2. The regression formula

Given the multinomial framework, we address the structure of the regression formula. The regression
links our response to any potential covariates and is typically some combination of age, period, and
cohort. There is a vast literature that investigates this component of aggregate mortality modelling
starting with the seminal work of Lee & Carter (1992); in addition, some overviews are provided by,
for example Cairns et al. (2011) and Haberman & Renshaw (2011).

The nature of our data suggests the exclusion of any overt cohort covariate. The practical reason is
twofold. First, we generally have a limited number of periods, which hinders our ability to identify
any significant cohort trend. Second, cause-specific data are presented in age groups; we comment
further on this impact in our case study below. Given that we have data by age group, in order for
cohort effects to be taken into account, the data would need to be converted to reflect single age
covariates, which is a non-trivial exercise in itself. There is also an overriding theoretical reason why
we avoid cohort considerations. Namely, causes of death have an intuitive relationship with periodic
developments, particularly those because of medical innovations.

Whether a covariate should be treated as categorical or continuous is a second point of consideration.
Categorical covariates offer more flexibility but can overburden the model. We consider categorical age
and continuous period covariates. Categorical age is both intuitive and convenient. Intuitive, as it is
likely that the various age groups exhibit contrasting behaviour with respect to the different causes of
death. Convenient, as we have a limited number of age groups. Likewise, continuous period is both
intuitive and convenient. Intuitive, as mortality over time is typically classified as a trend whose
underlying behaviour is of a functional form. Convenient, as implementing continuous time avoids
resorting to time-series analysis for forecasting purposes. Lastly, to treat both age and period as
categorical would be most flexible, but would also be susceptible to overfitting. The number of
parameters in such a model would approach the number of observations. This would result in a model
with near-perfect fit, but lacking the ability to produce sensible prediction.

Finally, it has been observed in the literature that various age groups react differently to time (see e.g.
Booth et al., 2001). Therefore, we allow for age–period interaction. The linear regression formula we
adopt is as follows:

ηiðx; tÞ ¼ β0;i + β1; i; x + f ðt; ~βi; xÞ
where

ηiðx; tÞ ¼ log
qiðx; tÞ
pðx; tÞ
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and f ðt; ~βi;xÞ is a function defining the age–period interaction. Note that the linear regression
parameters are distinct for each cause i. The subscript x on β1,i and ~βi indicates the relevant age group
and the tilde on ~βi signifies it is a vector of parameters. Parameters are estimated using maximum
likelihood. Several environments for statistical computing contains functions fitting the multinomial
logit model on some data set (see e.g. the mlogit package in R or the logistic procedure in SAS).

2.3. Residual life expectancy

In order to present easily interpretable outcomes we use (residual) life expectancy. As we work with
age groups rather than individual ages, we make use of the abridged life table method (see e.g.
Chiang, 1984). This method mirrors that of a standard life table, with some modifications to allow
for the interval age groups. It requires an assumption on the relationship between central and crude
mortality rates governed by a parameter denoted ax. This parameter takes the interpretation of the
average proportion of the year lived for those that died. Throughout the paper, we assume ax � 0:5,
which results in the following relationship between q, the crude, and m, the central mortality rate:

qðx; tÞ ¼ 2mðx; tÞ
2 +mðx; tÞ

(see section 4.1 for more details). Even if this is an assumption that could be challenged for infant
mortality, it is widely used and accepted for adult age mortality, which is the focus of this paper.

3. Causal Mortality Shocks

A particular interest in the field of mortality concerns the impact of medical innovation in the form of
cures and any corresponding increase in longevity; the cure for cancer being a particularly prevalent
example. In contrast to the study of aggregate mortality, a causal approach provides the framework
in which valuable insight can be gained.

In this section, we outline how causal mortality is shocked in the multinomial logistic model, and
compare it with the approach based on modelling forces of mortality. By causal mortality shock, we
mean that mortality for a specific cause suddenly increases, decreases, or is eliminated owing to some
event, such as an epidemic or the discovery of a new cure. The remaining cause-specific mortality
rates are subsequently also affected by the change applied to the shocked mortality.

3.1. Shocks in the multinomial model

First, we acknowledge the possibility that the elimination of a cause can initiate a marked increase in
some causes, whilst decreasing or not affecting others. However, any such relationship is, strictly
speaking, unobservable. To understand these particular relationships is a non-trivial matter and is
not the aim of this paper. Without the consideration of these causal relationships, the description of
cause-elimination in the model is more faithfully represented by the idea of ignoring causes, rather
than eliminating them, based on the definition of these terms introduced in Elandt-Johnson (1976).

For completeness, we briefly describe these definitions. Let Ti be the time of death from cause i alone.
With n potential causes of death, consider a joint distribution for the random vector Ti = 1,… , n.
It is clear that we are able only to observe one of these times of death, that is, T = min(T1, T2,… , Tn).
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Elandt-Johnson (1976) considered elimination as a conditional limiting distribution where time of
death by the eliminated cause approaches infinity; that is, Ti→∞ when cause i is eliminated. Besides,
T = min(T1, T2, … , Ti−1, Ti+1,… , Tn) is considered as ignoring Ti, that is, ignoring cause i.
The two notions are equivalent under the assumption of independent times of death Ti. Most of the
existing literature operates under the notion of ignoring a cause; a notable exception is the recent work
of Dimitrova et al. (2013). Henceforth, we continue to use the term cause-elimination, but this should
not be confused with the definition outlined in Elandt-Johnson (1976).

In this paper, we approach the problem from a probabilistic point of view with no prior knowledge.
Hence, if one of the competing outcome categories is eliminated, we assign its probability pro-
portionally to the other outcomes, where survival is merely one of these outcomes. That is, although
survival probability will certainly increase as a result of a cure for cancer, it will not do so on a
one-to-one basis with the decrease in cancer-specific mortality. This mechanism resembles the
independent causal forces-of-mortality assumption used in instantaneous modelling approaches; this
is demonstrated in section 4.3 in a comparison with the results of Kaishev et al. (2007).

Suppose we introduce a shock ρi,x≥0 to cause i and age group x, where values of ρi,x>1 signify a
marginal increase in mortality, and vice versa. Note that ρi,x = 0 corresponds to the elimination of
deaths by cause i for age group x. The resulting probabilities are adjusted as follows:

qiðx; tÞ ¼
ρi;x expfXðx; tÞβig

1 +
P

kρk;x expfXðx; tÞβkg
; i ¼ 1; ¼ ; n (3)

pðx; tÞ ¼ 1
1 +

P
kρk;x expfXðx; tÞβkg

(4)

We also introduce a shock ρi that uniformly affects all age groups; that is, a shock independent of age
group. We continue by using and applying the assumption of age-independent shocks, however, the
theory is not made more complex by allowing age-dependent shocks ρi,x. Equations (3 and 4) become:

qiðx; tÞ ¼ ρi expfXðx; tÞβig
1 +

P
kρk expfXðx; tÞβkg

; i ¼ 1; ¼ ; n

pðx; tÞ ¼ 1
1 +

P
kρk expfXðx; tÞβkg

We provide a brief example to clarify the impact of cause-elimination without prior knowledge; that is,
under the proportional reweighting mechanism. Consider exposure to causes of death 1 and 2 for some
specific age x and year t, with probabilities 1/3 and 1/6, respectively. Consequently, the survival
probability is 1/2. Using equations (1 and 2), we have

q1ðx; tÞ ¼ expfXðx; tÞβ1g
1 + expfXðx; tÞβ1g + expfXðx; tÞβ2g

¼ 2=3
1 + 2=3 + 1=3

¼ 1=3

q2ðx; tÞ ¼ expfXðx; tÞβ2g
1 + expfXðx; tÞβ1g + expfXðx; tÞβ2g

¼ 1=3
1 + 2=3 + 1=3

¼ 1=6

pðx; tÞ ¼ 1
1 + expfXðx; tÞβ1g + expfXðx; tÞβ2g

¼ 1
1 + 2=3 + 1=3

¼ 1=2
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The elimination of cause 1 would have the following impact on the remaining two probabilities:

q2ðx; tÞ ¼ 1 ´ 1=3
1 + 0 ´ 2=3 + 1 ´ 1=3

¼ 1
4

pðx; tÞ ¼ 1
1 + 0 ´ 2=3 + 1 ´ 1=3

¼ 3
4

The above is a consequence of applying equations (3 and 4) together with the conditions ρ1 = 0 and
ρ2 = 1. Alternatively, the probabilities may equivalently be formulated as

q2ðx; tÞ ¼ 1
6
+
1
3

1=6
1=6 + 1=2

¼ 1
4

pðx; tÞ ¼ 1
2
+
1
3

1=2
1=6 + 1=2

¼ 3
4

That is, each probability is increased by a proportion of the eliminated mass 1/3. The proportions are
determined by the weights of the respective probabilities before elimination. This is not the consequence
of the multinomial logistic model, but rather the consequence of the elimination mechanism we chose,
based on the probabilistic approach. This mechanism is the canonical approach when prior knowledge
of relationships amongst the causes is unknown. However, with such knowledge, different forms of
dependence may be incorporated into the model. Furthermore, the desired adjustment mechanism is
independent of software packages or functions and may be suitably customised. Revisiting the above
example, if it is known that the elimination of cause 1 shifts probability entirely to cause 2 (leaving the
survival probability unchanged), this would result in q2 = p = 1/2. Using equations (3 and 4), this is
obtained with conditions ρ1 = 0 and ρ2 = 3. Therefore, jointly specifying the shock parameters ρi
allows for the implementation of many forms of dependence.

It is evident that we adjust for mortality shocks on an annual probability basis, while the traditional
method of Chiang (1968) adjusts the causal force of mortality, which is representative of the
instantaneous probability of death by cause.

Consider the survival probability as written in terms of the force of mortality:

pðx; tÞ ¼ exp �
ð1
0
μðx + s; tÞds

� �

where μðx; tÞ ¼ P
kμ

ðkÞðx; tÞ. That is, the total force of mortality, μ(x, t), is the addition of the forces
of mortality attributed to each cause. The effects of causal mortality shocks are imposed by shocking
the appropriate component of the force of mortality. For example, cause j elimination is achieved by
removing the relevant component of the total force of mortality and subsequently recalculating the
survival probability; resulting in

pðx; tÞ ¼ exp �
ð1
0

X
k≠ j

μðkÞðx + s; tÞds
2
4

3
5

Compared with our annual approach, probability redistribution on an instantaneous basis favours
survival. In other words, when cause j is eliminated in our method, deaths from causes i≠ j increase
comparatively more and survival increases comparatively less than previous findings that modelled
causal forces of mortality. A formal proof is provided below.
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3.2. A comparison of annual and instantaneous mortality

In this section we compare the impact of cause-elimination on the survival probability under the
annual approach (based on the multinomial logistic model) and the instantaneous approach (based
on force of mortality modelling). We show that under cause-elimination, the instantaneous approach
increases survival comparatively more than the annual approach.

Given the force of mortality, a survival probability may be written as

pðx; tÞ ¼ exp �
ð1
0

X
k

μðkÞðx + s; tÞds
" #

¼
Y
i

p0iðx; tÞ

where p0jðx; tÞ is the net survival probability for cause j:

p0jðx; tÞ ¼ exp �
ð1
0
μðjÞðx + s; tÞds

� �

The net survival probability is interpreted as the survival probability if no causes of death other than
cause j exist, as opposed to the crude survival probability, pj(x, t) = 1 − qj(x, t), that competes with
other causes. In the instantaneous approach, the elimination of cause j results in

pð�jÞðx; tÞ ¼ exp �
ð1
0

X
k≠ j

μðkÞðx + s; tÞds
2
4

3
5 ¼ pðx; tÞ=p0jðx; tÞ

where the superscript (− j) in p( − j)(x, t) indicates the elimination of cause j. Under the constant force
of mortality assumption:

μððx + δÞ; ðt + τÞÞ ¼ μðx; tÞ; 0≤ δ; τ< 1

the net survival probability for cause j is known to be

p0jðx; tÞ ¼ pðx; tÞqjðx; tÞ=qðx; tÞ

(see e.g. Bowers et al., 1986 for a proof). Thus, to find the new survival probability when cause j is
eliminated, one has to divide the current survival probability by pðx; tÞqj x; tð Þ=qðx; tÞ.

In contrast, the elimination of cause j in the annual approach that employs the multinomial logistic
model results in a survival probability given by

pð�jÞðx; tÞ ¼ pðx; tÞ : 1 +
qjðx; tÞ

pðx; tÞ + P
k≠ j

qkðx; tÞ

2
64

3
75

Given that both approaches result in a proportional effect on the annual survival probability, we
investigate the relation between these two proportions. That is, we show that

1

pðx; tÞqjðx; tÞ=qðx; tÞ
>1 +

qjðx; tÞ
pðx; tÞ + P

k≠ j
qkðx; tÞ

By applying some simple algebra, we find the above inequality by proving the following:

ð1�qjðx; tÞÞqðx; tÞ >pðx; tÞqjðx; tÞ (5)

Inequality (5) is proved by using Newton’s generalised binomial theorem and by noting that
0< qj(x, t)<q(x, t)<1 (see Appendix for a detailed proof). This shows that under cause-elimination,
the instantaneous approach increases survival comparatively more than the annual approach.
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4. Case Study

4.1. Data

TheWHOmaintains a comprehensive cause-of-death mortality database (World Health Organization,
2012). This database provides the mid-year population and number of deaths by cause for various
countries over the last 50–60 years. We obtained data for France from 1952 to 2008. The data are
generally divided into 5-year age groups with a final group for ages 85 and above. We consider France
because of its size and influence in Europe.

To ensure consistency across countries, the WHO database classifies the causes according to the ICD
(see Table 1). Under the ICD, the underlying cause of death is specified as “the disease or injury
which initiated the train of morbid events leading directly to death, or the circumstances of the
accident or violence which produced the fatal injury”. We consider the five main ICD causes, which
are: diseases of the circulatory system, cancer, diseases of the respiratory system, external causes, and
infectious and parasitic diseases. The major causes accounted for >80% of deaths in recent years,
and made up approximately 60%–70% of deaths 50 years ago. The cause classification used
throughout the paper is summarised in Table 2.

Some adjustments are made in order to analyse data consistently over time. First, the number of
deaths of unknown age are distributed proportionally across the age range, as recommended by the
Human Mortality Database (2012). The proportional distribution of the number of deaths of
unknown age is the classical method used by demographers and has a very limited impact in our
analysis. Indeed, since 1993, there is no death of unknown age, while in the 1950s, the proportions
of these deaths were usually <0.05% for each age group and cause.

Second, owing to a large difference in the nature of infant mortality, the first 5-year group is split into
two. Thus, our database is composed of 19 groups, the first for infants less than 1-year old, a second

Table 1. International classification of diseases (ICD) – coding system.

Causes of death ICD 7 ICD 8 ICD 9 ICD 10

Circulatory system A079–A086 A080–A088 B25–B30 I00–I99
Cancer A044–A060 A045–A061 B08–B17 C00–D48
Respiratory system A087–A097 A089–A096 B31–B32 J00–J99
External causes A138–A150 A138–A150 B47–B56 V00–Y89
Infectious and parasitic diseases A001–A043 A001–A044 B01–B07 A00–B99

Table 2. Cause-of-death codification.

Cause Code

Infectious and parasitic diseases 1
Cancer 2
Circulatory system 3
Respiratory system 4
External causes 5
Other 6
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for children aged 1–4, thereafter in groups of 5 years, ending with the group aged 85 and above. It is
clear that the presence of age groups results in a loss of information, perhaps the age group of 85 and
above being the most striking example. However, the loss of information is proportional only to the
interaction between age and cause in each particular group. For example, if there are no significant
relative changes amongst the causal mortality rates over the age group, there would be no loss of
information. Clearly, we anticipate some interaction in the 85 and above age group, but not of the
magnitude that would render the results meaningless.

Third, the data contains central exposure-to-risk rather than initial exposure-to-risk. Consequently,
the ratio of cause-specific deaths to exposure produce central death rates mi(x, t) for cause i (see e.g.
Pitacco et al., 2009, Ch. 2, for an overview of basic mortality models). Central death rates are
typically assumed to relate to death probabilities as follows:

qðx; tÞ ¼ mðx; tÞ
1 + ð1� axÞmðx; tÞ

As mentioned in section 2.3, we define ax � 0:5 and obtain the relationship

qðx; tÞ ¼ 2mðx; tÞ
2 +mðx; tÞ

Finally, an adjustment is necessary owing to the changes of classification over time. Indeed, the ICD
changed three times between 1950 and 2010, from ICD 7 to ICD 10. This was done in order to
account for progress in science and technology and to achieve more refined cause descriptions.
Consequently, the raw data are not directly comparable over time. To make them comparable,
comparability ratios are used.

At the time of a change in classification, some countries recorded the cause of death according to the
previous classification as well as the newly adopted one. This double death registration makes it
possible to analyse the impact of a change of classification. Unfortunately, many countries did not
apply this approach for all causes. That is, they recorded deaths under both classifications for a subset
of the data. Some countries did not even apply it for a single cause. We develop our own comparability
ratios in order to smooth the death rates across the classifications, as in Gaille & Sherris (2011). This
approach facilitates a consistent analysis across countries, should such a comparison be of interest.

Gaille & Sherris (2011) define a comparability ratio by requiring the average of the death rates over
the last 2 years of a classification to coincide with the average of the death rates over the first 2 years
of the newly adopted classification. Since France adopted ICD 8 in 1968, ICD 9 in 1979, and ICD 10
in 2000, three sets of comparability ratios are developed. Comparable data over the complete period
under consideration are obtained by dividing the number of deaths in a new classification by the
comparability ratio connecting this classification with the previous one, etc. This ensures that
mortality rates are continuous at the junction points between classifications. The following analysis
uses these adjusted death rates for women in France.

4.2. Model fitting

We begin by studying the observed mortality rates. Figure 1(a) presents the log-mortality rates over
time for the age group 65–69; and Figure 1(b) presents them over age group for calendar year 2008.
We opt to display this age group and calendar year as they are most relevant to retirement systems
and most recent, respectively.
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Figure 1(a) suggests minor quadratic behaviour, however, a linear time component appears sufficient
to capture the period trend. The plots over age group exhibit the various familiar components of the
average log-mortality age pattern (see e.g. Heligman & Pollard, 1980). We adopt the following
regression formula for women in France:

ηiðx; tÞ ¼ β0; i + β1; i; x + β2; i;x � t

The resulting fit is presented in Figures 1(a) and 1(b) with dashed lines. The data set contains 7,581
observations and is fit using 228 parameters. The number of parameters required in the model is
the product of the number of causes, the number of age-specific parameters, and the number of
parameters required for the functional form of time. In our example it is 6× 19× 2 = 228. With the
number of causes, no parameter reduction can be obtained. We have 19 age categories and therefore,
19 age-specific parameters. However, age need not be specified as categorical, and we would
certainly not advocate this if single age data were available. In such cases, the age dimension may be
reduced, for example, to eight or nine parameters using a Heligman–Pollard functional (Heligman &
Pollard, 1980). The parameters required for the functional form of time is not of great concern, two

Figure 1. Observed (log) mortality rates for women in France: (a) over time (age 65–69); (b) over
age group (calendar year 2008).
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to three parameters should be sufficient. We did not encounter any computational difficulties when
fitting the model. The fit is generally very good, with variations by cause.

A subset of the regression output, namely the parameter estimates and accompanying standard
errors for causes 1–3, are presented in Table 3. Significance levels are provided, where “***”
indicates a p-value <0.001, “**” <0.01, “*” <0.05, and “ ” <0.1.

Table 3. Regression parameter estimates and standard errors for infectious and parasitic diseases (1), cancer (2),
and diseases of the circulatory system (3).

Cause 1 Cause 2 Cause 3

Parameters Estimate s.e. Estimate s.e. Estimate s.e.

Intercept − 6.4984 0.0177*** − 9.1892 0.0506*** − 8.5390 0.0470***
Age
1–4 − 1.5889 0.0278*** 0.3548 0.0554*** − 1.6305 0.0644***
5–9 − 3.4043 0.0450*** − 0.2892 0.0570*** − 2.4341 0.0788***
10–14 − 3.9215 0.0564*** − 0.3441 0.0580*** − 1.7452 0.0718***
15–19 − 3.1949 0.0460*** − 0.1535 0.0571** − 1.5202 0.0624***
20–14 − 2.5116 0.0354*** − 0.0614 0.0560 − 1.0342 0.0565***
25–29 − 1.7558 0.0303*** 0.3765 0.0542*** − 0.6157 0.0543***
30–34 − 1.5628 0.0279*** 0.9182 0.0527*** − 0.2468 0.0516***
35–39 − 1.6659 0.0279*** 1.5095 0.0518*** 0.1214 0.0506*
40–44 − 1.5964 0.0272*** 2.0693 0.0513*** 0.5973 0.0493***
45–49 − 1.5356 0.0261*** 2.5737 0.0510*** 1.1151 0.0484***
50–54 − 1.6035 0.0250*** 2.9887 0.0509*** 1.6657 0.0479***
55–59 − 1.5107 0.0243*** 3.3335 0.0508*** 2.2367 0.0475***
60–64 − 1.3470 0.0237*** 3.6493 0.0508*** 2.8685 0.0473***
65–69 − 1.0950 0.0224*** 3.9960 0.0508*** 3.5441 0.0472***
70–74 − 0.7877 0.0216*** 4.3386 0.0507*** 4.2140 0.0471***
75–79 − 0.5407 0.0213*** 4.6693 0.0507*** 4.8593 0.0471***
80–84 − 0.3877 0.0220*** 4.9616 0.0508*** 5.4090 0.0471***
85+ − 0.1546 0.0222*** 5.2540 0.0508*** 5.9694 0.0471***

t − 0.0619 0.0009*** − 0.0188 0.0017*** − 0.0549 0.0022***
t× age
1–4 − 0.0152 0.0015*** − 0.0088 0.0019*** 0.0270 0.0028***
5–9 0.0105 0.0021*** 0.0022 0.0019 0.0195 0.0033***
10–14 0.0197 0.0023*** 0.0014 0.0020 0.0017 0.0033
15–19 0.0043 0.0021* 0.0018 0.0019 0.0274 0.0026***
20–14 0.0003 0.0017 0.0084 0.0019*** 0.0311 0.0025***
25–29 − 0.0292 0.0017*** 0.0079 0.0018*** 0.0208 0.0024***
30–34 − 0.0217 0.0015*** 0.0081 0.0018*** 0.0295 0.0023***
35–39 0.0001 0.0013 0.0117 0.0018*** 0.0296 0.0023***
40–44 − 0.0038 0.0013** 0.0119 0.0018*** 0.0265 0.0023***
45–49 0.0006 0.0013 0.0132 0.0017*** 0.0260 0.0022***
50–54 0.0188 0.0011*** 0.0124 0.0017*** 0.0230 0.0022***
55–59 0.0257 0.0011*** 0.0132 0.0017*** 0.0217 0.0022***
60–64 0.0292 0.0011*** 0.0143 0.0017*** 0.0233 0.0022***
65–69 0.0389 0.0010*** 0.0132 0.0017*** 0.0215 0.0022***
70–74 0.0426 0.0010*** 0.0132 0.0017*** 0.0239 0.0022***
75–79 0.0515 0.0009*** 0.0136 0.0017*** 0.0260 0.0022***
80–84 0.0611 0.0009*** 0.0150 0.0017*** 0.0323 0.0022***
85+ 0.0736 0.0009*** 0.0166 0.0017*** 0.0415 0.0022***
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Figures 2(a) and 2(b) present the (residual) life expectancy at birth and at retirement age, respectively,
for women in France. The observed life expectancy is plotted with points, the fitted life expectancy with
dashed lines. As a result of our model selection criteria, the life expectancy fit is good. The observed life
expectancy appears to be decaying, which the fit is able to capture.

4.3. Causal mortality shocks

Figures 3(a) and 3(b) present the impact of eliminating cancer (cause 2) on life expectancy at birth
and retirement age, respectively. Note that cause-elimination has been assumed for all age groups.
The cure for cancer results in a life expectancy gain of 3.38 years at birth and 2.15 years at age 65 in
2008. These figures are comparable with results found for women in the United States (see Kaishev
et al., 2007, tables 2 and 3). In the case of independence, they obtain a life expectancy gain of 3.34
years at birth and 1.97 years at age 65 with a Gaussian copula and 3.46 and 2.16 years, respectively,
with a Student’s t-copula.

It is evident that the hypothetical gain in life expectancy from eliminating cancer is larger in more
recent calendar years; most especially for older ages as demonstrated in Figure 3(b). The importance

Figure 3. The impact of eliminating cancer on fitted life expectancy: (a) at birth; (b) at retirement
age (65).

Figure 2. Life expectancy for women in France: (a) at birth; (b) at retirement age (65).
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of cancer as a cause of death has been increasing with time and is most relevant for older adults. This
is intuitive, but difficult to discern from observed data only, such as plots provided in Figure 1.

For example, one might perceive a decrease in cancer deaths for a specific age group. To gain insight
into the behaviour of cancer mortality, it should be considered in relation to total mortality. It is
plausible that an age group is transitioning to better overall mortality, but that cancer prevalence is
increasing as a cause of death, rather than decreasing. Finally, the age groups must be aggregated
to obtain the impact of cancer on life expectancy over time. This is a difficult obstacle that the
multinomial model overcomes.

4.4. Forecasting residual life expectancy

Time is treated as a continuous covariate in the model. This has the benefit of avoiding time-series
analysis for forecasting purposes. However, as with any form of forecasting, the implications of
projections must be carefully considered. Consequently, we limit the forecasting period to a 10-year
horizon.

For the forecasting period, we emphasise the uncertainty driven by potential causal shocks rather
than those originating from the process and estimated parameters. A crude idea of uncertainty is
provided by comparing the forecasted life expectancy under the scenario that cause i is eliminated for
each i over the entire age range. Figure 4 presents the fitted and forecasted life expectancy, where the
forecast labelled i represents the scenario that cause i is eliminated. For example, the scenario of a

Figure 4. Forecasted life expectancy conjoined with cause-elimination: (a) at birth; (b) at
retirement age (65).
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cure for cancer is represented by forecast 2, which has a very large impact on life expectancy at birth
as well as life expectancy at retirement age. The projection labelled 0 represents the scenario of no
causal shocks. Deaths from cancer (cause 2) and the circulatory system (cause 3) are especially
relevant, which is evident in Figure 4 by the magnitude and sustainability of the increase in life
expectancy. Diseases of the circulatory system were the most important causes of death about 50 years
ago. While cancer is already the most important cause over the entire age range (see Figure 4(a)), it is
expected to become the most prevalent one at older ages within the next 5 years (Figure 4(b)). Deaths
from the remaining causes (causes 1, 4, 5) are less than those from cancer and the circulatory system
and therefore less relevant to life expectancy.

5. Conclusions

The aim of this paper is to provide an alternative approach to cause-of-death mortality modelling.
This is especially relevant under current European pension reforms and developments in Solvency 2
regulations. Previous work applied in practice has mainly considered modelling causal forces of
mortality. A consequence of the instantaneous perspective is that survival is treated differently from
death. In the multinomial logistic framework that utilises annual probabilities, survival is a competing
outcome and is treated the same way as the other outcomes. The annual approach assigns less
probability to survival as a result of cause-elimination than does the instantaneous approach. Without
prior knowledge of the governing behaviour between the various outcomes, we adjust all remaining
outcomes similarly; that is, proportional to their probability.

The multinomial logistic framework is easy to implement. It is also easy to quantify the impact of
cause-elimination or shocks on mortality metrics such as life expectancy, as the model provides an
intuitive framework for any combination of shocks on the various considered causes. Given
the accessibility of this modelling framework, it can readily be used in practice and broaden the
perspective offered by currently used methods. Finally, the framework allows for a straightforward
implementation of information with respect to known links between the various causes; although
such links are not investigated in this paper.

Treating time as a continuous covariate is appealing as it avoids time-series analysis for forecasting
purposes, making projections a trivial exercise. However, as with any form of forecasting, the implications
of projections must be carefully evaluated. Thus, a shift from continuous to categorical time is worthy
of exploration, and must be carefully considered to avoid violating the law of parsimony.
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Appendix: A comparison of annual and instantaneous mortality

We prove Inequality (5) from section 3.2 by using Newton’s generalised binomial theorem.
For 0< a, b<1, we have

ð1� bÞa ¼ 1� ab+
aða� 1Þ

2
b2 � aða� 1Þð1� 2Þ

3 � 2 b3 + ¼

ð1� aÞb ¼ 1� ab +
bðb� 1Þ

2
a2 � bðb� 1Þðb� 2Þ

3 � 2 a3 + ¼

such that

ð1� bÞa �ð1� aÞb ¼ aða� 1Þ
2

b2 � bðb� 1Þ
2

a2 � aða� 1Þða� 2Þ
3 � 2 b3 +

bðb� 1Þðb� 2Þ
3 � 2 a3 + ¼

Each pair on the right-hand side is positive for 0<b< a< 1. That is:

aða� 1Þ � � � ða� kÞbk+ 1ð� 1Þk +1 >bðb� 1Þ � � � ðb� kÞak+ 1ð� 1Þk +1; k 2 Z +

To show this we note that 0<b< a<1 and 0< (k − a)< (k −b) for k 2 Z + .

b< a ) bk < ak

) ð1� aÞbk < ð1� bÞak

) ð1� aÞ � � � ðk� aÞbk < ð1� bÞ � � � ðk� bÞak

) ða� 1Þ � � � ða� kÞbkð� 1Þk<ðb� 1Þ � � � ðb� kÞakð� 1Þk

) ða� 1Þ � � � ða� kÞbkð� 1Þk +1 > ðb� 1Þ � � � ðb� kÞakð� 1Þk +1

) aða� 1Þ � � � ða� kÞbk+ 1ð� 1Þk +1 > bðb� 1Þ � � � ðb� kÞak+ 1ð� 1Þk +1

We obtain the following inequality:

ð1� bÞa > ð1� aÞb; 0< b< a<1

Inequality (5) is proved by taking a = q(x, t), b = qj(x, t), and noting that 0<qj(x, t)<q(x, t)<1.
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