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“The brutality of human wars is only one of

the major hurdles we need to clear in order to

achieve a satisfying shift in focus away from

individual suffering towards that of true popula-

tion stewardship. The other is the burgeoning

environmental crisis we are busily creating for

ourselves. [...] we should be able to create a

global, sustainable environment for ourselves.”

— Greg Graffin,

Population Wars: A New Perspective on

Competition and Coexistence (2015), p. 240.
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Abstract
Whilst the effects of present-day climate change are apparent in many environmental systems, much

less is known about its impact upon the geomorphic systems characteristic of Alpine environments.

This is an important knowledge gap because of the potential vulnerability of Alpine landscapes. The

gap exists for two primary reasons: (1) observing climate forcing is challenging because it is manifest

over timescales of decades to centuries, over which timescale geomorphic data are commonly scarce;

and (2) the geomorphic response of landscapes to climate change can be complex, reflecting both

spatially differential sensitivities to climate forcing and the effects of landscape heritage associated

with historical glacial activity. Nonetheless, there is a consensus in the scientific community about

the potentially high sensitivity of Alpine regions to climate change, because of the vulnerability of

permafrost, glacial and nival processes to changes in atmospheric temperature and precipitation and

the large amount of sediment stored on the associated hillsides.

One approach to addressing this knowledge gap is to harness the power of remote sensing. A number of

active and passive remote sensing methods could be employed for the reconstruction and monitoring of

both whole landscapes and individual landforms. This Thesis aims to use such approaches to quantify

the geomorphic dynamics of high mountain areas at the timescale of decades and so in the context of

recent and rapid climate warming. It does so recognizing that both endogenous (landscape legacy)

and exogenous (climatic forcing) processes may matter. To support this primary aim, a secondary aim

arises: the evaluation of the potential of a number of remote sensing techniques for landscape and

landform monitoring at multiple temporal and spatial scales. Thus this Thesis also tests in an Alpine

setting the geomorphological potential of photogrammetric methods, using both aerial and hand-held

sensors and both traditional and the innovative Structure-from-Motion processing approaches, and

Terrestrial Laser Scanner techniques.

The Thesis shows that remote sensing approaches prove to be an advantageous approach for a number

of scales of application. In particular, over large spatial extents and in the case of decadal scale climate

forcing of Alpine landscapes, photogrammetry was found to be capable of quantifying process rates

within the limits of detection determined by the resolution of historical imagery. The information

unlocked from aerial archives reveals distinct geomorphic responses to cold and warm periods and to

changes in rates of precipitation and snow cover. Nonetheless, whilst enhanced sediment production is

observed locally, evidence suggest a weak propagation of climate change signals through the landscape

due to impeded connection to the river system and/or sediment transport capacity limitation.
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Résumé
Bien que les effets des changements climatiques actuels soient visibles dans de nombreux systèmes

environnementaux, un manque de connaissances des impacts sur les paysages alpins persiste. Cette

lacune existe pour deux raisons principales : (1) l’observation du forçage climatique représente un défi,

car ses conséquences se manifestent sur des périodes de plusieurs décennies, voire des siècles, pour

lesquels les données géomorphologiques sont généralement rares ; et (2) la réaction du paysage aux

changements climatiques peut être complexe, reflétant à la fois des sensibilités différentes au niveau

spatial et les effets du patrimoine paysager, comme par exemple son histoire glaciaire. Néanmoins, il

existe un consensus dans la communauté scientifique à propos de la haute sensibilité potentielle des

régions alpines au changement climatique, en raison de la vulnérabilité du pergélisol et des processus

glaciaires et neigeux aux changements de température atmosphérique et des précipitations et en raison

de la grande quantité de sédiments stockés sur les versants alpins.

Une stratégie pour aborder ces problématiques s’appuie sur le potentiel de la télédétection. Une série

de méthodes de télédétection active et passive peuvent être utilisées pour reconstruire et surveiller

le paysage entier et les éléments individuels qui le composent. Cette thèse vise l’application de ces

approches pour quantifier les dynamiques géomorphologiques des paysages de haute montagne à

l’échelle des décennies, et donc dans le contexte du réchauffement climatique récent et actuel. Cela est

mis en pratique par la reconnaissance de l’importance des processus endogènes (héritage du paysage)

et exogènes (forçage climatique). Le soutien à cet objectif en soulève un deuxième : l’évaluation du

potentiel d’un certain nombre de techniques de télédétection pour le monitorage du relief et de ses

formes géomorphologiques à plusieurs échelles temporelles et spatiales. Ainsi, cette thèse teste le

potentiel des méthodes de photogrammétrie, en utilisant à la fois des senseurs aéroportés et portatifs et

des approches de traitements traditionnels et innovants, et du balayage laser terrestre pour la recherche

géomorphologique alpine.

Les résultats obtenus montrent que les approches de télédétection se révèlent avantageuses pour des

nombreuses échelles d’application. En particulier, sur de grandes étendues spatiales et dans le contexte

du forçage climatique du paysage alpin, la photogrammétrie aérienne d’archive se montre appropriée

pour la quantification des taux des processus dans les limites de détection déterminées par la résolution

des photographies historiques. Les résultats démontrent l’existence d’une réponse géomorphologique

distincte pour des périodes froides ou chaudes, ainsi que selon les variations des taux de précipitations

et de couverture de neige. Néanmoins, alors qu’une production accrue de sédiments est observée

localement, des évidences suggèrent une faible propagation des signaux du changement climatique

à travers le paysage. Les raisons semblent être une faible contribution des versants au réseau fluvial

et/ou une capacité de transport des sédiments limitée.

vii





Zusammenfassung
Obwohl die Auswirkungen des aktuellen Klimawandels in zahlreichen Umweltsystemen beobachtet

wurden, sind die Kenntnisse dieser Auswirkungen auf alpine Landschaften immer noch ungenügend.

Diese Lücke existiert aus folgenden Gründen: (1) Das Beobachten klimatischer Auswirkungen auf

alpine geomorphologische Prozesse stellt eine grosse Herausforderung dar, da diese sich über eine

Zeitspanne von mehreren Jahrzehnten bis Jahrhunderten bemerkbar machen können, für die meist

nur wenige geomorphologische Daten zur Verfügung stehen. (2) Durch die unterschiedlichen Empfind-

lichkeiten verschiedener geomorphologischer Landschaftselemente sowie durch den grossen Einfluss

des landschaftlichen Erbes, wie zum Beispiel der historischen Gletschertätigkeit, reagieren alpine

Landschaftsentwicklungsprozesse sehr komplex auf Veränderungen des Klimas. Nichtsdestotrotz, auf-

grund der hohen Empfindlichkeit des Permafrosts und der Gletscher- und Schneeprozesse gegenüber

Veränderungen der atmosphärischen Temperatur und der Niederschlagsmenge sowie der grossen

Menge an Sedimenten die an den Alpenhängen abgelagert werden und wurden, herrscht in der wis-

senschaftlichen Gemeinschaft ein breiter Konsens über die potentielle hohe Sensibilität der alpinen

geomorphologischen Systeme in Bezug auf den zu erwartenden Klimawandel.

Fernerkundung bietet ein hohes Potential, um die geomorphologische Sensibilität zu erkunden. Aktive

und passive Fernerkundungsmethoden können genutzt werden, um gesamte Landschaften sowie

ihre einzelnen geomorphologischen Elemente historisch zu rekonstruieren und kontinuierlich zu

überwachen. Die vorliegende Dissertation zielt auf die Anwendung dieser Ansätze, um die geomorpho-

logische Dynamik der hochalpinen Landschaft über Jahrzehnte, und somit im Kontext der jüngsten

Klimaerwärmung, zu quantifizieren. Der hier dargestellte Ansatz fokussiert vor allem auf die Bedeutung

der endogenen (landschaftliches Erbe) und exogenen (klimatische Einflüsse) Prozesse. Die Umsetzung

dieses primären Ziels zieht ein sekundäres Ziel mit sich: Die Bewertung des Potenzials einer Reihe von

Fernerkundungsmethoden für das Monitoring von Landschaften und ihrer geomorphologischen For-

men auf mehreren rüumlichen und zeitlichen Skalen. Damit wird das Potenzial photogrammetrischer

Methoden, insbesondere luftgestützter und tragbarer Sensoren in Kombination mit traditionellen und

innovativen “Structure-from-Motion” Ansätzen, sowohl auch terrestrischen Laserscanning Techniken

für die alpine geomorphologische Forschung getestet.

Die Ergebnisse zeigen, dass die hier dargestellten Fernerkundungsansätze für eine breite Reihe von

Anwendungsskalen vorteilhaft sind. Die Archiv-Luftphotogrammmetrie ist besonders für die Quan-

tifizierung der Auswirkungen des Klimawandels auf geomorphologische Prozesse in grossen Land-

schaftsausschnitten geeignet. Die Auflösung der historischen Luftbilder bestimmt die Detektionsgrenze

dieser Prozesse. Die aus den Luftarchiven ermittelten Informationen zeigen, dass kalte und warme

Klimaphasen, sowie Variationen der Niederschlagsmenge und der Schneedeckenmächtigkeit unter-

schiedliche Auswirkungen auf geomorphologische Prozesse haben. Obwohl ein lokaler Anstieg der

Sedimentproduktion beobachtet werden konnte, konnten nur geringe Anzeichen einer Ausbreitung

dieser Klimawandelsignale in der Landschaft beobachtet werden. Die Gründe hierfür scheinen der

geringe Beitrag der untersuchten Berghänge zum Gesamtwasserabfluss und/oder die beschränkte

Sedimenttransportfähigkeit zu sein.
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Riassunto
Nonostante gli effetti del cambiamento climatico attuale siano evidenti in molti sistemi ambientali,

una conoscenza deficitaria perdura riguardo il suo impatto sui paesaggi alpini. Tale lacuna esiste per

due principali ragioni: (1) gli effetti del cambiamento climatico sono difficili da osservare, in quanto

manifesti su scale temporali di decenni, o persino secoli, per le quali prevale una scarsità di dati

geomorfologici esaustivi; e (2) la reazione del paesaggio a tali cambiamenti può essere complessa e

riflettere al contempo delle sensibilità spaziali differenti e gli effetti del patrimonio paesaggistico, come

ad esempio la cronistoria glaciale. Tuttavia, vi è un consenso nella comunità scientifica riguardo l’ele-

vata sensibilità delle regioni alpine ai cambiamenti climatici, a causa della vulnerabilità di permafrost

e processi glaciali e nevosi ai cambiamenti di temperatura atmosferica e di precipitazioni, oltre che

all’ampio stoccaggio di sedimenti concentrato sui pendii alpini.

Una strategia per colmare questa lacuna di conoscenza può essere l’avvalersi del potenziale delle

tecniche di telerilevamento. Vari metodi di telerilevamento attivo e passivo possono essere impiegati

per ricostruire e monitorare il paesaggio ed i singoli elementi che lo compongono. Questa tesi si

propone di utilizzare tali metodi per quantificare le dinamiche geomorfologiche nelle regioni di alta

montagna a scala temporale decennale, e quindi nel contesto del riscaldamento climatico recente e

attuale. In tale approccio viene riconosciuta l’importanza dei processi di tipo endogeno (di eredità

paesaggistica) ed exogeno (climatici). A sostegno di questo obiettivo primario, una seconda finalità

si pone: lo sviluppo e la valutazione di diverse tecniche di telerilevamento per il monitoraggio dei

rilievi alpini e delle loro forme geomorfologiche, a più scale temporali e spaziali. Pertanto, questa tesi

mette alla prova metodi di fotogrammetria, utilizzando al contempo sensori aeroportati e portatili ed

approcci tradizionali ed innovativi (come l’emergente Structure-from-Motion), e tecniche di scansione

laser per la ricerca geomorfologica in scenari alpini.

I risultati ottenuti dimostrano come gli approcci di telerilevamento rappresentino una risorsa efficace e

vantaggiosa per una vasta gamma di applicazioni. In particolare, ad ampia scala spaziale e nel contesto

di cambiamento climatico nelle regioni alpine, la fotogrammetria aerea d’archivio si è dimostrata

appropriata per la quantificazione dei processi geomorfologici entro limiti di rilevamento determinati

dalla risoluzione delle immagini storiche stesse. I risultati rivelano una reazione geomorfica distinta a

periodi di caldo e freddo, oltre che a variazioni di precipitazioni e copertura nevosa. Ciononostante,

malgrado un accrescimento della produzione sedimentaria sia presente a scala locale, la propagazione

dei segnali di cambiamento climatico attraverso il paesaggio appare debole. La ragione risiede nello

scarso contributo dei versanti al sistema fluviale e/o a limitate capacità di trasporto di sedimenti.
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1 Thesis overview

1.1 Motivation

In 1990, the Intergovernmental Panel for Climate Change (IPCC) published a pioneer report

for the scientific assessment of the possible effects of human activities upon the world’s

climate. Since then, a series of studies have progressively refined our comprehension of the

nature of climatic variability, its causes and what this might imply for the world’s climates in

the foreseeable future. Whilst the inevitability of future climate warming is now recognized,

attempts to develop strategies and objectives to restrain it, e.g. as discussed in the context of

the United Nation conference on climate change (COP21), held in Paris in December 2015,

remain incomplete.

Concern over the topic has progressively expanded from the scientific community and govern-

mental authorities, to be the subject of media coverage and concerns amongst the general

public. One reason for this is that, and independently of the future, the consequences of

climate changes are already among us. They may be challenging to observe, to identify and to

limit, but they are indeed real. One more challenge naturally emerges for the scientific com-

munity, relating to the quantification of these consequences for the Earth system. Parry et al.

[2007], for the IPCC, synthesise the state of impact studies but also make a critical observation:

very little work has been conducted on the expected impacts of climate change on geomorphic

dynamics in mountain watersheds, particularly regarding sediment production and transfer.

Knight and Harrison [2013] argue that Earth surface system responses to climate change are

generally poorly understood and critically omitted from policymakers in impact managing

decisions. They also claim that decadal-scale datasets of instrumented basins are required

to monitor the response of these systems to climate change, and specify that this requires a

considerable international science effort as well as commitment from national governments.

This doctoral thesis aims to contribute to this cause.
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Chapter 1. Thesis overview

1.2 Objectives

This thesis attempts to deepen our understanding of the impacts of climate change on high

mountain environments by investigating the directs effects on their geomorphic dynamics.

These areas are likely to respond dramatically to climate change because of (1) the vulnerability

of permafrost, glacial and nival processes to temperature and precipitation changes [Pelto and

Hedlund, 2001; Kääb et al., 2007; Oliva and Ruiz-Fernandez, 2015]; (2) the ample availability of

unconsolidated, potentially mobile sediments left after deglaciation [Ballantyne et al., 2014];

and (3) steep slopes, that potentially aid sediment mobilization [Brocklehurst and Whipple,

2002]. The implications of changes in geomorphic dynamics in mountainous regions are

many. They may interfere directly with human activities and infrastructure and affect water

resources, electric power production, tourism, ecology and biodiversity, geomorphological

heritage, cause natural hazards, etc.

The geomorphological objective of this thesis requires efficient methods to measure and

to quantify landscape morphology and its changes. The need to retrieve extensive spatial

information at varying time-scales (from months to the century) arises. One approach to

accomplish this is through remote sensing techniques i.e., methods allowing the acquisition

of information about objects without physical contact. Thus, this thesis also seeks the evalua-

tion of the potential of a number of remote sensing techniques for landscape and landform

monitoring at multiple temporal and spatial scales.

Following the considerations above, the main objectives pursued in this thesis can be stated

as follows:

1. Develop an integrated approach to better comprehend the impacts of recent climate

change upon Alpine landscapes and the implied consequences in terms of mass down-

wasting and sediment flux.

2. Investigate of the potential of a number of remote sensing techniques for landscape and

landform monitoring at multiple temporal and spatial scales.

The substantive geomorphological objective (1, above) includes some secondary aims. First,

the detection of morphological changes and modifications in sediment transfer rates of

different elements in the high mountains at annual to decadal scales. This could potentially

unveil the impact of climate forcing upon the landforms of Alpine environments. Second, the

dynamics of morphological changes need to be considered in a holistic, systemic approach by

taking into account the coupling of different elements of the landscape. Effectively, a crucial

control upon the propagation of climate signals through the landscape is exerted by sediment

connectivity, thus a manner of formally characterizing the latter is deemed necessary.

The developments included in the methodological objective (2, above) sustain the geomorphic

investigation. This thesis seeks to test in an Alpine setting the geomorphological potential of
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1.3. Contribution of the thesis

photogrammetric methods, using both aerial and hand-held sensors; and both traditional and

the innovative Structure-from-Motion processing approaches, and Terrestrial Laser Scanning

techniques.

1.3 Contribution of the thesis

1.3.1 Key contributions

This thesis is based upon pieces of research published individually in international scientific

journals after peer-review. Accordingly, these articles are reproduced with their original, pub-

lished content, and this is clearly indicated at the beginning of the chapter. In the introductory

section of every paper, a brief state-of-the-art explains the contribution of each article to

the specific topic they address. It also provides a brief explanation of its role in the broader

development of the thesis. The research manuscripts forming the basis on the thesis are:

• Micheletti, N., Tonini, M. and Lane, S.N. (2016). A 3-D clustering approach for fea-

ture detection from point clouds: application to a rock glacier front in the Swiss Alps,

Geomorphology, under review.

• Micheletti, N. and Lane, S.N. (2016). Water yield and sediment export in small, partially

glaciated Alpine watersheds in a warming climate, Water Resources Research, 52:4924-

4943.

• Micheletti, N., Lambiel, C. and Lane, S.N. (2015). Investigating decadal-scale geomor-

phic dynamics in an alpine mountain setting, Journal of Geophysical Research: Earth

Surface, 120(10):2155-2175.

• Micheletti, N., Lane, S.N. and Chandler, J.H. (2015). Application of archival aerial

photogrammetry to quantify climate forcing of Alpine landscapes, The Photogrammetric

Record, 30(150):143-165.

• Micheletti, N., Chandler, J.H. and Lane, S.N. (2015). Investigating the geomorphological

potential of freely available and accessible structure-from-motion photogrammetry

using a smartphone, Earth Surface Processes and Landforms, 40(4):473-486

In the remainder of Section 1.3, a set of other contributions of the wider thesis project is

introduced, as these are not presented exhaustively in this thesis itself.

1.3.2 Remote sensing of an Alpine temperate glacier, from the scale of decades to
hours

The remote sensing approaches tested in this thesis were also applied to an Alpine temperate

glacier in the context of the Master project of Chrystelle Gabbud, for which the author provided
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key support. The objective of this project was the employment of remote sensing methods

for the understanding the advance and recession dynamics of an Alpine valley glacier at

the timescales of decades, seasons, and a single day. At the decadal scale, archival imagery

has been used to obtain photogrammetric restitution of the glacier surface, and retrieve its

position in time. The latter has then been employed to explore the linkages between glacier

retreat and climate forcing. At seasonal and daily scales, repeated geodetic measurements

were obtained using a Terrestrial Laser Scanner with the intent of studying glacier surface

ablation and glacial hydrodynamics. The findings of this project have been published in:

• Gabbud, C., Micheletti, N. and Lane, S.N. (2016). Response of a temperate Alpine valley

glacier to climate change at the decadal scale, Geografiska Annaler: Series A, Physical

Geography, 98(1):81-95.

• Gabbud, C., Micheletti, N. and Lane, S.N. (2015). Lidar measurement of surface melt

for a temperate Alpine glacier at the seasonal and hourly scales, Journal of Glaciology,

61(229):963-974.

1.3.3 Decadal evolution of a very small heavily debris-covered glacier

The approach described in full detail in Chapter 3 of this thesis was employed to compute high-

precision digital elevation models and orthorectified photographs for a whole mountainside.

Results are used in Chapter 7, where the decadal-scale geomorphic dynamics of the landscape

are investigated using archival aerial imagery. Of particular interest in the area of study is a

small, heavily debris-covered glacier located in an Alpine permafrost environment. Therefore,

the data generated in this thesis were further analysed and used to deepen our knowledge of

this glacial system. The results have been published as a research paper in:

• Capt, M., Bosson, J.-B., Fischer, M., Micheletti, N. and Lambiel, C. (2016). Decadal evolu-

tion of a very small heavily debris-covered glacier in an Alpine permafrost environment,

Journal of Glaciology, doi: 10.1017/jog.2016.56.

1.3.4 Sediment export and transient landscape response following Alpine glacier
recession

Chapter 8 makes use of rare records of water yield and sediment export to explore decadal

scale climate forcing upon small high mountain watersheds. The product presented in this

thesis was achieved through a wider collaboration supported with the Swiss National Science

Foundation and aided by collaboration with hydropower companies. The focus of the paper

identified below is similar in approach but very different in focus, being concerned with an

Alpine valley glacier rather than smaller glaciers on Alpine hillslopes:
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• Lane, S.N., Bakker, M., Gabbud, C., Micheletti, N. and Saugy, J.-N. (2016). Sediment

export, transient landscape response and catchment-scale connectivity following rapid

climate warming and Alpine glacier recession, Geomorphology,

doi: 10.1016/j.geomorph.2016.02.015.

1.3.5 Structure-from-Motion (SfM) photogrammetry

Most topographic surveying techniques require relative expensive technologies or specialized

user supervision. For that reason, it comes with no surprise that the advent of Structure-

from-Motion photogrammetry was acclaimed with great interest by geomorphic researchers.

Structure-from-Motion technology allows the use of consumer grade digital camera and highly

automated data processing (often fee to use), as opposed to the traditional requirements of

relatively expensive sensors and specialized user supervision. Chapter 4 consists of a research

paper that investigates the geomorphological potential of freely available and accessible

Structure-from-Motion photogrammetry using very basic image acquisition devices, in this

case smartphones. The lesson learned from this research are reproduced in another publica-

tion, aspiring to guide potential new users in successfully applying this technique for a range

of geomorphic studies:

• Micheletti, N., Chandler, J.H. and Lane, S.N. (2015). Structure from Motion (SfM) Pho-

togrammetry, Geomorphological Techniques, Chap. 2, Sec. 2.2.

1.4 Organization of the manuscript

This thesis manuscript includes four distinct parts, structured as follows. This introductory

part has provided a brief overview of the thesis, identified its motivation and objectives and

summarised the key contributions of the project not presented herein. In the more technical

Part II, Chapter 2 introduces remote sensing approaches as a resource for Alpine research.

The remaining three chapters of Part II address developments of digital photogrammetry

and laser scanning for the quantification both whole landscapes and individual landforms.

Part III addresses the investigation of the impact of climate forcing upon high mountain

environments. Each chapter includes a piece of research that employs, amongst others, the

techniques described in Part II for the study of the evolving dynamics of Alpine landscapes.

Finally, Part IV summarizes the main findings of this thesis, offers a brief reflection on the

implications for understanding Alpine landscapes and discusses possible future research

directions in the field.
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2 Introduction to remote sensing

2.1 An overview of the science of remote sensing

From a general point of view, remote sensing is the science of obtaining information (sensing)

about objects or surfaces from a distance (remote). In this regard, it represents an alternative

to in-situ (on site) observations. The nature of the sensed signal may be very diverse: optical,

acoustic, or microwave [Schowengerdt, 2007]. Depending on the type of interaction with

the target, two categories of remote sensors can be distinguished, namely active and passive

sensors. In active remote sensing, instruments are equipped with a source of radiation used to

send signals towards the object of interest. Subsequently, the sensor registers the radiation that

is scattered back by the target surface. The most common examples of active remote sensing

acquisitions employed in environmental sciences include laser methods (Light Detection And

Ranging - LiDAR, Vosselman and Maas [2010]) and radar systems (e.i. Synthetic Aperture Radar

- SAR, Curlander and McDonough [1992]). In contrast, passive sensors merely record the solar

electromagnetic radiation that is reflected or spontaneously emitted by the Earth’s surface,

without directly stimulating the object of interest. The most trivial example is a photograph,

but of great relevance nowadays is multispectral and hyperspectral imagery obtained by Earth

observation satellites [Richards and Jia, 1999]. Furthermore, remote sensing technologies

may be distinguished by their mode of acquisition, which can be ground-based, airborne or

satellite-borne.

The format of remotely acquired data may vary. The most common structure is the recording

of the acquired information in a set of cells commonly called pixels, that are subsequently

organized in a regular raster grid (an image). On the other hand, some technologies (e.g.

LiDAR) produce a series of three-dimensional coordinates of varying spatial density, called

point clouds. The interpolation of such clouds onto regular grids or triangulated irregular

network for practical use is common (e.g. Alho et al. [2009]; Jaboyedoff et al. [2012]; Gabbud

et al. [2015]). Frequently, and according to needs, the final outcome of the remote sensing

acquisition can be spatially geo-referenced and integrated in a Geographic Information Sys-

tem (GIS) environment, where further analysis involving overlapping spatial layers can be

performed.
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2.2 Why sense Alpine environments remotely?

One of the major obstacles in high mountain geomorphological research is the remoteness

of the sites of interest, which makes their direct access troublesome and consequently in

situ measurements arduous to obtain. Furthermore, collecting evidence for most Alpine

environments requires information over the (often vast) spatial extent at which geomorpho-

logic processes are manifest. High mountain research can benefit from three-dimensional

information to quantify topography and to characterize surface changes over time. Remote

sensing is able to fulfil this by providing extensive information on terrain geometry and cover,

significantly contributing to our understanding of dynamic processes, their sensitivities and

of potential impacts on human and natural systems [Kääb, 2002].

In the field of geomorphology, Digital Elevation Models (DEMs) from remotely sensed data

represent a prime tool for such morphometric analyses [Fischer et al., 2011], and have known

substantial developments in their generation and use at high spatial resolution in the last 25

years [Lane et al., 2010]. A DEM is a quantitative model of the terrain in digital form. It can be

created using direct survey data, but adopting remotely sensed data is usually preferable when

spatial extension exceeds the very local scale. Varied remotely sensed data are exploitable

for DEM generation, including optical images and LiDAR point clouds, tested in this thesis

for Alpine research at multiple temporal and spatial scales. Photographic technology is

employed in the context of digital photogrammetric approaches. In this regard, we engage

with both aerial (archival and recently, specially flown) and hand-held sensors, and we deploy

both traditional “stereo” photogrammetry and innovative Structure-from-Motion processing

approaches. Further, we exploit the potential of the ground-based mode of LiDAR technology,

namely Terrestrial Laser Scanning (TLS).

2.3 Analytical photogrammetry

Photogrammetry is the art, science, and technology of obtaining reliable information about

physical objects and the environment through processes of recording, measuring, and in-

terpreting photographic images and patterns of recorded radiant electromagnetic energy

and other phenomena [Wolf et al., 2014]. Traditionally, photogrammetry was used to extract

three-dimensional informations from two-dimensional images using optical and mechanical

stereo-plotters [Slama, 1980]. With the developments of computerized numerical methods

in the 1980s, new analytical photogrammetric techniques became practicable, reducing the

several technical and physical constraints of the traditional photogrammetric approach, no-

tably (i) camera position and orientation restrictions; and (ii) the requirement for metric

cameras [Chandler and Moore, 1989]. Furthermore, and as characteristic of remote sens-

ing approaches, a photograph is a “non-contact” measurement technique, thus adapted for

collecting information about inaccessible or dangerous areas, which has commonly been

problematic in Alpine environments. By virtue of these advantages, geomorphologists have

extensively operated with analytical photogrammetry in recent decades (e.g. Kääb and Vollmer
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[2000]; Lane et al. [2010]; Fischer et al. [2011]; Bennett et al. [2012]). For complete details on

the foundational principles of photogrammetry, the reader can refer to Wolf et al. [2014]. The

principles of photogrammetry application for geomorphological research are discussed in

detail in Chandler and Moore [1989] and Lane et al. [1993, 1994]. A brief summary of the main

concepts is presented here.

In the field of photogrammetry, a distinction is made between photo-coordinate space and

the object-coordinate space. The former serves as a reference for positions in the image space,

where the x and y axis are parallel to the photograph plan, the z axis perpendicular to it,

and the origin is the camera lens (O also called perspective centre). The latter is defined as

the three-dimensional real-world coordinates that could be employed to describe the object

or area of interest. The relationship between two mutually associated coordinate systems

is referred to as projective transformation and serves as the functional basis for the two

collinearity equations (e.g. Chandler and Moore [1989]; Wolf et al. [2014]):

x = −c[r11(X −X0)+ r21(Y −Y0)+ r31(Z −Z0)]

[r13(X −X0)+ r23(Y −Y0)+ r33(Z −Z0)]
(2.1)

y = −c[r12(X −X0)+ r22(Y −Y0)+ r32(Z −Z0)]

[r13(X −X0)+ r23(Y −Y0)+ r33(Z −Z0)]
(2.2)

where X , Y and Z are real-world coordinates of one point in the object space, X0, Y0 and

Z0 are the coordinate of the perspective centre in the object space system, r11 to r33 are the

elements of the rotation matrix which are functions of the orientation of the camera axis in

the object space and c is the focal length of the camera. In other words, one point in the object

space simultaneously have real-world coordinates [X ,Y , Z ] and photo-coordinates [x, y,−c],

and the two systems are thus related. Whilst the image coordinates x and y are measured

and the calibrated focal length c is a constant, these two equations have three unknowns,

namely the coordinates of the object point X , Y and Z . Hence, it is necessary to use a second

photograph for obtaining a unique solution and computing new object coordinates simply

by measuring two conjugate points on the images. In Figure 2.1, the theoretical aspects of

analytical photogrammetry are illustrated.

The collinearity model described above implies that real-world coordinates can be derived for

each point that is identified in two images, but requires known image positions (X0, Y0 and Z0

for each image). These are usually derived using a mathematical procedure, of which the most

widely used and efficient is the bundle adjustment [Granshaw, 1980]. The latter requires at

least three ground control points to be known in the object space, and their correspondence

in the image spaces to be measured. From then on, camera parameters (position and rotation)

can be obtained for each photograph using a least-squares estimation.

The advent of fully automated methods during the 1990s marked the transition from traditional

photogrammetric procedures to digital photogrammetry using digital imagery (either obtained
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{
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Figure 2.1 – Theoretical aspects of photogrammetry: the projective transformation between
the object space and the image space (modified from Chandler and Moore [1989] and Lane
et al. [1994]).

as such or digitised). One of the major advantages here has been the introduction of automatic

stereomatching algorithms, able to identify large numbers of homologous point pairs in two

or more images and to compute their ground coordinates using camera parameters [Dissart

and Jamet, 1995]. Subsequently, photogrammetry became a widely used, cost- and time-

effective approach for geoscience research [Lane et al., 2000], where remarkable new frontiers

of development are still being crossed nowadays (e.g. by the advent of new methods like

Structure-from-Motion (SfM) using Multi-View Stereo algorithms, see Smith et al. [2015]).

2.3.1 Aerial photogrammetry

The term “aerial photogrammetry” indicates the application of the principle illustrated above

to aerial photographs (see Figure 2.2). This utilization of photogrammetry is particularly useful

in the field of cartography or when the necessity to survey a large area exists. Crucially, aerial
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photogrammetry represents a unique resource for deriving three-dimensional information

on past landscapes using the extensive coverage of aerial imagery commonly collected by

national agencies since the 1950s. These photographs are often digitised using appropriate

photogrammetric scanners, and therefore we refer to the procedure as archival aerial digital

photogrammetry. Whilst airborne-derived photographs are traditionally collected using frame

cameras, today a wide use is made of digital devices. Nowadays, aerial imagery is often

employed to obtain DEMs or orthorectified photographs over large spatial extents, allowing

the detection of vertical changes, measuring terrain displacements or precise mapping.

airplane design: freepik.com

Figure 2.2 – Principle of aerial photograph acquisition; overlapping images of the landscape
are acquired by collecting multiple photos in the course a single flight.

In contempt of its wide use, the application of aerial photogrammetry for geomorphological

research still poses complications, in particular when exploiting archival imagery in Alpine

regions. First, collecting enough good quality ground control data in Alpine landscapes can be

challenging. These areas may be difficult to access, unstable (and hence unreliable as ground

control) and devoid of easily identifiable spots, as infrastructure. Second, applications of aerial

photogrammetry in zones of large elevation ranges can be problematic, by reason of occlusions

and of the possible low densities of the acquired data in areas of complex or rough topography.

Third, because archival aerial imagery may have been acquired at a large range of flying

heights, its scale may be unsuitable for generating precise elevation data within small areas.

Accordingly, the limits of detectable changes need to be carefully considered to ensure correct

interpretation of results. Furthermore, the contrast and quality of old imagery may vary, and

not always be optimal for this type of analysis. Finally, despite the ease with which elevation

data can be extracted from photographs, conventional processing principles and controls

upon photogrammetrically-derived data are still crucial and need careful consideration. These

issues are approached and discussed in Chapter 3, where a workflow including caveats to
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overcome these challenges is proposed.

2.3.2 Structure-from-Motion photogrammetry

Structure-from-Motion photogrammetry has its origins in the machine vision community,

where it was used for the tracking of points across sequences of images occupied from different

positions. This method has been developed and adapted for generating elevation data using

potentially many images collected in sequence [Fonstad et al., 2013]. As in traditional pho-

togrammetry, SfM employs overlapping images acquired from multiple viewpoints [Micheletti

et al., 2015]. However, SfM photogrammetry differs from traditional photogrammetric ap-

proaches by determining internal camera geometry and camera position and orientation

automatically using image-matching processes, without the need for a pre-defined set of

ground control data [Westoby et al., 2012]. SfM approaches are often extended to include

Multi-View Stereo (MVS) photogrammetry algorithms to increase the point density by several

order of magnitude [Smith et al., 2015].

The exact implementation of Structure-from-Motion may vary from one software package

to another. Smith et al. [2015] proposes a schematic representation of the typical workflow.

Micheletti et al. [2015] summarized its general functioning as follows:

“Multiple views of an object are captured with a digital camera from a range of different

positions. A scale invariant feature transform (SIFT) then identifies common feature points

across the image set, sufficient to establish the spatial relationships between the original image

locations in an arbitrary 3-D coordinate system. A sparse bundle adjustment (e.g. Snavely

et al. [2008]), needed to transform measured image coordinates into 3-D points covering the

area of interest, is used in this process. The result is three-dimensional locations of the feature

points in the form of a sparse point cloud in the same, local three-dimensional coordinate

system. The sparse point cloud is then intensified using Multi-View Stereo (MVS) techniques

(e.g. Furukawa and Ponce [2010]). It is the ability of these techniques to generate very high

resolution datasets, whilst isolating and removing gross errors, which is now allowing such

visually impressive 3-D models to be generated so easily when compared to traditional stereo-

based DEM generation methods involving stereomatching [Remondino et al., 2014].”

Recent developments in the field have two crucial components: first, because of the ease with

which sensor distortion can be modelled, the range of sensors that can be used has increased;

second, low-cost and fully automated platforms has opened the doors for non-specialized

users. This progress, along with the rising popularity of smartphones and of Unmanned

Aerial Vehicles (UAVs) or drones, has created a fertile ground for the spread of this technology

in various disciplines. A detailed review of Structure-from-Motion photogrammetry and

its application in physical geography is provided by Smith et al. [2015]. That said, its new

found popularity has been at the expense of a number of issues, well-rehearsed in traditional

photogrammetry, but often overlooked in the rapid adoption of SfM methods. The user is

much less involved in data quality control, thus the origins of errors in the derived models may
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not be easy to identify. Furthermore, image quality, scale and geometry still play a fundamental

role in the delivery of high quality results. These controls are investigated in Chapter 4, where

an examination of the potential of fully automated SfM photogrammetry in combination with

consumer grade digital cameras is carried out.

2.4 Terrestrial laser scanning

Terrestrial Laser Scanning (TLS) is the ground-based application of Light Detection And Raging

(LiDAR) technology, which consists of measuring the properties (principally the distance) of a

target by illuminating it with a laser beam and analysing the back-scattered, returning signal.

The acronym laser stands for light amplification by stimulated emission of radiation. Laser

light has the unique properties of being monochromatic (single frequency and wavelight),

coherent (all light waves in phase with each other) and directional (collimated: parallel waves)

[Cameron, 2013]. A TLS device emits an ultraviolet, visible or near-infrared beam and employs

the time of flight of the laser pulse to compute the distance between the target surface and itself.

By virtue of mirrors or mechanics that orientate the laser beam in a well-defined direction, and

by knowing the line of sight and the attitude of the device (its lateral axis “pitch ”, vertical axis

“yaw” longitudinal axis “roll ”) it is possible to determine the three-dimensional position of the

reflective surface relative to the device [Jaboyedoff et al., 2012]. Hence, back-scattered signals

captured by the receiver are converted to [∆X ,∆Y ,∆Z ] coordinates relative to the scanner’s

position. A single laser beam may result in multiple back-scattered signals (e.g. if the beam

hits dust in the air or vegetation but proceeds through, see Figure 2.3).

[0 , 0 , 0] [ΔX1 , ΔY1 , ΔZ1] [ΔX2 , ΔY2 , ΔZ2]

laser pulse
Terrestrial Laser
Scanner device

Figure 2.3 – Principle of Terrestrial Laser Scanning data acquisition, with two back-scattered
signals for a laser beam.

TLS campaigns produce 3D point clouds (e.g. Figure 2.4), generally with high point density,

and sequential acquisitions of the latter are regularly used for detecting and quantifying

topographic change (e.g. Schürch et al. [2011]; Jaboyedoff et al. [2012]; Abellan et al. [2014];

Gabbud et al. [2015]). Since modern devices are able to collect many millions of points,

working on the resulting dataset is often challenging in terms of computational efforts. In

Chapter 5, a semi-automatic, cluster method to facilitate and improve the quality of point

clouds analysis is proposed. For further details on the principles of LiDAR technology, see

Shan and Toth [2008] and Vosselman and Maas [2010].

17



Chapter 2. Introduction to remote sensing

(a) (b)

Figure 2.4 – (a) RIEGL VZ-6000 Terrestrial Laser Scanner operating at the front of the Conejeras
glacier, Colombia (b) Example of TLS-derived point cloud (laser reflectance as colours for
visualization purposes).
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Context

With technological advance, digital photogrammetry has become increasingly automated

and cost-effective. Nonetheless, terrain model generation remains complicated by the user

needing to define critical parameters and choose appropriate algorithms, along with proper

field data collection and handling of uncertainty. Furthermore, a number of complications

might arise when working with archival imagery of low contrast or sub-optimal scale, or in

areas of complex topography. As a consequence, good practice at different stages of data

processing is not always well understood by non-expert users.

This chapter presents a possible workflow to overcome the challenges represented by topo-

graphic complexity (including occlusions and large elevation changes), variation in image

texture and sub-optimal image scale that are often encountered by geomorphologists working

with aerial photogrammetry in steep and complex terrains, especially when using archival

imagery. Whilst of wider interest for expert users, this contribution primarily seeks to serve

as a benchmark for geomorphological research undertaken by non-photogrammetrists in

mountainous regions.

In the context of this thesis, the chapter represents the methodological foundation for the

investigation of Alpine landscapes dynamics using archival aerial photogrammetry (Chapters

7 and 8).

23



Chapter 3. Application of archival aerial photogrammetry to quantify climate forcing of
Alpine landscapes

Abstract

Recent and future climate change may lead to landscape changes in geomorphic processes

and process rates. Such modifications are likely to be widely distributed, making their direct

measurement difficult and there are almost no such measurements at decadal intervals.

Aerial imagery has been acquired by many national agencies since the 1950s and significant

archives remain. Unlocking the information from these data sources is important because

their timescale may inform significant unresolved hypotheses regarding the impact of rapid

climate change on Alpine environments. However, such photogrammetric applications are

challenging because of topographic complexity (including occlusions and large elevation

ranges) and variations in image texture. A complete workflow is described from raw data to the

treatment and interpretation of results. This is applied to imagery of Val d’Héréns, Switzerland,

a landscape containing an assemblage of glacial, periglacial, hillslope and fluvial landforms

across a height range of 1800 to 3600 m from the 1960s to the present. These changes reveal

important characteristics of landscape scale erosion and deposition at the decadal scale.

Keywords: aerial photogrammetry; archival imagery; climate forcing; digital elevation model;

geomorphic changes; geomorphology;

3.1 Introduction

Geomorphological research is always in need of three-dimensional data to describe topo-

graphic surfaces and to monitor their change over time. The possibility of generating quantita-

tive elevation data from stereo photography has played an important role in this regard, as

demonstrated by pioneer applications of photogrammetry to geomorphological studies [Wick-

ens and Barton, 1971; Welch and Jordan, 1983; Small et al., 1984; Chandler and Cooper, 1988;

Chandler and Moore, 1989; Lane et al., 1994]. With the advent of fully automated methods and

the transition from traditional to digital photogrammetry during the 1990s, photogrammetry

became a widely used, cost- and time-effective approach for geoscience research [Lane et al.,

2000]. Crucially, it represents a unique resource for deriving three-dimensional data of past

landscapes using the extensive coverage of aerial imagery commonly available since the 1950s.

This type of application, named archival aerial digital photogrammetry, has proved successful

for a wide range of fields, including fluvial geomorphology [Lane et al., 2003, 2010], permafrost

and periglacial processes [Kääb and Vollmer, 2000; Kneisel and Kääb, 2007; Fischer et al., 2011],

and hillslope processes [Chandler and Brunsden, 1995; Walstra et al., 2007; Schwab et al., 2008;

Bennett et al., 2013].

Despite the ease with which elevation data can be extracted from imagery, including new

photogrammetric methods like structure from motion (SfM) (for example, Fonstad et al.

[2013]), the application of digital photogrammetry for geomorphological research still poses

the following complications:
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1. The ease of automated data generation offered by digital photogrammetry may cause the

user to underestimate data quality issues [Cooper, 1998; Lane et al., 2000] or to overlook

key data quality controls [James and Robson, 2014]. This is problematic because in spite

of the advanced algorithms and automated processes offered by digital and emerging

forms of photogrammetry, conventional controls upon photogrammetrically derived

data are still crucial and need careful consideration.

2. The application of aerial digital photogrammetry in areas of complex or rough topogra-

phy and large elevation ranges can be problematic, particularly occlusions caused by

sudden elevation changes or where the density of the acquired data is low in areas of

complex topography.

3. Because archival aerial imagery may have been acquired at a large range of flying

heights, its scale may be unsuitable for generating precise elevation data within small

areas. Accordingly, the limits of detectable changes need to be carefully considered to

ensure correct interpretation of results.

4. Older aerial photographs can be characterised by imagery of low contrast and vary-

ing quality, which improved with time as photogrammetric emulsions evolved; data

processing and the quality of final results will inevitably be affected by this variability.

Sediment production and transfer together with glacial and periglacial processes in high

mountain basins are potentially sensitive to the significant changes in climatic conditions

that have affected the European Alps over the past century. Understanding the effects of such

changing conditions upon landscapes is challenging because of the difficulty of investigating

this climate forcing (the difference in insolation (sunlight) absorbed by the earth and energy

radiated back into space) over decades to centuries, despite this being the timescale over which

significant hypotheses are raised over human impacts upon climate change and consequently

geomorphic systems [Reynard et al., 2012; Knight and Harrison, 2013]. Archival aerial imagery

offers a unique opportunity to address this scientific topic [Schwab et al., 2008; Bennett et al.,

2013]. The research described in this paper seeks to describe the complete workflow adopted

for the application of archival aerial photogrammetry in the Swiss Alps to assess the extent to

which geomorphological changes associated with climate forcing can be quantified in high

mountain landscapes.

A sequence of aerial imagery from the 1960s to the present day has been used to compute

digital elevation models for Val Héréns, Switzerland (Figure 3.1). The case study consists of

a steep deglaciated zone, ranging from about 1800 to 3600 m above mean sea level (a.s.l.).

The area is comprised of an actively changing, and hence locally dynamic, assemblage of

glacial, periglacial, hillslope and fluvial landforms. It is likely to be sensitive to climate forcing,

by virtue of landforms highly sensitive to temperature changes (glaciers and permafrost)

and because of the presence of unconsolidated, historically weathered and glacially derived

material, representing high potential for significant sediment mobilisation.
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Figure 3.1 – Case study area near Arolla, Héréns Valley, Switzerland, indicated by the red
rectangle. The peak of Dent de Perroc is indicated by the red dot on both the map and
photograph. Relief shading and river data: Swisstopo. Photography by C. Lambiel, 2004.

In presenting the workflow, the issues that arise at different stages of the data processing

are identified and solutions are proposed which are applicable even with limited ground

control data. Thus, guidance, advice and caveats are offered for the potential geomorpho-

logical applications of archival aerial photogrammetry in high mountain environments. All

photogrammetric data processing has been performed using ERDAS IMAGINE Leica Pho-

togrammetry Suite (LPS) 2010, released in November 2009, while post-processing operations

and results analysis have been implemented using Matlab and ArcGIS.
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Table 3.1 – Characteristics of the aerial imagery available from Swisstopo and Flotron in 2012.

Date Scale Lens type Emulsion
Calibrated focal

length [mm]

(1) 28th September 1967 1:15700 Leica 15 UAG 120 BW 152.87
(2) 8th September 1977 1:20900 Leica 3008 15 UAG II BW 153.02
(3) 19th July 1983 1:19000 Leica 15/4 UAG BW 153.37
(3) 7th September 1983 1:20900 Leica 15/4 UAG BW 153.37
(4) 10th August 1988 1:20900 Leica 15/4 UAG BW 153.37
(4) 10th August 1988 1:23500 Leica 15/4 UAG BW 153.37
(5) 7th October 1995 1:26800 Leica 15/4 UAG-S BW 152.52
(6) 2nd September 1999 1:26000 Leica 15/4 UAG-S RGB 152.52
(6) 2nd September 1999 1:28000 Leica 15/4 UAG-S RGB 152.52
(7) 17th August 2005 1:24600 Leica 15/4 UAG-S RGB 153.51
(7) 17th August 2005 1:24800 Leica 15/4 UAG-S RGB 153.51

(8) 20th September 2012 1:5200
UltraCam-X lenses

(4 PAN; 4 MS)
RGB-NIR 100.50

BW = black and white; RGB = red, green, blue (colour); NIR = near infrared; PAN =
panchromatic; MS = multi-spectral.

3.2 Aerial imagery and interior orientation

The archival aerial images used in the study were acquired by the Swiss Federal Office of

Topography (Swisstopo) using a range of different analogue cameras. These include a number

of 23 cm x 23 cm images for seven distinct epochs, all collected at similar periods of the year

(end of summer–beginning of autumn) with flying heights varying between 5000 and 7000

m a.s.l. These have been scanned by Swisstopo at a resolution of 14 µm (1814 dpi) using a

photogrammetric-quality scanner and vary in scale between 1:15700 and 1:28000. The fore-

and-aft (forward) overlap between two consecutive frames in a flight line is about 80%, which

is a routine Swisstopo policy because of the high relief displacement in such mountainous

areas.

An eighth set of aerial photographs was acquired in 2012 by Flotron using an UltraCam-X

digital camera, which represents the most recent dataset of the study. The UltraCam-X camera

is equipped with four panchromatic and four multispectral lenses. The images are composed

of 14430 x 9420 pixels of 7.2µm (about 10.39 cm x 6.78 cm frame size) and have a scale of 1:5200.

The lateral overlap (sidelap) specification was also 80%; therefore, 12 images were used to

cover the whole area of interest. The list of images used for the study and their characteristics

are presented in Table 3.1.

A block file representing each epoch was created in ERDAS LPS, using either frame or digital

camera geometric models for Swisstopo and Flotron imagery, respectively, and employing

the Swiss coordinate system with the geodetic datum CH1903. Calibration certificates were
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available at www.swisstopo.admin.ch. This resource provided: (a) the calibrated focal length

(principal distance); (b) radial distortions referenced to the principal point of symmetry (PPS);

(c) PPS displacement with respect to the focal centre (FC); and (d) fiducial mark coordinates

referred to the FC. To complete the definition of the internal geometry of the camera, the fidu-

cial marks were manually measured on the images and a 2D affine transformation established

to determine the origin of the photo coordinate system [Intergraph Corporation, 2014]. This

transformation was achieved with a sub-pixel root mean square error (RMSE), typical for this

type of imagery.

The Flotron digital imagery was provided with a calibration file for the digital camera. This

provided the calibrated focal length (100.50 mm) and the PPS offsets. Imagery was corrected

by Flotron to show no significant radial distortions. Calibrated fiducial marks and associated

management were not necessary because the photo coordinate system can be defined simply

by indicating the pixel dimensions (7.2 µm x 7.2 µm) in ERDAS LPS.

3.3 Field data and exterior orientation

Considerable fieldwork was required to establish an appropriate number of ground control

points (GCPs) necessary for photogrammetric restitution where the unstable high mountain

environment creates significant challenges. The GCPs need to satisfy two requirements: (a)

stable over time (that is, not moving or changing in appearance during the period of study);

and (b) easily and precisely identifiable on the images. Finding sufficient points with these

characteristics can be problematic in an active landscape where some areas are typically: (a)

difficult to access; (b) may or may not be experiencing movement over a 50-year period; and (c)

may be devoid of infrastructure. Ideal candidates for this kind of study are the corners of roofs

of traditional and un-renovated buildings, but use had to be made of the centre of isolated,

medium-sized, round-shaped boulders (approximately 2 m in diameter was appropriate

given the scale and resolution of the imagery) located in clearly stable areas. Such boulders

were preferred because they can be easily identified on images and the uncertainty when

measuring their apparent centre is limited. It is also fundamental that the points provide

adequate coverage across the site, including a wide elevation range.

Two Leica System 500 differential global positioning system (dGPS) units were used to obtain

the required control for the case study, the field campaign being carried out in July 2012. A

total of 169 GCPs were measured along the valley bottom and mountainsides, across an area

of approximately 20 km2 (3 km x 6.5 km) and with an elevation range of more than 1000m

(1808 to 2828 m a.s.l.) (Figure 3.2). A dGPS base station was established early in the field

programme and 6 h of static observations obtained. Data were subsequently downloaded

from the nearest available Automated GNSS Network for Switzerland (AGNES) located in

Martigny, 30 km away in the Rhône valley. These were post-processed in Leica Geo Office

to correct coordinates to the Swiss national coordinate system CH1903. Visual inspection

of the horizontal displacements derived by the correction using Swisstopo orthophotos is
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±
Figure 3.2 – Ground control point distribution in the Arolla Valley, Switzerland, shown by red
dots.

shown in Figure 3.3. It was not possible to survey all the points using a single base station

because of limitations in radio communication, either because of the base-to-rover distance

or due to topographic screening. Three further base stations were established in the valley, all

linked directly to the initial base station. Subsequent post-processing of the original real time

kinematic (RTK) data allowed the determination of the coordinates of all GCPs in the CH1903

system. All GCP coordinates were estimated with a precision better than ±0.05 m.

To estimate initial exterior orientation parameters associated with each image, the GCPs

were manually measured and assigned to the corresponding point on the images. It was not
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0 10 205 Metres±
Figure 3.3 – Ground control points before (red) and after (green) applying the post-processing
correction using Swiss Automated GNSS Network data. The point, located in a stable area near
a path, was measured at the centre of the boulder, but it was necessary to correct the newly
established dGPS base position to derive correct coordinates.

necessary to measure all GCPs, and neither could every GCP be found or identified precisely.

The availability of a large dataset of GCPs reduced the reliance upon individually measured

points, hence improving the quality of the solution. After having identified a sufficient number

of control points, well distributed in space and with a large elevation range, a proportion were

reclassified as check points. Check points are not used to estimate the exterior orientation

parameters but to provide a direct estimate of the accuracy of the restitution. This is done

in terms of discrepancy between the photogrammetrically derived position and the GCP

coordinates.

After solving the initial bundle adjustment using just GCP measurements, it was possible to

perform automatic tie-point extraction. However, and as mentioned in similar studies (for

example, Fischer et al. [2011]), this procedure is not efficient for areas including extremely

steep terrain and exhibiting many shadows. Therefore, either automatically generated tie

points needed to be checked manually or the tie points should be measured manually. An

additional problem arose during the processing of the Flotron 2012 imagery. GCPs could

not be surveyed on all parts of the mountainside because of dangerous and difficult access

in regions of cliffs. This was problematic since, given the large scale of the 2012 images,

there were an insufficient number of control points for some frames and LPS (and traditional

photogrammetric packages) requires a sufficient number of GCPs for successful solution of

the bundle adjustment. To address this issue, a well-established GCP transfer procedure was

adopted (see Lane et al. [2010]). First, a bundle adjustment was obtained for those images
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where sufficient GCPs were available. Second, on these images, clearly identifiable features

were found and marked as common tie points where they were also visible on images without

sufficient GCPs. Third, these tie points were relabelled as GCPs and were measured on the

images without sufficient GCPs; the measurements were used to obtain a bundle adjustment

for all of the imagery. As explained in Lane et al. [2010], it is important to note that these new

GCPs have a poorer precision than those surveyed directly in the field using dGPS. However,

this approach provided a viable and satisfying solution for images with insufficient GCPs.

ERDAS LPS uses a conventional bundle adjustment to perform the aerial triangulation and

to estimate exterior orientation parameters for each image used [Intergraph Corporation,

2014]. In this procedure, image point and GCP standard deviations are crucial and need to be

commensurate with the expected precision of both image measurements and object control.

This allows for more flexibility during the bundle adjustment and leads to a better solution.

Image point standard deviations can be indicated in pixel units and should be related to the

measurement precision and image quality/resolution. These values were changed to 0.5 for

the scanned Swisstopo imagery, whilst the default value of 0.3 was used for the digital Flotron

2012 imagery. GCPs were constrained to an object precision of 0.5 m in plan and 0.3 m in

height. These globally applied values were chosen to account for the following uncertainty

sources: (a) imprecision in measuring the centres of boulders or in surveying non-horizontal

boulders in steep zones; and (b) uncertainty in dGPS measurements themselves, including

post-processing with AGNES data.

ERDAS LPS offers a number of indicators to estimate the quality of the exterior orientation

solution. The total image unit-weight (TIUW) RMSE is a global precision indicator describing

the quality of the entire solution in the image space [Intergraph Corporation, 2014]. Root

mean square errors for both control and check points are also provided, and for both ground

coordinates (X, Y, Z) and stereo intersection accuracy in image coordinates (x, y) [Fischer

et al., 2011; Intergraph Corporation, 2014]. The aerial triangulation summary for each epoch

is presented in Table 3.2. Overall, the bundle adjustment yielded very satisfying results and in

accordance with what was expected assuming the known data quality. This is of fundamental

importance because it has been shown that random error in a bundle adjustment can translate

into systematic error in the stereomatching derived data (for example, Lane et al. [2004]), and

so effort is required to minimise them. These data also give a preliminary indication of the

possible precision of data points extracted from the imagery although, as discussed below,

this may be downgraded according to the success of the stereomatching process.

3.4 Automatic stereomatching

In digital photogrammetry, automatic stereomatching algorithms are used to identify ho-

mologous point pairs and to compute their ground coordinates using exterior orientation

parameters [Dissart and Jamet, 1995]. These algorithms are based upon detecting similar

image intensity patterns within either small image “areas” or located around distinct “features”.
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Table 3.2 – Exterior orientation performances

Date
TUIW
RMSE

Control point RMSE Check point RMSE

X Y Z x y X Y Z x y

1967 0.41 0.46 0.43 0.15 0.31 0.31 0.42 0.23 0.26 0.07 0.11
1977 0.30 0.28 0.28 0.14 0.29 0.30 0.41 0.07 0.18 0.32 0.01
1983 (July) 0.32 0.23 0.29 0.14 0.41 0.33 0.15 0.45 0.44 0.24 0.09
1983 (Sept) 0.31 0.30 0.27 0.10 0.29 0.30 0.45 0.15 0.43 0.21 0.08
1988 0.33 0.41 0.45 0.26 0.44 0.35 0.36 0.30 0.45 0.21 0.39
1995 0.29 0.29 0.37 0.19 0.32 0.25 0.09 0.29 0.56 0.28 0.18
1999 0.36 0.30 0.31 0.22 0.35 0.30 0.38 0.33 0.38 0.25 0.20
2005 0.34 0.22 0.28 0.17 0.28 0.33 0.25 0.27 0.38 0.26 0.21
2012 0.17 0.12 0.13 0.14 0.17 0.19 0.28 0.24 0.18 0.14 0.22

TIUW = total image unit-weight; X, Y, Z ground coordinates are in metres; x, y photo
coordinates are in pixels.

This distinction is the basis of classifying the approaches into either featurebased or area-

based [Remondino et al., 2014]. Feature-based approaches achieve correspondence between

interest points. These are locations which exhibit “distinctness” and identified using an inter-

est operator, generally attributed to Förstner [1986]. On the other hand, area-based methods

correlate small windows of pixels on two images to perform the matching. Accordingly, crucial

to the matching process is sufficient texture or variations in pixel intensity in the images [Lane

et al., 2000; Remondino et al., 2014]. In ERDAS LPS, two area-based stereomatching algorithms

are now available, Automated Terrain Extraction (ATE) and enhanced Automated Terrain

Extraction (eATE), the latter being capable of classifying points. Both eATE and ATE were

evaluated and considered but ATE required more modest computing resources and was more

rapid, easier to use and hence more effective. In addition, ATE has been successfully used in

the past on a range of projects [Walstra et al., 2007; Lane et al., 2010] and was therefore adopted

for this study. ATE exploits the epipolar constraint to improve the image-matching process and

offers customisable strategy parameters for optimising results, along with suggested parame-

ter sets for a number of terrain types (such as high mountains, rolling hills, urban areas and

so on). These parameters may strongly influence coordinate determination in mountainous

regions [Lane et al., 2000]. Among the parameters available, the correlation coefficient limit,

the correlation window size and the search window size on the epipolar line are indicated as

the most important [Leica Geosystems Geospatial Imaging, 2006]. The correlation coefficient

limit indicates the minimum acceptable correlation for two matched pixels for the point

to be accepted. A high coefficient threshold inevitably identifies only high-quality matches

[Lane et al., 2000]. It is obvious that a trade-off is necessary for this parameter; keeping only

high-quality matched points means that the total number matched is smaller, which can be

a problem in mountainous topography where the relief can be complex. On the other hand,

accepting low-correlation matches can allow false matches to be included in the dataset and
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hence produce poorer quality data. The default value for this parameter for high mountains is

0.8 [Intergraph Corporation, 2014]. The correlation window size is the size (in pixels) of the

area used for computing the correlation coefficient between sets of pixels on different images.

This usually needs to be smaller for areas containing large variations in topographic relief, grey

level or colour intensity; the default value proposed by ERDAS LPS [Intergraph Corporation,

2014] for high mountain regions is 7 x 7 pixels. The search window size across the epipolar line

can be adapted to help point matching in cases where the exterior orientation is of low quality;

that is, to permit the matching of points further away from the epipolar line. Finally, the user

needs to indicate the output cell size, which determines the resolution of the rasterised digital

elevation model (DEM). In this research, for reasons explained below, point clouds of ground

coordinates generated from matched points and exterior orientation parameters are preferred

as output instead of an already rasterised or triangulated DEM.

The strategy parameters would be expected to affect different surface characteristics in differ-

ent ways, not least because surface cover influences image texture. Thus, to assess strategy

parameter effects, a very high density of check data is needed, and certainly beyond what

could be acquired practicably during a normal field campaign [Lane et al., 2004]. The alter-

native is to use sensitivity analysis where key parameters are varied one at a time to quantify

their effects on estimated elevations (for example, Lane et al. [2000]; Gooch and Chandler

[2001]). Consequently, the effect of varying the correlation coefficient limits (from 0.7 to 0.9)

and correlation window sizes (from 5 x 5 to 11 x 11 pixels) was quantified. The comparison of

results is performed at the level of point clouds (X, Y, Z coordinates), by associating points

within a Euclidean distance of 0.5 m in X and Y, and comparing their elevation in order to

assess the sensitivity of the extracted data to strategy parameters. For this detailed sensitivity

analysis, two pairs of images from the 1988 epoch were used. Three regions of interest (ROIs)

with contrasting terrain characteristics and image texture were identified for the analysis (Fig-

ure 3.4a): (a) a field of large boulders; (b) a zone of fine sediments and texture; and (c) a steep

area with abrupt elevation changes. Changing the correlation window or the search window

sizes did not produce any change for any of the three ROIs, an outcome that can be explained

by the robustness of the exterior orientation solution and the presence of sufficient texture in

the images. However, modifying the correlation coefficient limit has important consequences.

Increasing the coefficient from 0.7 to 0.8 causes a reduction of about 10% in the number of

extracted points, while an increase from 0.8 to 0.9 only produces a further 3% reduction. This

is satisfying since it indicates that using the suggested value for high mountain environments

(0.8) provides good-quality output. Furthermore, changing the correlation coefficient also

causes elevation changes to some points (Table 3.3). These differences have an expectation µ

and a median Q50 of zero for each ROI, although, the degree of spread varies. To help interpret

the distribution of elevation differences, the cumulated distribution of the absolute elevation

discrepancies is shown in Figure 3.4b. The latter demonstrate that the majority of points are

not sensitive to the strategy parameters, as confirmed by the low value containing two-thirds

of absolute residuals (the 66% quantile (0.66) in Figure 3.4b corresponding to 0.17 m elevation

difference for the fine texture zone and 0.34 m for the other two).

33



Chapter 3. Application of archival aerial photogrammetry to quantify climate forcing of
Alpine landscapes

0 250 500125 Meters

±

A

B

C

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute elevation difference [m]

C
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

 

 

Large boulders

Fine texture

Steep area

(b)

Figure 3.4 – (a) Zones of different morphology and texture (A, large boulders; B, fine texture; C,
steep area). (b) Effect of correlation coefficient parameter change (from 0.8 to 0.9) on single
points for zones of different morphology and texture shown in (a).

Changes in stereomatching strategies appear to affect only some points in the generated

DEM. This justified further use of the failure warning model (FWM) developed by Gooch and

Chandler [2001], who employed it to demonstrate that changing strategy parameters affect

only less robust points in steep, low-texture or shadowed areas, whilst elevation estimations

for the remainder of the derived points are almost unaffected. In this study, FWM was used
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Table 3.3 – Distribution statistics of elevation difference caused by changing the correlation
coefficient parameter from 0.8 to 0.9 on single points.

Zone µ σ Q50 µ(abs(dZ)) Q50 of abs Q66 of abs

Boulders 0 0.45 0 0.29 0.19 0.34
Fine texture 0 0.23 0 0.16 0.12 0.17
Steep area 0 0.62 0 0.34 0.20 0.34

µ is the expectation; σ is the standard deviation; Q50 of abs is the median and Q66 of abs the
66% quantile of the absolute height differences abs(dZ).

as an informative tool to define automatically areas that are susceptible to changes in the

strategy parameters and thus where elevation data are unreliable. This approach is used to

justify the use of the strategy parameters employed and provides an alternative to the lengthy

and demanding parameter optimisation process, which requires independent data.

The principle of the FWM is that the sensitivity of strategy parameters can be used to identify

areas where elevation data quality is likely to be poorer and thus provide a caveat for further

DEM use. The FWM algorithm includes two parts:

1. The slope in an area around interpolated points is investigated to identify unreliable

interpolation estimates, which is particularly critical in complex or steep topographic

zones.

2. The identification of areas susceptible to changes in the strategy parameters using

DEMs of difference (DoD). In this stage, the value of each point in the difference image

is examined individually. If that value is greater than the standard deviation σ of all

points in the model multiplied by a user definable parameter A (here A = 1), the point is

tagged as sensitive:

∣∣DoDx,y
∣∣> A ·σ(DoD). (3.1)

To continue the investigation of the effect of varying the strategy parameters on the stereo-

matching procedure, phase (2) of the FWM was applied here for the 1959 and 1988 epochs

(Figure 3.5). Results are consistent between the two years, with similar zones sensitive to

strategy parameters highlighted by the model. These correspond mostly to steep, low-texture

or shadowed areas. In contrast, the rest of the area does not seem to be affected by changes

in the strategy parameters. On this basis, the final data were processed using the suggested

parameters for high mountain areas for every epoch, and the observation regarding the lower

confidence of data points in relatively steep, low-texture or shadowed areas was noted. A

masking procedure is necessary to address issues in these areas, as explained later.
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Figure 3.5 – Example of 3D visualisation of failure warming model (FWM) output for: (a) 1988
(red); and (b) 1959 (yellow) imagery, generating similar results in highlighting very steep or
low-textured areas.

3.5 Data post-processing

For each image used in this research, raw point clouds of ground coordinates generated from

matched points were extracted using the ATE DEM extraction module in LPS. Despite a robust

bundle adjustment and stereomatching parameters adapted to mountain regions, the derived

elevation data can still present errors in the form of mismatched points that generate either

negative or positive spikes. A common practice to address these issues is the application of

a filter over the rasterised DEM, typically a low-pass filter, but this is known to cause loss of

detail and possible propagation of error into good points [Lane et al., 2004; Milledge et al.,

2009]. Hence, it is preferred to adopt an approach able to identify and remove elevations that

are probably incorrect. To perform this operation, the following two filtering methods were

adopted:

1. The first employs a statistical Chauvenet-type criterion using reliable external elevation

data in the form of a coarse registration DEM (25m resolution Swisstopo DEM from

2005). Each derived elevation Zp is evaluated as follows:

∣∣Zp −Zc
∣∣> 1.96 · stdfilt(coarse DEM) (3.2)

where Zp is the elevation of a stereomatching derived point, Zc is the pixel value of the

coarse DEM where the point falls and stdfilt(coarse DEM) is the standard deviation of

the elevation in the 3 x 3 neighbourhood around this pixel. This condition identifies

elevations that significantly differ from the coarse DEM. By using a locally derived

standard deviation, the algorithm allows for large differences in steep zones but is less

permissive in flatter areas. Since it relied on a 2005 DEM in this study, it is clear that the
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filter is not reliable where local rates of elevation change over time are high. Therefore, a

geomorphological map [Lambiel et al., 2016] was used to identify zones matching this

condition, such as glaciers, debris-covered glaciers, push moraines or rock glaciers. The

filter was not applied in such regions.

2. The second method is a topographic criterion using localised slope data to detect spikes.

A triangulated irregular network (TIN) was generated from the point cloud and slopes

steeper than 50°were highlighted. Points responsible for these slopes were removed and

the TIN updated to deal with clusters of erroneous points. The iteration was completed

three times. This method is clearly not reliable for very steep slope zones or cliffs, hence

these areas were identified and removed from the analysis.

The combined outcome for both methods was used to decide whether to retain or remove

points, and the geomorphological map [Lambiel et al., 2016] was employed to use the filter

more appropriately to the local land surface. DEM error is supposed to vary with the type

of surface and hence error-handling procedures should be sensitive to surface type and be

adaptable to ensure retention of good-quality points. Further, this procedure was applied

only in cases where the derived data seemed to contain erroneous points in order to avoid the

unnecessary elimination of high-quality points.

An interpolation in the geographical information system (GIS) environment ArcGIS was

performed to generate the final 1 m resolution raster DEMs using ordinary kriging, with

polynomial trend removal of order 3 and a stable variogram model. Since the derived datasets

generally have a high density of points, the effect of the interpolation on the result is expected

to be considerably reduced. However, areas with lower densities are indeed present and are

very sensitive to the choice of the interpolator and its parameters. In this regard, comparative

analysis of interpolators is discussed in the literature such as Aguilar et al. [2005] and Arun

[2013]. Where more than one image pair was necessary to cover the ROI, mosaicking was

performed in ERDAS 2010 using the overlapping function “feather”. Examples of hill shading

for 2012 data and for archival Swisstopo imagery are presented in Figure 3.6.

3.6 Quality assessment and error propagation

The final DEMs should be evaluated to establish their quality. This may be achieved by taking

datasets from different dates and comparing individual data points for zones where it is

absolutely certain that no changes have occurred [Dewez et al., 2013]. In this research it

could not be assumed that there were zones of no change and so it was necessary to focus

upon high-resolution and high-quality independent data points. However, such data are

not typically available in this kind of study and, therefore, it can be challenging to obtain

a reliable estimation of the quality of a derived DEM. In this case there were a number of

high-quality spot measurements in the form of unused GCPs, and these were available for

quality assessment. In this analysis, only points on the hillslope were used to assess the final
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(a) 2012

(b) 1988

Figure 3.6 – Examples of hill shading with examples of four common points in red: (a) recent
Flotron imagery from 2012; (b) archival Swisstopo data from 1988.

DEMs. As in Lane et al. [2000], the error was defined as the difference in elevation between

the dGPS measurement and the DEM value at that location, and the error value is used to

compute accuracy in the form of the mean error (ME) and precision in the form of the standard

deviation of error (STD) as follows:

STD =
√∑n

i=1((pi − si )− (p − s))2

n
(3.3)

where pi and si are the associated photogrammetric DEM and dGPS survey elevations, re-

spectively. Use of the ME and the STD in this way requires the errors to be Gaussian, which is
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Figure 3.7 – Q–Q plot (left) and cumulative distribution function (right) of error data versus a
standard normal distribution: (a) oldest (1967) DEM; (b) most recent (2012) DEM.

often not the case in digital photogrammetric applications [Höhle and Höhle, 2009]. Gaussian

error allows a probabilistic confidence approach to the propagation of error (see below). If the

errors are not Gaussian, alternative approaches are needed to estimate random error. Höhle

and Höhle [2009] proposed guidelines for robust accuracy measures suited to a non-normal

error distribution based on quantile descriptors.

To investigate the normality of the error distribution, measured quantiles (Q) were plotted

against the quantiles of a normal distribution having the same mean and standard deviation,

in a Q–Q plot, and the two cumulative distribution functions were compared (Figure 3.7).

Additionally, the Lillifors test was used to evaluate the null hypothesis that DEM errors are

normally distributed. In every case the hypothesis was accepted at the 5% significance level.

The outcome verified that all DEM error distributions follow a normal distribution.

Table 3.4 summarises the quality of DEMs for each year. The MEs are not null, indicating

a small bias in the DEMs. Effectively, dGPS elevations are generally higher than their DEM
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equivalents and there is no spatial structure in this bias. To provide a better estimation of

absolute elevation changes between the years, these biases have been removed by adding the

ME to each DEM.

Table 3.4 – DEM precision and accuracy assessment using dGPS survey data

DEM date 1967 1977 1983 1988 1995 1999 2005 2012

ME 0.315 0.504 0.281 0.296 0.541 0.493 0.453 0.356
STD 0.765 0.820 0.953 0.644 0.751 0.827 0.998 0.462

ME = mean error; STD = standard deviation of error.

This study is concerned with quantifying climate forcing of Alpine landscapes, that is, in-

vestigating the possible link between climatic conditions and morphological changes in the

landscape. The identification of patterns of erosion and deposition from DoD is a funda-

mental aspect in this regard. Moreover, it is necessary to adopt a framework to quantify the

confidence that apparent erosion and deposition patterns are real changes and not noise

associated with random errors in surfaces computed using digital photogrammetry. On the

basis of the framework for error analysis proposed by Taylor [1997], Lane et al. [2003] applied

an error propagation methodology where the uncertainty in the magnitude of change σc in

the DoD is determined by the root of the sum in quadrature of the uncertainties σ1 and σ2

associated with the two individual DEMs:

σc =
√
σ2

1 +σ2
2 (3.4)

The STD is used here as a measure of uncertainty, but it can be employed to formulate

statistical testing of the significance of each elevation difference Z1 −Z2 using a t test [Lane

et al., 2003]:

t = Z1 −Z2√
σ2

1 +σ2
2

(3.5)

This equation can be used to threshold the DoD, hence labelling elevation differences within

the threshold as noise. With t = 1, the confidence limit for detection of change is 68%. In the

research described here, the minimum level of detection was set with a confidence limit of 90%

(t = 1.64). This was selected to have greater confidence that a discrepancy is indeed significant

and represents real geomorphological change, whilst maintaining enough informative signals

in the DoD. Table 3.5 summarises the limit of detection of change (LDC) at this confidence

limit for DoDs computed between different epochs. The change detection that can be achieved

corresponds to ±1 to ±3 parts per 10000 of the flying height.

The last operation that was necessary prior to DoD analysis required an irresolvable aerial
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Table 3.5 – Limit of detection of change (LDC) with confidence limits of 68% and 90% computed
using the error propagation methods explained in the text.

Year pair
68% confidence

limit [m]
90% confidence

limit [m]

2012-2005 1.100 1.804
2005-1999 1.296 2.126
1999-1995 1.118 1.833
1995-1988 0.990 1.623
1988-1983 1.135 1.862
1983-1977 1.244 2.040
1977-1967 1.121 1.839
2012-1988 0.793 1.300
1983-1967 1.208 1.981
2012-1967 0.894 1.466

photogrammetric issue to be addressed: DEM comparisons in near-vertical rockwalls or

forested areas. Steep rock faces and trees can create significant occlusions because of the

differences in position of the cameras associated with a particular stereopair. This problem

is more apparent towards the edge of any particular image in the pair and stereomatching

processes can be very ineffective in such areas. Only a few matched points representing

topographic high points are derived, and interpolation between isolated data points is very

unreliable because topographic low points are not present. Accordingly, DoDs will always

feature extensive and unrealistic elevation differences in these areas (see the example in Figure

3.8). A precise reconstruction of these areas is beyond the scope of archival digital applications

unless more images of the same date are available; hence a masking procedure was applied

here. With the help of orthorectified images, hill-shaded representations, point clouds and

DoDs, limits of rockwalls and forest boundaries were manually identified and excluded from

the datasets.

3.7 Climate forcing and geomorphic changes in Alpine landscapes:

an illustration

Following the methodology presented above, a DEM has been generated for each available

year from the 1960s to the present day. What this yields in terms of our understanding of

climate forcing in Alpine landscapes is now illustrated. Reference to the climatic conditions

that affect the landscape is also necessary for this purpose; this is provided by the mean

annual air temperature (MAAT) data for Switzerland (such measurements began in 1864 and

are provided by the Swiss Federal Office of Meteorology and Climatology [MeteoSwiss, 2014]).

Figure 3.9 displays the deviation of each MAAT from a reference mean during the period 1961

to 1990. Such temperature data illustrate that the period 1967 to 1983 was a period of relative

climate stability but from 1983 to 2012 relative climate warming occurred.
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Figure 3.8 – (a) Ineffective stereomatching in rockwalls for a 1988 stereopair shown by data
gaps. (b) Consequent unrealistic elevation changes featured in the 2012–1988 DoD (LDC =
1.30 m). Blues represent absolute changes greater than +6 m. Reds represent absolute changes
greater than -8 m.
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aerial imagery (see also Table 3.1). Data from the Swiss Federal Office of Meteorology and
Climatology [MeteoSwiss, 2014].

The interpretation of results is helped by a reference to the spatial assemblage of landforms

present; a geomorphological map of the region provided by Lambiel et al. [2016] was used

for this purpose (Figure 3.10, right), allowing the identification of which components of the

landscape are most sensitive to both climate cooling and climate warming. The comparison

between 1983 to 1967 and 2012 to 1988 DoDs is presented in Figure 3.10 (left and centre,

where absolute changes and LDC have been normalised by year) and illustrates a distinct

response to warming and stable periods. During the stable/cold period the landscape is also

very stable, except for glaciers and debris-covered glacier systems that experience a noticeable

gain in volume in their upper part; this can be explained by a process of cryogenesis (very low

temperatures and their effects). On the other hand, the period from the mid-1980s to 2012

features enhanced hillslope activity, particularly in rock glaciers, rockslides and debris flow

channels. It is apparent that warming climatic conditions caused extensive shrinking of glacial

systems, especially in the accumulation area and the glacier front zone. Yet, ice ablation is

compensated by cold-period ice supply in the central part of the Tsarmine glacier (northern

areas in Figure 3.10) and at the front of the Tsa glacier (southeast on the geomorphological

map in Figure 3.10). These changes aside, perhaps one of the most interesting elements of

Figure 3.10 is the relative stability of this landscape despite recent climate changes.
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3.8 Conclusion

In the present research, a complete workflow for the application of archival aerial photogram-

metry to quantify geomorphological changes and climate forcing of high mountain landscapes

has been proposed. Archival aerial photogrammetry applications remain challenging in Alpine

environments for various reasons, including wide elevation differences, sub-optimal quality

and varying scale of imagery, and the difficulties of establishing ground control. The approach

articulated in this study and lessons learned are intended to help geomorphologists work with

archival aerial imagery for other sites. Ways to overcome these challenges have been presented,

including techniques to establish appropriate control, conducting careful analysis outcomes

at every step and using a conservative approach for error propagation. Accordingly, this paper

demonstrates that it is possible to employ archival imagery to obtain high-quality DEM data

suitable for geomorphological research. Results are encouraging and suggest that, even for

complex and steep topography, the information locked in archival aerial photogrammetry

represents a valuable and exploitable resource. It should be stressed that this technique can

only observe changes in elevation greater than 1 to 1.5 m when using imagery of the scale

used here (approximately 1:20000). This figure equates well with the expected height accuracy

of ±1 to ±3 parts per 10000 of the flying height at a single epoch, cited in previous work [Fryer

et al., 1994]. Erosion and deposition patterns that create a vertical signal smaller than this

cannot be detected reliably using archival aerial imagery of this scale and historical quality.
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Context

The advent of Structure-from-Motion photogrammetry in physical geography has already had

a major impact through its ability to generate three-dimensional data rapidly with minimal

financial costs and expertise. Since sensor distortions can be easily modelled, all consumer

grade digital cameras can be employed to acquire valuable geomorphic data. Moreover,

the technology is available even to non-specialized users by virtue of low-cost (sometimes

free), fully automated and even internet-based processing platforms. Taken together, these

developments go as far as to make near instantaneous production of digital terrain models in

the field using the ubiquitous smartphone technology possible.

This paper investigates what can be acquired using hand-held smartphone sensors and free,

internet-based processing systems, using terrestrial laser scanning point clouds as benchmark

data and comparing both devices and software packages to traditional approaches.

In the context of this thesis, the chapter represents an examination of the potential of new

remote sensing approaches (SfM photogrammetry in combination with smartphone sensors)

for applied geomorphological research.
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Abstract

We test the acquisition of high-resolution topographic and terrain data using hand-held

smartphone technology, where the acquired images can be processed using technology freely

available to the research community. This is achieved by evaluating the quality of digital ter-

rain models (DTM) of a river bank and an Alpine alluvial fan generated with a fully automated,

free-to-use, structure-from-motion package and a smartphone integrated camera (5 megapix-

els) with terrestrial laser scanning (TLS) data used to provide a benchmark. To evaluate this

approach a 16.2-megapixel digital camera and an established, commercial, close-range and

semi-automated software are also employed, and the product of the four combinations of the

two types of cameras and software are compared. Results for the river bank survey demon-

strate that centimetre-precision DTMs can be achieved at close range (10 m or less), using

a smartphone camera and a fully automated package. Results improve to sub-centimetre

precision with either higher-resolution images or by applying specific post-processing tech-

niques to the smartphone DTMs. Application to an entire Alpine alluvial fan system shows

the degradation of precision scales linearly with image scale, but that (i) the expected level

of precision remains and (ii) difficulties in separating vegetation and sediment cover within

the results are similar to those typically found when using other photo-based techniques and

laser scanning systems.

Keywords: structure-from-motion (SfM); close-range photogrammetry; digital terrain model

(DTM); terrestrial laser-scanning (TLS);

4.1 Introduction

The last two decades has seen a revolution in topographic data measurement for geomorphic

research, with both a substantial increase in the rate at which it is possible to acquire precise,

three-dimensional terrain data and the ease with which associated methods can be applied.

Initially, these developments focused upon constructing digital elevation models (DEMs) or

digital terrain models (DTMs) using both photogrammetric (e.g. Lane et al. [1994]; Barker

et al. [1997]; Lane [2000]; Westaway et al. [2000]) and differential global positioning system

(dGPS) (e.g. Fix and Burt [1995]; Brasington et al. [2000]) data. While these approaches

allowed users to generate DEM data themselves and so to control the data acquisition process

(e.g. through ground-based surveys), they remained highly dependent upon both expensive

equipment and expertise to manage and improve data quality [Lane et al., 2004]. Over the last

decade, terrestrial laser scanners proved capable of generating very high-quality DEM data

[Heritage and Hetherington, 2007; Alho et al., 2009; Hodge et al., 2009a,b; Schaefer and Inkpen,

2010] and have almost become routine in some DEM collection strategies. However, they

remain relatively expensive items of technology and have only recently become truly portable.

Thus much interest remains in acquiring DEM data using much less expensive technologies

and the last few years have seen a series of innovative adaptation of imaging systems for

geomorphic research, including range imaging [Nitsche et al., 2013] and applications of the
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Kinect sensor [Mankoff and Russo, 2013]. Such methods have proved capable of measuring

topographic surfaces with a precision in the millimetre to centimetre range as the basis of

DEM construction.

Photogrammetric developments have been fundamental in allowing the development of DEM-

based methods in geomorphology. Approaches to photogrammetric DEM collection required

access to expensive hardware and software, even when the traditional constraints imposed by

aerial (or analogue) photogrammetric methods were relaxed through use of analytical methods

[Chandler and Moore, 1989]. They also required correct handling of geometrical distortions

associated with image acquisition, notably when using non-metric cameras (e.g. Chandler et al.

[1990]; Butler et al. [1998, 2002]; Brasington and Smart [2003]). Most recently, many of these

constraints have been surpassed or have become more automated through the development

of structure-from-motion (SfM) methods (e.g. James and Robson [2012]; Westoby et al. [2012];

Fonstad et al. [2013]). SfM has its origins in the machine vision community, particularly the

tracking of points across sequences of images occupied from different positions. It has been

developed and adapted for generating DEM data using potentially many images in a sequence

[Fonstad et al., 2013]. In traditional photogrammetry, only two images of the same surface

are required. After an estimation of image orientation, stereo matching is then used, as it is

in SfM approaches, to identify conjugate point pairs in the images and these can be used to

determine 3D coordinates of points in the images, provided ground control data are available

to determine sensor position and orientation, and sensor internal geometrical distortions

are known. SfM differs by starting with the image-matching process, of multiple images of

unknown position, orientation and distortion, to produce many matched points. By doing this

for multiple images of the same surface, it becomes possible through iteration to determine

relative sensor position, orientation and distortion. The resulting model can be transformed

into a 3D object system after processing if ground control points are available (e.g. Westoby

et al. [2012]; Fonstad et al. [2013]). As with conventional close-range photogrammetry and

laser-scanning techniques, SfM is a truly 3D measurement technique in that by measuring

the same surface from multiple perspectives the result is a 3D point cloud rather than a 2.5D

surface (i.e. a set of x, y locations each with a single z value).

SfM-based techniques have been recently employed for a number of geoscience applications,

including coastal erosion [James and Robson, 2012], fluvial environments [Fonstad et al.,

2013; Woodget et al., 2015] and gully headcut retreat [Gomez-Gutierrez et al., 2014]. The

aim of this paper is not to repeat a demonstration of the potential of the SfM approach

for geoscience applications (see Westoby et al. [2012]; Chandler and Fryer [2013]; Fonstad

et al. [2013]; James et al. [2013]). Rather, it is to assess two developments. First, because of

the ease with which sensor distortion can be modelled, the range of potential sensors has

increased. Even ubiquitous imaging technologies, such as smartphone sensors, might be used

to acquire valuable geomorphic data. Second, alongside these new SfM approaches has been

the development of low-cost, sometimes free, Internet-based processing systems: images can

be uploaded, processed and the derived 3D data downloaded, sometimes only a few minutes

after submission. Taken together, these two developments offer the possibility of very fast,
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fully automated and low-cost acquisition of 3D data, based upon the analysis of smartphone-

acquired images submitted to a processing service. Thus the aim of this paper is to assess

the quality that can be achieved using a freely available and instantly accessible SfM resource

with smartphone imagery, a combination that can enable exceptionally low cost, rapid and

easy 3D object capture and DTM acquisition in geomorphology. There is a range of options

currently available for the acquisition of high-resolution topographic data using a hand-held

camera (Table 4.1), and 1a: smartphone and Internet-based SfM system represents the lowest

approach in terms of cost, expert supervision needs and possibly processing time. To assess

the quality of such approach, we take a highly constrained photogrammetric approach, using

a high-quality sensor and subscription-based software capable of generating DEMs using two

images (Table 4.1, approach 2c). We then compare this with three progressively less stringent

elements of data acquisition: (i) the use of smartphone sensors (Table 4.1, approach 1c);

(ii) the use of a non-subscription Internet processing service (Table 4.1, approach 2a); and

(iii) processing involving almost no ground control data. Two developments are not tested

here: traditional, non-Internet-based processing SfM-MVS (multi-view stereo) (Table 4.1,

image processing approach b) and the SfM-MVS approach integrated into subscription-based

photogrammetry software (Table 4.1, image processing approach d, notably PhotoModeler

release 2014).

Table 4.1 – Examples of sensor and image processing alternatives for image-based high-
resolution topographic data acquisition at close and intermediate scale with a hand-held
camera.

Sensor
Smartphone1

High-quality sensor2

Image processing approach

Internet-based SfM systema

Locally-based SfM-MVS softwareb

Close-range (oblique) photogrammetryc

SfM-MVS photogrammetryd

Superscript numbers and letters are referred to in the text.

In all cases, our benchmark comparison is with data acquired using terrestrial laser scanning

(TLS) technologies and we focus upon one close-range measurement application (a 10 m

long by 1.20 m high river bank) and one intermediate measurement-scale application (an

Alpine alluvial fan of approximately 87000 m2). In addition, we perform a specific laboratory

experiment to investigate the relation between the number of frames and quality of the derived

DTMs.
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4.2 Methodology

4.2.1 Close-range measurement scale

Figure 4.1 shows the workflow adopted in this research.
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Figure 4.1 – Methodology scheme: the comparison with benchmark (TLS) data is performed
using the Chamfer distance twice (prior to and after the application of the ICP algorithm).
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Data acquisition

The close-range case study chosen for the experiment is a 10 m long by 1.20 m high length

of riverbank, in the Borgne d’Arolla, Val d’Hérens, Switzerland (Figure 4.2). The riverbank

texture is heterogeneous, with grains ranging in size from a few centimetres to half a metre

set in a coarse-sand and fine-gravel matrix. Ten photogrammetric “coded” targets were

distributed along the riverbank and used as tie points for image orientation and for the

computation of an appropriate transformation between the coordinate systems associated

with the differing processing approaches examined. However, coordinates of the control

points were not established using a conventional control survey involving a total station.

Instead, TLS coordinates of the same coded targets were extracted and used for co-registration

purposes.

Figure 4.2 – Riverbank of the Borgne d’Arolla, Valais, Switzerland. 10 targets printed on regular
paper are disposed along it for referencing purposes.

To assess the accuracies of the generated DTMs, TLS data were used as a benchmark. The

riverbank was scanned from a distance of approximately 13 m using an Optech ILRIS 3D

scanner, with a point spacing of approximately 2 mm. In the absence of an absolute coordinate

system, TLS coordinates are used to provide a reference. 3D coordinates of targets in the TLS

system were identified manually using the point cloud data management software Cloud

Compare [EDF R&D, 2012], freely available at www.danielgm.net/cc.

The first device used for image acquisition was a Nikon D7000 model: a 16.2-megapixel digital

single-lens reflex camera. Thirteen photographs were acquired from a short distance (8–12 m)

with a fixed-focus 35 mm lens, attempting to obtain a uniform coverage of the feature and to

maximize overlap. The same procedure was adopted using a smartphone – an Apple Iphone 4

device – equipped with a 5-megapixel camera, also used to collect 13 photographs.
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3D scene reconstruction using PhotoModeler and 123D Catch

Photographs collected using the Nikon D7000 and Iphone 4 devices were processed using

both Eos Systems Inc. PhotoModeler software (Version 2012) and Autodesk 123D Catch.

A fundamental difference exists between the two software packages used. PhotoModeler

provides more comprehensive facilities and control to the user at the expense of requiring

greater understanding, making it more challenging for non-photogrammetrists. Effectively, it

requires the user to know at least the basic concept of photogrammetry and technical terms,

and to be able to correctly sustain the software in performing interior and exterior orientation

and to understand the controls on output quality. In contrast, 123D Catch is a fully automated,

black-box tool and expert supervision is unnecessary. The potential expert input offered by

PhotoModeler should generate better results, but 123D Catch has the distinct value of being

freely available to all, particularly non-specialized users.

PhotoModeler is a subscription software which provides tools for image analysis to generate 3D

clouds of points. Its cost varies depending on options selected and whether the usage is com-

mercial or academic. Prices and details of PhotoModeler are available at www.photomodeler.

com.

To generate accurate spatial data using conventional photogrammetry it is essential to de-

termine the geometrical characteristics of the imaging sensor [Chandler, 1999]. This can be

achieved using a targeted field and well-established camera calibration methods involving a

self-calibrating bundle adjustment. With modern software and appropriate coded targets this

has become a routine and fully automated procedure [Sanz-Ablanedo et al., 2012]. Thus the

two devices were used to capture different photographs of similar targets to those used on the

riverbank but located on a planar surface (a wall). These images were used in PhotoModeler

to estimate camera calibration models for the two sensors. These interior orientation models

were then used for PhotoModeler analysis of the riverbank imagery.

A bundle adjustment was used to estimate camera positions and orientations and to extract

final point clouds, with a user control on point density. TLS target coordinates were imported

into PhotoModeler and associated with their corresponding targets in the images. The use of

these tie points allowed transformation of point clouds in PhotoModeler directly to the TLS

coordinate system.

The software 123D Catch, developed by Autodesk, implements an SfM-based approach. It

is freely available at www.123dapp.com/catch as PC software, smartphone app or web app,

all providing the same services in generating the 3D models and differing only in the post-

processing options. It requires the user to supply a minimum of three images of objects, to

generate 3D meshes automatically. Images are resampled down to a 3 MP resolution currently,

so a high-resolution sensor is not required. Moreover, images do not need to be from the

same distance or have the same scale. The software does not pose restrictions upon camera

type or focus settings; a camera calibration model is derived directly and automatically from

each photograph provided by the user. Nevertheless, 123D Catch provides an output file (in
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FBX format) where some basic calibration data are provided, such as estimated focal length,

exterior orientation parameters, sensor size and scale factors. All photographs obtained using

the Nikon D7000 and the Iphone 4 devices were uploaded to the Autodesk server in distinct

projects, and automatically processed to generate 3D meshes. The maximum mesh density

option was selected in 123D Catch. These meshes were exported in LAS-format files to allow

further analysis in the Cloud Compare software. For practical reasons, the PC interface of

123D Catch was employed.

In both software systems, image-covered polygonal meshes were generated for visualisation

purposes, by connecting the derived points in 3D space by line segments (Figure 3). The point

clouds (mesh vertices) were used for the analysis.

Figure 4.3 – Examples of image-covered polygonal mesh (above) and its wireframe (below),
generated using Iphone 4 images and 123D Catch.

Post-processing and comparison with terrestial laser scanning

The Nikon D7000 and Iphone 4 photographs processed using the PhotoModeler and Autodesk

123D Catch software resulted in four point clouds. However, the 123D Catch models required a

further post-processing operation after the DTMs had been generated to transform the DTMs

to the TLS system. In our case, we used Horn’s absolute orientation algorithm (Horn, 1987)

implemented in Matlab. A manual identification of targets across multiple images is performed

in 123D Catch, and the corresponding coordinates are extracted from the FBX output file.

Afterwards, a rotation, translation and scaling transformation is used to compute 123D Catch

coordinates in the TLS system. The accuracy of this transformation is demonstrated by the

root mean square of the residuals shown in Table 4.2.

To simplify the comparison process, points not in the area of interest were eliminated in all
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Table 4.2 – Root mean squared error of targets position transformation for Autodesk 123D
Catch models [m].

Device X Y Z

Nikon D7000 0.0043 0.0122 0.0035
Iphone 4 0.0146 0.0305 0.0018

point clouds. The resulting point clouds include a number of points varying from 200000 to

600000 (Figure 4.4). The TLS data include more than 3 million points.

The comparison between SfM models and TLS data is performed using the distance tool in

Cloud Compare. The tool uses a chamfer matching algorithm [Barrow et al., 1977] to compute

the chamfer distance, i.e. a value of dissimilarity between two point clouds. This value is

computed by associating each point in the compared dataset with its closest point in the

reference dataset and calculating the three-dimensional distance. These are the reported error

values, referred to as “errors” or “distance errors”. To improve visualization of the results, a

maximum distance of 0.1 m was set to isolate outliers.

A further comparison was made after the application of an iterative closest point (ICP) al-

gorithm. The algorithm iteratively revises a transformation solution in order to minimize

the spatial difference between the two point clouds [Zhang, 1994]. It optimizes a rotation

matrix and a translation vector to fit the compared point cloud to the reference one. ICP has

previously been used in both SfM [James and Robson, 2012] and close-range photogrammetry

[Eos Systems Inc., 2012] quality assessment to ensure that the coordinate system alignment is

as tight as possible. This is also a logical step as the aim is to compare two methods used to

generate data in the same coordinate system requiring any alignment problems to be removed.

4.2.2 Intermediate measurement scale

Data acquisition and 3D scene reconstruction

An Alpine alluvial fan located near the village of Satarma, Val d’Hérens, Switzerland (Figure

4.5) provided an intermediate-range case study. The area of the alluvial fan is approximately

87000 m2. As in the previous case study, TLS data were used to provide a benchmark for

comparison. The TLS data have a point density of approximately 15 cm in the middle-upper

part of the fan, where vegetation is absent and the surface is grass and sediment covered, and

are registered in the Swisstopo LV95 coordinate system using dGPS measured targets. The

focus of the intermediate-range study is on the performance of the use of smartphone sensors

and Internet processing services over a larger area. Hence the analysis was performed using

an Autodesk 123D Catch model (see “Close range measurement scale”, above) obtained from

13 photographs captured with an Apple Iphone 4 device only. Images were taken upfan, from

approximately 350 to 450 m from the channel turn visible in the middle of the alluvial fan in

Figure 4.5.
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(a) Nikon D7000 Photomodeler (b) Nikon D7000 123D Catch

(c) Iphone 4 Photomodeler (d) Iphone 4 123D Catch

(e) Terrestrial Laser Scanner

Figure 4.4 – Riverbank point clouds generated using different devices and software: (a) Nikon
D7000 Photomodeler; (b) Nikon D7000 123D Catch; (c) Iphone 4 Photomodeler; (d) Iphone
4 123D Catch; (e) terrestrial laser scanner. Part (d) presents a heterogeneous point density
because of better image coverage in some zones, as discussed further in the text. Part (e) is
presented with laser reflectance as colours for visualization purposes.
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This case study is more challenging compared to the close-range one and includes a number

of complications. First, and as expected, the acquisition of an appropriate set of images for the

analysis is more difficult given the size of the object of study. In particular, very well-defined

structures on the fan might not have a sufficient representation from different angles and

available positions from the imaging survey. Second, the alluvial fan is partially covered

by vegetation and this represents a major problem for multiple reasons. At this scale, the

occlusion caused by vegetation cannot be recovered by the acquisition of images from different

angles, as data collection from the ground allows limited positions for the camera. Further,

comparison with TLS data would be problematic because of the well-known characteristics

of laser surveys in vegetated zones (i.e. points on leaves versus points passing through the

vegetation and hitting the ground). Finally, in this case, the increased distance between the

camera and the alluvial fan is not optimal for obtaining the necessary image texture, causing

the 3D reconstruction to be more difficult and of varying quality.

Figure 4.5 – Satarma alluvial fan, Valais, Switzerland.

Post-processing and comparison with terrestrial laser scanning

Similar to the close-range experiment (see above), Horn’s absolute orientation algorithm

[Horn, 1987] was used to transform the alluvial fan 123D Catch model coordinates into the

official Swiss coordinate system LV95, used for the TLS data. Since the scale of this experiment

is too large for the use of coded targets, eight well-defined points were manually identified and

used as tie points between the two sources of data to perform an approximate transformation.

A Monte Carlo simulation to refine the transformation was then executed. The resulting

123D Catch model is presented in Figure 4.6. Owing to the presence of vegetation and related

shading effects and point cloud density differences between the 123D Catch model and the TLS
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data, the sampling of points for the comparison process proved challenging. To overcome this

issue and to obtain reliable results, the point clouds were clipped so that the comparison was

performed on the exposed main fan channel zone, where vegetation effects can be neglected

(red perimeter in Figure 4.6). The calculation of error is performed as in the close-range case

study, by using the Chamfer algorithm to calculate distance errors and the ICP algorithm

to reduce co-registration errors (see “Post-processing and comparison with terrestial laser

scanning”, above).

Figure 4.6 – Satarma alluvial fan point cloud generated using an Iphone 4 and Autodesk 123D
Catch. The highlighted zone is where the quantitative analysis is performed.

4.2.3 Laboratory experiment using a flat surface

One of the potential main controls on the successful application of SfM methods in geoscience

is likely to be the number of images. It is reasonable to suppose that an increase in the number

of images can generate a more dense mesh, potentially enhancing the quality of derived

models. Very large datasets of more than 100 images were employed in similar studies [James

and Robson, 2012; Westoby et al., 2012; Fonstad et al., 2013], but these authors show how

this lengthens processing times due to the computationally demanding nature of keypoint

descriptor extraction, matching and reconstruction algorithms. The Iphone 123D Catch

software currently allows a maximum upload of 70 images, while the PC interface allows more

(note: generated meshes can be transferred between both interfaces).

The optimal or sufficient number of images required to maximize the quality of the derived

models is likely to vary according to the complexity of the surface being measured as well as
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the exact sensor (and hence frame coverage) being used. In order to investigate the impact of

the number and distribution of images on the quality of the computed models in a generic

way, we have undertaken an additional experiment using a simple methodology the authors

had used previously [Chandler et al., 2005]. We took the hypothesis that the number and

distribution of the frames should be fundamental for controlling the quality and specifically

the accuracy of the model. When a reduced number of frames are employed, the generated

model could be deformed and/or successful only for a part of the scene. This suggests the

need to consider (i) an appropriate distribution of photo locations to capture the scene, and

(ii) significant overlap between as many frames as possible. In a laboratory experiment, a

simple A3 (29.7 cm x 42 cm) high-quality print of a highly textured image (a pebble surface)

was pasted on to a flat wooden board, which can be assumed to be planar. This enables a very

large number of checkpoints to be determined in the object space and allows the accuracy of

the measurement system to be quantified (Figure 4.7). A total of 53 convergent and oblique

frames were collected using the Iphone 4 device. Given the reduced scale and simplicity of this

extreme test setting, it was possible to acquire all frames with significant overlapping areas

between them, while maintaining a good coverage of possible image capturing positions. We

then focus on the 123D Catch software, reflecting this paper’s emphasis on low-cost processing

options. A number of Autodesk 123D Catch projects were generated by varying the number of

images and view angles.

Figure 4.7 – Set up for the experiment: high quality print pasted on a wooded plank to be as
flat as possible.

The relation between the number of frames and the quality of derived DTMs was tested

using the following method: after generating a 123D Catch model using all images available,

groups of frames were progressively removed while maintaining a good scene covering and

overlapping area. Hence models are generated using 53, 40, 30, 20, 13, 10, 8 and 7 frames.

Although 123D Catch can be used with only three images, projects with fever than seven frames
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failed to provide satisfying results, probably because the iterative process for the exterior

orientation could not converge with few images in this case and need more redundancy to be

successful. To allow direct comparison, all meshes were scaled directly in 123D Catch using a

measured distance.

Since the object surface is flat (topography is completely absent), model accuracy can be

determined without the need for coordinate manipulation, which provides a major benefit of

this particular methodology. A best-fit plane is computed by minimizing the perpendicular

distances between the plane and the points in the point clouds. Then, the distance between

the plane and each 3D point is determined to estimate model accuracy.

4.3 Results

4.3.1 Close-range measurement scale results

The error analysis for the SfM data and TLS for both direct registration and iterative closest

point algorithm for the initial riverbank test is presented in Table 4.3. The histograms of

distance error (Figure 4.8) have log-normal distributions, with a positive skew, and hence we

focus on the median rather than the mean error in the results analysis. Optimum results with

direct registration were obtained using the Nikon D7000 frames in PhotoModeler software,

with a median error of 0.0038 m. In contrast, the application of Autodesk 123D Catch to

Nikon D7000 photographs has a median error of 0.0044 m compared to TLS data. As expected,

Iphone 4 images using PhotoModeler degrade to a median error of 0.0053 m. The application

of Iphone 4 data to Autodesk 123D Catch degrades further to a 0.0148 m median error. For

every approach, the error median is lower than the mean error, because of the positive skew of

error distributions. Generally, all models provide very low median values, with the exception

of the Iphone 4 123D Catch approach.

Table 4.3 – Distance errors between the riverbank SfM models and the TLS data for both direct
registration and ICP algorithm [m].

DTM Median
(Q.50)

Q.75 Q.90 Q.95 Q.99 Mean Mode

N. D7000 - PM 0.0038 0.0070 0.0123 0.0170 0.0323 0.0061 0.0027
N. D7000 - PM - ICP 0.0031 0.0047 0.0089 0.0162 0.0717 0.0056 0.0027
N. D7000 - 123D C. 0.0044 0.0086 0.0159 0.0297 > 0.1 0.0090 0.0023
N. D7000 - 123D C. - ICP 0.0034 0.0059 0.0104 0.0141 0.0249 0.0053 0.0023
Iphone4 - PM 0.0053 0.0114 0.0203 0.0274 0.0455 0.0089 0.0028
Iphone4 - PM - ICP 0.0032 0.0051 0.0102 0.0152 0.0539 0.0054 0.0023
Iphone4 - 123D C. 0.0148 0.0274 0.0449 0.0615 > 0.1 0.0207 0.0044
Iphone4 - 123D C. - ICP 0.0079 0.0149 0.0225 0.0271 0.0382 0.0105 0.0030
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(b) Nikon D7000 123D Catch
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(c) Iphone 4 Photomodeler
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(d) Iphone 4 123D Catch

Figure 4.8 – Histograms of distance errors distributions for the Borgne d’Arolla riverbank for
each approach compared to TLS data: (a) Nikon D7000 Photomodeler; (b) Nikon D7000 123D
Catch; (c) Iphone 4 Photomodeler; (d) Iphone 4 123D Catch.

With the exception of Iphone 4 123D Catch, all experiments achieve 95% of distance errors

below 0.03 m. There is a high level of similarity between the two Nikon D7000 distributions

(Figures 4.8a and 4.8b), which differ only in the number of outliers (more important for 123D

Catch, as confirmed by the 99th centile in Table 4.3), and slightly in the proportion of errors

between 0.01 and 0.02 m. The Iphone 4 Photomodeler approach (Figure 4.8c) has a similar

distribution to Nikon D7000 approaches, but with a slightly greater proportion of points with

a 0.02 to 0.03 m error (confirmed by higher quantiles values). Finally, whilst Iphone 4 images

processed in 123D Catch presented in Figure 4.8d have an error distribution which peaks at a

similar error to other approaches (i.e. below 0.005 mm, with a slightly higher mode of 0.0044

m), its right tail is much more important, featuring higher errors than the others methods as

demonstrated by the 75th centile, respectively 0.013, 0.0188 and 0.0204 m greater and more

importantly by the 0.0615 value of the 95th centile, greater by more than 0.03 m.

The ICP algorithm was applied to help separate out registration and random errors. The
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application of the ICP algorithm did not improve the Nikon D7000 PhotoModeler result

significantly; the median error decreases by only 0.0007 m, while the mean error drops only

by 0.0005 m. On the other hand, the Iphone 4 PhotoModeler and the Nikon 123D Catch

models benefit greatly from the refined coordinate system alignment by ICP. After the ICP

application, mean errors between these models and the TLS data are approximately 0.005

m, with median values of 0.0032 and 0.0034 m – a performance that could be considered

comparable to the Nikon D7000 PhotoModeler results. The Iphone 4 123D Catch result also

improves considerably; the mean error decreases by one half and is now approximately 0.01

m. The median also decreases by one half (from 0.0148 to 0.0079 m).

Figure 4.9 shows the distribution of errors after the ICP application. These distributions are

consistent with the error statistics observed in Table 4.3: both Nikon D7000 applications

and Iphone 4 PhotoModeler results are comparable (Figure 4.9a and 4.9b), achieving very

satisfying performances. On the other hand, while Iphone 4 123D Catch errors reduce con-

siderably, its error distribution demonstrates how performances are still inferior to the three

aforementioned approaches (Figure 4.9d). Nonetheless, the model benefits greatly from the

correction, as demonstrated also by important reduction in errors centiles.

For an additional visualization of the benefits of the ICP algorithms, nine DEMs on a regular

grid with 0.005 m spacing were generated (four direct registration models, four post-ICP

models and one using the TLS data). Given the high density of points, a simple triangle-based

linear interpolation was sufficient to generate DEMs at the chosen resolution. For visualization,

the grid was generated on the X –Z coordinate axis, with elevation provided by the Y axis,

and on a rectangular zone of the riverbank. DEMs of difference (DoD) were generated by

subtracting the eight SfM and PhotoModeler surfaces from the TLS surface, which is used

again as benchmark (the smaller the value of the DoD, the more accurate the model). Figure

4.10 illustrates the direct registration DoD compared with the ICP one, for the four SfM and

PhotoModeler approaches. Results are broadly as expected with differences reduced following

use of the ICP algorithm. The Nikon sensor appears to generate the smallest differences but

optimum accuracies appear to be achieved with 123D Catch. Table 4.4 illustrates the root

mean squared error (RMSE) of each DEM compared to the TLS one. These values confirm

the visual observations, as PhotoModeler models benefit less from ICP (from 0.0381 to 0.0197

m using the Nikon sensor and from 0.0213 to 0.0174 m using the Iphone 4 sensor) than the

123D Catch outputs (0.0647–0.0168 m for the Nikon-PM approach). We attribute the high

differences still remaining in the Iphone 4-123D Catch model after the ICP application to

a systematic error introduced by the tilting clearly visible in Figure 4.10. The improvement

inducted by the ICP for this model is approximately 0.02 m but could be greater if the model

were not tilted.

Figure 4.11 shows the distance errors between the four SfM and PhotoModeler models and

the reference TLS data as point clouds. Generally, the largest errors are concentrated around

the edges of the riverbank, either on the top of it or on the blocks at its base. Secondly, a

difference in point density between the PhotoModeler and 123D Catch models is visible;
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(a) Nikon D7000 Photomodeler - ICP
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(b) Nikon D7000 123D Catch - ICP
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(c) Iphone 4 Photomodeler - ICP
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(d) Iphone 4 123D Catch - ICP

Figure 4.9 – Histograms of distance error distributions for the Borgne d’Arolla riverbank for
each approach compared to TLS data after the application of the ICP algorithm: (a) Nikon
D7000 Photomodeler – ICP; (b) Nikon D7000 123D Catch – ICP; (c) Iphone 4 Photomodeler –
ICP; (d) Iphone 4 123D Catch – ICP.

Table 4.4 – Root mean squared error between the riverbank and the TLS interpolated DEMs
for both direct registration and ICP algorithm [m].

DEM RMSE

N. D7000 - PM 0.0381
N. D7000 - PM - ICP 0.0197
N. D7000 - 123D C. 0.0647
N. D7000 - 123D C. - ICP 0.0168
Iphone4 - PM 0.0213
Iphone4 - PM - ICP 0.0174
Iphone4 - 123D C. 0.0502
Iphone4 - 123D C. - ICP 0.0306
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0 1 20.5 Meters Difference to TLS [m]

Iphone 4 123D Catch

Nikon D7000 123D Catch

Iphone 4 PhotoModeler

Nikon D7000 PhotoModeler

Z

X

−0.10

0

0.10

Figure 4.10 – DEMs of differences between SfM and PhotoModeler models and TLS, prior
(above) and post (below) ICP application (0.005 m grid resolution).

PhotoModeler-derived point clouds have a point spacing of approximately 0.007 m, while the

distance between two neighbouring points in 123D Catch is approximately 0.02 m. Third, it is

possible to identify individual stones or other structures where errors are larger. Effectively,

major errors are located in shaded spots, surrounding stones or in small crevices. Finally,

Iphone models have larger point densities on the right edge of the riverbank, although these

zones correspond to higher errors. We attribute the larger point density to the fact that more
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(a) Nikon D7000 Photomodeler (b) Nikon D7000 123D Catch

(c) Iphone 4 Photomodeler (d) Iphone 4 123D Catch

Figure 4.11 – Point cloud errors for the SfM and PhotoModeler models and TLS comparison
for the Borgne d’Arolla riverbank (m): (a) Nikon D7000 Photomodeler; (b) Nikon D7000 123D
Catch; (c) Iphone 4 Photomodeler; (d) Iphone 4 123D Catch.

images seem to contribute to matched points in this zone. Nevertheless, because of photo

position and orientation, the baseline does not seem optimal for depth precision.

4.3.2 Intermediate measurement scale results

Distance errors between the Iphone 4, 123D Catch model and TLS data are shown in Table

4.5 for the alluvial fan. A median error of approximately 0.600 m is obtained. The error

distribution for the alluvial fan–TLS comparison (Figure 4.12a) is log-normal, similar to the

close-range experiment distributions (Figure 4.8). The frequency peak corresponds to an error

of approximately 0.5 m (with a 0.44 m mode), and more than 75% of distances are less than 1

m (the 75th quantile is 0.9493 m).

As expected, the application of the ICP algorithm improves the results significantly: the aligned

cloud points have a median error of 0.4226 m, with a mean of 0.5263 m. The error distribution

histogram in Figure 4.12b and Table 4.5 show this improvement, with now more than 86% of

errors less than 1 m.

Figure 4.13 visualizes these errors. The largest distance errors are concentrated on the flanks

of the main channel, and discrepancies between the cloud points seem to increase upstream
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Table 4.5 – Distance errors between the alluvial fan 123D Catch model and the TLS for both
direct registration and after application of the ICP algorithm [m].

DTM Median
(Q.50)

Q.75 Q.90 Q.95 Q.99 Mean Mode

Iphone4 - 123D C. 0.5998 0.9493 1.1333 1.5637 1.8882 0.6892 0.44
Iphone4 - 123D C. - ICP 0.4226 0.7282 1.0740 1.2912 1.7320 0.5263 0.15
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(a) Iphone 4 123D Catch
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(b) Iphone 4 123D Catch - ICP

Figure 4.12 – Histograms of distances distributions for Satarma alluvial fan SfM models com-
pared to TLS data: (a) Iphone 4 123D Catch; (b) Iphone 4 123D Catch – ICP.

in that area. This may be explained by an insufficient coverage of the channel flanks in the

pictures for a solid reconstruction of their shape. The camera positions are too few and too low

to allow an optimal orientation to reconstruct channel flanks. In addition, the increase in pixel

size with distance up the fan translates into an increasing distance between the sensor and the

observed surface and this also could be responsible for less accurate reconstructions. This also,

reduces the density of derived samples in the point cloud and, as a consequence, the precision

of the model. To verify this assumption, a subset of points has been extracted representing

a narrow strip in the direction of slope. A scatterplot of the discrepancy of the sampled

points between 123D Catch and TLS data, as a function of distance to one camera position, is

presented in Figure 4.14a. This demonstrates a trend of increasing error with enhancement of

distance between camera and object, with the channel flanks errors superimposed on this.

Figure 4.14 also illustrates the error vector components for the same narrow strip (4.14b, 4.14c

and 4.14d). The error does not feature a particular trend in the X and Y dimensions. On the

other hand, the elevation dimension Z error features a positive trend. This could be because

of (i) the strict correlation between elevation and distance from camera position given the

positions from where images where collected (i.e. around the alluvial fan, but always at its

front), or (ii) uncertainties in the co-registration of data in this dimension (plausible given the

steepness of the fan).
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Figure 4.13 – Point clouds errors for the Iphone 4 123D Catch model and TLS comparison for
the main channel area of the Satarma alluvial fan [m].

4.3.3 Laboratory experiment results

Table 4.6 presents the results of the flat surface laboratory experiment. The median distance

error for a seven-frame model is 0.171 mm, while for the use of all frames it is almost one

half (0.091 mm). Thus the accuracy of the results directly depends on the number of frames

provided to the software; that is, using more images translates into more accurate models.

However, this pattern is nonlinear. The addition of one frame considerably increases the model

quality when using a reduced number of images, as demonstrated by the median distance

errors of models with seven and eight frames (0.171 and 0.114 mm respectively). However,

changing from eight to ten frames leads to almost identical median errors (0.114–0.115 mm).

However, it would appear that outliers affect these results (e.g. the quantile 0.95 error reduces

from 0.528 to 0.498 mm; Table 4.6). This tendency is also observed when moving from 10 to 13

to 20 images, where improvements are evident for outliers only (error reductions of 0.498 to

0.423 to 0.394 mm).

4.4 Discussion

At close range, the application of SfM approaches provided very satisfying results in compari-

son to benchmark TLS data, as has been shown in previous studies (e.g. James and Robson

[2012]; Westoby et al. [2012]; Fonstad et al. [2013]). Our results show that this approach can be

extended to acquire centimetre precision DTMs using smartphone imagery captured from

a distance of up to 10 m and a fully automated online analytical service. This precision is

improved to a sub-centimetre scale by either: (i) the use of a higher-quality sensor or, possibly

more importantly, higher-resolution images; or (ii) the use of more specific, commercial close-
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Figure 4.14 – Distance errors between the 123D Catch model and the TLS data as a function
of distance from the camera on the main channel flanks area of the Satarma alluvial fan: (a)
distance value; (b) X component; (c) Y component; (d) Z component.

Table 4.6 – Distance errors between the flat surface models and best fitting plane [mm].

Number of images Median
(Q.50)

Q.75 Q.95 Mean

7 0.171 0.279 0.529 0.207
8 0.114 0.193 0.528 0.168
10 0.115 0.211 0.498 0.166
13 0.128 0.215 0.423 0.161
20 0.117 0.203 0.394 0.149
30 0.090 0.176 0.415 0.136
40 0.095 0.181 0.397 0.134
53 0.091 0.167 0.392 0.137
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range photogrammetry software for data generation. The approach here has three advantages

over traditional photogrammetry and laser scanning techniques. First, and as with other SfM

applications, images can be acquired with a reduction in the sensor, position and geome-

try constraints as compared with traditional photogrammetric methods. The result is more

rapid data acquisition than both traditional photogrammetry and laser scanning methods,

and the possibility of using a wider range of devices, including smartphones. The second is

represented by the rapid data processing and very fast point cloud generation, using Internet

communication systems and fully automated services. This implies that digital elevation data

as well as 3D images (e.g. Figure 4.3) can be generated in only a few minutes, without the need

for post-processing of laser measurements or expert supervision. Finally, financial costs are

close to zero, while laser scanning devices remain expensive pieces of equipment.

There is a co-registration uncertainty linked to the rotation, translation and scaling transfor-

mation (estimated using targets positions in Table 4.2) used to transform 123D Catch data

into the TLS coordinate system. This was reflected in the change in distance errors after

application of the ICP algorithm and is comparable to findings in similar studies (e.g. James

and Robson [2012]; Westoby et al. [2012]; Fonstad et al. [2013]), where is it indicated as an

important source of uncertainty. In particular, Westoby et al. [2012] indicate how errors in

the co-registration procedure can be linked to the manual identification of ground control

points in both point cloud datasets and consequently impact upon the accuracy of the trans-

formation matrix applied to the data. Unfortunately, contrariwise to other approaches, to

compare 123D Catch and TLS data this manual identification is a necessity. Accordingly, the

error estimated between the 123D Catch point clouds and the TLS data can be reduced with

more precise coordinate transformation. The use of the iterative closest point (ICP) algorithm

(as demonstrated by James and Robson [2012]) confirmed this assumption. The ICP algorithm

is expected to minimize the transformation error (but without changing the scale), so that

distances between SfM and TSL data can be interpreted as approach-dependent errors. In

that sense, the ICP is used to determine the source of the errors, e.g. registration issues versus

random errors, by minimizing the effect of the former. Nevertheless, ICP can only be effective

if there is an even distribution of data points. In fact, a surface with large voids would itself

introduce errors in the surface matching and well-defined tie points can be useful. In the

absence of a second dataset for comparison the ICP cannot be applied, but if the model

needs to be geo-referenced anyway the use of GCPs (and targets) is advantageous and can

provide a sufficiently precise registration for many geoscience applications. As mentioned

previously, the ICP proved very efficient in the present study. However, there is a formal dis-

tinction between SfM approaches. In PhotoModeler, TLS targets were used as ground control

points, so that the registration errors are expected to be dominantly dependent on the bundle

adjustment quality. Hence 123D Catch surfaces are expected to benefit most from the ICP

application. This is visually confirmed by the DEMs of difference in Figure 4.10: as expected,

123D Catch models benefit greatly from the ICP application, confirming that a non-negligible

part of the error could be linked to registration uncertainty possibly arising from the lower

image resolution. ICP-induced improvements are lower for PhotoModeler models. These
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results are consistent with values in Table 4.3, particularly when observing mean distance

errors.

A fundamental control over DTM quality is exerted by the texture of the imagery. Areas of low

image texture will yield lower-density point clouds as well as more uncertain point qualities,

because the image-matching algorithm relies strictly on image texture. However, image texture

is not only dependent upon surface characteristics but also image quality and resolution,

particularly image scale. Autodesk currently limits image sizes to 3 MP, which can mean either

increasing the image scale or the number of images to achieve an acceptable model resolution.

The practicality and speed of data generation associated with using a smartphone–123D Catch

approach comes at the price of slightly poorer precision in the resulting surface data. However,

the Autodesk 123D Catch smartphone “app” offers the possibility of near-instantaneous

acquisition of 3D data, based upon the analysis of smartphone-acquired images submitted to

the free Internet-based processing systems using wireless communication. This implies that a

first indication on results can be made in near-real time while still in the field. This is hugely

beneficial as additional images can be acquired rapidly if either coverage or point density is

inappropriate. However, this could only be done if good data network coverage is available,

which could not always be the case in field applications.

Extension to an Alpine alluvial fan system demonstrated a linear degradation of precision with

image scale, which is logical for a photograph-based approach and also observed in other

studies (e.g. James and Robson [2012]). As explained by Fonstad et al. [2013], this is once

again due to image texture; as viewing distances increase, the textural features required to

calculate a point in that area could become insufficient. For that reason, and as with any

photograph-based technique, Fonstad et al. [2013] affirms that SfM is most effective in small

study areas, where moderate-quality cameras have sufficient resolution to capture detailed

texture. However, this is strictly dependent on the scale that provides the dominant texture in

the images, as when capturing larger surface features point matching could be more successful

from longer distances than at a closer range. Nevertheless, we found that if the median

errors for the riverbank and alluvial fan studies are scaled by the mean distance between

generated points and the sensor, accuracies are approximately 1:625. Thus, despite precision

degradation, intermediate-scale models maintain the expected level of precision for their

scale, as defined by image resolution. Improvements in alluvial fan models could be achieved

by taking imagery at a range of distances. Such a “multiscale” imaging solution suggests

great promise. Fonstad et al. [2013] suggest that this procedure would reduce systematic

distortions over large distances and still produce dense point clouds. However, this has not

been verified and would require a more sophisticated strategy for data collection, involving

advanced technology such as camera-equipped drones or kites for the alluvial fan case.

The flat surface experiment contributed to understanding the impact of varying the number

of frames used by Autodesk 123D Catch. Additional frames generally increase model accuracy

compared to a reduced number of images. Nevertheless, their benefit seems to affect outliers

only when the number of images is already sufficient for a good representation of the surface
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of interest. This suggests that adding groups of images reduces the number of poorer-quality

points, a reasonable hypothesis given that point-matching precision is dependent on image

location. It appears that although mesh density increases and errors stabilize with increasing

number of frames, denser meshes are not necessarily of better quality in terms of accuracies.

Smaller image sets can still provide acceptable accuracies, provided their spatial distribution is

adequate. The experiment featured an idealized case where (i) a frame can cover 100% of area

of interest and (ii) topography is completely absent. Nevertheless, the analysis proved useful

in showing that, unlike other traditional forms of photogrammetry, the number of images in

an SfM application is absolutely critical. Nonetheless, as anticipated, the relation between

results quality and number of frames is likely to differ from case to case.

SfM models are influenced equally by the difficulties of occlusion and separating vegetation

and sediment cover typical of laser scanning systems. In SfM approaches, vegetation is

important not only for occlusion effects but also for degradation in the quality of surface

reconstruction. This has been largely discussed by Westoby et al. [2012], with evidence of

errors introduced by the presence of vegetation.

The investigation presented in this paper discussed a number of technical aspects. The men-

tioned approaches have advantages and disadvantages and their use depends on the specific

application. Table VII summarizes these technical approaches. The list is not exhaustive: other

approaches and solutions exist.
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4.4. Discussion

Since 123D Catch is a process that automatically finds and matches common features between

images, it is critical to capture imagery with the right characteristics. Autodesk provides useful

guidelines and tutorials for potential users that can be found at http://www.123dapp.com/.

Our recommendations would involve acquiring a multiscale image set which initially captures

the whole site with a few frames at low resolution before obtaining a greater number of images

at closer range to capture the required detail. It is important to collect images from varying

directions, and for each 3D point to be identifiable in at least two or preferably three frames.

The optimal angle between each image will depend on the subject of interest. Since the

features are extracted from the whole photographs, it is fundamental that (i) the whole scene is

static, (ii) light between the frames is consistent (no flash), and (iii) images are not overexposed

or underexposed as this can often confuse the feature-matching process. If occlusions are

present, increasing the number of photos is essential to ensure adequate image coverage.

Moreover, increasing the number of photos may produce denser meshes and can improve

model accuracy. The adequate number of images required is likely to vary between case

studies and cameras used and it is encouraged to investigate whether or not the derived

data are sensitive to the number of images acquired and ensure that redundant frames are

sufficient. It is advisable not to use zoom lenses, as it could be difficult to obtain an accurate

reconstruction with them. Finally, measuring transparent, reflective or homogeneous surfaces

should be avoided because the features in this type of subjects are very difficult to match by

the automatic feature-matching process. If the generated model needs to be computed in

real-world coordinates or co-registered with existing or future datasets, the use of coded and

referenced targets can be advantageous. The marked objects need to be clearly identifiable and

well represented on the images. Since 123D Catch operates with a fully automatic procedure, it

is not possible to insert GCPs to directly compute the mesh in a real-world coordinate system.

Hence, in order to minimize error introduced by the registration procedure, the manual

identification of the targets needs to be eased by ensuring a high density of points in target

zones. If the size of the object is so large as to prevent the use of targets, easily identifiable

natural features can be used. If a second dataset is available, after an approximative registration

using common points or targets the application of the ICP algorithm can be employed in an

attempt to minimize registration errors. If the aim is to monitor changes in an area or an

object through time, it is suggested to isolate stable zones for the ICP application and further

apply the transformation to the whole dataset. Finally, if a simply scaled model is desired, a

known distance can be inserted as a reference in 123D Catch to scale the mesh. To summarize:

1. Plan camera survey, registration or method to introduce scale in advance.

2. Capture the whole subject first, then the details.

3. Ensure coverage is appropriate. Basic principle: ensure that every point on the object

appears on at least three images, which are acquired from spatially different locations.

4. Static scene.

5. Consistent light
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6. Avoid overexposed and underexposed images.

7. Consider occlusions (see 3, above).

8. Avoid transparent, reflective or homogeneous surfaces.

The uploading of the images to Autodesk servers depends on their number and on the internet

connection, but can be as rapid as a few minutes. The processing time is dependent not

only on the number of images but also on their texture, and varies from 5 to 30 min for an

initial result. It is then possible to generate a maximum-density mesh, which increases the

processing time slightly. Overall, the generation of 3D data from raw data is considerably fast.

Autodesk 123D Catch therefore provides an invaluable tool for geomorphologists, particularly

in terms of cost, speed and ease of use.

4.5 Conclusion

In this contribution, the potential of a straightforward SfM approach using basic smartphone

imaging technology and partial and fully automated data-processing resources has been

investigated. Two case studies have been chosen for the analysis, namely a riverbank as

a close-range example, and an Alpine alluvial fan as an intermediate-distance case. With

the use of TLS data to produce a benchmark, the quality of DTMs generated using different

sensors and processing methods has been assessed. Efforts were made to reduce the co-

registration uncertainty in order to verify model accuracy. The quality of SfM results has

proven to be related to image quality and photo scale. Nevertheless, the use of smartphone

sensors allows practical and rapid geomorphic data collection and processing. Also, fully

automated processing systems proved to be a valid resource for generating a spatial record

of objects and DTM generation, especially at close range. These characteristics make fully

automated SfM processing systems an appealing and promising approach for geoscience

applications, deserving further efforts to investigate system performance in a wide range of

environmental settings and terrain types.

Acknowledgements

This study was partially funded by the Herbette Foundation of the University of Lausanne,

Switzerland, and by the Swiss Geomorphological Society (www.geomorphology.ch). The paper

benefited substantially from critical but constructive comments by Mike James and a second

anonymous reviewer, as well as from an Associate Editor.

76

www.geomorphology.ch


Bibliography

Bibliography

Alho, P., Kukko, A., Hyyppa, H., Kaartinen, H., Hyyppa, J., and Jaakkola, A. (2009). Application

fo boat-based laser scanning for river survey. Earth Surface Processes and Landforms,

34(13):1831–1838.

Barker, R., Dixon, L., and Hooke, J. (1997). Use of terrestrial photogrammetry for monitoring

and measuring bank erosion. Earth Surface Processes and Landforms, 22(13):1217–1227.

Barrow, D. H., Tenenbaum, J. M., Bolles, R. C., and Wolf, H. C. (1977). Parametric correspon-

dence and chamfer matching: two new techniques for image matching. In Proc. 5th Int.

Joint Conf. Artificial Intelligence, Cambridge, MA, 659-663.

Brasington, J., Rumsby, B. T., and McVey, R. A. (2000). Monitoring and modelling morphological

change in a braided gravel-bed river using high resolution GPS-based survey. Earth Surface

Processes and Landforms, 25(9):973–990.

Brasington, J. and Smart, R. M. A. (2003). Close range digital photogrammetric analysis of

experimental drainage basin evolution. Earth Surface Processes and Landforms, 28(3):231–

247.

Butler, J., Lane, S. N., Chandler, J. H., and Porfiri, E. (2002). Through-water close range

digital photogrammetry in flume and field environments. The Photogrammetric Record,

17(99):419–439.

Butler, J. B., Lane, S. N., and Chandler, J. H. (1998). Assessment of DEM quality for character-

izing surface roughness using close range digital photogrammetry. The Photogrammetric

Record, 16(92):271–291.

Chandler, J. H. (1999). Effective application of automated digital photogrammetry for geomor-

phological research. Earth Surface Processes and Landforms, 24(1):51–63.

Chandler, J. H., Cooper, M. A. R., and Robson, S. (1990). Analytical aspects of small format

surveys using oblique aerial surveys. Journal of Photographic Science, 37(6):235–240.

Chandler, J. H. and Fryer, J. (2013). Autodesk 123D Catch: how accurate it is? Geomatics World,

2(21):28–30.

Chandler, J. H., Fryer, J., and Jack, A. (2005). Metric capabilities of low-cost digital cameras for

close range surface measurement. The Photogrammetric Record, 20(109):12–26.

Chandler, J. H. and Moore, R. (1989). Analytical photogrammetry: a method for monitoring

slope instability. Quarterly Journal of Engineering Geology and Hydrogeology, 22(2):97–110.

EDF R&D (2012). Cloudcompare (version 2.4) [gpl software]. Technical report, Telecom

ParisTech.

77



Chapter 4. Investigating the geomorphological potential of freely available and
accessible Structure-from-Motion photogrammetry using a smartphone

Eos Systems Inc. (2012). Quantifying the accuracy of dense surface modeling within Photo-

Modeler Scanner. Technical report.

Fix, R. E. and Burt, T. P. (1995). Global positioning system: an effective way to map a small area

or catchment. Earth Surface Processes and Landforms, 20(9):817–827.

Fonstad, M. A., Dietrich, J. T., Courville, B. C., and Carbonneau, P. E. (2013). Topographic

structure from motion: a new development in photogrammetric measurements. Earth

Surface Processes and Landforms, 38(4):421–430.

Gomez-Gutierrez, A., Schnabel, S., Berenguer-Sempere, F., Lavado-Contador, F., and Rubio-

Delgado, J. (2014). Using 3D photo-reconstruction methods to estimate gully headcut

erosion. Catena, 120:91–101.

Heritage, G. and Hetherington, D. (2007). Towards a protocol for laser scanning in fluvial

geomorphology. Earth Surface Processes and Landforms, 32(1):66–74.

Hodge, R., Brasington, J., and Richards, K. S. (2009a). Analysing laser-scanned digital terrain

models of gravel bed surfaces: linking morphology to sediment transport processes and

hydraulics. Sedimentology, 56(7):2024–2043.

Hodge, R., Brasington, J., and Richards, K. S. (2009b). In situ characterization of grain-scale

fluvial morphology using terrestrial laser scanning. Earth Surface Processes and Landforms,

34(7):954–968.

Horn, B. K. P. (1987). Closed-form solution of absolute orientation using unit quaterions.

Journal of the Optical Society of America, 4(4):629–642.

James, M. R., Ilic, S., and Ruzic, I. (2013). Measuring 3D coastal change with a digital camera.

In Proceedings of Coastal Dynamics.

James, M. R. and Robson, S. (2012). Straightforward reconstruction of 3D surfaces and topog-

raphy with a camera: Accuracy and geoscience application. Journal of Geophysical Research,

117(F3):F03017.

Lane, S. N. (2000). The measurement of river channel morphology using digital photogram-

metry. The Photogrammetric Record, 16(96):937–961.

Lane, S. N., Reid, S. C., Westaway, R. M., and Hicks, D. M. (2004). Remotely sensed topographic

data for river channel research: the identification, explanation and management of error.

In Kelly, R., Drake, N., and Barr, S., editors, Spatial Modelling of the Terrestrial Environment,

pages 157–174. Wiley, Chichester.

Lane, S. N., Richards, K. S., and Chandler, J. H. (1994). Developments in monitoring and mod-

elling small-scale river bed topography. Earth Surface Processes and Landforms, 19(4):349–

368.

78



Bibliography

Mankoff, K. D. and Russo, T. A. (2013). The Kinect: a low-cost, high-resolution, short-range 3D

camera. Earth Surface Processes and Landforms, 38(9):926–936.

Nitsche, M., Turowski, M. J., Badoux, A., Rickenmann, D., Kohoutek, T. K., Pauli, M., and

Kirchner, J. W. (2013). Range imaging: a new method for high-resolution topographic mea-

surements in small- and medium-scale field sites. Earth Surface Processes and Landforms,

38(8):810–825.

Sanz-Ablanedo, E., Chandler, J. H., and Wackrow, R. (2012). Parametrising internal camera

geometry with focusing distance. The Photogrammetric Record, 27(138):210–226.

Schaefer, M. and Inkpen, R. (2010). Towards a protocol for laser scanning of rock surfaces.

Earth Surface Processes and Landforms, 35(4):417–423.

Westaway, R. M., Lane, S. N., and Hicks, D. M. (2000). The development of an automated

correction procedure for digital photogrammetry for the study of wide, shallow, gravel-bed

rivers. Earth Surface Processes and Landforms, 25(2):209–226.

Westoby, M., Brasington, J., Glasser, N. F., Hambrey, M. J., and Reyonds, M. J. (2012). ’Structure-

from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geo-

morphology, 179:300–314.

Woodget, A. S., Carbonneau, P. E., Visser, F., and Maddock, I. (2015). Quantifying submerged

fluvial topography using hyperspatial resolution UAS imagery and structure from motion

photogrammetry. Earth Surface Processes and Landforms, 40(1):47–64.

Zhang, Z. (1994). Iterative point matching for registration of free-form curves and surfaces.

International Journal of Computer Vision, 13:119–152.

79





5 Geomorphological activity at a rock
glacier front detected with a 3D
density-based clustering algorithm

Natan Micheletti, Marj Tonini, Stuart N. Lane

Geomorphology: under review

Context

Terrestrial Laser Scanners (TLS) are extensively used in geomorphology for remotely sensing

and to derive digital elevation models (DEMs). Modern devices are able to collect many

millions of points per minute. Working on the resulting dataset is often troublesome in

terms of computational effort. Indeed, it is not unusual that raw point clouds are filtered

prior to DEM creation, such that only a subset of points is retained and the interpolation

process becomes less of a burden. Whilst this procedure is in many cases necessary, it leads

to a considerable loss of valuable information. Because of the reasons above, being able to

perform geomorphological research directly on point clouds would be profitable.

This paper proposes an approach to isolate erosion and deposition features semi-automatically

in 3-D point clouds. A clustering method, namely the Density-Based Scan Algorithm with

Noise (DBSCAN), is applied to identify mass movements at the front of a very active Alpine

rock glacier. The methodology allows detection of volumetric features with higher accuracy

with respect to traditional, raster or TIN based, approaches.

In the context of this thesis, the chapter represents an attempt to process dense point clouds

more efficiently for change detection purposes in geomorphology. This contribution also

offers insights into the geomorphologic activity of an active rock glacier during a summer

characterized by a heat wave.
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Abstract

Acquisition of high density point clouds using Structure from Motion photogrammetry and

terrestrial laser scanners (TLS) has become commonplace in geomorphic science. However,

the derived point clouds are often filtered and/or interpolated onto regular grids and the

grids compared so as to detect changes (erosion/deposition). This procedure is necessary

for some applications (e.g. digital terrain analysis) but it leads to a considerable loss of

potentially valuable information contained within the point clouds. In the present study,

a semi-automatic methodology for geomorphological analysis and feature detection from

point clouds is developed. It rests on the use of the Density-Based Spatial Clustering of

Applications with Noise (DBSCAN), applied to TLS data for a rock glacier front in the Swiss

Alps. The proposed methods allowed the isolation of clusters of erosion and deposition directly

from point clouds without the prior need for interpolation or data reduction and with an

accuracy that depends only on the actual sampling resolution. The results are illustrated for

the summer of 2015, a season of enhanced geomorphic activity associated with exceptionally

high temperatures.

Keywords: DBSCAN; terrestrial laser-scanning (TLS); point clouds; feature detection; rock

glacier;

5.1 Introduction

The rapid development of new remote sensing methods for topographic measurement has

revolutionized geoscience research over the last two decades. Central to many of these

methods is the production of point clouds, often with an exceptionally high, but spatially

variable point density. For instance, terrestrial laser scanning (TLS) has been one of the most

successful method for 3D data collection [Bauer et al., 2003; Glenn et al., 2006; Heritage and

Hetherington, 2007; Alho et al., 2009; Schaefer and Inkpen, 2010; Deems et al., 2013; Gabbud

et al., 2015] and sequential acquisition can be used to detect and quantify surface change

[Abellan et al., 2014; Gabbud et al., 2015; Neugirg et al., 2016].

Whilst the developments of terrestrial scanners and ground-based Structure from Motion

photogrammetry have made data collection more cost effective as compared with airborne

methods, three challenges arise. First, the large number of points acquired is computation-

ally challenging, and datasets have to be filtered such that only a subset of points is finally

retained for the analysis (e.g. Abellan et al. [2006]). The consequences of this dataset reduc-

tion are dependent on the spatial scales of variability in the surfaces being considered and

the questions being asked with those data. It is possible to reduce data density significantly

without statistically altering the terrain proprieties at certain (coarser) scales [Gessler et al.,

2000; Chaplot et al., 2001]. However, representation of more detailed micro-scale topographic

characteristics will need to retain a higher density of data points [Florinsky and Kuryakova,

2000; Anderson et al., 2006]. If the questions being asked of a dataset relate to change detection
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(i.e. determination of erosion and deposition), the scale chosen for the analysis will affect

directly the estimations of changes obtained [Lane et al., 1994]. Second, whilst unmanned

airborne vehicles increasingly allow for low cost aerial survey, terrestrial data collection meth-

ods remain important but suffer from perspective effects, which can lead to either zones of

occlusion (shadow effect) or spatially-variable point densities. For change detection, such

zones need to be treated carefully. Third, in the vast majority of contributions (e.g. Alho et al.

[2009]; Jaboyedoff et al. [2012]; Gabbud et al. [2015]) 3D point clouds are interpolated to digital

elevation models (DEMs), either as regular raster grids or triangulated irregular networks

(TINs). These are effectively 2.5D representations of the topography [Jaboyedoff et al., 2012]

because they assign a single Z elevation to a point (defined by X, Y coordinates), excluding the

possibility that the point has multiple Z values. Furthermore, rasterized DEMs will require very

high grid densities to capture the detail available in the original point data, but DEMs created

at high resolution will have areas highly dependent upon point interpolation processes, where

the point cloud densities are lower. TINs have similar problems where large triangles are

created in zones of low point density.

For these reasons, it may be appropriate to develop change detection methods based upon

the direct analysis of the point clouds using semi-automatic or automatic methods to detect

and extract individual features. The latter have been proposed recently, notably for rockfall

detection and rock mass structure analysis [Gigli and Casagli, 2011; Brodu and Lague, 2012;

Riquelme et al., 2014; Tonini and Abellan, 2014; Rohmer and Dewez, 2015]and they tend to be

based upon the identification of clusters of points that share the same characteristics. There

are fewer examples of the application of cluster-based methods for volume calculation (e.g.

Olsen et al. [2015]), especially where there has been no prior interpolation.

The aim of this paper is to develop and to apply a semi-automated method for isolating and

identifying erosion and deposition features directly from point cloud data using a 3D clustering

algorithm. Specifically, we tested the Density-Based Spatial Clustering of Applications with

Noise (DBSCAN, Ester et al. [1996]) for isolating single erosion and deposition features from a

TLS-generated point cloud. This approach has been previously employed to quantification

of rockfalls and detection of mass joints [Riquelme et al., 2014; Tonini and Abellan, 2014].

The novelty of the proposed approach consists in the implementation of the DBSCAN 3D-

module for the direct detection and quantification of erosion and deposition from point

clouds, without the need for interpolation and so avoiding the creation of associated artefacts.

The only factor that then influences the change estimations is the density of the original TLS

data. We developed the method for a classic example of a geomorphic system that has been

studied using TLS (e.g. Bauer et al. [2003]; Bodin and Schoeneich [2008]; Avian et al. [2009]):

rock glaciers.

83



Chapter 5. Geomorphological activity at a rock glacier front detected with a 3D
density-based clustering algorithm

5.2 Case study: the Tsarmine rock glacier

The proposed methodology was developed for a very active rock glacier front located in

the Swiss Alps: the Tsarmine rock glacier. Generally speaking, active rock glaciers act as

sediment conveyors able to transfer large quantities of rock debris downward by permafrost-

related creep [Delaloye et al., 2010; Gärtner-Roer, 2012]. Their velocities may vary from a few

centimeters to several meters per year [Lambiel et al., 2008; Barboux et al., 2014]. Alpine rock

glaciers are widely recognized as a primary agent in gravitational processes, including rockfalls

and debris flows, as a result of their steep and unstable fronts [Kääb et al., 2007; Harris et al.,

2009; Lugon and Stoffel, 2010]. As a consequence, monitoring and quantifying their dynamics

is of great interest, particularly in the face of climate change that could potentially enhance

downslope displacement rates (e.g. Kääb et al. [2007]; Lugon and Stoffel [2010]; Micheletti

et al. [2015]).

The Tsarmine rock glacier is located in the Hérens Valley, in the Western Swiss Alps (Figure

5.1). Its front is located at 2480 m a.s.l. (near the regional lower limit of permafrost, Lambiel

and Reynard [2001]) and it is steep, devoid of vegetation and unstable. From the front, there is

the regular detachment of debris, with delivery to a steep corridor containing a small stream,

where deposits of boulders are visible for several hundred meters downstream.
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Figure 5.1 – The Tsarmine rock glacier, located in the Hérens Valley, in the Western Swiss Alps
(aerial photograph and relief shaded: Swisstopo).

The kinematics of the Tsarmine rock glacier have been investigated using archival aerial

photogrammetry, differential SAR interferometry (DInSAR), differential GPS and fixed GPS

measurements [Lambiel et al., 2008; Delaloye et al., 2010; Barboux et al., 2014; Micheletti et al.,
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2015]. Rapid creep, of the order of 1 to 2 m yr−1, was measured during the years 1990s and

2000s [Barboux et al., 2014; Micheletti et al., 2015]. Following the rock glacier classification

proposed by Lambiel et al. [2008], the Tsarmine rock glacier might be considered very rapid and

susceptible to very frequent destabilization. Recent GPS data suggest an apparent acceleration

since the summer of 2012 and the body of the rock glaciers advanced at velocities of c. 4 m

yr−1 in the last years, with peaks up to 6 m yr−1 in 2015 (unpublished data, Universities of

Lausanne and Fribourg). Because of this exceptionally high displacement rate, the Tsarmine

rock glacier is likely to be associated with considerable geomorphic change at its front even

over short time-scales. As a consequence, it represents an ideal candidate for developing our

method.

5.3 Methodology

Figure 5.2 gives an overview of the methodology, from data acquisition through to computation

of the volume of change associated with each detected movement units (i.e. erosion and

deposition). In summary: (1) point clouds were generated using a TLS on a number of dates

(see Section 5.3.2); (2) these clouds were co-registered using stable zones within the surveyed

area (bedrock outcrops); (3) the precision of the co-registration of the target dataset onto

the datum was used to define points where there may have been some change, expressed as

a minimum Euclidean distance; (4) points that are retained were subjected to a clustering

algorithm, DBSCAN, which aimed to group points into single features; (5) these features were

then labeled as clusters of erosion or of deposition according to the elevation assignment of

the change; and (6) the volume of change was finally calculated for each cluster.

5.3.1 DBSCAN: 3-D density based clustering method

The clustering algorithm DBSCAN (Density-Based Spatial Clustering of Applications with

Noise, Ester et al. [1996]; Campello et al. [2013]) was used to classify points within the clouds

into single cluster features. The computational environment to perform the analysis was

the open source R programming language [R Core Team, 2015], using the dbscan package

[Hahsler et al., 2016]. This procedure allows identification of clusters of arbitrary shape in

2D or 3D space on the base of the local density of points. Essentially, points that are close

together are grouped into the same cluster, while points isolated or in very low-density regions

are labelled as noise. Only two parameters are required to perform this classification (Figure

5.3): the neighbourhood size epsilon (eps) and the minimum number of points necessary

to form a cluster (MinPts). On the basis of these two parameters, the algorithm explores

each point in the cloud, counting the number of the neighbouring points falling within a

circle (for the 2D model) or a sphere (for the 3D model) of radius equal to the eps-value: if

this number is equal to or greater than MinPts, the group of points is labelled as a cluster;

otherwise points are classified as noise (see Figure 5.3). The central point of each identified

cluster is called core-point. Then, as some points in the pattern can be density-reachable
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Figure 5.2 – The workflow of the stepwise analysis for a single time-step. For each time-step
analysed, the target and reference point clouds are defined as explained in Section 5.3.3.

by more than one core-point, they belong to more than one cluster. These are called seed -

points. The corresponding core-points of clusters connected by seed -points are said to be

density-connected to each other and their clusters blended together to form a unique cluster

of arbitrary shape.

The two parameters eps and MinPts greatly affect the shape, size and number of clusters

detected by the algorithm. Their choice mainly relies on a decision that has to be taken as

to whether the aim is to identify a large number of small clusters or a small number of large

clusters within the original dataset. The default value for MinPts in the used package is 5

[Campello et al., 2013]. The actual value used should reflect: (1) dataset size, as when working

with very high density datasets, higher values may need to be set to remove noise; and (2) the

surface being considered which will determine the spatial scale of erosion and deposition

units, and hence the point density that should be needed for a group of points to be coherent.

Once that the MinPts parameter has been fixed, a suitable value for the eps neighbourhood

size can be deducted using a k-nearest neighbours (k-NN) distance graph, that is plotting the

distance to the k-nearest neighbour and imposing k as equal to MinPts. The optimal eps-value

should coincide with strong curvature in the plot: smaller values should give rise to a strong
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c

a) b) c)

Figure 5.3 – (a) The minimum number of points (MinPts) at a maximum distance (eps) around
the core-point (c, red dots) defines a cluster. (b) The core-points are density-connected by the
chain of intermediate seed -points (black dots) and (c) their clusters blended together to form
a unique cluster of arbitrary shape (red point cloud).

fragmentation and small isolated clusters dispersed among noise-points; for larger values, the

majority of the detected clusters will blend together to make bigger clusters.

5.3.2 Field Campaign

An ultra-long range LiDAR RIEGL VZ-6000 scanner was employed to acquire sequential 3D

datasets of the rock glacier front. This high speed (up to 222,000 measurements per second),

high precision (10 mm at 150 m range) device has proven very efficient for geomorphological

research (e.g. Gabbud et al. [2015]; Fischer et al. [2016]). By means of its long-range capability

(up to 6000 m), the use of this device allowed the scan position to be set on the opposite side

of the valley facing the rock glacier (c. 2800 m of flying distance, see Figure 5.4). TLS scans

were performed on four different dates over two consecutive summers: a first survey was

carried out on the 23th of September 2014, whilst three more were completed on the 29th of

June, the 20th of July and the 22th of September 2015. As it is routine in TLS surveys, the laser

device was placed on a tripod over stable ground. The same approximate instrument position

was used for each survey. The laser pulse repetition frequency was reduced to its minimal

value (30 kHz) to prevent range ambiguity. Vertical and horizontal angle increments were

both set to 0.004°, except for the 2014 survey where a value of 0.0045° was chosen (resulting in

slightly lower expected point densities). For registration purposes, a very large area containing

extensive stable zones in addition to the rock glacier was scanned. The RIEGL VZ-6000 is

equipped with on-board inclination sensors, meaning that even when not geo-referenced,

resulting data Z dimension represents the elevation above the X -Y plane. An example of the

point cloud appearance at the rock glacier front is shown in the detail of Figure 5.4.
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Figure 5.4 – The Tsarmine rock glacier and the steep corridor below its front, as visible from
the scanning site on the opposite valley side. The detail shows the point cloud of the rock
glacier front (survey: 22/09/2015); the front width is c. 100 m.

5.3.3 Point cloud pre-treatment and co-registration

TLS data were imported and processed initially using the software RiSCAN PRO. The first step

was the manual removal of non-ground surface points, caused by atmospheric reflections

due to dust or moisture. Afterwards, a relative registration of point clouds was necessary to

co-register the four surveys into a common coordinate system. The most recent data (the 22th

of September 2015) were treated as the datum. Surfaces prone to considerable topographic

change (including the rock glacier) were identified and excluded from the co-registration

procedure. A coarse, approximate registration was achieved by manually identifying corre-

sponding points between the datum and each point cloud and shifting the latter by modifying
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the SOP (Sensor Orientation and Position) matrix. Subsequently, the co-registration was

refined using the Multi-Station Adjustment (MSA) RiSCAN PRO function. The latter uses

an Iterative Closest Point (ICP) method [Zhang, 1994]. In the ICP, the orientation and the

position of scan positions is modified using least-squares minimization of residuals in order

to calculate the best overall fit in respect to the datum. Each residual is defined as the distance

between each data point in the cloud being co-registered and its closest point in the datum.

After the best fit is determined, the residual distances were calculated and used to assess the

quality of co-registration. For all co-registered scans, the residual distances have a Gaussian

distribution with mean of zero. Thus, the precision of the co-registration procedure could

evaluated by the standard deviation of the residual distances (σMSA): in our case it ranged

from ±0.0598 to ±0.0987 m.

After co-registration, a mask was used to restrict point clouds to the area of interest: the front

of the rock glacier and the corridor below. The point density in the area of interest was c. 24

p m−2 for 2015 surveys and 12 p m−2 for the 2014 one. The clustering algorithm (DBSCAN)

requires as input a 3D dataset, which in our case consists in the point cloud of displacement

distance, the latter measured as a Euclidean distance. For any two co-registered datasets, we

set the sequentially first dataset as the target and the more recent dataset as the reference.

For each point in the target cloud it is necessary to identify its corresponding nearest point

in the reference cloud, referred to as the Cloud/Cloud difference (Table 5.1). Consequently,

datasets were compared using the distance tool in the point cloud data management software

Cloud Compare [EDF R&D, 2012], freely available at www.danielgm.net/cc. This tool exploits a

chamfer matching algorithm [Barrow et al., 1977] to obtain the three-dimensional (Euclidean)

distance between each point in the target dataset with its closest point in the reference dataset.

Table 5.1 – LiDAR scans and their use as target and reference datasets in the analyses.

Target Reference Time-step

29/06/2015 20/07/2015 1 month
20/07/2015 22/09/2015 2 months
29/06/2015 22/09/2015 3 months
23/09/2014 22/09/2015 1 year

These distances comprise two components: (1) real erosion/deposition signals; and (2) noise

associated with the fact that points are not exactly co-located in zones of no change, due

to sampling or co-registration errors. In practice, as the MSA used zones of no change, the

residual distances for these zones are a measure of the noise in the data (i.e. σMSA). The

question then becomes what multiple of σMSA to use. One option is to apply some kind of

statistical confidence to the distances determined (e.g. in only one dimension ±1.96σMSA

gives a 95% confidence that the distance is a signal and not noise, Lane et al. [2003]). However,

if densities are spatially variable within the zone of interest, or between the zones used for the

MSA and the zone of interest, such precision may be misleading. One alternative is to take

a process-based definition. Here, we note from field observations that the size of displaced
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boulders is typically >0.30 m and we use this as a change criteria: that is a boulder must move

through its own volume to be considered a change. For comparison, 0.30 m is approximately

3σMSA, approximately a 99.5% confidence level.

5.3.4 Choice of DBSCAN parameters

In the present study, the minimum number of points to constitute a cluster was fixed first, and

then the plot of the k-nearest neighbor (k-NN) distance was used to find a suitable value for the

eps neighbourhood size. To test the influence of DBSCAN parameters on cluster identification,

the one month scan (Table 5.1) was used. First, we applied increasing values of MinPts (the

default of 5, and 10, 15 and 20) to determine the value more appropriate to our case study. We

determined k-NN plots for each MinPts value, using the plot curvature to identify the optimal

eps-distance to the k th nearest neighbour. Secondly, to evaluate if the value corresponding to

the strong curvature of the k-NN plot is effectively the best choice, we kept MinPts equal to the

value judged more appropriate (in our case 10) in terms of number of clusters and percentage

of noise, and we explored the effects caused by different eps-values.

5.3.5 Determination of erosion and deposition volumes

The DBSCAN algorithm provides a dataset containing the following components: the x,y,z-

coordinates of each point plus an integer vector assigning it to either a particular clusters or,

for the value 0, as a noise point. Then a stepwise GIS analysis was performed to discriminate

between single movement units of erosion and deposition, and for the determination of

their volumes. This was achieved by using single, rasterized DEMs of the reference dataset

(computed here at 0.5 m resolution) and assigning the sign of the elevation difference, des-

ignating erosion or deposition, to each cluster-point (allowing to split clusters). Finally, the

computation of the volumes of each single movement units was achieved by creating a TIN

surface based on the value of the Cloud/Cloud difference (the distance of the closest point in

the reference dataset).

5.3.6 Comparison with traditional DEM-to-DEM approaches

In a final stage, the results of the cluster-based volume estimates were compared with ones

obtained by the traditional, rasterized, DEM comparison approach, focusing on the one

month time lapse. The target (June 2015) and reference (July 2015) co-registered point clouds

were interpolated to a 0.3 m regular grid. Given the high point density, a natural neighbour

interpolation was deemed sufficient for that purpose. The subtraction between two raster

DEMs is traditionally used to detect elevation changes. To isolate real change from noise

induced by the data or the interpolation procedure, we could follow the error propagation

proposed by Lane et al. [2003]. A 95% confidence limit would provide a detection limit of

±0.27 m, very close to the 0.3 m value used for the DBSCAN analysis. Hence the detection

limit used was rounded up to use the same value.
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Figure 5.5 – Optimal eps value retrieved using k-NN plots for MinPts equal to 5 (a), 10 (b), 15
(c) and 20 (d).

5.4 Results

5.4.1 Effects of DBSCAN parameters

The k-distance graphs obtained by applying MinPts equal to 5, 10, 15 and 20 (Figure 5.5) shows

that the related optimal eps-values, coinciding with the strong curvature of the plot, also

increase from 0.8 up to 1.5 m, approximately linearly. By fixing MinPts as equal to 10, values of

0.5, 1.5 and 2 meter for eps were tested against the allegedly best one of 1 meter (Figure 5.5b).

Table 5.2 shows the results obtained by applying these DBSCAN parameters on the number of

clusters identified, the percentage of points labelled as noise, the number of movement units

detected and the volume of change that results.

Table 5.2 illustrates that volumetric estimations do not seem to be particularly sensitive to

the tested DBSCAN parameters. This is notably the case for the MinPts parameter and whilst

the number of identified clusters changes substantially, the percentage points classified as
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Table 5.2 – Sensitivity of the resulting number of clusters and volumes of erosion and deposi-
tion to changes in the DBSCAN parameters (The effect of parameter settings on aggregation
and disaggregation of clusters is shown in Figure 5.6).

Param.
setting

MinPts Eps [m]
Cluster
features

Noise
points [%]

Movement
units

VTOT

[m3]
VE

[m3]
VD

[m3]

increasing
(a) 1 5 0.8 695 5.0 913 761 320 441
(a) 2 10 1 327 6.8 484 738 313 425
(a) 3 15 1.3 159 6.3 261 748 316 432
(a) 4 20 1.5 108 6.5 185 747 315 432

constant
(b) 1 10 0.5 751 22.7 814 658 290 368
(b) 2 10 1 327 6.8 484 738 313 425
(b) 3 10 1.5 149 2.7 241 788 330 458
(b) 4 10 2 86 1.3 148 808 338 470

noise changes much less. Thus, the effect of MinPts is primarily upon the number of clusters

identified and not the number of points that belong to a cluster. This number then is likely

to be a key control on the global volume estimates. When the MinPts is set to 10 and the eps

parameter is varied, the number of clusters changes dramatically, and so does the percentage

of points identified as noise. Thus, the eps parameter not only controls the number of clusters

identified but also whether seed-point are shared among several clusters, which blend together.

It is then not surprising that the volumes of change are more sensitive to different values of eps

than when the MinPts parameter is varied (Table 5.2). However, the range of variability of the

volume changes is proportionately lower than the range of variability of either the number of

clusters or the percentage noise points. That is, a certain number of key points are retained in

all analyses, and these have a dominant effect on estimates of volumes of change. It is perhaps

interesting that it is the volumes of deposition that are more sensitive to the eps parameter and

the percentage of points that are noise. This may reflect the fact that the deposition signature

is less spatially coherent than the erosion signature, with erosion concentrated on key areas

(e.g. the rock glacier terminus) but the deposition reflecting local micro-topography (filling of

lows).

The question that then arises is what values, notably of eps, should be used? Unfortunately,

this analysis gives no clear rule as to what should be chosen, and it does not appear to matter

too much for the estimation of erosion on this surface. For deposition, the only means of

providing a justification is to consider the spatial scale of the kinds of depositional process that

has been observed in this kind of environment. Deposition appears to be micro-topography

controlled, with a length scale of about 1 m, suggesting a 1 m value of eps. More generally, the

use of this kind of approach needs additional field observations to help to choose the most

suitable value of the eps parameter according to the expected scales of erosion and deposition.
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Figure 5.6 – Sensitivity of the clusters aggregation/disaggregation to changes in the DBSCAN
parameters (see Table 5.2).

5.4.2 Comparison with traditional DEM comparison

Figure 5.7 compares the maps of erosion and deposition units obtained by applying DBSCAN

with the results generated using a traditional, rasterized, DEM comparison. At one level, the

patterns are very similar. The same areas are highlighted as erosion and deposition, although

the rasterized DEM of difference has more scattered, isolated changed as the comparison

makes no reference to the extent to which the data are coherently organized. However, volu-

metric estimations with DEM comparison are three times higher than with the 3D-clustering

approach (see Table 5.3 below), with values for one month close to what would be expected

to be observed in one year. These volumetric changes appear unrealistic at the timescale of

one month for the presented case study. We attribute this to the effect of artificial surface

differences associated with point density effects. Point interpolation assigns an elevation to
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0 50 10025± MetersErosion DepositionChange classification

a) DBSCAN point clustering b) Classification from DEMs (raster)

Figure 5.7 – Comparison for one month data between a) DBSCAN point clusters and b) erosion
and deposition patters classified from rasterized DEMs comparison.

every grid point and then every grid point is compared, giving a change if it is greater than

the 0.3 m detection limit used here. No reference is made to the coherence of changes by

association to adjacent points. Given the complex surface variability, interpolation to grids

may cause isolated elevation changes that are a result of the chance inclusion of topographic

highs and lows in the interpolation surface, rather than any actual geomorphic change. More

generally, whether or not a clustering algorithm is used, meaningful detection of surface

change should consider the spatial coherence of the change, with respect to the known spatial

variability within the surface.

5.5 Discussion

5.5.1 Merits of a 3D-clustering approach

Remote sensing techniques for data acquisition have developed rapidly in recent years. The

output of these procedures (i.e. 3D point clouds) are widely used in the geosciences [Abellan

et al., 2016] and developing new and fast algorithms for feature extraction is mandatory in this

context. Our approach, based on a density clustering method, proved to be very useful for

detecting movement units (i.e. erosion and deposition features) at a rock glacier front, allowing

extracting and quantifying volumetric changes. The same procedure can be applied to extract

3D features related to any geomorphologic process such as rockfall, debris flows, landslide, etc.

As with similar methodologies based upon using point clouds for feature detection [Riquelme

94



5.5. Discussion

0 50 10025± MetersColors: single clusters identified by DBSCAN

a) 1 month (29/06-20/07 2015) b) 3 months (29/06-22/09 2015) c) 1 year (09/2014-09/2015)

1

2

3

4

5

6

7

8

9

Figure 5.8 – Three-dimensional geomorphological changes identified using DBSCAN for a)
one and b) three months and c) one year time lapses. The colour of the dots represents single
erosion or deposition features. Numbers are referred to in the text.

et al., 2014; Tonini and Abellan, 2014; Olsen et al., 2015], our approach leads to a reduction in

noise and to clustering of points into individual features. Nonetheless, compared with existing

applications there are some advantages. First, it is very fast, notably the most recent version of

the dbscan package [Hahsler et al., 2016]. Second, by adopting a 3D approach, the method

can be applied to any surface regardless of local topographic slope. On steep mountain sides,

lateral point displacement might be reduced, with vertical point displacement becoming

important, emphasizing the need for a 3D rather than a 2D approach. Third, the proposed

methods allowed the isolation of clusters directly from point clouds without the prior need

for interpolation or data reduction and with an accuracy that depends only on the actual

sampling resolution.

5.5.2 Geomorphological activity at the rock glacier front

Figure 5.8 illustrates the clusters identified by DBSCAN, where each color corresponds to a

unit of morphological change. The geomorphological activity during a time-step of one month

in the summer 2015 highlights a major cluster with diverse smaller ones at the rock glacier

front (Figure 5.8a, 1). From 100 m downslope, an area of deposition is characterized by the

presence of two particularly large clusters (Figure 5.8a, 2). In the lower part of the area of study,

very small clusters are observed (Figure 5.8a, 3). These are likely to be single boulders that

were able to move farther downslope in the channel.

Clusters identified over a time-step of three months (Figure 5.8b) appear larger at the rock
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Figure 5.9 – Deposition and erosion features for the field campaigns corresponding to a) one
and b) three months and c) one year time lapses. Numbers are referred to in the text.

glacier front, although they do not seem to be more numerous. Despite their proximity, the

two major clusters are not unified (Figure 5.8b, 4). The central part of the slope seems slightly

more fragmented, although two very large clusters are once again visible (Figure 5.8b, 5).

Larger clusters are featured in the lower part of the study area in comparison with the shorter

timescale analysis, indicating that several boulders reached that zone (Figure 5.8b, 6).

One-year clusters are shown in Figure 5.8c. Almost the whole front surface has undergone

change, as indicated by various large clusters (Figure 5.8c, 7). The middle part of the area of

interest has almost completely changed as well, as testified by the presence of many clusters

including a very large one (Figure 5.8c, 8). In the lower part, small clusters precede another

very large one, depicted in green (Figure 5.8c, 9).

The clusters presented in Figure 5.8 are then classified as erosional or depositional following

the procedure discussed in Section 5.3.5 (Figure 5.9). This demonstrates that the largest cluster

visible at the front at the one-month time-step is due to a rockfall event which occurred in

July 2015 (Figure 5.9a, 1). The remaining features in this zone are a mixture of erosion and

deposition, probably caused by detached material blocked by other boulders and unable to

travel farther. As expected, the vast majority of clusters in the channel are depositional (Figure

5.9a, 2). Erosional footprints in that zone are scattered but exist (e.g. Figure 5.9a, 3), indicating

potential remobilization of material or incision.

Figure 5.9b shows that the two major and separated front clusters at the three month time-

scale are opposite in nature (Figure 5.9b, 4). The fact that the erosional cluster is located
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Table 5.3 – Synthesis of the geomorphological activity (deposition (D) and erosion (E) move-
ments) at the Tsarmine rock glacier during the summer 2015 and between Sept. 2014 and Sept.
2015. Volumes (V) in m3.

Time-step Number of
clusters

VTOT [m3] VE[m3] VD [m3]

1 month 484 738 313 425
2 months 543 826 410 416
3 months 410 1376 536 840
1 year 538 2056 724 1332
1 month∗ - 2079 1014 1065

∗Traditional DEM comparison

above the deposition area allows two hypotheses. On the one hand the eroded material could

have simply slid from the upper part of the detachment niche without leaving the rock glacier

front. On the other hand, the two clusters could be unrelated; in that case the eroded material

has likely left the front area, and the depositional pattern could be due to the front advance

caused by deformation-related creep in the rock glacier body. Given the scale of the analysis

(three months) and the seasonal conditions (summer, affected by a heat wave), this second

scenario appears more realistic. The front is also characterized by the presence of many

erosional clusters with elongated shapes (e.g. Figure 5.9b, 5), very likely caused by collapse

and consequent transit of material downstream. Spatial patterns in the channel are similar to

the one-month application, but material is deposited further downstream in this case (Figure

5.9b, 6).

The geomorphological activity at the rock glacier front over one year is almost equally divided

into erosion and deposition (Figure 5.9c, 7). Whilst erosional patterns are proof of material

detaching as permafrost thaws, the green features in Figure 7c are probably due to the rock

glacier advancing. In that sense, deposition in these clusters is only apparent, as it is merely a

displacement forward. Starting from only 50 m below the crowning of the front, depositional

patterns could also be caused by material trapped after a collapse by cause of surface rough-

ness; the elongated cluster in the centre could be an example (Figure 5.9c, 8). Throughout the

course of the channel, large clusters of deposition are visible (Figure 5.9c, 9).

Table 5.3 summarizes the geomorphological activity at the Tsarmine rock glacier during the

summer 2015 (one, two and three month time-steps) and during one entire year (September

2014 to September 2015). The number of clusters identified by the DBSCAN analysis oscillates

between 410 and 543 and does not seem to be related to the duration considered. On the other

hand, the total volume of geomorphological change (VTOT) consistently increases as time

intervals increase. This implies that over the longer term bigger clusters of geomorphological

activity are being identified, which is the expected outcome, also reflected in no real evolution

in the number of clusters. Generally, estimates of eroded and accumulated volumes are

97



Chapter 5. Geomorphological activity at a rock glacier front detected with a 3D
density-based clustering algorithm

balanced at short time scales (one and two months), as one would expect. However, deposition

volumes dominate at the longer time span. A possible explanation lies in the fact that the front

invariably advances under the influence of creep-related deformation in the rock glacier body.

The process is slow and continual, and permafrost thaw and rock fall at the front mitigates

it, but at longer timescales it is possible that a part of the front has not yet collapsed, and

the advance become visible as an apparent gain of material. On the other hand, another

consequence is the reduction or suppression of the volumes of collapsed material that can be

observed, as the void might be masked by front advance. Consequently, results should tend

to slightly overestimate the total accumulation and underestimate eroded volumes. These

processes are likely to be relevant at intermediate and long timescales (e.g. three months and

one year, Figure 5.8b and 5.8c), and explain (i) the unbalance between VE and VD at these

timescales, and (ii) the disagreement between the combination of eroded volumes (VE) for

one and two months and three months erosion.

MeteoSwiss [2016], in their annual climatic report, indicated that year 2015 was once again a

record-year for measured air temperature. In particular, the summer 2015 was characterized

by an extreme heat wave, and it is classified as the second warmest summer in Switzerland

since the beginning of measurements, 152 years ago. Beaten only by the extreme summer of

2003, it registered between 2 and 2.5 °C more than the norm 1981-2010 [MeteoSwiss, 2016]. As

a permafrost-related process, rock glacier creep is supposedly very sensitive, amongst others

controlling factors, to temperature forcing (e.g. Kellerer-Pirklbauer and Kaufmann [2012]).

The results achieved in this study offer detailed information on the dynamics of the Tsarmine

rock glacier front during the hot summer of 2015. During only about one month, 313 m3

of erosion occurred in the investigated zone. The following two months display slightly

higher values: 410 m3. For both periods, little more than 400 m3 of accumulated material

are estimated. The superior geomorphological activity in the shorter, earlier time span could

be an indication of the crucial role of snowmelt, which generally occurs around May for this

elevation and orientation, in eroding and mobilizing boulders at the rock glacier front. Another

reason could be a strong capacity of thawing at the front that manifests at the beginning of the

summer season.

Analysis of the June and September 2015 LiDAR datasets resulted in an estimated 536 m3

of erosion. It could be argued with confidence that this result is an underestimation. GPS

measurements indicate that the rock glacier surface moved at a velocity of almost 5 m yr−1

during that period, which correspond to a net advance of 1.25 m. This process partially

conceals collapse events by causing the front to advance and occupy the space left empty.

The volume of eroded material should be at least a few hundred cubic meters more. The

same is true for volumetric estimations for one year (September to September). We argue that

erosion quantities (724 m3) are strongly underestimated for the same reason, as confirmed

by accumulation volumes that are almost double of them (1332 m3, excluding material that

travelled further downstream). Whilst an accurate estimation could not be formulated, it is

realistic to assume that the rock glacier front delivers sediments downstream in the order of c.
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1500 m3 yr−1.

The mass transfer occurred at the Tsarmine rock glacier front during the hot summer 2015

appears extremely high, a fact that could be attributed to the exceptionally high mean velocities

observed in the last couple of years (c. 4 m yr−1). These are considerably higher than the

kinematics estimated for the beginning of the 2000s (1 to 2 m yr−1, Barboux et al. [2014];

Micheletti et al. [2015]), which nonetheless included the 2003 heat wave, suggesting that

sediment delivery rates might be much higher nowadays in comparison with 10-15 years

ago. In this regard, Gärtner-Roer [2012] observed, for a very active rock glacier located in an

adjacent valley (the Turtmann Valley), maximum velocities of 2.59 m yr−1 during the heat

wave of the summer 2003, with a corresponding peak of sediment transfer rate of 1.1 Mt yr−1

(corresponding to c. 415 m3 yr−1 if a specific weight of 2.65 t m−3 is considered, Barsch [1977]).

For a similar case study in the Mattertal Valley, Lugon and Stoffel [2010] encountered much

slower kinematics at the beginning of the years 2000s, with maximum movement rates of

0.88 m yr−1. They estimated a mass flux of 500-700 m3 yr−1, but corrected sediment delivery

to 300-400 m3 yr−1 due to the considerable amount of voids and ice contained in the rock

glacier. Following these indication, it would be plausible to assume that erosion volumes at

the Tsarmine rock glacier have almost doubled in the last decade. Comparing our results to

the behaviour of other rock glaciers during the hot summer of 2015 could provide insights in

this sense.

The maps of erosion and deposition clusters (Figures 5.8 and 5.9) illustrate the high geomor-

phological activity at the front of the rock glacier during the period of study. Nonetheless,

boulders detaching from the front do not appear to travel far. Large clusters of deposition are

identified a few hundred meters below the front, and with a few exceptions at longer time

spans where traces of material extend farther downstream, boulders are exclusively stocked in

the first 200 m of the channel. Hence, despite evidence of significant sediment production at

the rock glacier front, impacts at the valley bottom are absent for the time being. A further

remobilization of this material (e.g. by debris flows events) is not to be excluded, but the

diameter of rocks is quite substantial and thus the risk quite mitigated.

5.6 Conclusions

The application of the DBSCAN 3D-module using TLS point clouds permitted detection

of erosion and deposition features, their mapping and derivation of detailed volumetric

change estimations for a rock glacier front located in the Swiss Alps. Single clusters of erosion

and deposition were extracted directly from point clouds without the necessity of reduce

or interpolate the 3-D original data. The proposed approach is semi-automatic and allows

detecting realistic volumetric features, depending only on the actual data available. This

methodology represents an alternative to traditional point cloud processing techniques for

applications in geomorphology.

Remarkable geomorphological activity was observed at a rock glacier front during the sum-
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mer of 2015, likely under the influence of the very rapid permafrost creep suggested by GPS

measurements. To determine if the influence of the exceptionally high temperatures observed

that season plays a driving role in these processes, TLS surveys for the following summers

would be necessary, and the proposed approach would be ideal to efficiently process the re-

sulting datasets. Moreover, a more detailed coupling between meteorological events, climatic

data and morphological changes were beyond the focus of this study, but would need to be

performed to infer the effects of external forcing on sediment production at a rock glacier

front.
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6 Studying the evolving dynamics of
Alpine environments

6.1 The forcing of Alpine landscapes

Generally speaking, external drivers and interactions amongst internal processes control

the development of landforms in natural environments. In other words, the evolution of a

landscape is determined by the coupling of endogenous processes (interior regulation and

interaction between elements of the system) and exogenous (external) forces. Of course, what

is endogenous and what is exogenous is scale dependent. However, this distinction provides

a valuable conceptual framework for geomorphic change in Alpine landscapes. One of the

most influential contribution to this reflection was provided by Schumm and Lichty [1965];

they argued that the distinction between cause and effect in the development of landforms

(and hence landscape evolution) is a function of time and space. The choices made by the

observer determine the kinds of causal relations identified and hence what is exogenous and

what is endogenous. From a general point of view, every cause is an effect and every effect a

cause [Mackin, 1963]. The boundaries set by the researcher for a given study arbitrates which

elements are the driving (independent) factors, and which ones the dependent processes or

forms that act accordingly to the conditions of the former. For example, how relief evolves

is dictated by time, climate and geology (lithology and structure) at geological timescales; in

turn, at shorter temporal scales, relief is deemed a relevant factor in driving hillslope processes.

Therefore, it is necessary to define the limits of the system that is considered, both temporally

and spatially, in order to define the roles and processes at play [Schumm and Lichty, 1965].

In this conceptual formulation of causality, high mountain environments are no exception. In

the context of the evolution and dynamics of Alpine landscapes in the 20th and 21st centuries,

a primary concern of this thesis, it is imperative to define the scales of interest and hence the

direction of causal relations. Through the identification of agents and processes relevant at

these temporal (decadal) and spatial (mountain environment) scales, boundaries conditions

can be set and a holistic approach can be developed. Only then can the interdependence of

the elements of the landscape be considered in the context of driving, independent forces,

and the evolving dynamics of Alpine environment retraced. Such an approach is valuable for
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deepening our understanding of Alpine systems in the face of climate change because it helps

to tease out precisely what is causal.

At the scale of the 20th and 21th centuries, an essential role is likely to be played by climate.

Recent considerations suggest that, irrespective of future greenhouse-gas emissions, a mean

surface temperature increase of 2°C over 1990 levels is inevitable, and an increase of 4°C

by the end of the century is not unlikely [Knight and Harrison, 2013; IPCC, 2014]. High

sensitivity to this forcing is expected for glaciated areas at low- and mid-latitudes ([Knight

and Harrison, 2009], see also Chapter 1). In addition to the obvious impacts on thermal

properties of permafrost and nival processes (e.g. Pelto and Hedlund [2001]; Kääb et al. [2007];

Carturan et al. [2013]), global warming and heavy precipitation are likely to strongly affect the

frequency and magnitude of mass movement by their capacity to enhance debris production

and to sustain sediment mobilization and transfer (e.g. Stoffel and Huggel [2012]). Hence,

recent climate change represent an exogenous, independent force that is likely to affect Alpine

dynamics at the timescale of decades to centuries, with dramatic consequences on both

endogenous processes and the landforms they produce, as extensively demonstrated in recent

scientific literature (see Lane [2013] for more considerations and examples).

Another independent variable is represented by landscape heritage. The steep, glacially-

inherited topography visible nowadays in high mountain environments is the dependent

product of the climate-landform legacy. This endogenous aspect of the landscape acts as

independent variable at the decadal-scale. First, it provides a high potential for sediment

mobilization through the steepness of the slopes caused by past glaciation [Brocklehurst

and Whipple, 2002]. Second, it is responsible for the significant amounts of historically

weathered and glacially derived material available in these areas [Ballantyne et al., 2014].

Third, landscape legacy has a major role in the development of sediment connectivity, which

might strongly influence how effective the sediment cascade is [Harvey, 2001; Burt and Allison,

2010; Heckmann and Schwanghard, 2013]. In other words, past glaciation determines how the

elements of the system (landforms) are coupled together. The history of the landscape (i.e. its

legacy) may be very influential in controlling geomorphological dynamics in mountainous

areas.

Lastly, anthropogenic impact may strongly affect Alpine valleys, notably following exploitation

for hydropower production. Here, we do not focus directly on anthropological forcing of

climate change. Instead, we invoke human intervention for its potential capacity to alter the

natural, geomorphic dynamics of the landscape. However, in contrast to the two previous

factors, human forcing is not always present in Alpine environments, nor does it systematically

constrain their dynamics; many watersheds are devoid from human infrastructure, or affected

only partially (e.g. downstream of a water retention structure).
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6.2 Mountain geomorphic systems

Landforms are the structural elements that compose a landscape. From a systemic point of

view, these landforms are related by a network of processes belonging to different domains. In

the context of Alpine environments, we commonly refer to six process domains (e.g. Otto and

Dikau [2004]):

1. Gravitational domain

2. Glacial and nival domain

3. Cryogenic and periglacial domain

4. Fluvial, fluvioglacial and torrential domain

5. Anthropogenic domain

6. Unspecified domain (i.e. organic and organo-mineral sphere)

Climate and landscape legacy (and often anthropogenic actions) exert an independent control

on erosion, transfer and accumulation of matter. By activating geomorphological processes,

they create and modify landforms, thus potentially generating feedback-effects. This systemic

conception is frequently referred as geomorphic system (e.g. Schrott et al. [2003]).

An elegant, yet simple conceptualization of mountain geomorphic systems can be formulated

with the notion of the sediment cascade. Based upon the reflections of Chorley and Kennedy

[1971] and Caine [1974], this conceptual model recasts the notion of sediment flux as the

recurrence of erosion/transport/deposition cycles, through which sediments move from one

element of the geomorphic system to the other. This conception suggests that sediments

rarely reach the valley bottom (or sediment sinks as lacustrine or coastal deposits) with a single

transport vector. Contrariwise, material mobilized within a landform is usually transferred

and deposited in another geomorphological feature, where it could be transported further

downstream afterwards. In this chain of geomorphological processes, an essential role of

energy-provider is played by water and gravity. To better delineate this concept, one could

refer to the comprehensive illustration of the sediment cascade of paraglacial processes (i.e.

non-glacial processes conditioned by glaciation, Slaymaker [2009]) proposed by Ballantyne

[2002] (Figure 6.1). The conceptualization describes how material moves from sediment

sources to valley bottoms or terminal sinks by mean of various transfer processes and through

different stores. A key research question in this topic concerns the extent of Alpine sediment

cascade [Wichmann et al., 2009].

The perception of a sediment cascade implies a spatial relation between landforms, often

referred with the term connectivity (e.g. Caine and Swanson [1989]; Harvey [2002]; Heck-

mann and Schwanghard [2013]). The functioning of the sediment flux system in cascading
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Figure 6.1 – Simplified paraglacial sediment cascade proposed by Ballantyne [2002] (modi-
fied). The scheme shows the principal primary and secondary sediment stores and the main
sediment transfer processes.

mode requires an active sediment transfer (functional connectivity) and two landforms to

be “connected” (structural connectivity) to ensure material flux. Otherwise, the cascade is

interrupted, and material accumulates at an intermediate stage without continuing its journey

downstream. When trying to understand how sediment cascades operate and how well it is

coupled, these relations are usually described in a conceptual framework (e.g. Heckmann and
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Schwanghard [2013]; Heckmann et al. [2015]) Connectivity is not merely present or absent;

topographic complexity or surface roughness might impede sediment transfer and as a result

reduce it, without damping it completely. Or a connection might be functional only under

certain circumstances, as in the case of specific events. Moreover, an absolute disconnec-

tion may exist only within a given temporal scale, waiting for an event or transformation of

the landscape able to establish connectivity. As sediment connectivity plays a fundamental

control on the functioning of geomorphic systems, studying the evolving dynamics of Alpine

environments must consider its state and the potential buffering effect it might have on the

sediment cascade.

Not only connectivity, but also other concepts define sediment transfer in geomorphic system:

sediment availability (the actual production and/or presence of material to mobilize), and

transport capacity (the presence and efficiency of the engines necessary for the transport,

Hickin [1995]). When the sediment balance is not in equilibrium, the system can be either

supply-limited or transport-limited. Whilst mountain areas could be expected to be well

suited in both factors by means of their legacy of sediment and the energy provided by their

steep slopes, this may actually not always be the case. The reason lies once again in the

heterogeneity of the geomorphic system in both its process domains and spatial dimension.

On the grounds of these consideration, recent climate change, landscape legacy and human

activities impact, at the scale of decades and within an area of study, the hydrological system,

the cryospheric and periglacial processes, the state of permafrost, the development of soil, etc.

In turn, these mechanisms drive the geomorphic dynamics of the landscape, including land-

form modification and mass wasting. In particular, they co-exist and cooperate in controlling

sediment mobilization and flux [Heckmann et al., 2015]. For these reasons, investigating cli-

mate change impact on Alpine landscapes requires a holistic and systemic approach, capable

of discerning the role of the elements, which are inevitably bound together. In this part we

attempt to do so through the reconstruction of geomorphic changes and sediment transfer,

by considering not only single landforms or processes, but also the systemic nature of alpine

geomorphology. Accordingly, whilst changes of surface and process rates are often retraced

for individual landforms, a more entwined, holistic nature of mountain geomorphic system is

observed. In Chapter 7, we attempt to identify where relevant elevation changes and surface

displacement are located, how they relate to climate, and what does that imply for the geo-

morphic system in general. In Chapter 8, a step forward is made by also considering the actual

sediment export from Alpine watersheds. These observations are coupled with climatic data,

reconstructed geomorphic change, modelled sediment connectivity and changing stream

transport capacity to hypothesis the causality and dynamics driving material downwasting in

the context of recent and actual climate change.
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6.3 Research applications in the Hérens Valley, Switzerland

To deepen our understanding of Alpine landscape dynamics in the face of climate change, we

require a case study satisfying a certain number of criteria. First, it has to be relatively easily

accessible to allow us to collect the required data in the field. Second, the landscape should

encompass a large heterogeneity of landforms and a complete range of primary sediment

transfer mechanisms typical of alpine environments. Third, having access to existent data and

information on the landscape, as archives of historical photographs, geomorphological maps,

measurements from meteorological stations, etc. would clearly be optimal. Finally, it would

be excellent to have at disposal a significant scientific publication record.

In this thesis, we concentrated on some of the high mountain geomorphic systems of the

Hérens Valley, located in Valais in the Western Swiss Alps (Figure 6.2). This Alpine valley

expands from 470 m a.s.l. to its highest peak at 4357 m a.s.l., the Dent Blanche (literally “White

Tooth”). It accommodates the Borgne river, which enters the Rhone river nearby Sion. Given

its location in the central part of the Alps, the Hérens valley is in some way sheltered from the

main atmospheric disturbances and rain-bearing systems [Lambiel et al., 2016]. Mean annual

precipitation at the Evolène-Villa climatic station (1826 m a.s.l.) is of 730 mm (mean 1987-2014,

MeteoSwiss measurements). The geology of the valley includes different main alpine tectonic

units; from the Middle Penninic in its lower part, through the Upper Penninic in its centre and

the Austro-alpine in its southern, higher sector [Steck et al., 2001]. The high elevation ranges

create a strong geomorphic diversity, in which the main processes active in mountain areas

(i.e. glacial, periglacial, gravitational and fluvial processes) are all well represented [Lambiel

et al., 2016]. Geological and geomorphological maps of the Hérens valley are provided by Steck

et al. [2001] and Lambiel et al. [2016] respectively.

Lausanne

Bern

Geneva

Zurich

Sion

Basel

Luzern

Bellinzona

Chur

Hérens Valley 0 50 10025 Kilometers
Arolla Valley

Dent Blanche

Figure 6.2 – Location of the Hérens Valley, the Arolla Valley and the Dent Blanche summit in
the Western Swiss Alps (background image: Federal Office of Topography Swisstopo).
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The geomorphic systems investigated in the next chapters are located in the Arolla valley, a

branch of the Hérens that originates in Les Haudères (1420 m a.s.l.). This sector belongs to the

Dent Blanche nappe of the Austro-alpine unit and is mainly composed of granite gneisses. The

valley is characterized by steep slopes and high rockwalls and a very diverse geomorphological

setting in terms of landforms and sediment transfer mechanisms. The Arolla valley has an

ancient touristic tradition and the access to its glaciers is easy; this has attracted many re-

searchers, and in particular the Haut Glacier d’Arolla has been widely studies (e.g. Sharp et al.

[1993]; Mair et al. [2001]; Willis et al. [2003]; Gabbud et al. [2015, 2016]). Not merely glaciolo-

gists, the vast range of the geomorphic processes in motion attracted researchers in various

geosciences domains. A very rich (and quite exhaustive) collection of scientific literature

related to surface processes and other geographical topics in the Arolla valley is represented

by EBIBALPIN (ebibalpin.unil.ch). Developed by the Faculty of Geosciences and Environment

of the University of Lausanne, EBIBALPIN accommodates almost 200 scientific publications,

various freely available data (including some related to this thesis itself) and an extensive

amount of historical and recent photographs. Hence, it represents a very helpful resource for

the reader interested in the geography of the valley. By reason of its geomorphological setting

and tradition, in addition to a vast record of historical photographs, the Arolla valley satisfy

the criteria mentioned above and represent an ideal case study for this thesis.

The sector examined in the following chapters corresponds to almost the whole East side of

the Arolla valley (Figure 6.3), and ranges from 1800 to 3676 m a.s.l. (Dent de Perroc). The Haut

Glacier d’Arolla and its surrounding area were investigated in the context of collaborations

with colleagues and the related findings are not reported here (instead, refer to Gabbud et al.

[2015, 2016]; Lane et al. [2016]). In this area of about 20 km2 five small glacial systems are

present, namely (from North to South) Tsarmine, Genevois, La Tsa, Douve Blanche and Bertol

(see A, F, H, J and K in Figures 6.3 and 6.4). Furthermore, the mountainside displays an

extremely diverse set of landforms and processes associated with all the domains discussed in

Chapter 6.2 (see geomorphological map in Figure 6.4, reproduced from Lambiel et al. [2016]).

Further images and details on the elements of the landscape are introduced in the appropriate

parts of the following chapters.
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Figure 6.3 – 3D view of the Arolla Valley: Google Earth© view (a) and hill shade map (b, relief
data: Federal Office of Topography Swisstopo), with letters indicating the five glacial systems
in the research area (see also Figure 6.4).
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Context

This chapter inspects the geomorphic evolution of a steep alpine mountainside in the last

decades in the face of recent climate change. The area of study includes an assemblage of

glacial, periglacial, hillslope, and fluvial landforms and a complete range of primary sediment

transfer mechanisms, typical of alpine environments. The workflow elucidated in Chapter 3

is applied to obtain maps of elevation changes and surface displacements, and volumetric

differences. Results are coupled with climate data to show how the landscape responds

to climate forcing and to geomorphological maps to understand how this response varies

between both landscape elements and their spatial organization.

Of particular interest in the area of study is a small, heavily debris-covered glacier located

in an Alpine permafrost environment. Therefore, results were further analysed and used to

deepen our knowledge of this glacial system, and the findings have been published in Capt

et al. [2016].

In the framework of the thesis, the chapter is a pillar for the primary objective: the comprehen-

sion of the sensitivity of Alpine landscapes to climate forcing, and the implied consequences

in terms of mass displacements.
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Abstract

We know little about the effect of recent climate variability upon landscapes at the timescale of

decades because of (1) the complex, nonlinear, and path-dependent nature of the response of

a landscape to climate forcing and (2) the difficulty of quantifying spatially distributed impacts

at the timescale of decades to centuries, despite this being the timescale over which significant

hypotheses have been raised over human impacts upon climate change and hence geomor-

phic systems. A unique resource to investigate the linkages between climatic variability and

geomorphic response is provided by the extensive coverage of aerial imagery commonly avail-

able since the 1950s. Here we use archival digital photogrammetry to produce high-precision

digital elevation models over large spatial scales, and so to reconstruct the quantitative his-

tory of surface downwasting and sediment flux in a high mountain alpine system, over the

timescales of decades. Propagation of error methods is used to identify locations of significant

landscape response and to compute volumes of significant surface change. Orthorectified

aerial images are used in an image correlation framework to detect horizontal and vertical

displacements of components of the landscape. Results are coupled to extant climate data and

modeled snow cover to show how the landscape responds to climate forcing and to geomor-

phological maps to understand how this response varies between landscape elements. The

results show distinct landscape response to both warming and cooling periods and a tendency

for the acceleration of surface displacement under warming conditions. Precipitation and

snow cover are critical in controlling glacier dynamics and rock glacier displacement velocities.

However, while some landforms might lead to locally high sediment flux, landscape heritage

can disconnect zones of high change rates from the valley bottom. Hence, the landscape

response to climate forcing is not necessarily reflected in valley system processes or sediment

deposits.

Keywords: archival aerial imagery to investigate decadal-scale changes; distinct response to

different climatic forcing periods; geomorphic change investigation

7.1 Introduction

A progressive refinement of our understanding of climate change patterns has followed from

the first and subsequent state-of-the-art syntheses of human impact on climate provided by

the Intergovernmental Panel on Climate Change IPCC [1990], contributing fundamentally to

our knowledge about how climate might change in the future. Despite this, quantification of

climate change impacts upon the Earth system is underdeveloped [Kundzewicz et al., 2007]

not least because of the complex, nonlinear response of geomorphic systems to perturbations

[Phillips, 2003, 2009] and the difficulties of quantifying this response over large spatial and

long temporal scales. While this is generally valid, it is especially true for polar, glacial, and

periglacial regions which are potentially more vulnerable to climate change [Committee on

Challenges and Opportunities in Earth Surface Processes, 2010]. The high climatic sensitivity

of high mountain environments follows from four points. First, the glaciers, permafrost, and
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nival processes that are widely present in these landscapes are highly sensitive to changes

in atmospheric temperature [Pelto and Hedlund, 2001; Kääb et al., 2007; Carturan et al.,

2013; Oliva and Ruiz-Fernandez, 2015; Staines et al., 2015]. Second, glaciated environments

typically have increased relief, the steep slopes potentially aiding sediment mobilization

[Brocklehurst and Whipple, 2002]. Third, deglaciated mountain environments commonly

have significant amounts of historically weathered and glacially derived material, and so

a legacy of high sediment availability [Ballantyne et al., 2014]. Finally, sediment dynamics

are strongly dependent upon the thermal state of the subsurface, in terms of both sediment

stabilization and production [Davies et al., 2001; Hales and Roering, 2007] and surface runoff

generation because of the presence/absence of impeded drainage [Ford and Bedford, 1987;

Bayard et al., 2005].

Understanding how climate change affects sediment production, transfer, and delivery in

mountain landscapes is a fundamental focus of current geomorphic research [Montgomery

and Stover, 2001; Hunt, 2002; Jomelli et al., 2004; Korup, 2004; Lane et al., 2007]. Scientific

observations suggest that high mountain environments could be very sensitive to climate

change, and an acceleration in sediment production and transport rates has been reported

for some landforms in mountain sedimentary systems [Warner, 1987; Rumsby and Macklin,

1994; Dollar and Rowntree, 1995; Knox, 1999; Jomelli et al., 2004; Roer et al., 2008; Huggel

et al., 2010, 2012; Bennett et al., 2013]. However, increased sediment delivery and transport

for single landforms does not necessarily imply a climatic response at the landscape scale

as (1) a landscape may contain a range of different landforms each with different climate

sensitivities [Brunsden and Thornes, 1979] and (2) connection between these elements will

be the ultimate control on sediment delivery. Effectively, a lack of sediment flux between

landforms and sediment storage zones may lead to disconnections in parts of the sediment

cascade [Brunsden and Thornes, 1979; Fryirs, 2013]. This may slow, or even halt, the diffusion

of climate impacts through hillslopes. A large number of studies have considered climate

forcing of single-landform types [Hölzle and Haeberli, 1995; Jomelli et al., 2004; Huggel et al.,

2010, 2012]. Yet, it is the connections between them that determine whether or not sediment

transfer rates will respond to climate change [Reynard et al., 2012].

This contribution addresses two research questions that follow from the above. First, are there

coincidences between changes in climate forcing and modifications in alpine geomorphic

process patterns and rates? Second, as the diffusion of the effects of such forcing may depend

on the connections between individual landforms, can we see any evidence of the propagation

of climate signals through the landscape? In order to respond to these questions we investigate

the behavior of high mountain environments at a timescale of years to decades. A unique

resource for such investigation is the extensive coverage of aerial imagery commonly available

since the 1950s, which can be employed to produce high-precision digital elevation models

(DEMs) over large spatial scales using digital photogrammetry. Research has demonstrated

the potential of this approach for geomorphological studies including fluvial geomorphology

[Lane et al., 2003, 2010; Hughes et al., 2006], mountain geomorphology [Kääb and Vollmer,

2000; Kääb, 2002; Roer et al., 2005; Wangensteen et al., 2006; Kneisel and Kääb, 2007; Fischer
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et al., 2011, 2012] and studies of hillslope processes and sediment production, transfer, and

yield [Chandler and Cooper, 1988; Walstra et al., 2007; Schwab et al., 2008; Bennett et al., 2012,

2013]. Our focus is upon a case study in the Swiss Alps, typical of many alpine mountain

regions, where there is a range of landforms juxtaposed within the landscape. Aerial imagery

from the 1960s to present is used to compute high-precision and fine-resolution digital eleva-

tion models. A quantitative comparison of successive DEMs employing propagation of error

methods is implemented to identify locations of significant elevation change and geomor-

phic response and to estimate volumes of erosion and deposition and of glacier growth and

retreat. To identify mass displacement, the derived orthorectified images are used in an image

correlation framework to visualize and quantify surface displacements and their velocities

over time. Results are coupled to extant climate data and modeled snow depth to show how

the landscape responds to climate forcing and to geomorphological maps to understand how

this response varies between both landforms and their spatial organization. Finally, given

the possibly important role of sediment supply and connectivity in propagating the climatic

signal through the hillslope, an attempt to identify how connectivity might impact fluxes to

the valley bottom is undertaken.

7.2 Study site

The focus of this investigation is the Veisivi-Tsa ridge in the Hérens Valley, Switzerland (Figure

7.1). This steep alpine mountainside has an elevation range from 1800 m above sea level

(a.s.l.) to 3676 m a.s.l. and an average slope of ∼35°. The basin extends for ∼5 km north-south,

between the Petit Dent de Veisivi (3184 m a.s.l.) and La Maya (3042 m a.s.l.). The region is

relatively dry because of the topographic barrier effect of the southern alpine divide, with

annual precipitation between 900 and 1300 mm and mean annual air temperature at 2000 m

a.s.l. of 3.4°C based upon the period 1991 to 2014 [MeteoSwiss, 2014]. The geomorphological

setting of the landscape comprises an assemblage of glacial, periglacial, hillslope, and fluvial

landforms and a complete range of primary sediment transfer mechanisms, typical of alpine

environments. The area has been the subject of previous geomorphological investigations,

especially regarding permafrost distribution and quantification of slope movement using

interferometric synthetic aperture radar (InSAR) [Lambiel et al., 2004, 2008; Delaloye et al.,

2007, 2008, 2010; Barboux et al., 2014].

7.3 Methodology

The methods used to generate the DEMs and orthophotographs used in this study are pre-

sented in an accompanying methods paper [Micheletti et al., 2015], and only a summary is

provided here.
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Figure 7.1 – The Veisivi-La Tsa ridge case study in Arolla, Hérens Valley, Switzerland (Relief
shaded and river data: Swisstopo) with sites of interest: Tsarmine glacier (A), Tsarmine rock
glacier (B), large rockslide (C), Perroc talus slope (D), Lé Blâva rock glacier (E), Genevois glacier
(F), La Tsa hut (G), La Tsa glacier (H), La Roussette rock glacier (I).

7.3.1 Digital elevation models and interpretation

The archival aerial imagery employed in this study was acquired by the Swiss Federal Office

of Topography (Swisstopo, www.swisstopo.admin.ch) and by Flotron AG (www.flotron.ch).

Swisstopo imagery includes a number of 23 x 23 cm images for seven distinct epochs between

1967 and 2005 all collected at similar periods of the year (end of summer or beginning of
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autumn) at altitudes varying between 5000 and 7000 m a.s.l. and using a range of analogue

cameras. A photogrammetric quality scanner was used to scan these images at 14 µm (1814

dpi). These images vary in scale between 1:15,700 and 1:28,000. Calibration certificates for

analogue cameras were available at www.swisstopo.admin.ch. It should be noted that the

1977 imagery was collected during partially snow-covered conditions, and hence the derived

data quality are lower for that year. Flotron AG images were collected in September 2012 using

an UltraCam-X camera, and they represent the most recent data set of the study. They are

composed of 14,430 x 9420 pixels of 7.2 µm and have a scale of 1:5200. Multiple images were

required to cover the whole area of interest. The Flotron AG digital imagery was provided with

a calibration file for the digital camera.

In order to obtain the required ground control points (GCPs) necessary for photogrammetric

restitution, a field campaign was carried out in July 2012 using two Leica System 500 differ-

ential GPS units. A total of 169 GCPs were identified, stable in time and easily and precisely

identifiable on images (Figure 7.2), across an area of approximately 20 km2 (3 x 6.5 km) and

with an elevation range of more than 1000 m (1808 to 2828 m a.s.l.). Original RTK data pro-

cessing and correction using Automated GNSS Network for Switzerland (AGNES) data allowed

the determination of coordinates of all GCPs in the Swiss coordinate system to the geodetic

datum CH1903 with a precision better than ±0.05 m.

The detailed methodology is presented in full in Micheletti et al. [2015]. All photogrammetric

data processing was performed using ERDAS IMAGINE Leica Photogrammetry Suite (LPS)

2010, while postprocessing operations and results analysis were implemented using Matlab

2013 and ArcGIS 10. Calibration certificates and GCPs were used to estimate interior and exte-

rior orientation parameters, respectively. Afterward, as is routine in digital photogrammetry

[Dissart and Jamet, 1995], an automatic stereomatching algorithm was used to match points

in image pairs and to compute their ground coordinates using exterior orientation parameters.

Finally, the data were interpolated to generate 1 m resolution raster DEMs for every year. The

quality assessment of individual DEMs was carried out using unused GCPs. As in Lane et al.

[2000], errors were defined as the differences in elevation between dGPS measurements and

the DEM values at corresponding dGPS locations and were used to compute accuracy in the

form of mean error (ME) and precision in the form of standard deviation of error (STD) (Table

1). The shape of these error distributions was investigated and confirmed to be Gaussian at

the 5% significance level [Micheletti et al., 2015].

Table 7.1 – DEM precision and accuracy assessment using dGPS survey data [m].

DEM 1967 1977 1983 1988 1995 1999 2005 2012

ME 0.315 0.504 0.281 0.296 0.541 0.493 0.453 0.356
STD ±0.765 ±0.820 ±0.953 ±0.644 ±0.751 ±0.827 ±0.998 ±0.462

DEMs of difference (DoD) were computed by differencing DEMs for different years. This

allows identification of changes between dates and hence patterns of erosion and deposition.
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Figure 7.2 – Ground Control Point distribution in the Arolla Valley, Switzerland (Contour line
spacing: 100 m, Orthophoto: Swisstopo 2005).

However, it was necessary to quantify the confidence that apparent changes between two

epochs are real and not produced by random error. Following the error propagation method-

ology proposed in Lane et al. [2003] for Gaussian error distributions, the uncertainty in the

magnitude of change in the DoD was determined by the root of the sum in quadrature of the

uncertainties associated with individual DEMs:

σc =
√
σ2

1 +σ2
2 (7.1)
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In this instance, the standard deviation of error is used as a measure of uncertainty, but it can

be employed to formulate a statistical testing of the significance of each elevation difference

Z1 −Z2 using a t test [Lane et al., 2003]:

t = Z1 −Z2√
σ2

1 +σ2
2

(7.2)

Equation 7.2 can be used to threshold the DoD at a certain confidence limit and to attribute

differences within this threshold to noise. In this study, the minimum level of detection was

set with a confidence limit of 90% (t = 1.96). For the data set used in this study, Table 7.2 shows

the associate limits of detection.

Table 7.2 – Limit of Detection of Change (LDC) with confidence limits of 68% and 90% com-
puted using the error propagation methods explained in the text.

Year pair 68% 90%

2012-2005 1.100 1.804
2005-1999 1.296 2.126
1999-1995 1.118 1.833
1995-1988 0.990 1.623
1988-1983 1.135 1.862
1983-1977 1.244 2.040
1977-1967 1.121 1.839
2012-1988 0.793 1.300
1983-1967 1.208 1.981
2012-1967 0.894 1.466

Volumes of significant change were computed for every time step and geomorphological

class for significant elevation changes at the 90% of confidence level. In order to compare

landform types with different spatial extent, volumes were normalized by surface extent. To

compare time periods, volumes were also normalized by the time between images. Accord-

ingly, all results are provided in m3m−2yr−1. These statistics represent the rate of surface

downwasting/deposition for each landform. If we follow Thomas [2001], these rates describe

the sensitivity of the surface change of each landform to climate forcing, given that we can

assume that all landforms have been subject to the same temperature or precipitation change.

However, these are actually absolute measures of sensitivity as they make no reference to the

magnitude of the rates of change expected under constant climate conditions, that is, the

relative sensitivity. It is quite possible that climate forcing could cause a substantial increase

in the rate of surface change for some landforms as compared with what would be expected

under constant climate conditions, even though when compared with other landforms their

absolute sensitivities remain small. One solution to this problem would be to calculate the

change in rates of change between the periods with different climate forcing, but this charac-

teristic is complicated by the fact that the process responses may be very different between
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landforms in response to climate warming and cooling. For this reason, we avoid using the

term sensitivity overly in the interpretation, notably when comparing different landforms.

Rather, we use the terms rates of elevation change or downwasting.

Finally, DEMs were used to orthorectify aerial imagery in ERDAS LPS. The derived orthophotos

were used to estimate surface displacements using the image correlation software 7D [Vacher

et al., 1999]. Displacements could then be computed in pixels and converted to distances in

meters. Image correlation analysis was performed for 15 x 15 pixel windows. Results were

filtered to eliminate erroneous matches and unrealistic displacements induced by image de-

formation resulting from the orthorectification process in very steep areas or cliffs where the

quality of the DEMs is low. Horizontal movements were extracted as vectors of displacement

at a defined window resolution. Given the 0.35 m resolution of most orthophotos, a 15 x 15

pixel window corresponds to a 5.25 m x 5.25 m cellsize. Since horizontal displacement ac-

counts only for XY dimensions, it is by definition an underestimation of the real displacement.

Hence, outputs were divided by the cosine of the local slope to obtain the three-dimensional

displacement distance. Finally, results were normalized by year in order to compare outputs

obtained with imagery for different dates.

Displacement detection depends strictly on the quality and contrast of the input imagery.

The latter is also dependent on the quality of the DEM, as uncertainty in elevation data can

undermine the quality of the orthorectification process. Very large displacements at the

surface (both vertical and horizontal deformations) may also generate decorrelation that

causes the algorithm to fail to retrieve the displacement. Accordingly, not every pair of images

provided results for the whole study area. To differentiate areas where information could

not be derived from areas with no distinguishable displacement, a no movement and/or

noise class (results inferior to 0.2 m/yr) is defined and displayed as transparent. The most

complete and detailed outputs were obtained using the 1967–1977, 1977–1983, 1988–1999,

and 1999–2005 pairs of imagery and are employed to investigate the response of surface

displacement to climate forcing.

The interpretation of catchment-scale erosion and deposition patterns required reference to

the spatial assemblage of landforms present in the study area. A geomorphological map of the

region [Lambiel et al., 2016] was used for this purpose and permitted derived data to be linked

to specific landforms. This is crucial for the identification of the landforms most active under

recent climate change and their spatial organization.

7.3.2 Data interpretation: climatic context

The interpretation of mass movement in alpine environments at the decadal scale also requires

reference to the climatic conditions that affected such systems. However, long-duration

climatic data series are rarely available. Early climate monitoring tended to be focused on

centers of population, and so climate data are often remote from many mountain study sites.

In this study, the closest reliable data are available for Evolène-Villa (9 km from Arolla at an
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elevation of 1826 m a.s.l.), but data are available only from 1987 and so are not sufficient to

characterize our period of study. Hence, it was necessary to transfer data collected from more

distant locations, which may lead to uncertainties in the associated climate data because

of altitude and topographic effects. Accordingly, it is important to have access to multiple

data series and, if possible, under similar geographic and topographic conditions to the area

of interest, to transfer them to the locality under interest and to test them on more locally

available but shorter records.

In Switzerland, the Swiss National Basic Climatological Network includes 29 climatic and 46

rainfall measurement stations, some of which started in 1864. Homogenized monthly data

(i.e., historic measured values adjusted to current measuring conditions) from the nineteenth

century are available for 14 stations and can be used to reconstruct climatic change for the

last 150 years [MeteoSwiss, 2014]. To set a climate context and to sustain interpretations in

the present study, data series from seven measurement stations were used (see purple dots

in Figure 7.1 and Table 7.3). Two of these have long-term homogenized data: Col du Grand

St-Bernard (GSB) at an altitude of 2461 m a.s.l. and 30 km to the southwest of Arolla and

Sion, 482 m a.s.l., located 24 km north. The available climatic parameters are mean annual air

temperature (MAAT), annual rainfall, and snowfall and snow depth. Data are provided by the

Swiss Federal Office of Meteorology and Climatology MeteoSwiss (further information and

data available at www.meteoswiss.admin.ch).

Table 7.3 – MeteoSwiss measurement stations employed.

Location
Elevation
(m a.s.l.)

Data Period
Km from
(Arolla)

Direction

GSB 2461 Temp. 1864-present 30 South-West
Sion 482 Temp. 1864-present 24 North

Evolène-Villa 1826 Temp., Prec. 1987-present 9 North
Grächen 1550 Temp., Prec. 1960-present 34 North-East

Hérémence 1,238 Prec. 1960-present 18 North
Zermatt 1638 Prec. 1960-present 21 East

Bourg St-Pierre 1664 Prec. 1960-present 23 West
Grimentz 1512 Prec. 1960-present 19 North-East

Temp: temperature; Prec: precipitation.

Long time series of snowfall and snowdepth are scarce. The only data available for Arolla

are daily snowdepth measurements from 1998 to 2011 for Fontanesses, located at 2850 m

a.s.l. above the village of Arolla (green triangle in Figure 7.1). Snowfall and snowdepth will

be strongly influenced by altitude as well as other local factors, such that relying on mea-

surements in other sites is not optimal for reconstructing a decadal history of snowfall in

the area of study. Hence, the GSM-SOCONT (Glacier and SnowMelt - SOil CONTribution

model) modeling approach developed by Schaefli et al. [2005] was adopted. This is a well-

established glaciohydrological model (e.g., Schaefli and Huss [2011]; Tobin et al. [2011]; Godon
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et al. [2013]) which was used with available temperature and precipitation time series from

proximate measurement stations (Sion and Hérémence, respectively) to extrapolate values of

snow depth for elevation bands across the mountainside in Arolla. There are more complex

modeling options, but these would demand additional data (e.g., measured incoming solar

radiation) that are not available. The GSM-SOCONT model is detailed in Schaefli et al. [2005].

The model was set to run with a daily resolution, and empirical lapse rates were employed

[Bouët, 1985]. The degree-day factor for snow and the effect of elevation on precipitation were

optimized using the available Fontanesses data. Calibration using the daily snow depth data

available provided a mean error of 8.6 cm with a precision of ±38.2 cm at the 90% confidence

level, which is very satisfying given the simplicity of the model. Accordingly, the model is

considered of sufficient quality to characterize the interannual snow cover trends for the site.

To analyze the evolution of snow cover during the period of study, the model was used to

estimate snow depth at the typical end of the accumulation period (31 March) and the typical

end of the glacier ablation period (30 September) for every year from 1960 to the present at

varying altitude bands but excluding the rockwalls (thus from 2100 to 2900 m a.s.l., Figure

7.5a).

7.4 Results: a quantitative history of surface changes in an Alpine

system

7.4.1 Climatic Evolution

Figure 7.3 shows the evolution of mean annual air temperature (MAAT) from1864 to present

as a deviation from the mean of the 1961–1990 reference period for Col du Grand St-Bernard

(GSB). Comparison of the GSB 5 year moving mean with the national moving mean suggests

a similar evolution of MAAT at the scale of decades. The correlation between MAAT data

for Evolène-Villa and the GSB is 0.978, suggesting that the study site experienced a similar

decadal-scale evolution to other regions of Switzerland. Figure 3 suggests that between the

1960s and the early 1980s there was a climatically cooler period. A very rapid warming followed

fromthe mid-1980s to the 1990s. This trend continued, albeit more slowly, until present. With

only two exceptions, the MAATs in the warming period are always higher than the reference

mean, demonstrating the presence of strong temperature forcing during the last three decades.

Figure 7.4 presents annual rainfall data for measurement stations with similar conditions

and close to Arolla. Measurements at the Col du Grand St-Bernard are not well suited for

description of the Hérens valley patterns because Grand St-Bernard is located on an alpine col

on the main southern alpine drainage divide and impacted by both southern and northern

rain-bearing systems. Arolla is some way north of this divide and sheltered from southerly rain-

bearing systems. Instead, we focus upon comparison of Evolène with five more characteristic

(altitude and geographical position) locations (Figure 7.4). Five year moving means are similar

for the five stations. Between the end of the 1960s and the beginning of the 1970s precipitation

decreased slightly before increasing considerably in the second part of the 1970s. Then, a
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Figure 7.3 – Mean Annual Air Temperature at the Col du Grand St-Bernard between 1864 and
2013 as deviation from the reference mean established between 1961 and 1990. Trend lines
indicate the 5 years moving average for that site (black) and Swiss mean (green). The numbers
indicate the dates of available aerial imagery. Data: Swiss Federal Office of Meteorology and
Climatology MeteoSwiss (www.meteoswiss.admin.ch).

modest decrease preceded the relative stability observed from the mid-1980s. Of particular

interest are Hérémence and Evolène-Villa stations (1238 and 1826 m a.s.l., 18 and 9 km north

of Arolla, respectively), as both are located in the Hérens valley. The Hérémence data are

the most complete and feature a considerable decrease in annual precipitation before a

substantial increase from the mid-1970s, with a peak at the beginning of the 1980s. Afterward,

precipitation was stable at around 800 mm/yr, before decreasing considerably in the 2000s.

The representativeness of these data as a proxy for the Arolla case study is sustained by the

strong correlation between the longer term data series and the shorter Evolène-Villa series,

available from the end of the 1980s, with similar trends apparent (Figure 7.4).

Results produced using the GSM-SOCONT model illustrate relatively lower March snow depths

in the 1960s and mid-1970s (Figure 5a). Considerable increases in snow depth are then found

for the following decade, reflecting the period of greater precipitation shown in Figure 4.

From1985, end of winter snowdepth appears to have decreased steadily, albeit with high vari-

ability. Snow depths at the end of the summer (Figure 5b) show how the combination of high

winter snow accumulation (Figure 7.5a) with low temperatures translated into considerable

unmelted snow at the end of the summer at the altitudes of the glacial accumulation zones for

the 1977–1985 period. On the other hand, snowcover appears to completely disappear at the

altitudes of interest during every summer in the 2000s. While interannual variations are very
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high, these results are consistent with other observations in Switzerland [Meteosuisse, 2014].

The considerable increase in snow depth observed from the mid-1970s to 1985 coincides with

widespread glacial advance in the region in the early 1980s [VAW Laboratory of Hydraulics and

Glaciology, 2013].

By considering the temperature, precipitation, and modeled snow cover depths together, we

can consider the aerial imagery as relating to two distinct climate forcing stages: a relatively

cooler and climatically more stable period (1960s to 1983) and a warming period (1983 to
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present). The relatively cooler and stable period is characterized by a decrease in annual

rainfall at first (mid-1960s to mid-1970s) but then greater precipitation at the end of the 1970s

and beginning of the 1980s. Snow cover reflected this shift, only increasing with the start of

the wetter period in the second half of the 1970s and 1980s. This emphasizes the importance

of interannual precipitation variability in the study site for interannual variability in snow

accumulation. Precipitation decreased as the climate warmed from the early 1980s, but this

trend stopped from 1990, although examples of both wetter and drier years remain. Thus, the

transition to the warming period also saw a net decrease in snowfall (after the high rates of the

period 1975–1983), which then stabilized until the year 2000. In the 2000s, accumulated snow

in March returned to levels characteristic of the 1960s but with lower snow cover in September

because of warming effects.

7.4.2 DEMs of difference

Figure 7.6a shows the geomorphological map produced by Lambiel et al. [2016]. The two

large glacial systems of Tsarmine and La Tsa are mainly debris-covered glaciers (A and H in

Figures 7.1 and 7.6b). La Tsa comprises two smaller glaciers divided by a rockfall deposit

zone and a detached, small area of debris-covered dead ice. The contexts of Tsarmine and

La Tsa are similar. Both sites are relatively flat, and in addition to glacier and debris-covered

glacier there are also small proglacial forefields, the latter delimited by Little Ice Age (LIA)

moraines. These systems are each more than 400,000 m2 in area, with the glacier and debris-

covered glacier parts occupying ∼284,000 and 227,000 m2, respectively. The remainder of the

area is mainly morainic deposits. The Genevois glacier (∼65,000 m2), where ice is no longer

visible, is located between these two larger glacial systems (F in Figures 7.1 and 7.6b), in a

very steep location. A considerable number of active rock glaciers, mass movement processes

(especially active rockslides), and fluvial process-related landforms are also mapped across the

mountainside (see also Delaloye et al. [2007]; Barboux et al. [2014] for further details). Thus,

the geomorphological map illustrates the presence of an assemblage of glacial, periglacial,

hillslope, and fluvial landforms distributed over the area, and so a complex geomorphological

setting.

Figure 7.6b shows the elevation changes between 1967 and 2012. Despite the substantial

presence of unconsolidated material, the mountainside has been generally relatively stable

at the limits of detection associated with our analysis over the last four and a half decades.

Effectively, detectable surface downwasting is local. The largest magnitudes of change are

found on glaciers and debris-covered glaciers. In the upper part of the Tsarmine and La Tsa

systems, vertical loss is generally greater than 12 m, with peaks of more than 20 m. In their

middle parts, increases in elevation of between 10 and 20 m are observed. It is probable that

ice loss in the central part of these systems was mitigated by thickening caused by ice flux

from upstream, with a possible legacy from glacier growth in the 1960s–1980s (see below). In

Tsarmine, the lower part of the glacier suggests considerable downwasting. This is somewhat

more limited in the Tsa system. In both cases, it suggests zones of elevation loss due to glacier
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marginal ablation. The Genevois glacier experienced only elevation loss and in reduced

proportions as compared with the other glacier systems, a fact that could be explained by its

smaller size.

Only the activity of two rock glaciers is clearly identifiable in the DEMs of difference: the

Tsarmine rock glacier, located southwest of Tsarmine glacier (B in Figures 7.1 and 7.6b), and La

Roussette, the most southern of all the area of study (I in Figures 7.1 and 7.6b). For both rock

glaciers, an advancing front is evident, confirmed by an increase in elevation in their lower

parts. The other rock glaciers in the mountainside show very little substantial downwasting

over the 45 year period considered here. However, to conclude that these landforms are less

active or inactive, it is also necessary to consider horizontal displacements especially as there

may be lateral fluxes without elevation changes or ones that cannot be detected by the DoDs

given their precision.

Gravity-related processes have vertical changes of a magnitude smaller than glacial and

periglacial landforms. Nevertheless, rockslide activity produced significant downwasting in

some locations over the 45 years considered. The most evident example is the Perroc rockslide

located next to the Tsarmine rock glacier (C in Figures 7.1 and 7.6b), with traces of sliding

toward the debris flow channel that connects the Perroc talus slope (D in Figures 7.1 and 7.6b)

to the valley bottom. Traces of rockslide activity, although less marked, are also visible for

the rockslide situated west of the La Tsa hut (G in Figures 7.1 and 7.6b). Detectable elevation

changes were not encountered in talus slopes. Erosion and deposition on the mountainside by

fluvial processes also appear to be limited given the precision of our data. Channel excavation

is limited to a few cases. Notably, it can be seen in the debris flowchannels beneath Tsarmine,

at the top and at the base of the Perroc talus slope, and in the debris flow channels extending

from the Genevois glacier toward the valley bottom.

Figure 7.7 compares the DoDs for two distinct climatic periods: the cooler period that ended

with some snow accumulation (a) and a rapid warming period (b). A distinct landscape

response is shown for both periods. The mountainside appears to be very stable during the

cooler period; the only significant elevation changes are associated with the glaciers with gains

of several meters. Downwasting is very low and visible only in a few patches especially on the

lower part of the Tsarmine and La Tsa glacier systems (A and H in Figure 7.1). The patterns

observed during the rapid warming period of the 1980s are in the opposite direction. The

glaciers experienced a loss in elevation of 4 to 10 m in their upper part. The elevation gain in

their middle part, already visible in Figure 7.6b, is observed here but is of lower magnitude

(3 to 6 m) and of smaller extent. More isolated but significant elevation changes, which were

completely absent during the cooler period, are found across the hillslope. These changes

relate mostly to gully erosion on terminal moraines, shallow excavation of debris flow channels,

slight signs of activity at rock glacier fronts, or rockslide activity.
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Figure 7.7 – (a) DEM of Difference of cooler and stable temperature period, 1967-1983, LDC
90% = 1.98 m and (b) DEM of Difference of rapid warming period, 1983-1988, LDC 90% = 1.86
m (Orthophoto: Swisstopo 2005).

7.4.3 Rates of surface change

Figure 7.8 shows average volumetric rates of surface change (in m3m−2yr−1) for cooling/stable

(blue symbols) and warming periods (red symbols) for every landform on the mountainside.

This helps to better identify the dominant pattern for every landform type and link each to

the effects of climate forcing. First, rates of change for parts of the landscape associated with

glacial processes (i.e., glacier, debris-covered glaciers, moraine deposits) are logically greater

than for other landforms, a fact already visible in the DoD (Figures 7.6b and 7.7). Glacial

landforms have the greatest rates of gain during colder periods, while their rates of loss under

warming are the greatest changes observed. Second, some landforms have enhanced activity

during the warming period. Examples are rock glaciers, talus slopes, and rockslides. For these

landforms, both rates of gain and loss during warming are greater than changes in the cooler

period. Third, for many landforms, rates of gain are greater than losses in the climatically

cooler and stable period. Afterward the opposite is observed, with rates of loss becoming

considerably larger than rates of gain during the warming that started in the mid-1980s. The

clearest examples are talus slopes, rockslides, alluvial fans, moraines, and rock glaciers. Finally,

average rates of loss per year during the warming period are comparable to rates of gain during

the cooling stage for debris-covered glaciers (0.33 and 0.31 m3m−2yr−1, respectively) but differ

for bare ice glaciers (0.46 and 0.21 m3m−2yr−1). Debris-cover glaciers also have higher rates

of volumetric gain during warming than loss during cooling, but this appears to be mostly a

product of mass displacement rather than cryogenesis or sediment supply.
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Figure 7.8 – Average yearly volumetric changes for cool/stable and warming periods for differ-
ent landforms, normalized by their spatial extent [m3m−2y−1]. An absent symbol means no
change.

7.4.4 Surface displacements and deformations

Figure 7.9 shows the norms of displacement vectors (horizontal vectors corrected for slope)

normalized by number of years for four distinct image pairs. It should be noted how some very

active areas such as glaciers and debris-covered glaciers are not highlighted despite being the

areas where most consistent movements are expected. This is for two reasons: first, vertical

changes in these areas are very high (see Figures 7.6b and 7.7), and thus surface changes are

so great that the resulting decorrelation prevents the detection of movement using image

correlation analysis. Second, these areas are also likely to feature less ideal contrast because of

their snow or ice cover. This is particularly true for the 1977 imagery as the mountainside is

partially snow-covered in its upper part.

The surface displacements mapped between 1967 and 1977 (Figure 7.9a) highlight areas where

significant elevation changes were not identified by the DoD (see Figure 7.7a). Rock glacier

activity is evident with movements of up to 0.6 m/yr for the Tsarmine and La Roussette rock

glaciers (B and I in Figures 1 and 6b) but absent or less well defined for others. The large

Perroc rockslide (C in Figures 7.1 and 7.6b) also features localized displacements that can

reach 0.3-0.4 m/yr. Even though only the lower parts of the glacial and proglacial systems

were visible, probable ice-related movements can be identified. In particular, velocities up

to 1.75 m/yr are identified in Tsarmine (A in Figures 7.1 and 7.6b). From the period 1977 to
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Figure 7.9 – Norm of displacement vectors per year for (a) 1967–1977, (b) 1977–1983, (c)
1988–1999, and (d) 1999–2005 (no data: displacement information not available, orthophoto:
Swisstopo 2005).
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1983 (Figure 7.9b), the snow cover of the 1977 images, along with the low quality of those of

1983, lead to large data gaps (especially in the northern part of the image) with many scattered,

noisy displacements. Nonetheless, creep of the Tsarmine and La Roussette rock glaciers could

be identified with a slight acceleration. The large rockslide mentioned earlier appears more

active than the previous epoch.

An enhancement of periglacial activity seems to occur between 1988 and 1999 (Figure 7.9c).

The Tsarmine rock glacier experienced an acceleration with velocities of up to 0.75-1 m/yr

in its upper part and up to 2 m/yr near its front. La Roussette rock glacier also experienced a

slight acceleration and has velocities of ∼0.5–0.75 m/yr. Displacements on other rock glaciers

are also increased and hence now visible. The rock glacier located between the Perroc talus

slope and the Genevois basins, west of Dent de Perroc (upper part of the rock glacier called Lé

Blâva, E in Figures 7.1 and 7.6b), which appeared stable in terms of elevation changes, reached

velocities of ∼0.4 m/yr. Movements on the large rockslide are not considerably enhanced with

respect to the colder period.

The analysis of displacements between 1999 and 2005 (Figure7.9d) provides more complete

results. Generally, greater displacement velocities than previous epochs are evident. The

Tsarmine and La Roussette rock glaciers (B and I in Figures 1 and 6b) have increased veloc-

ities, up to more than 2 and 1.2 m/yr, respectively, while the rock glacier between Perroc

and Genevois reached a velocity of more than 0.7 m/yr at its front. The large Perroc rock-

slide (C in Figures 7.1 and 7.6b) has a more homogeneous displacement. Its velocity is of

the order of ∼0.25-0.3 and 0.4 m/yr in its upper and lower parts, respectively. In the lower

part, a detachment niche is well identified; it delimits a zone characterized by slightly faster

displacements. Movements of debris-covered glacier systems are better highlighted and have

high displacement velocities that can reach more than 2.5 m/yr in the middle part of these

systems. In Tsarmine (A in Figures 7.1 and 7.6b), the velocities of the push moraine and of the

marginal rock glacier are much slower (below 1 m/yr). The same is true for the dead ice in the

lower part of La Tsa proglacial forefield (H in Figures 7.1 and 7.6b).

Differencing the norm of the displacement vectors between cold and warm period, represented

here by 1967-1977 and 1999-2005 pairs, highlights changes in velocities (Figure 7.10) that are

measures of land surface acceleration/deceleration. There is discernible acceleration of the

Tsarmine rock glacier (B in Figures 7.1 and 7.6b), where the increase in horizontal velocities

reaches 1.5 m/yr (200 to 350% of velocity enhancement). This trend is also important for other

rock glaciers; despite incomplete information, the Roussette rock glacier body (I in Figures

7.1 and 7.6b) does not seem to have experienced velocities above 0.8 m/yr (acceleration of

50%), yet in its lower part local peaks with more than a 300% increase in velocity can be

observed. The west Perroc reactivation is reflected in a velocity increase of 0.8 m/yr. The same

is true for the rock glacier at the margin of the Tsarmine glacier (A in Figures 7.1 and 7.6b),

which reactivated and experienced a velocity increase of 0.3-0.4 m/yr. The Perroc rockslide

(C in Figures 7.1 and 7.6b) is very active and experienced velocity increases of the order of

0.2-0.3 m/yr. Between 1999 and 2005, higher displacement velocities were also observed on
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Figure 7.10 – Differences of the norm of displacement vectors between 1967–1977 and
1999–2005: positive values indicate acceleration (orthophoto: Swisstopo 2005).

debris-covered glacier surfaces, where for the identifiable velocity increases can reach 1.5 m/yr

(acceleration of 100%). In the lower part of these systems, increments in velocities are limited

to 0.2-0.4 m/yr. Decelerations are identified only very locally. The most evident clusters are

concentrated on the moraine bastions of Tsarmine and La Tsa glaciers. These decreases in

mass movement speed seem more related to single events of gullying or gravitational sliding

that occurred during the 1960s and 1970s than a continual process.

Figure 7.11 shows a more detailed view of displacement velocities for the Tsarmine and La

Roussette rock glaciers (a) and boxplots of velocities for the three most active rock glaciers

in the study area (b). As visible in previous images, these show different velocities under the

influence of local conditions. Nonetheless, their median displacements were very similar

between 1967 and 1977: 0.23, 0.30, and 0.31 m/yr for the lobe above Lé Blâva, La Roussette, and

Tsarmine rock glacier, respectively (B, above E and I in Figures 7.1 and 7.6b). Afterward, despite

large velocity differences, the Tsarmine rock glacier and the rock glacier lobe above Lé Blâva

have a clear increase in their velocities through time (Figure 7.11b). Median movements for

these rock glaciers between 1999 and 2005 are 1.34 and 0.5 m/yr, respectively, corresponding

to accelerations of 432% and 217% with respect to the first, cooler period. Acceleration of

the La Roussette rock glacier is less evident in the velocity data illustrated in Figure 7.11b,

despite it being visible clearly in Figure 7.10. Nevertheless, an increasing trend is still visible
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Figure 7.11 – (a) Detail of displacement velocities for the Tsarmine and the La Roussette rock
glaciers (orthophoto: Swisstopo 2005). (b) Boxplots of rock glacier surface velocities (Note the
different scale of the vertical axes).

and certified by the doubling of median displacement velocities (from 0.3 to 0.6 m/yr) and by

the faster outliers occurring between 1967 and 2005.

7.5 Discussion

The analysis of elevation changes between 1967 and 2012 (Figure 7.6b) highlights a general

stability of this steep hillslope, and this despite the presence of unconsolidated materials.

Nonetheless, warming periods seem to be associated with some detectable increases in both

downwasting and surface displacement, something that has been observed in studies of

similar environments [Huggel et al., 2010, 2012; Beylich et al., 2011; Fischer et al., 2012]. The

most dynamic periods are associated with either or both higher rainfall and snowfall or greater

temperatures. The greatest rates of change are spatially delimited and concern mostly glacial

and periglacial landforms.
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7.5.1 Glacial systems

Surface change during the relatively cold period (1967–1983, Figure 7.7a) shows several meters

of elevation gains in the upper parts of glacial zones. This growth in the accumulation area

is most likely to be cryogenic. The period 1967-1983 effectively featured favorable climatic

conditions for glacial advance. Low temperatures and abundant precipitation and snowcover,

from the mid-1970s, possibly translated into larger amounts of unmelted snow at the end

of the warm seasons (Figure 7.5b) and hence in glacier growth. Conversely, high-magnitude

downwasting occurred in the same areas during the warming period that begins in the 1980s

(Figure 7.7b). This period is characterized by a rapid temperature rise (Figure 7.3) and reduced

precipitation and lower snow cover (Figure 7.5a). The changes identified demonstrate distinct

response to warm and cold periods and to changes in precipitation, an observation confirmed

also by volumetric trends (Figure 7.8) especially, but not exclusively, for glaciers and debris-

covered glaciers.

The 1967-2012 DoD highlights a dominance of the warming climate conditions compared to

the cooler period in the form of the extensive loss of ice volume. This is caused by the longer

duration of the warming period, but for the bare ice parts of glaciers it is also a consequence

of the difference in average volumetric changes between gain during cooling and loss during

warming (0.21 and 0.46 m3m−2yr−1, respectively, Figure 7.8). For debris-covered glaciers,

these rates are almost the same (0.31 and 0.33 m3m−2yr−1), a fact that can be attributed to

the low thermal conductivity of debris covers [Takeuchi et al., 2000; Lambrech et al., 2011]

and to an underestimation of the melting rate during the warming period caused by the effect

of ice flux from the accumulation area. Nevertheless, debris-covered glaciers also shrink

considerably (see Figure 7.6b), and so the periods 1967 to 1983 and 1983 to 2012 represent

climatic conditions either side of a critical threshold (or equilibrium state, Phillips [2009]) for

the altitude and aspect of this mountainside. The continuous glacier shrinkage from 1983 to

2012 occurred despite snowcover that was greater than the 1960s. This slight increase was

not sufficient to compensate the temperature rise in these systems. Increases in elevation

observed by debris-covered glaciers despite this warming are believed to be caused by the

complicating effect of ice flux from the accumulation area rather than a changing pattern in

the climate forcing reaction.

The case of Tsarmine (A in Figures 7.1 and 7.6b) is particularly interesting because of its

heterogeneity and complexity [Lambiel et al., 2004]. In the geomorphological map (Figure

7.6a) the following land surface types are identifiable: bare ice glacier, debris-covered glacier,

push moraine, rock glacier, and moraine crests or deposits. Bare ice glaciers experienced

cryogenesis (formation of ice from unmelted snow at the end of the warm season) during the

1960s and 1970s and ice ablation afterward, starting from the mid-1980s. Even though surface

velocities could not be derived for this area, it could be hypothesized that ice flow is relevant

and sufficient to supply ice to the middle part of the system. Effectively, the debris-covered

glacial part of the system suggests that it is supplied by ice and sediment produced by rockwalls

that are sufficient to counter ice melt. The debris-covered glacier has a high surface velocity
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(up to 2.5 m/yr). Distinctions between stable and warming periods can also be made: while

both periods feature a flux, there is a surface increase between the two periods (Figure 7.10), of

up to 1.5 m/yr. The push moraine and rock glacier are distinguished in the geomorphological

map, but this ice-debris mixture area has homogeneous patterns. Significant vertical changes

are only visible at long timescales, and rates of downwasting are among the lowest of the

Tsarmine system. Substantial surface displacements could not be detected during the cold

period, while velocities of 0.3-0.4 m/yr were estimated during the warming period. These

velocities are close to those estimated by Kneisel and Kääb [2007] between the 1980s and

the mid-1990s (thus the first part of the warming period) for a similar context also in the

Swiss Alps. Accordingly, this area seems to accelerate its creep under the influence of warmer

conditions. Finally, moraine deposits appear relatively stable from a displacement point

of view. In summary, the Tsarmine area is a very active system featuring a coexistence of

glacial and periglacial dynamics (i.e., push moraine and rock glacier) but with constant glacial

recession over the last three decades.

7.5.2 Rock glaciers

The rates of activity that are visible in the DoDs also can vary within classes of landscape

elements. As mentioned in the previous section this is the case for rock glaciers. Only the

Tsarmine and La Roussette rock glaciers (B and I in Figure 7.1) have identifiable elevation

changes between 1967 and 2012 (Figure 7.6b). These rock glaciers appear to be among the

most active parts of the hillslope, and a possible explanation would be a combination of

local topographic and subsurface ice conditions [Lambiel et al., 2004; Barboux et al., 2014].

Detectable elevation changes during the last decades (Figure 7.6b) are not homogeneous and

of the order of 0.1 m of vertical change per year as observed by Kääb [2002] for a rock glacier

in the eastern Swiss Alps. Despite the relatively small magnitude of vertical changes in the

DoDs (Figure 7.6b), volume estimations highlight an enhanced activity from the 1960s to

present. Both yearly rates of gain and loss during the warming period are higher than the

values estimated for the cooling period (Figure 7.8), indicating a clear reaction to a warmer

climate.

More interestingly, evaluation of surface displacement shows an acceleration of rock glaciers

from 1967 onward. Speedup between the periods 1967-1977 and 1977-1983 may be linked

with enhanced precipitation and the greater snow cover (Figures 7.4 and 7.5) that could

have caused water infiltration and accelerated creep [Ikeda et al., 2008]. In addition, snow

conditions exert a dominant role on ground temperatures by insulating the ground surfaces

from the atmosphere during winter [Keller and Gubler, 1993]. Early winter snow falls, coupled

with a thick snow cover and late melt, may provoke an increase of mean annual ground

surface temperature and rock glacier acceleration [Delaloye et al., 2010; PERMOS, 2013]. The

high snow depths of the period 1977-1985 may thus have been responsible for the observed

increases in rock glacier velocities. Velocities increased even further after the transition into

the warming period. The Tsarmine rock glacier velocities increased from 0.3 to more than 2
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m/yr. The very high velocities of recent decades have also been confirmed by differential GPS

(dGPS) measurements [Delaloye et al., 2008; PERMOS, 2013] and InSAR data [Lambiel et al.,

2008; Barboux et al., 2014]. The trend is the same for La Roussette, where velocities of 0.2-0.5

m/yr (comparable with other studies in Switzerland e.g., Kääb [2002]; Delaloye et al. [2008])

increased to 1.2 m/yr during the warming period.

The velocities of rock glaciers that were otherwise unchanged in terms of detectable elevation

changes could also be observed, as for the small rock glacier located above Lé Blâva (E in

Figure 7.1), between the Perroc talus slope and the Genevois basins. Its activity is much

reduced in respect to the previous examples, and it appeared to be inactive between 1967

and 1977. Despite temperatures still being low, modest displacement is identified at its front

between 1977 and 1983, probably due to the input of water caused by enhanced precipitations

and melting snow. It experienced a complete reactivation during the warming period with

surface velocities up to more than 0.8 m/yr. Another rock glacier located only 500 m west

from it is not experiencing the same reactivation. Hence, local conditions appear to exert an

important impact upon rock glacier response to cooling and warming [Kirkbride and Brazier,

1995]. However, some rock glaciers did accelerate first under the influence of important water

inputs toward the end of the cooler and stable period (1977-1983) and then (1988 onward)

under the influence of temperature rise (see Figure 7.11). This supports the hypothesis of a

strong influence of climate forcing upon rock glacier velocities (e.g., Kellerer-Pirklbauer and

Kaufmann [2012]), which has also been demonstrated in other studies [Roer et al., 2005, 2008;

Kääb et al., 2007; Delaloye et al., 2010].

7.5.3 Gravity-driven and fluvial processes

Activity associated with gravity-driven and fluvial landforms in the DoDs is less clear than for

glacial and periglacial landforms, because of the smaller magnitude of elevation changes in

these areas. With the available resolution of the data and the consequent limits of detection,

the activity of some small-scale geomorphic processes cannot be measured. Clear examples

are rockfall activity (impossible to observe because of the steepness of rockwalls) and debris

flows of small to moderate magnitude. This leads to an underestimation of possible sediment

fluxes in the system and, unfortunately, a limit of the use of the archival imagery in this study.

Nevertheless, despite leaving weaker signals in the DoDs than ice-related landforms, the

analysis of gravitational processes still shows changing patterns through time. In Figure 7.8,

the rates of change during the warming period appear generally greater than in the cold period.

This is clearly the case for rockslides, where both rates of aggradation and degradation appear

to be considerably higher than in the cooler period. Given the location of large rockslides

above the lower permafrost limit, a speculative explanation could be related to the presence of

permafrost. This hypothesis requires in situ measurements to be confirmed, which are not

available at present. The only case of surface displacement change between the 1960s and

the 2000s is in terms of the large Perroc rockslide (C), where accelerations of between 0.2 and

0.5 m/yr are observed (Figure 7.10, also detected using InSAR data by Delaloye et al. [2007]).
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The rockslide started accelerating in the cold period, probably due to enhanced rainfall and

snowmelt input enhancement at the end of the 1970s. Despite less clear signals, it appears that

even non-ice-related landforms might respond to climate forcing and accelerate underwetter

and warmer climatic conditions, a consideration supported by similar studies [Huggel et al.,

2010, 2012; Bennett et al., 2013].

7.5.4 Impacts on sediment flux at landscape scale

Some landforms are found to be sensitive to warming or snow cover and rainfall increases and

may lead to locally high sediment flux. Nevertheless, there is evidence in our analysis to suggest

that the effects of past climatic conditions upon the landscape has left a heritage in the system

that can play a key role in disconnecting zones of high rates of change from the valley bottom.

The role of hillslope coupling within the fluvial and torrential systems commonly responsible

for sediment transmission downstream has been widely investigated. Various studies (e.g.,

Harvey [2002]; Heckmann and Schwanghard [2013]) have demonstrated that in most cases

only a small percentage of the hillslope is coupled to the channel network because of natural

or anthropogenic barriers, leading to abundant hillslope sediment storage. In such cases, the

effects of changes in erosion and deposition may be spatially restricted [Harvey, 2001]. Figure

7.12 illustrates the northern part of the study area, where examples of different connectivity

settings are found. The Tsarmine glacial system (Figure 7.12, site 1 - A in Figure 7.1), which

is showing considerable surface change both vertically and horizontally (see Figures 7.6b

and 7.9) and likely being supplied by sediments from the rockwalls located above it, is in

a disconnected setting. Effectively, the depression behind the LIA moraine crest prevents

sediment transfer down the mountainside despite the large availability of unconsolidated

material in the site. Sediment transfer may occur from gully erosion on the moraine bastion,

as testified by the presence of debris flow channels. However, recent sediment delivery to

the valley bottom is not observed, and associated alluvial fan dynamics are very limited or

even absent (Figure 7.12, AF1). This type of disconnection, associated with high sediment

availability, is also found for the La Tsa glacier system.

The second state observed is intermediate storage as in the case of the Tsarmine rock glacier

(Figure 7.12, site 2 - B in Figures 7.1 and 7.6b). Rock glaciers act as sediment buffers on the

hillslope. The role of permafrost is essential in this regard, as ground ice is able to prevent or

block the mobilization of unconsolidated sediment. Rock glacier acceleration under warming

or wetter climatic conditions could translate into shorter intermediate storage of material.

Effectively, the increased velocities of the Tsarmine rock glacier should eventually translate

into more sediment delivery to the channel downslope. However, the large boulders delivered

to the front of the rock glacier are deposited into a narrow channel with relatively limited water

supply and so transport capacity. Extensive boulder deposits are found in the channel, but

they do not propagate to the valley bottom. As a result, the alluvial fan below does not receive

the sediment supply that is expected given the velocity of the rock glacier (Figure 7.12, AF2).

Despite evidence of enhancement of sediment production at the rock glacier front, it can be
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possible to observe the contrasting conditions of alluvial fans caused by different sediment
connectivity.

hypothesized that delivery at the valley bottom may not be strongly affected by climate forcing

at the timescales considered. The condition of the La Roussette rock glacier is different: here

the disconnection is caused by the fact that its front does not deliver sediments to a channel.

It acts as a sediment sink for the wide mountainside topography to its south and effectively

insulates any possible upstream increase in sediment flux from propagation through to a

channelized system and hence the valley bottom.

Finally, the Perroc talus slope (Figure 7.12, site 3 - D in Figures 7.1 and 7.6b) appears to be

characterized by a good, efficient connection. Effectively, the intermediate storage here is the

talus slope itself, in a very steep condition that facilitates sediment mobilization by debris

flows starting in the overhanging rock couloirs. As a consequence, sediments from rockwalls,

the talus slope, and even landslides at the edges of the Perroc rockslide are easily transferred

through the channel, aided by a linear, steep, and buffer-free connection. Thus, the largest

and apparently most active alluvial fan (Satarma, Figure 7.12, AF3) is associated with the best

sediment connectivity and not with large surface changes upslope or the largest sediment

availability. Thus, connectivity plays a key role in climatically driven sediment dynamics,

an observation that finds support in other contributions [Shroder et al., 2000; Harvey, 2001;
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Reynard et al., 2012; Bosson et al., 2014]. In another Swiss case study, Müller et al. [2014] noted

that the actual mobilized material at the top of the sediment cascade is much higher than the

input in the subsystems throughout the hillslope. Geilhausen et al. [2013] observed that while

climate change and enhanced glacier retreat led to an increase in sediment discharge from

proglacial zones, downstream sediment fluxes were considerably reduced by the development

of proglacial lakes. Accordingly, intermediate storage of loose material exerts a critical control

on climate forcing signals in alpine systems [Matsouka, 2008]. This leads to the counter

intuitive observation that while landscape response to climatic warming and enhancement in

precipitation and snow cover implies a net increase in sediment flux toward the valley bottom,

this is not necessarily manifest in the valley bottom itself (e.g., in evident increase in alluvial

fan dynamics) because this flux is commonly disconnected for the most reactive parts of the

landscape. This is particularly true for small glacier systems, where the rate of paraglacial

activity is high but glacier erosion and the geometry of past deposits prevent sediment flux

downstream [e.g., Brazier et al. [1998]; Shroder et al. [2000]; Benn et al. [2012]; Bosson et al.

[2014]. As Ballantyne [2002] argues, paraglacial system sediment release may be delayed to

centuries or even millennia after the beginning of deglaciation. Reflecting wider observations

of hillslope buffering of catchment response to external forcing (e.g., Forzoni et al. [2014]), it

questions the extent to which decadal-scale, perhaps even centennial-scale, climate forcing

can be quantified in valley bottom (e.g., lake) deposits in mountain environments.

7.6 Conclusion

By unlocking the information held in archival aerial imagery, this contribution has been able

to associate changes in climate forcing to modifications of alpine geomorphic processes and

rates. This was manifest as a distinct landscape response to warm and cold periods and to

changes in rates of precipitation and snow cover. From the end of the 1960s to the beginning of

the 1980s, despite temperatures still being warmer than during the Little Ice Age, glaciers were

able to grow substantially at rates of ∼0.3 m3m−2yr−1, while widespread stability was observed

for other landforms. The reaction to the rapid warming that followed was fast and seemed to

pass a threshold, with a continuous glacial shrinkage observed from the mid-1980s. Estimated

melt rates for bare ice glaciers are higher than for their debris-covered parts (0.46 versus 0.33

m3m−2yr−1), because of the insulating role of debris [Takeuchi et al., 2000; Lambrech et al.,

2011] and the effect of ice flux from the accumulation zones to the debris-covered parts of

the systems. Precipitation and snow cover considerably increased from the mid-1970s and,

despite stable and low temperatures, were associated with a general acceleration of surface

displacements for different landforms, especially rock glaciers. Moreover, the continuation

and accentuation of temperature rise translated into an augmentation of these displacement

velocities. Active rock glaciers experienced velocity increases from 0.2-0.3 m/yr to more than 1

m/yr during the period of study, with peaks as high as 2 m/yr. A reactivation of an inactive

rock glacier has also been observed. Non-ice-related landforms also appear to accelerate their

displacements under wetter and warmer climatic conditions; the most evident examples are
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velocity increases of between 0.2 and 0.5 m/yr for a rockslide. Despite some landforms being

able to generate an enhanced sediment flux locally, propagation throughout the hillslope is not

a direct consequence because of disconnection. Hence, the consequences of climate forcing

for sediment dynamics remain highly location specific and sediment delivery under warming

and wetter climatic conditions appears to be more dependent on sediment connectivity than

on the landform processes themselves. Accordingly, assessing climatic forcing upon sediment

transfer rates using valley bottom deposits might be misleading and requires particular care.

Future investigations are necessary to better understand the climate forcing signals observed

in this alpine setting. First, surface changes and displacements need to be coupled with

additional climatic indicators including the frequency of freeze-thaw cycles, intensity of

rainfall events, and data on the magnitude of diurnal temperature amplitudes to strengthen the

causal link between climate forcing and geomorphic response. Second, a deeper knowledge

of permafrost distribution in the area would be beneficial to explain the observed landform

behavior at the decadal scale in response to changing climatic conditions. This could be

achieved by in situ measurements or modeling approaches. Finally, sediment production

rates in the rockwalls represent a key indicator for this type of analysis that could not be

derived here and need to be obtained with different approaches.
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Context

This contribution deepens the findings of Chapter 7 on climate forcing of Alpine landscapes by

exploring water yield and sediment exports in two partially glaciated watersheds. Equivalently,

archival imagery is used to reconstruct surface change at decadal scale. Furthermore, we

employ a long term record, beginning in the early 1960s, of sediment export based upon the

flushing from hydroelectric power intakes. Results unveil enhancement of sediment export,

possibly caused by water yield increase by means of glacier retreat and snowmelt contributions.

However, the flows in the watersheds appear in supply-limited conditions, suggesting a key

role of the ineffectiveness of the sediment cascade. Crucially, extreme events seem to be

necessary to overcome transport limitation and permit sediment delivery at the outlets.

In the context of this thesis, this piece of research represents a fundamental contribution to

our understanding of the dynamics of Alpine watersheds in the face of climate warming.
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Chapter 8. Water yield and sediment export in small, partially glaciated Alpine
watersheds in a warming climate

Abstract

Climate change is expected to modify the hydrological and geomorphological dynamics of

mountain watersheds significantly, so impacting on downstream water yield and sediment

supply. However, such watersheds are often poorly instrumented, making it difficult to link

recent and rapid climate change to landscape response. Here we combine unique records of

river flow and sediment export, with historical archival imagery to test the hypothesis that

climate warming has substantially increased both water yield and sediment export from small

Alpine watersheds (< 3 km2) characterized by small (< 0.5 km2 surface) glaciers. To examine

ice and landform response to climate change, we apply archival digital photogrammetry to

historical aerial imagery available from 1967 to present. We use the resulting data on ice

loss, in combination with reliable records of stream flow from hydroelectric power intakes

and climate data to approximate a water budget and to determine the evolution of different

contributions to river flow. We use the stream flow records to estimate volumetric sediment

transport capacity and compare this with the volumes of sand and gravel exported from the

watersheds, quantified from records of intake flushing. The data show clearly that climate

forcing since the early 1980s has been accompanied by a net increase in both water yield and

sediment transport capacity, and we attribute these as signals of reduced snow accumulation

and glacier recession. However, sediment export has not responded in the same way and we

attribute this to limits on sediment delivery to streams because of poor rockwall-hillslope-

channel connectivity. However, we do find that extreme climate conditions can be seen in

sediment export data suggesting that these, rather than mean climate warming, may dominate

watershed response.

Keywords: water yield; sediment export; climate change; sediment connectivity; hydroelectric

power infrastructures; archival photogrammetry

8.1 Introduction

Under rapid glacier recession [Knight and Harrison, 2009; Bolch et al., 2012; Fischer et al.,

2014] and the significant modification of the associated flow regimes [Jasper et al., 2004;

Huss et al., 2008; Farinotti et al., 2012], hydrological and geomorphological dynamics in

Alpine landscapes may be highly sensitive to climate warming. The consequences of recent

temperature increases and shifts in precipitation patterns on the hydrological regimes of

high mountain watersheds have been investigated (e.g. Stahl et al. [2008]; Weber et al. [2010];

Finger et al. [2012]). They suggest that watersheds with a high degree of glaciation are likely to

experience an increase in annual runoff as an initial response to rapid climate warming due

to ice melt, followed by an evolution to greater precipitation dependence as the percentage

of the watershed that is ice occupied decreases. There have been fewer attempts to quantify

what these changes might mean for sediment production and export, partly because such

data are rarely available at the decadal timescale, but with some exceptions [Raymond Pralong

et al., 2015; Lane et al., 2016].
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8.1. Introduction

Yet, Alpine watersheds undergoing rapid glacier recession and permafrost degradation may

also have substantially different rates of sediment production and transfer. Glacier recession

may: (1) increase the length of proglacial stream able to erode laterally [Leggat et al., 2015;

Lane et al., 2016]; (2) increase downstream sediment flux rates because streams transport

sediment more rapidly than glaciers [Østrem, 1975; Hunter et al., 1996; Lane et al., 1996; Orwin

and Smart, 2004; Morche et al., 2012; Geilhausen et al., 2013; Baewert and Morche, 2014]; and

(3) lead to debuttressing of valley sidewalls [Porter et al., 2010] and the headward extension of

sidewall tributaries (e.g. Schiefer and Gilbert [2008]), and hence better hillslope to proglacial

stream connectivity. Thus, the transition from glacial to paraglacial conditions should increase

sediment export [Knight and Harrison, 2009; Slaymaker, 2009]. Alpine watersheds may also

have extensive permafrost cover and permafrost decay may increase sediment production

rates (e.g. Kääb et al. [2007]; Harris et al. [2009]; Sass and Oberlechner [2012]; Deline et al.

[2015]). Taken together, these processes imply that at least at first, in response to rapid

warming, Alpine watersheds are likely to increase sediment export [Warburton, 1990; Huggel

et al., 2010; Keiler et al., 2010; Bennett et al., 2013; Geilhausen et al., 2013; Micheletti et al.,

2015b]. This has been shown by Lane et al. (2016) for the case of rapid retreat of a valley glacier.

However, there are few other studies of this effect, not least because of the lack of reliable

quantitative data on sediment export. More importantly, Lane et al. [2016] did not consider the

effects of recession of smaller, hillslope attached glaciers. These are likely to involve different

responses to valley glaciers because of greater topographic relief, a strong influence of glacial

landform history (e.g. moraines), a stronger rock wall influence on sediment supply and on

levels of snow accumulation (e.g. by avalanches), and generally reduced glacier dynamics

[Kuhn, 1995; Grunewald and Scheithauer, 2010; Bosson et al., 2015; Capt et al., 2016].

Thus, the aim of this paper is to quantify the relationships between the evolution in annual

water yield and coarse sediment flux from small partially glaciated Alpine watersheds and

climate forcing at the decadal scale. Specifically, we hypothesize that: (1) under rapid glacier

recession, and notwithstanding possible changes in precipitation and snowmelt conditions,

climate warming should lead to increases in annual water yield; (2) as a consequence, and

because river flows in glaciated watersheds are commonly close to the threshold for sedi-

ment transport during summer months, an increase in the sediment transport capacity of

proglacial streams should occur; and (3) an increase in watershed sediment export should

follow. Undertaking the latter is a particular challenge because it is extremely difficult to

measure coarse sediment transport and we have almost no decadal-scale monitoring systems

in Alpine glaciated watersheds designed for this purpose. In this paper, we make use of unique

datasets provided by hydroelectric power intakes, which need to be flushed of sediment regu-

larly, to construct annual to decadal scale sediment export. These data are combined with

the quantitative analysis of historical aerial imagery based upon digital photogrammetry and

climatic and meteorological data to address the three hypotheses above.
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watersheds in a warming climate

8.2 Methodology

The case studies for this research are two small and partially glaciated watersheds located in

Arolla, in the Hérens Valley, in the South-western part of the Swiss Alps: the Douves Blanches

and Bertol watersheds (Figure 8.1). These watersheds were chosen because as a result of

hydroelectric power regulation since the 1960s, and because of strict regulatory requirements,

they have an extremely reliable record of streamflow as well as, through the need to flush

the associated water intakes, a record of sediment export from each watershed. The overall

methodological approach is centred on the fact that, through the analysis of hydroelectric

power data, it is possible to estimate with high confidence annual water yield and sediment

export from a watershed. Coupling the evolution of these data with climatic indicators and

meteorological extremes might unveil a possible correlation between sediment export at the

intake and temperature and precipitation forcing. More specifically, high frequency, heavy

rainfall events are suspected to play a critical role in starting sediment mobilization.

However, such correlation needs to be accompanied by studies of the geomorphic processes

occurring within individual watersheds, which conditions such climate-export linkage. Thus,

we also analyze digital elevation data, historically and specially flown. Unlocking the infor-

mation contained in archival aerial imagery, commonly acquired from national agencies

since the 1950s, represents a unique opportunity to derive data on past landscape history

and erosion and deposition within a watershed. It can also provide detailed measurement

of glacier dynamics that, coupled with the previously-mentioned climatic data, can lead to

insights on the contribution to stream flow by different sources, and its alteration in time. The

detailed runoff measurements available can be linked to volumes of sediment export, notably

using estimations of flow transport capacity, to verify if the proglacial streams in the area are

transport-limited or supply-limited, hence allowing a deeper interpretation of the sensitivity

of geomorphic dynamics to climate forcing. Finally, by obtaining a specially-flown high res-

olution DEM, quantitative analysis of within watershed connectivity, which may impact on

sediment flux and hence sediment export, is possible.

8.2.1 Watershed characteristics

The two study watersheds are located in lateral, suspended valleys with a watershed area of

1.01 and 2.51 km2 respectively (Figure 8.2). They both contain small glacial systems and an

assemblage of landforms typical of Alpine mountain watersheds. In addition to glaciers, of

particular interest for this study are the widely present sediment sources and stores: rockwalls

(most likely in a permafrost state at this altitude and orientation [PERMOS, 2009]), various

sites prone to form debris-flows, large amounts of loose sediment in steep talus slopes and

in proglacial areas, landforms related to past glaciation (notably moraines) and, in the case

of Bertol, rock glaciers. The two watersheds share their highest peak, the Pointes des Douves

Blanches (3642 m a.s.l.), and are both limited in their lower part by intakes for water retention at

2400 m a.s.l., setting the elevation range of the study area at 1200 m. Reflecting the availability

of the data at our disposal, the period of study is from the end of the 1960s to 2014.
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Figure 8.1 – The Douves Blanches and Bertol case studies in Arolla, Hérens Valley, Switzerland
(Relief shaded and river data: Swisstopo). The purple dots indicate meteorological stations
near the sites of study.

b)a)

Figure 8.2 – Photograph of the Douves Blanches watershed and its steep channel, with water
flow interrupted by water intakes visible on the lower right corner (a, Bezinge 1991), and of the
Bertol watershed with the intake not visible because it is located behind the Vignette hut (b,
http://www.chamonix-guides.com).

8.2.2 Climate and meteorological data

A detailed description of the climatic conditions that affected the region during the last 50

years is provided by Micheletti et al. [2015b]. Mean Annual Air Temperature (MAAT) data for

Sion (24 km from Arolla) suggest two distinct periods in relation to temperature (Figure 8.3).
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Figure 8.3 – Mean Annual Air Temperature (MAAT) in Sion (24 km from Arolla) between 1864
and 2014 as deviation from the reference mean established between 1961 and 1990, with the 10
year moving average. The numbers signal the years with available aerial imagery. Data: Swiss
Federal Office of Meteorology and Climatology MeteoSwiss (www.meteoswiss.admin.ch).

During the 1960s and up to the early 1980s, temperature was relatively steady and slightly

cooler than the previous decade. This was followed by rapid warming from the mid-1980s to

present. To identify the hottest years, the 15% highest values of MAAT have been identified.

With the exception of 1994, all occur since 2000.

Annual rainfall data from nearby stations show a decrease of precipitation between the end of

the 1960s and the beginning of the 1970s, followed by a considerable increase in the second

part of the 1970s (Figure 8.4). From the 1980s, after a modest decrease, annual precipitation

has remained relatively stable, with a 30 year mean of 730 mm per year. Of particular interest

are the two meteorological stations located nearest to the watersheds. In Hérémence, c. 15 km

north of the watersheds at 1238 m a.s.l., a rain gauge measured annual rainfall for the whole

period of interest. The Evolène-Villa meteorological station (1826 m a.s.l.) is only 9 km north

of the watersheds and hence likely to be more representative of their conditions; its data are

available from 1987. The comparison between Hérémence and Evolène-Villa annual rainfall

data shows that an elevation-based precipitation gradient is not present. Rather, contrariwise,

it is in Evolène-Villa that lower values of annual precipitation are recorded (see also Figure 8.4),

although the difference is very small (-39±76 mm per year). The absence of an elevation-based

gradient is likely to be explained by the sheltering from the mean atmospheric disturbances

and rain-bearing systems provided by the Alpine barrier to the upper part of the Hérens valley

[Lambiel et al., 2016].
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with Evolène-Villa are shown. Data: Swiss Federal Office of Meteorology and Climatology
MeteoSwiss (www.meteoswiss.admin.ch).

To identify the most important rainstorms in the area, we isolated single events from the

Evolène-Villa timeseries on the basis of 72 hours precipitation totals. As with temperature, we

considered the highest 15% of these as extreme events; these occurred in 4 years (February

1990, December 1991, September 1993, October 2000). Given their months of occurrence, at

least half of them can be considered rain-on-snow events, thus potentially of high impact.

However, data in Evolène-Villa only cover the 1987-2014 period and so we also considered

data for Hérémence, given their similarity. By applying the same 15% criteria to 72 hours

precipitation totals, the most intense rainstorms are identified (November 1968, December

1981, November 1983, May 1985, February 1990, December 1991, October 2000). Rainstorms

identified in Héremence coincide with those in Evolène-Villa when data overlap, which is

encouraging for their representativeness.

General information about snow cover in the area is available in Micheletti et al. [2015b] in

the form of basic snow depth modelling. For the elevation concerned, a progressive decline

in snow depth at the end of the accumulation season (31 March) is observed from the early

1980s, while permanent snow cover at the end of the ablation season is present only between

the mid-1970s and the mid-1980s (30 September, see Figure 5 in Micheletti et al. [2015b] for

details).
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8.2.3 Archival aerial photogrammetry

High resolution (1m) digital elevation models (DEMs) for seven dates were generated for

the Douves Blanches and Bertol watersheds following methods presented in Micheletti et al.

[2015a,b]. Aerial photographs were acquired by the Swiss Federal Office of Topography (Swis-

stopo, www.swisstopo.admin.ch) and by Flotron AG (www.flotron.ch) and were provided with

the corresponding camera calibration certificates. Swisstopo used a photogrammetric-quality

device to scan their images (23 cm x 23 cm) at a resolution of 14 µm (1814 dpi). The Flotron

images comprised 14,430 x 9,420 pixels with a 7.2 µm resolution. The ground control points

(GCPs) necessary for photogrammetric restitution were collected by the authors using two

Leica System 500 differential GPS units and were corrected using Automated GNSS Network

for Switzerland (AGNES) data. The digital photogrammetry tasks and the necessary post-

processing operations were performed on ERDAS IMAGINE 2014, Matlab 2013 and ESRI

ArcGIS 10.1. To perform a quantitative comparison, DEMs of Difference (DoD) were com-

puted by subtracting pairs of DEMs of different years. To ensure that the observed differences

comprised real morphological change and not random errors, the error propagation proposed

by Lane et al. [2003] was adopted. The quality of the DEMs was evaluated using the unused

dGPS measurements (as in Lane et al. [2000]) and was bias corrected. The Limit of Detection

of change (LDC) with a confidence limit of 90% was then estimated, and was between ±0.75

m and ±1.45 m according to the DEMs being compared. The analysis allows the identifica-

tion and quantification of significant elevation change for every epoch. Details of the aerial

photographs, the derived DEMs quality and error propagation are presented in Table 7.1. A

full description of the data analysis procedure is available in Micheletti et al. [2015a,b] for a

different study site.

Table 8.1 – Characteristics of the aerial imagery available from Swisstopo (1967-2009) and
Flotron AG (2014), photogrammetric triangulation performance [Total Image Unit Weight]
and DEM precision and accuracy assessment using dGPS survey data [m].

Date Scale Camera Type Emulsion ∆ TIUW RMSE µDEM σDEM

1967/09 1:15,700 Frame BW 0.349 0.42 ±0.57
1983/09 1:20,900 Frame BW 0.284 0.44 ±0.67
1988/09 1:22,200 Frame BW 0.327 0.24 ±0.58
1999/09 1:26,000 Frame RGB 0.204 0.23 ±0.36
2005/08 1:24,000 Frame RGB 0.260 0.37 ±0.33
2009/09 1:13,000 Frame BW 0.245 0.23 ±0.35
2014/10 1:5,200 Digital RGB-NIR 0.179 0.08 ±0.31

8.2.4 Long term records of hydroelectric power intake activity

The Douves Blanches and Bertol watersheds are part of the hydroelectric power scheme

managed by the Grand Dixence SA company. At the outlet of each watershed, an intake

structure retains all water (and sediments) leaving the system (there is no minimum flow
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requirement associated with this concession). These intakes are called Douves Blanches and

Upper Bertol respectively [Bezinge et al., 1989]. The water collected is transferred to a retention

lake in an adjacent valley, the Lac des Dix, which has a storage capacity of 400 million m3

[Raymond Pralong et al., 2015]. The two watersheds investigated contribute a mean annual

runoff volume (1967-2014) of 1.15 million and 3.04 million m3, which corresponds to a runoff

per unit area of 1190 mm per year. In order to maintain hydraulic efficiency, sediment has to

be separated from the water before the transfer. Thus, the intakes are designed to trap the

solid charge in the sand and coarser fractions (see Bezinge et al. [1989] for details). Once full,

the intakes are systematically flushed (purged) in order to evacuate the sediments [Morris and

Fan, 1998; Raymond Pralong et al., 2015].

Hydroexploitation SA operates the Douves Blanches and Upper Bertol intakes on behalf of

Alpiq SA and Grande Dixence SA, and provided continuous 15 minutes resolution flow records

from the end of the 1960s. Given the strict regulatory requirements that the company must

satisfy, the measurement uncertainty in these timeseries is negligible. During a purge, water

is no longer taken in and instead used to flush the intake. This diverts water away from

the discharge recorder and is manifest as a sudden drawdown in the flow record lasting for

between 30 minutes and one hour. Following Bezinge et al. [1989] and Lane et al. [2016],

each intake opening was manually identified so to reconstruct the number of purges that

occurred each year. Periods of purge were removed and replaced by linear interpolation using

values either side of the purge (see Lane et al. [2016]). The fact that purges generally occur

in periods of high glacial runoff makes them easy to identify, aiding this process. Figure 8.5

illustrates an example of hydrograph prior (a) and after (b) purge removal for the Douves

Blanches watershed. Although the Douves Blanches watershed is c. 29% glaciated, the flow

regime is classed as Glacial-nival (type a) following Weingartner and Aschwanden [1994] (see

also Gabbud and Lane [2016]); a first peak due to snowmelt is normal before the 1 June in any

hydrological year. Flow is then sustained by glacier melt until its highest values in late July and

early August. The Bertol watershed has similar patterns, and has also a Glacial-nival (type a)

regime with 19% of its surface being glaciated (Gabbud and Lane [2016], Table 1).

The frequency of the flushing operation, associated with estimates of the mean of material

evacuated in each purge and its uncertainty, have commonly been used to estimate sedi-

ment transport volumes (e.g. Wold and Østrem [1979]; Bezinge et al. [1989]; Lane [1997];

Raymond Pralong et al. [2015]; Lane et al. [2016]). In our case, Bezinge et al. [1989] estimated

the mean volume of material evacuated with each purge based on the design volume of the

associated sediment traps of 20 m3 for Douves Blanches and 15 m3 for Upper Bertol. However,

these values need to be corrected for packing density effects. Field investigations for two

intakes in the region provided end member estimations of 1.300 and 1.630 tonnes per m3

respectively [Bezinge et al., 1989]. These two packing densities are adopted as end members

in evaluations of sediment export volumes to correct for filling effects, in conjunction with

estimated sediment density (2,650 kg/m3, Lane et al. [2016]). Both water intakes are equipped

with single traps for sediment and so distinguishing the proportions of fine (suspended) and

coarse (bedload) material is not possible. However, these traps do retain all the sediment
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Figure 8.5 – Example of data provided by Hydroexploitation SA illustrating hydrographs (a)
prior and (b) after purge removal (Douves Blanches intake, year 2001, five purges identified).

except the washload that is, only particles finer than sand are not trapped.

8.2.5 Contribution to water yield at the intakes

The stream flow allowed us to quantify annual water yield and also provided the input into

our estimates of sediment transport capacity. However, in order to link the changing volume

of ice in the watersheds to the water yield it was necessary to consider other water inputs. A

basic water balance equation for Alpine watersheds was used:

Q = P +∆IC E +∆SNOW +∆PF −E − I (8.1)

where Q is runoff (or water yield) at the intake, P is rainfall, ∆IC E is water equivalent of

icemelt, ∆SNOW is the snow budget (water equivalent of snowfall - snowpack at the end of the

ablation period), ∆PF is water flow from permafrost-related landforms (e.g. rock glaciers), E is

evapotranspiration and I is water infiltration. The annual yield of water Q should be knowable
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with a reasonable level of confidence from integration through time of the hydrological records

(e.g. Figure 8.5). However, initial inspection of the Bertol data gave us some cause for concern:

between 1968 and 1985 the values of water yield were unrealistically high when expressed as

runoff per unit area per year, in comparison with other years of Bertol data and comparison

with Douves Blanches (Figure 8.6). To address this problem we determined the average

Bertol to Douves Blanches runoff ratio for the period 1986-2014 and applied this to the

Douves Blanches data for 1968-1985 to estimate the Bertol data. We attribute the error to

instrument calibration and note that it should not impact the purge record, only the runoff

record. Assessment of the fit (i.e. the mean ratio of the calculated Bertol record as compared

with the measured Bertol record) suggested a mean error in water yield of -0.03 million of

m3yr−1.
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Figure 8.6 – Unrealistic annual water yield per unit area registered until 1985 at the Upper
Bertol intake and comparison with Douves Blanches data. The green line represents the
corrected water yield for the period 1967-1985.

It is possible to derive ice melt (∆IC E ) directly. Following Micheletti et al. [2015b], we identified

glacier and debris-covered glacier surfaces from a geomorphological map and computed

volumes of change from DoDs. This operation is considered reliable because the data for the

DEMs is systematically acquired at the end of the summer, hence comparable (Table 7.1). To

estimate the uncertainty in ice melt volume calculations, we multiplied the Limit of Detection

of change (LDC) for a single pixel (1m x 1m, hence 1m2) with a confidence limit of 90% with

the area of extent occupied by glaciers and debris-covered glaciers. To account for the different

density of ice and water, the conversion factor of 850±60 kgm−3 proposed by Huss [2013] is

used for ice volume calculations.

The estimation of rainfall contribution (P ) is accounted using precipitation data from the
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closest station to the study site that include the whole period of study (Hérémence, 15 km

from Arolla, Figure 8.4). The comparison with Evolène-Villa, which theoretically represents

the most representative site available, shows that an elevation-based precipitation gradient

is not present, and that annual totals are very similar. Accordingly, Hérémence can be used

as an appropriate proxy for annual precipitations in the watersheds. The amounts of rainfall

for each period are multiplied by the surface of each watershed to derive the volume of water

that entered the watersheds this way. To account for uncertainty, we employ the standard

deviation of the discrepancy between Evolène-Villa and Hérémence annual precipitation (±76

mm, see 8.2.2) and we multiplied it with the area of the watersheds.

The estimation of volumes of water for the other terms in Equation 8.1 is subject to large

uncertainty and would require speculation with the data at our disposal. Thus, we employ

the two adequately well known water sources (precipitation and ice-melt) and observe the

decadal-scale evolution of their contribution to water yield. We assume that over the time

period of this study evapotranspiration and water infiltration is not significantly changing

at the scale of investigation. There is almost no vegetation cover in either basin. Given the

lack of soil to store water, evaporation is likely to be limited by water availability rather than

temperature. This leaves the contribution of snowmelt and runoff from permafrost-related

landforms which is assumed to fill the discrepancy between Q and the sum of P and∆IC E (with

their related uncertainties). Despite the relatively severe assumptions we make in this analysis,

as well as uncertainties in some of the data sources, this approach is deemed appropriate

for investigating the evolution of the relative contribution of ice melt to river flow during the

period of study.

8.2.6 Estimation of river sediment transport capacity

Changes in water yield should translate into changes in river sediment transport capacity.

Thus, a primary interest in this work is whether or not sediment export tracks this changing

transport capacity. If it does, then we can conclude that sediment export is currently limited

by stream sediment transport capacity. If the transport capacity calculation is correct, where

capacity is greater than export, the river should either erode or coarser its bed: that is, the grain

size used in the capacity calculation should coarsen. We do not represent this dynamic process

in the analysis, but rather use the capacity-export discrepancy as a measure of sediment supply

limitation. The testing of this model has been based upon a large number of transport-limited

sites [Nitsche et al., 2011] and so we take the model as being reliable for the application. That

said, estimating sediment transport capacity is highly uncertain. Thus, our aim is not to obtain

precise estimates of sediment transport capacity but rather to transform our discharge time

series into a variable that can represent the variability in sediment transport capacity and

then to relate this to changes in sediment export. Such a transformation is needed because

sediment transport is a threshold-dependent process and water yield should not be linearly

nor directly related to sediment export.
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To estimate sediment transport capacity, we developed an approach evaluated for instru-

mented Swiss watersheds by Nitsche et al. [2011]. Its application to this kind of watershed

is explained in detail in Lane et al. [2016] and only a summary is provided here. It follows

Ferguson [2007] in estimating the relationship between discharge, water level and velocity,

and hence shear stress; and Rickenmann and Recking [2011] in dividing available shear stress

into that lost to resistance and that which can be used to transport sediment. The result is

an estimate of the volumetric transport rate per unit channel width. The model was applied

using the corrected flow data presented in Section 8.2.4. To run the model, the geometry

of the channel and its slope were derived from the 2014 DEM. In Bertol, channel slope is

measured as 0.302. Douves Blanches has an even steeper condition because it corresponds to

a torrential system below a Little Ice Age moraine crest (see Figure 8.2), and is measured from

the DEM at 0.633. In the absence of grain size data (notably for Douves Blanches, which is

difficult and dangerous to access), the regression equations proposed by Raymond Pralong

et al. [2015], calibrated for Swiss Alpine watersheds in the region, were used. In Bertol, it was

estimated that D50 = 0.075 m and D84 = 0.243 m, while in Douves Blanches D50 = 0.092 m

and D84 = 0.319 m. Although these values are evidently uncertain, they are realistic given the

watershed appearance and slope and it is reasonable to assume that they are representative of

the bed grain size through time.

Volumetric transport rates were integrated to obtain the annual volumetric transport capacity.

As in Lane et al. [2016], a calibration on the sediment flushing estimates was not performed as

it is believed that release volumes are dependent not only on transport capacity, but also on

sediment supply, which is in turn controlled by connectivity and efficiency of the sediment

cascade. For Bertol, given the need to scale the flow for data before 1986, we only apply the

model from 1986.

8.2.7 Within-watershed connectivity

In order to attempt to understand the relative balance of modelled transport capacity and sed-

iment export we also aimed to identify the extent to which upstream sources of sediment were

connected to the stream channel. It is well known that sediment flux at watershed outlets can

be reduced or damped because of the presence of barriers or obstacles created by topographic

complexity or surface roughness (e.g. Caine and Swanson [1989]; Harvey [2002]; Heckmann

and Schwanghard [2013]; Micheletti et al. [2015b]). The coupling between sediment source

areas and the stream network can be of fundamental importance in controlling if and how

sediment transport capacity is actually realized and solid charge is delivered downstream, in

our case to the water intakes. In order to investigate this aspect and assess spatial patterns

of sediment connectivity, we compute a Connectivity Index (CI) based on the approach of

Borselli et al. [2008], following Cavalli et al. [2013]. This geomorphometric index has been

widely used in geomorphological studies (e.g. Foerster et al. [2014]; Heiser et al. [2015]). The

toolbox developed by Cavalli et al. [2013] and freely available at www.sedalp.eu was adopted.

The latter is designed for ESRI ArcGIS 10.1 and requires the use of the Tarboton TauDEM
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functions (hydrology.usu.edu/taudem). Here, the most recent DEM available, with filled pits,

was used as input. The CI can be computed with the consideration of a weighting factor,

introduced by Borselli et al. [2008] to model the impedance to runoff and sediment fluxes

due to properties of the local land use and soil surface. In our case, this impedance is mainly

defined by apparent roughness, e.g. the difference between a smooth surface or a field of

boulders in allowing mass fluxes. Accordingly, we computed a Roughness Index as described

in Cavalli and Marchi [2008] that is, by calculating the standard-deviation (5x5 pixels) of the

residual topography (defined as the difference between the original DEM and an averaged

DEM using a 5x5 pixel moving window). The CI is computed by evaluating the connection with

respect to one or multiple targets. In this study we are considering sediment export, hence

the targets were set to be the watersheds outlets (the water intakes). In addition, in Douves

Blanches the steep rockwalls have been masked out to avoid misleading interpretation, as

we consider that material sourced in these zones is most probably likely to reach the base

of their slopes and hence the analysis of the Connectivity Index is not justified for that area.

Since the Connectivity Index is defined in the range of [−∞,+∞] [Cavalli et al., 2013], the

result is presented relatively in terms of high or low index, where high values represent higher

connectivity.

8.3 Results

8.3.1 Surface change and a distinct response to temperature forcing

The DEM of difference (DoD) between 1967 and 2014 (Figure 8.7, a) shows the changes

in elevation within the two studied watersheds over a five decade period, with a current

geomorphological map (b) to attribute these changes to different landforms, in particular

to glacier cover. The warming climate conditions strongly affected glacier evolution (Figure

8.7a), as demonstrated by the extensive lowering of surface that affected glacial landforms. In

the Douves Blanches watershed, erosion is also detected in various parts outside the glacier

boundaries in the Southern part of the watershed. These zones may be sources of solid

material and supply sediment downstream by fluvial transport or debris-flows events. Similar

patterns are visible in the Bertol watershed as well, on the right bank of the river. At this

temporal scale of analysis, the activity of the rock glacier in the Southern part of the watershed

is clearly visible, while no significant elevation change is observed for the other rock glacier

in the watershed (see geomorphological map, Figure 8.7b). The active rock glacier may have

lost mass because of core-ice melting, and at the same time provoked an increase of elevation

at its lobes’ fronts because of rock glacier advance and sediment delivery. Above the rock

glacier, surprisingly high surface lowering rates are observed for a talus slope. This may be

evidence of permafrost decay and matches examples described for sites of similar elevation

and orientation [PERMOS, 2009].

Figure 8.8 shows sequential DEMs of Difference (DoDs) of the area. The patterns observed

during the two distinct temperature-forcing periods are opposed. Elevation gains of several
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Figure 8.7 – (a) DEMs of Difference (elevation changes) of a five decade period and (b) geo-
morphological map of the Douves Blanches and Bertol watersheds [Lambiel et al., 2016]. The
limit of detection of elevation change is set at the 90% confidence limit (see Table 8.1).

meters are observed in glacier and debris-covered glacier surfaces between 1967 and 1983

(Figure 8.8a). It appears that the cooler climatic conditions of these years were favourable for

glacier advance in both watersheds. This glacial growth was possible despite temperatures

still being warmer than the Little Ice Age and is consistent with observations on similar small

glaciers in this region [VAW Laboratory of Hydraulics and Glaciology, 2013; Micheletti et al.,

2015b]. Traces of erosion and deposition are also observed for non-glacier landforms during

this cooler period. The most evident examples are gully erosion in the lower part of the Douves

Blanches watershed and elevation changes on a rock glacier / talus slope area in the Southern

part of the Bertol watershed. The 1983-1988 DoD (Figure 8.8b) shows extensive low magnitude

erosion patches, possibly resulting from the abrupt transition from cooler to warming periods.

Of particular interest is localized gully erosion and surface lowering in permafrost-affected

areas. The elevation changes that occurred from 1988 (Figure 8.8c-8.8f) are well representative

of the reversed tendency that started in the mid-1980s. Considerable elevation loss affected

glaciers and debris-covered glaciers, observable in all recent DoDs, and this can be attributed

to the role of temperature forcing. Thus, the periods 1967 to the mid-1980s and the mid-1980s

to 2014 represent climatic conditions either side of a critical state (see Phillips [2009]) for these

glaciers, something that has been observed for many glaciers in the Swiss Alps [Haeberli and
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Beniston, 1998; Huss, 2012; Vaughan et al., 2013; Huss et al., 2015] and in the same valley

[Micheletti et al., 2015b; Capt et al., 2016]. For the warming period (1983-2014), mean glacier

surface losses of 1.10 m3m−2yr−1 for Douves Blanches and 1.30 m3m−2yr−1 for Bertol were

estimated. During the warming period, the DoDs suggest elevation changes for non-glacier

areas as well. Scattered zones of deposition are occasionally visible, in particular in Southern

Bertol at the base of rockwalls, near the glacier snout and in proximity to the large rock glacier

in that area. These could be indications of sediment production and delivery by permafrost

degradation in rockwalls, erosion and transport of morainic material, or processes associated

with rock glaciers. While these processes seem representative of the mid-1980s to the present

period, their low magnitude associated with DEM uncertainty make them visible only in some

maps. We are also assuming that geomorphic changes are manifest as surface changes and not

changes in lateral flux that lead to only a small surface expression. It is important to note how,

despite signs of extensive increase and decrease in thickness during the period of study, the

snouts of the Douves Blanches and Bertol glaciers did not modify significantly their positions,

an outcome in strong contrast with observations for other glaciers in the valley (e.g. Lane et al.

[2016]). Their small size and the extensive debris-cover, acting as insulating layer [Lambrecht

et al., 2011; Capt et al., 2016], may be the cause.
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Figure 8.8 – Sequential DEMs of Difference (elevation changes) for the Douves Blanches
and Bertol watersheds. Limit of detection of change between 1.06 m and 1.44 m at the 90%
confidence limit (see Table 8.1).
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8.3.2 Evolution of water yield and sediment export

Figure 8.9 shows the number of flushing events per year since 1967 at the Douves Blanches

and Upper Bertol hydroelectric power intakes. Also shown is the annual water yield based

on data for both sites from 1985, and on data for Douves Blanches and by scaled Douves

Blanches data for Bertol to 1985. Watershed water yield between 0.6 and 1 million of m3yr−1

was registered in Douves Blanches until the mid-1980s (Figure 8.9a). Despite an increase in

precipitation from the mid-1970s, water yield appears relatively stable and affected only by

inter-annual variability during the cold period. From 1985, annual water yield in the Douves

Blanches starts to rise progressively to reach almost 2 million m3yr−1 most recently (2012

and 2013). Considering the coincidence between the beginning of temperature warming (see

Figure 8.3) and this rise, it is justified to hypothesize a causal link between water yield and

temperature forcing. The total number of flushing events per year (purges) is representative of

annual quantities of exported sediments (see Section 8.2.4). Between 1967 and 1990, it was

never necessary to flush sediments out of the Douves Blanches water intake more than four

times per year. A change in sediment export behaviour follows the transition between cooler

and warming periods, albeit delayed by a few years, as it is clear only from 1991 (and following

one of the most intense rainfall events that occurred in 1990). From 1991, a substantial inter-

annual variability in flushing frequency is observed, but more than half of the years considered

registered more purges than the maximum observed prior to 1991 and a general upward trend

is visible. The highest number of purge events occurred in 2014 (the last observation), a year

with one of the highest mean annual air temperature values. Thus, while the warmer period

led to a clear rise in water yield, it also led to an increase in the inter-annual variability in

sediment export, and hence in the 5 year running mean of sediment export.
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Figure 8.9 – Annual water yield and number of purges at the (a) Douves Blanches and (b)
Upper Bertol intakes, also showing the years with the heaviest rainfall events in Evolène-Villa
and Héremence and highest temperatures in Sion (Figure 8.3). The lines represent the 5 year
running mean.

The evolution of water yield at the Upper Bertol intake (Figure 8.9, b) follows a trend similar to

that in the Douves Blanches watershed from 1985, when the yield becomes based on direct
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measurement rather than scaled from Douves Blanches data. Larger volumes of water were

produced every year from the second part of the 1980s until present, and they were all higher

than the 1967-1985 maximum with a sole exception (1996). Again, there is a clear association

with the strong temperature forcing that started in the mid-1980s. The need to flush the intake

of sediment seems to increase from 1990 in a similar way to Douves Blanches. However, there

is less inter-annual variability. There are three examples of where years with more purges

are preceded by or correspond to period of large rainstorms or elevated temperatures. The

1990-1995 period featured the first considerable increase in purge frequency with three of the

four strongest precipitation events over 72 hours in the area (Evolène-Villa data, Figure 8.9,

b). At the beginning of the 2000s the number of purges per year also increased. This followed

the exceptionally severe precipitation of October 2000 (the highest recorded in Evolène-Villa

with 128 mm in 3 days). Note that 2002 and 2003 are years of very high MAAT (Figure 8.3).

Finally, the three highest scores of flushing events per year are registered between 2011 and

2014. These 4 years featured half of the hottest six years (2011, 2012, 2014). In between these

peaks in the number of purges per year, lower values are observed, similar to Douves Blanches.

Despite the high variability, 16 out of 25 years from 1990 experienced more flushing events

than any year between 1967 and 1989.

Extreme precipitation and temperature events seem to be important earlier in the record

during the cooler period as well, although to a lesser extent. For instance, for both watersheds,

the intense rainfall events observed in 1968 and at the beginning of the 1980s did not influence

water yield in an appreciable way. Nevertheless, the rising number of purges from 1980 to 1995

are not only associated with rising mean annual air temperature (Figure 8.3), but also with

a cluster of intense rainfall events. Despite the warmer temperature being maintained after

1995, the sediment export falls between 1995 and 2000, and is only rising again after a major

event in 2000. Again, export falls from 2005 and is only rising in more recent years. Thus, the

hypothesis that arises from these observations is that the combination of high temperature

(sediment production), water yield and intense rainfall events (energy for sediment transport)

exert an influence on solid material delivery to the intakes, and thus on the frequency of the

flushing operations. Intense rainfall events can have an appreciable effect even if production

is generally lower during cooler conditions and total annual water yield is not particularly

high. Finally, the last decade shows the progressive rise of export despite no intense rainfall

events occurred. Similar trends are observed for an adjacent valley glacier [Lane et al., 2016]

and may reflect a systematic shift in basin connectivity. Sediment export records for the two

watersheds are significantly (if not highly) correlated (r = 0.552; p < 0.001), suggesting that

they might both respond partly to a common, external forcing.

8.3.3 Water yield and contribution to river flow

Figure 8.10 illustrates the evolution of annual water yield (similar to Figure 8.9, but aggregated

per period of available imagery). Douves Blanches (Figure 8.10a) has one less period because

its glacier was not represented entirely in the 2009 DEM (see Figure 8.8e and 8.8f). As noted
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in the previous section, annual water yield increases through time for both watersheds and

almost doubled in the most recent period in comparison with 1967-1983. Whilst absolute

amounts of precipitation remained to a certain extent constant during the last five decades,

their relative contribution to yield diminished from more than 80% for both watersheds to less

than 50% most recently. That is, the rising water yield is associated not with precipitation but

rather loss of ice-stored water and other sources. Whilst it could not be quantified, it could

be hypothesized that a considerable contribution is provided by snowmelt. With enhanced

temperatures from the second part of the 1980s, a transition from snow transformation into

glacier ice (hence contributing to glacier growth) to snow melt and rising water yield occurred.

At the same, time loss from the ice store also became important notably between 1983 and

2005. Taken together, there is a dual impact on glacier mass balance: reduced accumulation

and increased ablation. Given the small size of these glaciers, it is perhaps not surprising that

since 2005, and notably for the smaller Douves Blanches system, the ice melt contribution

has begun to diminish, although we cannot yet be sure that this is sufficient to allow it to be

identified in a slowing increase, or even a decrease of water yield. Finally, a source that could

not be evaluated concerns permafrost-related water yield. Surface lowering due to permafrost

degradation may be visible in some rock glaciers and talus slopes in Bertol (see Figures 8.7

and 8.8), but it could not be quantified because changes could equally be caused by erosion

of sediment. The unquantified contributions appear to be increasing and explain half of the

water yield in the most recent years. They only partially compensate the uncertainty inherent

to the other runoff components.

8.3.4 Sediment export and its relation to transport capacity

Section 8.3.2 illustrated how annual water yield and the number of flushing operations per

year have generally increased since the end of the 1980s in the Douves Blanches watershed

and, more systematically, in the Bertol watershed. There appeared to be some temperature

and extreme event association, but to investigate this more fully, we compare the purge

records with modelled sediment transport capacity. Figure 8.11 shows the results for the

Douves Blanches watershed. Unsurprisingly, annual water yield and volumetric transport

capacity both increase through time, suggesting that water yield partly controls the rate of

sediment export. In addition, the two indicators are strongly correlated (Figure 8.11a, r =

0.963; p < 0.001). Transport capacity is also significantly correlated with sediment export

but the correlation is much lower (r = 0.323; p < 0.05). Whilst they both follow a common

temporal trend (they both seem increase through time, Figure 8.11b), estimated sediment

export is two orders of magnitude lower than modelled transport capacity. Given the low

correlation, and notwithstanding the high uncertainty in the absolute values of the modelled

sediment transport capacity, it appears that there is supply limitation in the Douves Blanches

watershed. Further, if we observe the years with highest estimated sediment export, they are

often followed by years with exceptionally low ones, and this despite high transport capacity.

The highest sediment export occurred in 2014 and so our observation cannot be verified on

that date, but the second highest export (2005, between 100 and 120 m3yr−1), was followed
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Figure 8.10 – Approximation of annual water yield and contribution to river flow from rainfall
and icemelt at the (a) Douves Blanches and (b) Upper Bertol intakes. Unquantified water
contributions includes snowmelt and thaw in permafrost-related landforms.

by five years of low exported volumes. The same was true for the third ranked, 1997, which

was followed by a year of exceptionally low export. This effect could be observed to a lesser

extent for other years as well. Field observations of the authors suggest that a crucial variable

may be the occurrence of debris-flow events, which are necessary to deliver sediment to

the channel for export and reflected in the possible association with extreme rainfall events
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described above. In the absence of such events, exhaustion effects can develop. It is not

possible to distinguish if the increase of annual sediment export in the Douves Blanches

watershed is related to enhanced sediment production induced by climate change, higher

volumetric transport capacity available to mobilize stored material and to deliver it to the

channel network or, as is probably the case, both.
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Figure 8.11 – Modelled sediment transport capacity following Nitsche et al. [2011] and its
relation with (a) watershed water yield and (b) volume of exported sediment (with packing
density uncertainties) for the Douves Blanches watershed.

In the Bertol watershed (Figure 8.12a), annual water yield and volumetric transport capacity

integrated through each year progressively increase between the end of the 1960s and 2014.

These two indicators are strongly correlated (r = 0.927; p < 0.001). However, unlike for Douves

Blanches, the estimated volume of sediment exported is almost completely unrelated to

volumetric transport capacity (Figure 8.12b, r = 0.039; p > 0.05), and seems to oscillate between

periods of high export and of low delivery. Effectively, and as the exported volume is linearly

related to the number of purges in Figure 8.9b, after small peaks at the beginning of the 1970s

and 1980s, it peaks at the first years of the 1990s, the first years of the 2000s and again in

most recent years. During the late 1970s, 1980s, 1990s and 2000s lower amounts are exported,

and this despite volumetric transport capacity being even higher than in the periods of more

important sediment export. As in the Douves Blanches watershed, estimations of sediment

transport capacity are orders of magnitude higher than the measured export. These results

demonstrate again that sediment delivery at the outlet is likely to be less dependent on the

capacity of the river to transport sediment, and more dependent on sediment delivery. Field

observations show that large amounts of unconsolidated material are available in the system,

yet these appear to be unable to leave the watershed. We hypothesize that this is due to

topographic complexity and hillslope surface roughness, that translate into the ineffectiveness

of the sediment cascade and/or poor within-channel connectivity upstream. The coincidence

of sediment export peaks and climatic extremes sustain this interpretation. High temperature

and intense precipitation potentially enhance the efficiency of the sediment cascade, notably

allowing debris-flows to move talus sediments further downslope, so supplying solid charge to

the (efficient) channel network outlet. We explore sediment connectivity in the next section.
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Figure 8.12 – Modelled sediment transport capacity following Nitsche et al. [2011] and its
relation with (a) watershed water yield and (b) volume of exported sediment (with packing
density uncertainties) for the Bertol watershed.

8.3.5 Sediment connectivity within the watersheds

In both the Douves Blanches and the Bertol watersheds, the estimated volumetric sediment

transport capacity was substantially higher than measured sediment export, suggesting that

sediment transport could be limited by supply and notably the efficiency of the sediment

transport cascade. To investigate the coupling between sediment source areas and the fluvial

and torrential network, the Connectivity Index proposed by Borselli et al. [2008] and Cavalli

et al. [2013] was calculated (Figure 8.13). For the Douves Blanches watershed, it suggests that

the watershed divides quite clearly into a more connected zone and a less connected zone.

The glacierized part of the watershed is disconnected because of the barrier represented by

the LIA moraine crest (see Figure 8.2), in a context similar to that described in Micheletti

et al. [2015b] for another watershed in the region. The rockwalls (with probable permafrost

presence, PERMOS [2009]) are likely to supply large amounts of sediment, yet these remain

stored in the proglacial area, hence a signal of enhancement of sediment production induced

by climate forcing would not be visible in the purge records. The increased sediment export

(see Figure 8.9, a) has to be attributed to the lower, very steep area, where connectivity is

better established. Field evidence indicates that the driving processes for sediment delivery

are erosion of morainic material and debris-flow events. The latter may be increasing in

frequency through sediment release from decaying permafrost sites under the influence of

air temperature [Huggel et al., 2012]. In the present case, a possible source would be the

northwest-facing rockwalls that allegedly feature permafrost [PERMOS, 2009]. Hence, the

joint effect of water yield (and thus transport capacity) increase and of rapid climate warming

might explain why sediment export rates have grown since the 1990s in the Douves Blanches

watershed. Nonetheless, the generalization of these dynamics requires care, as the response

of hillslope sediment transfer can vary even within a single massif (e.g. Jomelli et al. [2007]).

In the Bertol watershed, very high values are concentrated within the main streams. Evident

disconnections are detected in the lower part of the watershed, were rock glaciers are located
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Figure 8.13 – Connectivity Index in the Douves Blanches and Bertol watersheds computed
following Borselli et al. [2008] and Cavalli et al. [2013].

(see Figure 8.7b). This is particularly relevant for the Southern part of the watershed, where

permafrost dynamics were identified (see Section 8.3.1). In that area, only small channels

have high connectivity, and landforms that potentially produce high amounts of sediments

are disconnected from the drainage system. The front of the rock glacier nearest the water

intake seems well connected, but the rock glacier does not appear to be very active (see the

absence of change in Figure 8.7a). On the glacier surface and in the proglacial area various

low connectivity (blue) spots are present. These are likely to act as sediment sinks, potentially

trapping loose material. As a result, the rockwall-hillslope-channel-outlet sediment transfer

might be inefficient. These results are coherent with the low correlation found between stream

transport capacity and estimated sediment exports. Coarse material is presumably rarely

transported and delivered to the drainage system in most of the catchment. Accordingly,

sediment delivery at the water intake appears mostly controlled by extreme events as: (i) high

temperatures potentially enhancing sediment production [Huggel et al., 2012; Bennett et al.,

2013], and (ii) intense rainfall events, both eroding and mobilizing sediments on hillslopes

[Stoffel and Huggel, 2012], as demonstrated by their coincidence in Figure 8.9b.
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8.4 Discussion

The last five decades history of the Douves Blanches and Bertol watersheds suggests that, in the

face of rapid climate warming, the hydrological and geomorphological dynamics of small and

partially glaciated Alpine watersheds are changing. The change began with the considerable

increase in temperature in the second part of the 1980s. In the first instance, a transition

from a phase of glacier growth (1960s-1980s) to continuous glacier recession (mid-1980s-

ongoing) occurred. Similar findings have been reported elsewhere. For instance, Huss [2012]

estimated a decadal mean mass balance of +0.11 m w.e. yr−1 between 1970 and 1980, followed

by respectively -0.40, -0.68 and -0.99 m w.e. yr−1 in the following three decades. Another

consequence of temperature rise has been the modification of contribution to the river flow.

Whereas precipitation was the widely dominant water source for streams until the mid-1980s,

its relative contribution then started decreasing, although its absolute input remained stable.

The explanation lies in the rising contribution of other sources, notably ice melt and the

unquantified snowmelt, and it is most likely that the snowpack no longer contributes to glacier

growth but becomes a subsidy of water yield and that additional contributions come from

thawing of permafrost-related landforms. These changes have caused water yield to almost

double in the studied watersheds through the last five decades. An increase in annual runoff in

similar watersheds is a frequent outcome of rapid climate warming [Huss et al., 2008; Farinotti

et al., 2012].

The records of sediment export that we make use of in this paper are extremely rare and allow

us to get a decadal scale estimate of the extent to which watersheds that are being forced by

rapid warming lead to significant sediment export. The increase in the frequency of sediment

flushing at the watershed outlets from 1990 did suggest that contemporary sediment yield was

rising. At least some of this could be related to rising sediment transport capacity associated

with the rising water yield. But, it did not explain the pattern completely and there was substan-

tial additional variability, suggesting processes other than the ability of the stream to transport

sediment may be important. First, it should be noted that, under the influence of higher air

temperatures, sediment production may be enhanced, as documented in other studies [Kääb

et al., 2007; Knight and Harrison, 2009; Huggel et al., 2012; Bennett et al., 2013; Lane et al.,

2016]. There is some evidence that as the warming begins in the mid-1980s, sediment export

increases, manifest as a clear wave form in Bertol until the late 1990s, and possibly in the

same way in Douves Blanches, but where there is much more variability. Second, identifying

the effects of warming on sediment export was difficult because of a buffering effect in the

sediment cascade associated with connectivity [Heckmann and Schwanghard, 2013; Bennett

et al., 2014; Messenzehl et al., 2014; Micheletti et al., 2015b; Lane et al., 2016]. Albeit mani-

fest in different ways, in both watersheds, we argue that topography complexity and surface

roughness play a fundamental role in controlling this buffering effect. In Douves Blanches, the

vast majority of the watersheds (including the allegedly frozen rockwalls) are disconnected

from the outlet by a LIA moraine crest in a comparable way to that described by Micheletti

et al. [2015b] for a glacier a few km to the North. In Bertol, disconnected areas, sediment
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sinks and rough surfaces impeded sediment delivery to the proglacial river. Hence, while the

climate forcing of sediment export is partially visible at the water intakes, the sediment export

records may under-estimate the actual levels of material mobilization upstream in response to

climate forcing. Conversely, the ineffectiveness of rockwall-hillslope-channel-outlet connec-

tivity may reduce the extent to which climate forcing of landscape response can be detected

in valley-bottom sediment delivery and deposits. This implies that landscape sensitivity to

climate forcing and the propagation of change are related to connectivity (see Brunsden

and Thornes [1979]). Given that we study sediment export from two adjacent watersheds

with different controls on connectivity (Figure 8.13) and different sediment export records

(Figure 8.9) generalizing climate forcing impacts on sediment dynamics needs to pay careful

attention to the geomorphic functioning of the watershed being considered, and its context

in the landscape. For example, in a study of a valley glacier in the region, Lane et al. [2016]

describe how sediment delivery downstream is enhanced with glacier recession because of

the replacement of slow glacier surface sediment transport with more rapid fluvial transport

and because of the evolution of sediment connectivity. As shown in Section 8.3.1, the snout

of both Douves Blanches and Bertol glaciers did not change position significantly during

the period of study, and they are situated in steeper watersheds. Thus, we argue that glacier

recession is not relevant in these smaller and steeper watersheds because of the absence of

valley sidewall debuttressing and of large areas where braided rivers can develop and access

and mobilize sediment. Rather, increasing sediment export is a function of extreme events

that can overcome the poor level of coupling to stream channels and the associated low levels

of connectivity in the sediment cascade. Low rates of glacier recession are sustained by the

insulating effect of a heavily debris mantle [Lambrecht et al., 2011; Capt et al., 2016] and glacier

confinement in a relatively colder zone (their snout is located at 2850 and 2830 m a.s.l., a few

hundred meters higher than the Haut Glacier d’Arolla studied by Lane et al. [2016]).

Third, there was some evidence of the importance of extreme storms as a control on erosion

and delivering sediments from hillslopes to the stream [Stoffel and Huggel, 2012]. The evidence

was clearest in the Bertol watershed (Figure 8.9b), even though not every extreme precipitation

event or warm year resulted in high volumes of exported sediment. We suggest that extreme

events are necessary to overcome transport-limitation in the hillslope sediment system given

that the proglacial streams of both watersheds are efficient in transporting sediments once

delivered. These considerations are supported by the relatively low volumes of sediment

export observed at the water intakes, but highlight the difficulty in predicting future behaviour

of sediment yield in Alpine watersheds advanced by Raymond Pralong et al. [2015] without

reference to within-watershed processes.

By reason of the considerations above, formulating scenarios for future sediment export for

these small, partially glaciated watersheds is challenging. Water yield is likely to increase

further, at least until it becomes limited by available ice to melt, and with it sediment transport

capacity in the drainage network. Farinotti et al. [2012] foresee that maximum annual runoff in

Alpine watersheds is going to be reached by 2050, followed by a tendency to decreasing and/or

more variable water yield, although it is still unclear how this timing applies to small, heavily
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debris-covered glaciers. Nevertheless, as demonstrated in this research, the controlling factor

on future sediment export would more likely be the actual efficiency of the rockwall-hillslope-

channel cascade. Whilst we expect an increase in sediment production within the watersheds

in particular by mean of the decay of permafrost, most of the material is unlikely to leave the

basin because of poor connectivity. As a consequence, the volumes of material produced and

mobilized under the effect of climate forcing are going to be much higher than the actual

delivery at the valley bottom. On the other hand, heavy rainfall events and debris-flows play a

fundamental role in sediment export and are likely to produce years of very high delivery at

the outlets, requiring an increase in the frequency of flushing operations in the water intakes.

Thus, we would expect an extremely high interannual variability in sediment export in the

future, similar to what observed for the period 2000-2014 (Figure 8.9).

More critically, investigating landscape dynamics in small watersheds over the timescales of

decades is challenging because of the difficulty of collecting high quality observations. The

present contribution benefits from the coupling of archival imagery, long term records of

operation in hydroelectric power water intakes and climatic and meteorological data from

stations located in proximity of the study area. Despite the good quality of these data, a

number of uncertainties and limitations arise. Photogrammetrically-derived DEMs and the

associated estimates of surface change could not account for rockfall activity (impossible to

observe from aerial imagery because of the steepness of the rockwalls) and low magnitude

erosion and deposition patterns. Hydropower intakes records are generally of good quality

in the cases studied here because they have to meet regulatory requirements, but unrealistic

water yields were observed prior to 1985 for one watershed. Other aspects not treated here

include the relative contribution of sediment from glacial and proglacial areas and the role of

seasonality. We would expect sediment delivery from the proglacial area during the snowmelt

period and in case of intense rainfall events, and from glaciated areas during the glacier

melting period in the summer, because of the crucial role of runoff generation processes on

sediment supply and temporal availability [Mao et al., 2014]. Other studies found that the

suspended sediment supply is approximately equally divided between snowmelt season and

glacier melting [Mao and Carrillo, 2015]. However, our data do not allow seasonality effects

to be identified. Modelling transport capacity following Nitsche et al. [2011] incorporates a

number of assumptions and the predictions obtained can only be used indicatively. Finally,

estimating the contribution of rainfall and ice melt to river flow was tentative, as it required

a number of assumptions, estimations and boundary conditions to be accepted and these

types of analysis are naturally challenging. Nonetheless, and in spite a number of processes

remaining unquantified, the general trend of the last five decades in these watersheds could

be observed.

Future developments to better understand how these small partially glaciated Alpine wa-

tersheds react to ongoing climatic change are required. First, additional data need to be

collected within the watersheds, including grain size estimations, the location of their de-

posits, permafrost presence/degradation and sediment production patterns. Collecting such

information is challenging because of the steep and dangerous nature of the sites, but much
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may be done using remote sensing methods, especially terrestrial laser scanning and the

emerging drone technologies. Second, coupling our knowledge of the 1960s-to-present evo-

lution of these landscape with Regional Climate Models (RCMs) is necessary to deepen our

understanding on how sediment flux may be affected by climate change in the next decades.

Whilst there are important contributions to this subject (e.g. Raymond Pralong et al. [2015]),

it could be argued that at present we do not sufficiently understand the impacts of climate

change on geomorphological systems or their sensitivity to such changes [Knight and Harrison,

2009], as demonstrated by the complex patterns unveiled in this research.

8.5 Conclusions

The impacts of last five decades climate forcing on landscape dynamics in small, partially

glaciated Alpine watersheds has been investigated using archival aerial imagery and long-term

records from hydroelectric power infrastructure. Photogrammetrically derived DEMs allowed

the identification of significant surface change within the watershed. These observations

are coupled with geomorphological maps to identify the spatial assemblage of landforms

present within the watersheds. Data from water intakes provided estimations of annual water

flow, while the frequency of sediment flushing operations (the so-called purges) were used to

estimate volumes of sediment leaving the system. Extant climate data from meteorological

stations located near the area of study permitted the interpretation of results in the matter of

climate forcing.

A transition from a cooler and stable period to a context of rapid temperature warming

occurred in the mid-1980s and provoked a shift in glacier dynamics, from glacial advance to

recession. The related enhanced snowmelt and ice melt contribution induced an increase in

annual water yield for the studied watersheds. The frequency of purging events, and hence

sediment export, increased, although years of low sediment export are still observed. Climatic

conditions favourable for sediment production and mobilization (high temperatures and

extreme rainfall events) are related to peaks in sediment flushing. The fact that the modelled

annual transport capacity of streams was much greater than rates of export suggests that

these flows are in supply-limited conditions. A key role is attributed to the ineffectiveness

of the sediment cascade, with several consequences. First, sediment delivery downstream

might be associated more with single events such as rockfalls or debris-flows that occurred

when certain conditions or triggering points are met, and when sediment connection can be

assured. These occurrences might help mobilize the wide amounts of sediments available

in the system (historically or for minor, recent events). Second, ineffectual connectivity

means that climate forcing of sediment dynamics is only partially manifest at watershed

outlets, and by implication in deposits downstream. Thus, identifying watershed response

to climate forcing from sediment deposits may be a challenge. Finally, coupling of these

considerations highlights the difficulty in observing, understanding, modelling and predicting

future sediment yield in these landscapes, despite these questions being of fundamental

importance because of the significant impact that sediment transport has on hydroelectric
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power infrastructure.
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9 Conclusions

9.1 Remote sensing methods for the investigation of the geomor-

phic dynamics of Alpine landscapes

As mentioned more than once along the chapters of this thesis, remote sensing techniques

have greatly contributed in the field of geomorphology by serving as a valuable resource to

obtain spatially extensive topographic datasets, especially in areas difficult to access. This

thesis endorsed the potential of photogrammetric methods and laser scanning techniques for

investigating the geomorphic dynamics of an Alpine site. Whilst several cases of application of

these approaches in the field of geomorphology exist (e.g. Chandler and Brunsden [1995]; Kääb

and Vollmer [2000]; Lane et al. [2000]; Heritage and Hetherington [2007]; Kneisel and Kääb

[2007]; Alho et al. [2009]; Bennett et al. [2013]; Deems et al. [2013]; Abellan et al. [2014]; Gabbud

et al. [2015, 2016]), it is also true that: (i) their use is challenging in Alpine environments with

steep slopes and large elevation differences, and (ii) the motivation of geomorphologists is

not the method itself but the data that the method can provide. Thus, geomorphologists are

constantly seeking innovative data acquisition methods and processing procedures that might

reduce financial costs, relax or even remove acquisition constrains, speed up data processing,

reduce the computational burden, etc. This work contributed to this goal as a primary thesis

aim. In addition, this thesis represented a step further towards the understanding of the

impacts and consequences of climate change on geomorphic dynamics in mountain regions.

In this concluding chapter, the major contributions of the thesis are summarized under these

two headings and remaining research questions are presented.

9.1.1 Remote sensing methods for Alpine research

Archives of aerial photographs represent a unique opportunity for obtaining spatially extensive

and quantitative information on past landscapes. In Chapter 3 we addressed the challenge of

working with archival imagery in Alpine environments, by reason of topographic complexity

(including occlusions and large elevation ranges), sub-optimal quality and varying scale of
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imagery, and the difficulties of establishing ground control. Chapter 3 also presented means to

overcome these challenges. The complete workflow proposed included techniques to establish

appropriate control, caveats to accomplish each step of the photogrammetric analysis and

a conservative error propagation approach. Results suggested a height precision close to

theoretical expectations [Fryer et al., 1994] that is, of ±1 to ±3 parts per 10000 of the flying

height. By following the procedure suggested in Chapter 3, it is possible to employ archival

imagery to obtain high-quality DEMs and orthophoto-images suitable for geomorphological

research.

The popularity of Structure-from-Motion photogrammetry for geoscience applications is

due to its ability to rapidly generate three-dimensional data with minimal financial cost and

expertise. Developments even include low cost, sometimes free, internet-based processing

systems, where images can be uploaded and processed to derive three-dimensional data in

only a few minutes. The ease of sensor distortion modelling in SfM approaches permits the

use of consumer grade digital cameras, including the near ubiquitous smartphones. Taken

together, these two developments offer the possibility of near instantaneous acquisition of 3D

data, based upon the analysis of smartphone-acquired images submitted using wireless com-

munication systems. In Chapter 4 we assessed how far SfM can be taken in terms of enabling

exceptionally low cost, rapid and easy digital terrain model acquisition for geomorphological

applications. Straightforward SfM approaches using basic smartphone imaging technology

and partially and fully automated data-processing resources provided very satisfying outcomes

for both close and intermediate ranges of applications. The quality of results appears to be

strictly related to the quality and the scale of the photograph and to image geometry. However,

and despite the emergence of automated calibration and matching routines, recognition of

traditional photogrammetric principles remains critical for successful application using SfM.

In this regard, Chapter 4 and its related guidelines paper [Micheletti et al., 2015] offer tips and

caveats for profitably exploiting SfM photogrammetry.

Major software corporations (Google, Microsoft, Autodesk) are giving particular attention

to historical and recent developments in both photogrammetry and computer vision, and

this will lead to further radical and rapid improvements in SfM algorithms in the near future,

including highly automated routines. The latter, associated with the rise in popularity of

Unmanned Aerial Vehicles (UAVs, or drones) as imagery acquisition alternatives, are making

SfM photogrammetry more and more accessible to non-expert users. SfM approaches are

already substituting the routinely used laser scanning techniques for DEM collection, and it

should be expected that they become the dominant choice for high-resolution topographic

surveying in the Earth sciences.

Often compared to SfM methods in recent times, terrestrial laser scanning (TLS) has been

one of the most successful method for three-dimensional data collection in the geosciences.

However, most existing TLS operate at wavelengths highly absorbed by snow and ice, and this

strongly limits their application in the field of glaciology. A new generations of TLS systems

employing wavelengths in the near-infrared now allows long-range scanning of icy and snowy
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surfaces. In Gabbud et al. [2015] we tested these technical developments for the monitoring

of a glacier surface at the seasonal and daily scales. At the seasonal scale, spatial patterns of

surface melt were quantified and appeared to be controlled by both aspect and debris cover.

At the daily scale, evidence highlightde the effects of differential debris cover (ogive-related)

on ablation patterns. Moreover, an alleged hydraulic jacking of the glacier associated with

short-term water pressure rise has been observed.

Traditionally, a major challenge for TLS applications is the burden of managing the large

number of points acquired, the handling of the effects of occlusions or spatially-variable point

densities, and the common practice of interpolating point clouds to regular raster grids or

triangulated irregular network, with several consequences for the subsequent quantitative

estimations. Because of these reasons, being able to perform calculations directly on point

clouds would be profitable. In Chapter 5 we proposed a semi-automatic clustering approach

for point cloud analysis based on the Density-Based Scan Algorithm with Noise (DBSCAN).

The latter permits the accurate detection and mapping of erosion and deposition features

directly from two co-registered point clouds of the same area, without the need to thin or to

interpolate the original three-dimensional datasets. Accordingly, realistic volumetric features

(depending only on the actual data available) are extracted. The proposed approach is suitable

for any type of point clouds.

9.1.2 Recent climate forcing and geomorphic dynamics in Alpine landscape

The scientific community is making great efforts to better understand, relate and quantify

the consequences of anthropological-driven climate change for the Earth system, but scien-

tific knowledge remains incomplete in some domains. In particular, little is known about

the expected impacts on geomorphic dynamics in mountain watersheds, notably regarding

sediment production and transfer. This thesis concentrated on this issues, and permits to

draw some considerations on this topic.

Although anthropological-driven climate change appears to have accelerated during recent

decades (see Figures 7.3 and 8.3), the analysis of DEMs between the 1960s and present day

highlights a general stability of non-glacial or periglacial areas of the steep hillslopes in the

case study chosen here (Figures 7.6 and 8.7), and this despite the ample availability of uncon-

solidated material characteristic of these environments. Surface changes appear confined

to specific areas of the landscape and the greatest rates of change concern mostly glacial

and periglacial landforms. Nonetheless, a distinct landscape response to warm and cold

periods and to changes in rates of precipitation and snow cover is observed (Figures 7.7 and

8.8). Warming periods seem to be associated with some detectable increases in downwasting.

However, subsequent image analysis showed that in zones where there was low or even non-

significant surface elevation change, there could be significant lateral surface displacement

(e.g. rock glaciers, Figure 7.9,7.11 and 9.1). These also seemed to be sensitive to climate, with

rock glaciers acceleration during warmer periods. This work emphasizes the importance of

not only focusing on surface change in evaluating climate change impacts on landscapes.
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Figure 9.1 – Vectors of surface displacement for the La Roussette rock glacier between 1999
and 2005 (pixel size: 0.35 m x 0.35 m).

Glaciers are the elements of the landscape featuring the highest absolute sensitivity that is,

they undergo the topmost magnitude of change at the temporal scale considered. Our results

demonstrated that low temperatures and abundant precipitation and snow cover from the

mid-1970s translated into large amounts of unmelted snow at the end of warm seasons (Figure

7.5b), and to positive mass balances for many glaciers in the area. This pattern has been

generally observed for the vast majority of glaciers in Switzerland [Haeberli and Beniston,

1998]. Nevertheless, we observed that not all glaciers in the region have grown during this

cooler period; the Haut Glacier d’Arolla has been in constant recession since the 1960s (Figure

9.2, Gabbud et al. [2016]).

Another consequence of temperature rise has been the modification of the hydrological

dynamics of proglacial streams. The absolute input of precipitation has not considerably

changed in the last five decades (Figures 7.4 and 8.4). However, whilst precipitation was the

widely dominant water source for these streams until the mid-1980s, its relative contribution

started decreasing because of the rising input provided by ice melt (glacial shrinkage) and

snowmelt (Figure 8.10). These changes caused water yield to almost double through the last

50 years in the Douve Blanche and Bertol watersheds (Figures 8.9 and 8.10) and to increase

by c. 50% downstream of the Haut Glacier d’Arolla snout (see Figure 3 in Lane et al. [2016]).

This increase is a frequent outcome of rapid air temperature rise in streams regulated by

glacial-nival flow regimes [Huss et al., 2008; Farinotti et al., 2012].

We engaged further with data from the hydroelectric power system by analysing the frequency
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Figure 9.2 – Haut Glacier d’Arolla stages since 1967, originally published in Gabbud et al. [2016]
(modified, Orthophoto: Swisstopo 2010).

of sediment flushing at the watershed outlets, which are equipped with water intake structures.

We observed that an increase in the frequency of these events occurred, and this can be taken

as a proxy for enhancement of sediment export. At least some of this could be related to

intensification of sediment production under the influence of warmer air temperatures [Kääb

et al., 2007; Knight and Harrison, 2009; Huggel et al., 2012; Bennett et al., 2013] and rising

transport capacity associated with increase in water yield (Figures 8.11 and 8.12). However,

substantial variability remains for all the watersheds considered (Figure 8.9 and Figure 4 in

Lane et al. [2016]), suggesting that other factors ought to be relevant. Evidence from the

analysis of topographic complexity shows that disconnected areas and rough surfaces possibly

caused the delivery into the proglacial streams to be impeded (Figure 8.13). As a consequence,

the sediment export records may under-estimate the actual levels of upstream response to

climate forcing. Furthermore, we observed an explicit coincidence between extreme events

(i.e. heavy rainfall events, thunderstorms and persistent precipitation) and peaks of sediment

export in the Douve Blanche and Bertol watersheds (Figure 8.9), suggesting that these events

are necessary to overcome the transport-limitation condition of slopes within of basins and to

deliver sediment to the transport-efficient but supply-limited proglacial channels. Despite the
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high magnitudes of geomorphic changes are observed in these basins, relatively low volumes

of sediment exports are observed at the water intakes (magnitudes less than the estimated

sediment transport capacity, Figures 8.11 and 8.12 ). This sustains the interpretations above.

Various studies demonstrated that in most cases only a reduced part of the hillslope is coupled

to the channel network by reason of natural or anthropogenic barriers, leading to abundant

hillslope sediment storage [Harvey, 2002; Heckmann and Schwanghard, 2013]). Consequently,

the effect of changes in erosion and deposition may be spatially restricted (see also Harvey

[2001]). In the region of study, Little Ice Age moraine crests contributed in many occasion

to cause disconnection of rockwalls and glacial and proglacial systems from the rest of the

hillslope and the valley bottom (e.g. Figure 7.12). We observed that rock glaciers act as

intermediate storage units, buffering the sediment transfer throughout the hillslope. However,

rock glacier acceleration under warming climatic conditions could translate into shorter

intermediate storage of material. Furthermore, it has been found that, especially during

remarkably hot summers, rock glaciers produce several hundreds of cubic meters of sediment

at their front (Chapter 5). This material is released downstream, but its propagation depends

mainly on topography. Often, and as in the case of Tsarmine (see Chapters 5 and 7), the

material does not propagate far as it becomes blocked in narrow channels because of its

coarse nature combined with relatively limited water supply. As a consequence, and as

evidence shows, although sediment production at a rock glacier front may be enhanced under

warmer climatic conditions, delivery to the valley bottom may not be strongly affected at the

timescales of decades. On the other hand, by reason of the fundamental role of disconnections

and buffers, zones of highest sediment delivery at the valley bottom may be mostly associated

with the best sediment connectivity and not with the largest surface changes upslope or the

greatest sediment availability. In that sense, as also noted by Müller et al. [2014], the actual

mobilized material at the top of the sediment cascade is much higher than the actual delivery

to alpine valley bottoms. These observations somehow challenge the alarmist conception of a

geomorphological crisis of Alpine systems at decadal scale (e.g. Mercier [2008]), in contempt

of observed permafrost degradation, rapid glacier recession and acceleration in sediment

production and transport rates (e.g. Jomelli et al. [2004]; Roer et al. [2008]; Huggel et al. [2010,

2012]; Bennett et al. [2013]). In fact, whilst climate change naturally leads to paraglacial and

paraperiglacial geomorphological adjustment [Mercier, 2008; Scapozza, 2013], the Little Ice

Age and the 20th century cooling period (1950s-1980s) to which we compare our present

process observations may have been a brief pause in the Holocene paraglacial adjustment,

and paraglacial sediment fluxes may be slowed with associated sediment export occurring

centuries or even millennia after the beginning of deglaciation [Ballantyne, 2002] and this

adjustment can be prolonged for several centuries or millenniums in areas of sediment storage

as in Alpine regions [Cossart and Fort, 2008; Mercier, 2008]. Nonetheless, the present trends

in greenhouse-gas and aerosol emissions are now moving the Earth system into a regime

in terms of multi-decadal rates of change that are unprecedented in the last thousands of

years [Smith et al., 2015]; anthropogenically driven climate changes are indeed altering the

natural course of the climatic variability of the Holocene. Although the consequences of recent

climate change are visible, we might still have to wait to see how ongoing rapid climate change
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will play out for Alpine environments. The extent of paraglacial process acceleration is likely

going to depend on future human activities and greenhouse-gas emissions.

In conclusion, the geomorphic dynamics in mountain watersheds appear to be impacted

by recent climate change, mostly by reason of their dependence upon ice and permafrost

conditions. Nevertheless, sediment fluxes are more confined and climate change impacts are

consequently not easily propagating through the sediment cascade of high mountain systems.

On the one hand, these processes are likely to be part of the Holocene paraglacial adjustment

of these mountain regions, and sediment signals may be delayed for many centuries or

even millennia. On the other hand, the role of anthropogenic activities in accelerating and

exacerbating the current climate warming may accelerate it.

9.1.3 Summary of the main contributions of the thesis

The main contribution of the thesis can be summarized as follows:

• The development of a workflow to overcome the challenges often encountered by

geomorphologists working with (archival) aerial photogrammetry in steep and complex

terrain (Chapter 3).

• Demonstration that it is possible to acquire high-resolution topographic and terrain

data using hand-held smartphone technology coupled with Structure-from-Motion

internet-based processing systems (Chapter 4).

• The promotion of a 3-D clustering approach for feature detection directly from point

clouds (Chapter 5) obtained for steep mountain sides.

• A contribution to our understanding of the response of high mountain geomorphic

systems to recent climate change, in particular:

– Quantification of the geomorphic dynamics of a whole alpine mountainside and

of the individual elements that compose it (Chapter 7)

– Demonstration of the role of hydrological dynamics and sediment connectivity in

the response to climate change of glaciated basin (Chapter 8)

9.2 Future research

9.2.1 Remote sensing methods for Alpine research

In this thesis we concentrated on photogrammetric approaches and terrestrial laser scanning

for Alpine research. Whilst their application proved successful and the results were satisfying,

the use of these technologies encompasses some issues. Whilst a major problem with LiDAR

devices is their high financial cost, in high mountain the angle of incidence of the laser pulse
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and the shade effect caused by complex topography are also problematic. Commissioned pho-

tography (i.e. aerial imagery) are also very expensive, and it is not always possible to control

when the data can be acquired. A great opportunity to reduce the cost of data acquisition while

increasing its frequency is represented by Unmanned Aerial Vehicles (UAVs), which are becom-

ing the more and more popular, efficient and reliable. UAV-collected imagery processed using

SfM-MVS is becoming a primer approach to monitor landforms and landscapes following the

developments reviewed by Smith et al. [2015] (e.g. improvements in on-board GPS systems,

in image stability, etc.). In the context of this thesis, it would be interesting to collect aerial

imagery using drone devices to obtain extremely high resolution DEM and orthophotographs,

to detect geomorphic changes and surface displacements over short terms.

Whilst UAVs represent a primary resource for future landscape and landform monitoring,

it would be profitable to develop and implement methods to make a better use of the wide

archives of historical imagery. As mentioned earlier (see Chapter 3), working in high mountain

regions might complicate the photogrammetric restitution and stereo-matching results could

still feature a relatively coarse resolution in some areas. A possible way to address this issue is

to perform a stochastic downscaling of digital elevation models. LiDAR and UAVs approach

allow the acquisition of very high resolution altimetric data, but only within reduced spatial

extents. Nonetheless, this data could be used in specific algorithms, e.g. harnessing a multiple-

point geostatistical simulation, to downscale the coarse, historical 3D data to higher resolution

(e.g. Rasera et al. [2016]).

Another extension of this thesis could be the improvement of the change detection methodol-

ogy to produce more robust and spatially variable estimation of historical DEM uncertainties.

Propagating these uncertainties would likely lead to estimates of geomorphic changes of

higher quality, as shown for the DBSCAN application in Chapter 5. In this regard, two possible

approaches for regular grids have been proposed by Wheaton et al. [2010]: one based on a

fuzzy interference system and one relying on the spatial coherence of erosion and deposition

units to modify DEM uncertainty. The application of these (or similar) calculations could

significantly improve the quality or reinforce the confidence of the volumetric changes and

the DEMs of Difference presented in Chapters 7 and 8.

Finally, aerial photogrammetry is not able to successfully reproduce near vertical landforms

(e.g. rockwalls), and thus surface changes in these areas could not be estimated with this

technique. Accordingly, it would prove useful to test methods for highly oblique monitoring.

If one possibility is represented by the use of TLS devices (e.g. Heckmann et al. [2012]; Abellan

et al. [2014]; Tonini and Abellan [2014]), UAVs serve as a cheap and practical alternative.

9.2.2 Recent evolution of Alpine landscapes

The possible extensions of the investigations presented in this thesis are numerous. They are

mostly targeted at understanding in depth how the elements of mountain geomorphic systems

are evolving and how they couple together in the systemic, holistic ensemble that they form.
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First, some efforts should be put into quantifying sediment production rates at the top of the

cascade, i.e. the rockwalls. Effectively, sediment production from rockfall events are a primary

input and a first-order geomorphic agent in mountain systems. Whilst it was not possible

to retrieve insights in this regard from aerial photographs by reason of their near-vertical

characteristics, TLS data could be employed to perform a detailed monitoring of rockfall events

(e.g. Heckmann et al. [2012]). However, this would require long term monitoring to assess

sediment production rates confidently so as to determine their relation to climate warming.

Useful information could also be obtained by measuring/modelling of MARST (Mean Annual

Rock Surface Temperature) and of the frequency of freeze-thaw cycles (e.g. Magnin et al.

[2015]). These could help us identify the location of the frost-cracking window [Hales and

Roering, 2007, 2009] and infer if, where and when enhancement of sediment production by

ice segregation is to expect. These processes are very likely to play a fundamental role in

terms of input of material at the upper part of the sediment cascade. Effectively, as shown in

recent studies (e.g. Messenzehl et al. [2016]), regional-scale rockfall activity is mostly driven

by topo-climatic (strictly permafrost-related) and paraglacial (adjustment following the last

glaciation maximum) factors.

A related topic regards ground temperatures. A deeper knowledge of permafrost distribution

in the Alps would be beneficial to explain the observed surface changes and to infer areas

prone to a stronger response to changing climatic conditions. However, by reason of the

complexity of the micro-scale processes responsible for controlling permafrost presence, this

task is very challenging and requires innovative modelling approaches. Numerous models

exist for permafrost mapping, but none is able to predict the occurrence of permafrost at

the very local scale. One solution would be to harness machine learning (ML) methods,

which have the advantage of inferring functional dependencies between permafrost and its

explaining controlling factors by deriving them directly from labelled training data (pixels

of permafrost absence and presence) with the purpose of predicting permafrost occurrence

where the latter is unknown [Deluigi and Lambiel, 2013]. ML techniques can be coupled with

feature selection algorithms or have an embedded ability to provide measures of the variable

importance. This allows the identification of the statistical contribution of each controlling

factor without recurring to complex physical models.

If monitoring rockfall activity could provide an insight on sediment input for Alpine systems,

analysing tree-rings at the valley bottom could contribute to the reconstruction of past delivery

from the mountainsides. Effectively, dendrochronology could be employed to date collisions

between solid charge (e.g. debris-flow material) and trees, thus estimating the frequency of

substantial sediment delivery and its change over time [Stoffel et al., 2010]. To this regard, a

field campaign has been carried out on the Satarma alluvial fan (see Figures 4.5 and 7.12),

various trees in its channels and paleochannels were cored, and the tree-rings analysis was

performed using a state-of-the-art microscopy. Hopefully this ongoing research is going

to allow us to identify and to date major debris-flows events, to correlate them to climatic

extremes and/or to see if a substantial change in event frequency follows transitions from cold

to warming periods or changes in precipitation and/or snow cover in the 20th century.
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Finally, the rather simplistic connectivity analysis proposed in this thesis needs to be improved

to consider the possible vectors for sediment transfer and their routing. Preliminary attempts

in that regard have been made and provided encouraging results. In particular, we are aiming

at following a graph theory approach (see Heckmann and Schwanghard [2013]; Heckmann

et al. [2015]), where different geomorphological processes responsible for sediment trans-

port are simulated and coupled as start and target nodes. More specifically, the work will

assess sediment connectivity by considering: (1) potential rockfall trajectories, (2) modelled

debris-flow pathways and erosional and depositional parts, and (3) the sediment contributing

area (SCA) as the area contiguously steep adjacent to the channel network. The ultimate

objective would be the comparison of the several sub-catchments of the Arolla valley in terms

of sediment connectivity to infer how climate forcing signals could propagate through the

landscape. Moreover, we hope to be able to develop scenarios of future connectivity related to

the magnitude and frequency and/or to changing initiation of rockfall and debris-flow events.

The possible findings from the approach detailed above could represent the basis for a more

ambitious modelling of sediment transfer in high mountain landscapes in the context of a

changing climate. The objective could be the formulation of a couple system model (e.g. see

Heckmann et al. [2015]), using insights from the connectivity analysis above to qualify the

relations between different elements of the landscape. Hopefully, it would be possible to

model the effect of exogenous forces and endogenous processes for single sediment transfer

mechanisms in a coupled framework, where a transmission function could manage how

material moves through the different elements of the sediment cascade. Once that the coupled

system model has been calibrated, it could be possible to include the use of Regional Climate

Models (RCMs) to predict sediment transport in Alpine landscapes in the future, e.g. in the

second part of the 21th century considering different emissions scenarios.
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