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Much has been learned about the genetics of aging from studies in model organisms, but still little is known about naturally occur-

ring alleles that contribute to variation in longevity. For example, analysis of mutants and transgenes has identified insulin signaling

as a major regulator of longevity, yet whether standing variation in this pathway underlies microevolutionary changes in lifespan

and correlated fitness traits remains largely unclear. Here, we have analyzed the genomes of a set of Drosophila melanogaster

lines that have been maintained under direct selection for postponed reproduction and indirect selection for longevity, relative

to unselected control lines, for over 35 years. We identified many candidate loci shaped by selection for longevity and late-life

fertility, but – contrary to expectation – we did not find overrepresentation of canonical longevity genes. Instead, we found an

enrichment of immunity genes, particularly in the Toll pathway, suggesting that evolutionary changes in immune function might

underpin – in part – the evolution of late-life fertility and longevity. To test whether this genomic signature is causative, we per-

formed functional experiments. In contrast to control flies, long-lived flies tended to downregulate the expression of antimicrobial

peptides upon infection with age yet survived fungal, bacterial, and viral infections significantly better, consistent with alleviated

immunosenescence. To examine whether genes of the Toll pathway directly affect longevity, we employed conditional knock-

down using in vivo RNAi. In adults, RNAi against the Toll receptor extended lifespan, whereas silencing the pathway antagonist

cactus-–causing immune hyperactivation – dramatically shortened lifespan. Together, our results suggest that genetic changes in

the age-dependent regulation of immune homeostasis might contribute to the evolution of longer life.
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Impact Summary
Despite much progress in our understanding of the ge-

netic basis of aging, mainly from studying large-effect

mutants, little is known about natural variants that

contribute to the evolution of lifespan and related fitness

traits. To identify the mechanisms by which longevity

evolves, we sequenced a set of D. melanogaster popu-

lations that have been undergoing selection for late-life

reproduction and postponed senescence, relative to

unselected controls, for over 35 years. Instead of an

enrichment of evolutionary changes in previously

identified “canonical” longevity genes, we found an

enrichment of genetically diverged immunity genes,

suggesting that variation in immune function contributes

to the evolution of lifespan and late-life fertility. To test

this hypothesis, we employed immunity assays: long-

lived flies survived infections better and showed altered

age-dependent immune gene expression as compared

to control flies. Using in vivo RNAi we confirmed that

reduced expression of immune genes extends lifespan

while immune overactivation is strongly detrimental.

Despite major progress in our understanding of the genetic

basis of aging and life history, especially in model organisms such

as yeast, C. elegans, Drosophila, and mice (Guarente and Kenyon

2000; Partridge and Gems 2002; Tatar et al. 2003; Guarente et al.

2008; Kenyon 2010; Flatt and Heyland 2011), the identity and

effects of naturally segregating polymorphisms that affect varia-

tion in lifespan and correlated fitness traits and which might thus

underpin the evolution of longevity and life history remain poorly

understood to date (De Luca et al. 2003; Pasyukova et al. 2004;

Carbone et al. 2006; Flatt and Schmidt 2009; Paaby et al. 2014;

Carnes et al. 2015; Flatt and Partridge 2018).

Several major evolutionarily conserved pathways that regu-

late lifespan and correlated fitness traits, including insulin/insulin-

like growth factor 1 signaling (IIS), have been identified using

analyses of large-effect mutants and transgenes in the laboratory

(Partridge and Gems 2002; Tatar et al. 2003; Kenyon 2010),

but to what extent genes in these “canonical” pathways harbor

segregating alleles that affect lifespan is mostly unknown (Flatt

and Schmidt 2009; Paaby et al. 2014; Carnes et al. 2015; Flatt

and Partridge 2018). For instance, only few studies to date have

identified functional effects of segregating IIS polymorphisms

upon lifespan and correlated life-history traits in populations of

Drosophila (Paaby et al. 2010, 2014; Remolina et al. 2012) or

which contribute to longevity in human centenarians (Suh et al.

2008; Willcox et al. 2008; Flachsbart et al. 2017; Joshi et al. 2017).

Here, we take advantage of a >35-year-long laboratory se-

lection experiment for late-life fertility and increased lifespan in

Drosophila melanogaster, first published by Luckinbill and col-

leagues in 1984 (Luckinbill et al. 1984; also see Luckinbill and

Clare 1985; Arking 1987), to analyze the genomic footprints un-

derlying the evolution of delayed reproduction and postponed ag-

ing. In this long-term selection experiment, replicate lines derived

from an outbred base population have been selected for late-life

fertility and–indirectly–for increased lifespan by breeding only

from flies that survived and were fertile at a relatively old age.

In contrast, unselected replicate control lines have been propa-

gated across generations by breeding from flies with a random

age at reproduction (for details see Supplementary methods). Se-

lected flies in this experiment have evolved late-life fertility and

live �40–50% longer than unselected control flies, yet exhibit

reduced early fecundity relative to the controls (see Supplemen-

tary methods). Thus, these selection lines are subject to a genetic

trade-off between late-life performance (long life, late-life fertil-

ity) and early fecundity, as is commonly observed in laboratory

evolution experiments that directly or indirectly select for changes

in Drosophila lifespan (Luckinbill et al. 1984; Rose 1984; Zwaan

et al. 1995; Partridge et al. 1999; Stearns et al. 2000; Remolina

et al. 2012).

The central finding from our genomic analysis of this selec-

tion experiment is that evolutionary changes in innate immunity

contribute to the evolution of late-life performance in fruit flies,

probably by improving age-dependent immune homeostasis. Al-

though still little is understood about the mechanistic interplay

between immunity and aging (Garschall and Flatt 2018), our anal-

yses suggest that immune function is a major longevity assurance

mechanism that can be targeted by selection on standing genetic

variation.

Results and Discussion
POOL-SEQ IDENTIFIES A GENOME-WIDE SIGNATURE

OF LONGEVITY

To characterize the genomic signature of longevity we used next-

generation pool-sequencing (Pool-seq) (Schlötterer et al. 2014) to

obtain genome-wide allele frequency estimates from four long-

lived selection lines and two unselected control lines after �

144 generations of selection (see Supplementary methods for

details). We identified candidate SNPs by comparing allele fre-

quency differentiation between the selection and control regimes

with a stringent FST outlier approach (Lewontin and Krakauer

1973; Akey 2009) (Fig. 1A,B). The majority of SNPs (62.2%)

showed no or less differentiation between the selection ver-

sus control regime as compared to differentiation within these

regimes (selection signal-to-noise ratio � 0; Fig. 1B,C). We de-

fined SNPs as candidates if they showed very strong, consistent
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Figure 1. Genomic response to longevity selection. (A) Identification of longevity candidates. To identify candidate SNPs that have

likely been shaped by selection for longevity we performed all eight pairwise FST comparisons between the two unselected control

lines (C1, C2) and the four long-lived selection lines (S1, S2, S3, S4). SNPs were defined to represent candidates if FST(selection vs. control) >

0.9 in all eight pairwise comparisons and if they showed significant allele frequency differentiation between the selection and control

regime (Fisher’s Exact test, Bonferroni P < 10−9). See Supplementary methods for details. Using this stringent FST outlier approach we

identified 8205 candidate SNPs belonging to 868 genes. (B) Genomic “selection signal” relative to “noise.” To quantify the strength of

genetic differentiation among the selection and control lines (“selection signal”) relative to differentiation within control or selection

lines (“noise”) we calculated a “selection signal”-to-noise ratio. This ratio provides a measure of average FST differentiation among

the selection versus control regime relative to FST differentiation within regimes (see Supplementary methods). Positive values of this

log2 FST ratio indicate larger differentiation among regimes relative to within regimes, thus representing a “signal” of selection. The

genome-wide distribution of this ratio has a mode � 0, indicating equal differentiation among and within regimes. Only a very small

fraction of SNPs has a ratio � 1 that would indicate complete allelic fixation (FST = 1) among regimes, without any differentiation within

regimes. We focused our genomic analysis on candidate SNPs that represent extreme FST outliers with a ratio of � 0.9. (C) Genomic

locations of candidate SNPs. log2 FST ratio as function of genomic position on chromosomal arms X, 2L, 2R, 3L, and 3R. Candidate SNPs are

shown in red and noncandidates (i.e., nonsignificant genomic background) in gray. Note the vast excess of highly differentiated SNPs in

the selection versus control regime comparisons (values > 0), in marked contrast to the much weaker differentiation within the control

and selection regimes (values < 0). (D) Number of candidate SNPs in different combinations of eight pairwise comparisons. To define

candidate SNPs we performed all possible eight pairwise comparisons between two control and four selection lines and used a stringent

FST outlier approach (see Supplementary methods). This yielded 8205 candidate SNPs (red bar) belonging to 868 candidate genes. To

verify that this number of candidate SNPs is not due to chance we applied our candidate criteria to all 6435 possible sets of eight pairwise

comparisons; out of these combinations only one set is biologically informative in terms of inferring selection, that is the set of all eight

pairwise control versus selection comparisons (see Supplementary methods). No combination of eight pairwise comparisons yielded as

many candidate SNPs as this “true” set of comparisons (red bar), with a probability that the “true” number of candidate SNPs is due to

chance of P � 1.6 × 10−4.

and significant differentiation in all eight pairwise comparisons

between the four selection and two control lines (signal-to-

noise ratio � 0.9; FST(selection vs. control) > 0.9; Bonferroni-corrected

Fisher’s exact test: P < 10−9) (Fig. 1A,B,C). Using this ap-

proach, we identified 8205 candidate SNPs in 868 genes dis-

tributed across the entire genome (Fig. 1B; Table S1; genes were

defined as the sequence between the ends of the 5’ and 3’ UTRs

plus 1 kb up- and downstream; also see Supplementary methods).

Candidate loci appeared to cluster non-randomly in specific ge-

nomic regions, suggesting pervasive polygenic selection and/or
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indirect selection due to “hitchhiking” (“genetic draft”) (Fig. 1B;

Table S1). To further validate our set of longevity candidate SNPs

and to exclude false positives due to randomness, for example

because of genetic drift, we used a combinatorial approach (see

Supplementary methods). We found that–when applying our strin-

gent candidate criteria – it is highly unlikely (P � 1.6 × 10−4) that

this large number of candidate SNPs arose by chance (Fig. 1D).

LONGEVITY CANDIDATE GENES EXHIBIT GENETIC

PARALLELISM

While some mechanisms of longevity are evolutionarily con-

served (“shared”) among species and thus “public,” for example

insulin/insulin-like growth factor 1 signaling (IIS), most others

are likely to be lineage-specific and thus ‘private’ (Martin et al.

1996; Partridge and Gems 2002; McElwee et al. 2007). Simi-

larly, at the intraspecific level, parallel and convergent evolution

in independent populations might result in the repeated use of the

same genes underlying a given trait (“gene reuse”) (Conte et al.

2012), but to what extent this might be the case for longevity re-

mains unclear. Addressing this question might give insights into

the predictability of the evolution of lifespan at the genetic level

(Stern and Orgogozo 2008; Conte et al. 2012).

To examine how frequently the same genes are used by dif-

ferent populations during the evolution of late-life fertility and

longevity, we compared our list of candidate genes to those

from two other “Evolve and Resequence” studies of Drosophila

longevity and correlated life-history traits (Remolina et al. 2012;

Carnes et al. 2015). The study by Carnes et al. (2015) provides

a genomic analysis of an independent long-term selection exper-

iment by Rose (Rose 1984) similar in duration to ours (Luckin-

bill et al. 1984), with both selection experiments first published

back-to-back in 1984. The other study, by Remolina et al. (2012),

performed whole-genome sequencing of a shorter, 50-generation-

long selection experiment for longevity. Importantly, both Rose

(1984) and Remolina et al. (2012) selected for increased lifespan

by postponing reproduction, using a design that is qualitatively

identical to ours.

We discovered statistically significant sharing of candidate

loci across all possible overlaps among the three datasets (Fig. 2,

Table S2), indicating genetic parallelism underlying the evolution

of late-life performance. Our dataset contained 147 (11.7%) of

the candidate genes of Carnes et al. (2015) and 102 (10.9%) of

those of Remolina et al. (2012). Twenty candidate genes (�2%)

were shared across all three studies, representing clear cases of

gene reuse during the evolution of longevity and late-life fertility

(Fig. 2, Table S2). Thus, as might be expected from a highly com-

plex and polygenic trait such as lifespan (McElwee et al. 2007),

most candidate loci tend to be population-specific. However, a

small but significant proportion of candidate loci is shared among

independent populations, perhaps suggesting the existence of

Fabian & Garschall
et al. 2018
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Carnes
et al. 2015
(1255)

Remolina
et al. 2012
(933)

82
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20
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P = 0.0339 P < 0.0001

Figure 2. Sharing of candidate genes across three independent

genomic analyses of longevity selection in Drosophila. The Venn

diagram shows statistically significant overlaps between the can-

didate genes identified in our study and those of Carnes et al.

(2015) and Remolina et al. (2012), calculated with the R package

SuperExactTest (see Supplementary methods). The results indicate

that – across different populations of D. melanogaster–there ex-

ists genetic parallelism (“gene reusage”) underlying the evolution

of longevity. See Table S2 for functional annotations of the shared

longevity candidate genes; see Table S5 for statistical details.

“preferred” loci of evolutionary change (Stern and Orgogozo

2008) for longevity. Several of these “high confidence” genes rep-

resent promising candidate loci for future functional experiments.

Notably, although each study identified several loci that be-

long to “canonical” longevity pathways (Guarente and Kenyon

2000; Partridge and Gems 2002; Tatar et al. 2003; Guarente et al.

2008; Kenyon 2010), for example the IIS pathway, the candidate

lists and overlaps contain few “classical” lifespan genes that have

previously been identified in studies of large-effect mutants and

transgenes. This might be due to a lack of standing variation at

these “canonical” longevity loci: perhaps these conserved-effect

loci have been optimized by selection but are now subject to strong

purifying selection (see Remolina et al. 2012; Flatt and Partridge

2018). Thus, while segregating IIS polymorphisms with major ef-

fects on life-history traits including lifespan have been identified

(Geiger-Thornsberry and Mackay 2004; Paaby et al. 2010, 2014;

Flachsbart et al. 2017; Joshi et al. 2017), our results are consistent

with the hypothesis that loci in these canonical pathways might

be under selective constraints (see Remolina et al. 2012; Flatt and

Partridge 2018).

Even though “canonical” longevity loci seem to be underrep-

resented, many of the overlapping candidate genes that we have

identified have strong empirical support from functional genetics,

GWAS, QTL, or gene expression studies, with known roles in
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lifespan determination, somatic maintenance (e.g., resistance

against starvation or oxidative stress, immunity, metabolism),

and age-specific fecundity (see functional annotations in

Table S2). The fact that several candidate loci are known to affect

age-specific fecundity is consistent with the age-at-reproduction

selection regime used by all three studies and possibly also with

genetic trade-offs between early fecundity and lifespan (and/or

late-life fecundity) seen in these selection experiments.

LONGEVITY CANDIDATE GENES ARE ENRICHED FOR

IMMUNE FUNCTION

We next sought to characterize the functions of our candidate

loci with gene ontology (GO) analysis (Kofler and Schlötterer

2012) (Table S3; considering the ontologies “Biological Func-

tion,” “Molecular Function,” and ”Cellular Component”). Inter-

estingly, we found an enrichment of candidate genes associated

with “antifungal peptides” with a false discovery rate of �9%

(FDR = 0.085), whereas the term “determination of adult lifes-

pan” had no support (FDR = 1) (Table S3). Immunity against

fungi (and gram-positive bacteria) is regulated by Toll signaling

(Belvin and Anderson 1996; Lemaitre et al. 1996; De Gregorio

et al. 2002; Valanne et al. 2011), and among our candidates we

identified several prominent members of this pathway, includ-

ing the Toll ligand spätzle (spz), the receptor Toll (Tl), the Toll

inhibitor cactus (cact), the NFκB transcription factors Dorsal-

related immunity factor (Dif) and dorsal (dl), the upstream serine

proteases persephone (psh) and sphinx2, and two regulators of

cactus, scalloped (sd) and cactin (Fig. 3, Table S4). The other

major immune pathway, the Imd pathway (De Gregorio et al.

2002; Kleino and Silverman 2014; Myllymäki et al. 2014), also

harbored several but fewer candidates, including peptidoglycan

recognition protein LE (PRGP-LE) and the antimicrobial peptide

Cecropin A1 (CecA1) (Fig. 3, Table S4).

The enrichment of immunity genes prompted us to hypothe-

size that genetic changes in immune function might contribute to

the evolution of longevity and correlated fitness traits (DeVeale

et al. 2004; Finch 2007). Importantly, Remolina et al. (2012)

also found enrichment of genes involved in “defense response to

fungus,” and Carnes et al. (2015) observed divergence in immune

gene expression between long-lived selection and control lines,

suggesting that the relation between immunity and lifespan might

be general (DeVeale et al. 2004; Finch 2007). While we found a

larger number of genes in the Toll pathway, Carnes et al. (2015)

and Remolina et al. (2012) found more candidates in the Imd

pathway. However, several immune genes are shared across the

three studies, despite a relatively small overlap at the individual

gene level (Table S4). Immunity might thus represent a general

mechanism underlying longevity, with immune genes having

pleiotropic effects on lifespan and correlated fitness components.

Despite this compelling commonality across independent ex-

periments, still little is known about how immunity proximately

affects longevity and correlated fitness traits; similarly, whether

genetic changes in immunity might contribute to the evolution of

longer life remains unknown (Garsin et al. 2003; DeVeale et al.

2004; Kurz and Tan 2004; Libert et al. 2006; Troemel et al. 2006;

Libert et al. 2008; Fernando et al. 2014; Guo et al. 2014; McCor-

mack et al. 2016; Kounatidis et al. 2017; Loch et al. 2017; Yunger

et al. 2017). We therefore aimed to test whether the evolved ge-

nomic signature of immune gene enrichment observed in our

study – and similarly by Carnes et al. (2015) and Remolina et al.

(2012)–might represent a physiological mechanism underlying

evolutionary changes in lifespan and late-life fertility.

LONG-LIVED FLIES SHOW REDUCED IMMUNE

INDUCTION WITH AGE

We first examined whether the selection and control lines differ in

the expression of antimicrobial peptides (AMPs), the major effec-

tors of the innate immune response. We used three AMPs as read-

outs of Toll and Imd signaling activity, Drosomycin (Drs), Attacin

A (AttA), and Diptericin (Dpt). Drs and AttA are regulated by both

Toll and Imd signaling, whereas Dpt is mainly regulated by the

Imd pathway (De Gregorio et al. 2002). Using quantitative real-

time PCR, we determined mRNA levels of young (5–6-day-old)

and aged (25–26-day-old) female flies, either without pricking,

upon aseptic pricking (mock control) or upon prick infection with

Erwinia carotovora carotovora 15 (Ecc 15). Systemic infections

with this bacterium induce the expression of all three AMPs as-

sayed here (Lemaitre et al. 1997; Basset et al. 2000; De Gregorio

et al. 2002).

Without pricking, control flies upregulated AMP baseline

expression with age (Fig. 4A) – a pattern that is commonly

observed in wild-type flies and attributed to persistent chronic

infection and a prolonged immune response at old age (Seroude

et al. 2002; DeVeale et al. 2004; Zerofsky et al. 2005; Ren et al.

2007; Ramsden et al. 2008). In marked contrast to control flies,

baseline AMP levels remained constant as a function of age in

selected flies (Fig. 4A).

AMP expression also differed substantially between control

and selected flies upon infection: at young age, the AMP

response was slightly stronger in long-lived flies than in control

flies, whereas at old age long-lived flies tended to downregulate

AMP induction (Fig. 4b). Thus, unlike aged wild-type flies

which upregulate AMPs but suffer from immunosenescence and

show signs consistent with chronic inflammation (i.e., reduced

infection survival, increased bacterial load, more persistent

AMP induction upon infection; see Zerofsky et al. 2005; Ren

et al. 2007; Ramsden et al. 2008; Myllymäki et al. 2014), aged

long-lived selected flies exhibit restrained AMP expression.
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Figure 3. Genes of the Toll and Imd pathways represent longevity candidates. Overview of the Toll and Imd pathways, the two major

pathways regulating the humoral innate immune response against fungi and gram-positive bacteria (Toll) and gram-negative bacteria

(Imd). Among our longevity candidates we found an enrichment of immunity-related genes (enrichment of GO terms associated with

“antifungal peptides”). Longevity candidate genes identified in the Toll and Imd pathways are shown in red. For additional immunity-

related candidate genes see Table S4.

Our results therefore suggest that long-lived flies might

have evolved improved age-dependent immune homeostasis

and alleviated immunosenescence (DeVeale et al. 2004). These

evolutionary changes in immune gene induction might also be

linked to the late-life fertility of the long-lived lines. Since in

our selection experiment lifespan was selected for by postponing

reproduction, the observed differences in immune gene induction

between the regimes might be a byproduct of selection for

increased late-life fertility in the long-lived selection lines. This

would be consistent with the observation that infection reduces

fecundity: infection-induced synthesis of AMPs incurs a cost of

reproduction in wild-type flies but this cost is abolished in Imd

pathway mutants (Zerofsky et al. 2005).

LONG-LIVED FLIES HAVE IMPROVED SURVIVAL

UPON INFECTION

To investigate whether selected and control flies differ in real-

ized immune function we measured their survival after infection

with four different pathogens (Fig. 5). Long-lived flies survived

infections with a fungus (Beauveria bassiana, Bb), with the Gram-

negative bacterium Ecc15 and with the Gram-positive bacterium

Enterococcus faecalis (Ef) overall markedly better than control

flies (Fig. 5A,B,C,E). Improved survival of long-lived flies was

observed for both young and aged flies after infection with Bb and

Ecc15, whereas for Ef infection only aged long-lived flies showed

increased survival relative to controls (Fig. 5A,B,C,E). Because

one of our candidate genes, the JAK/STAT activating cytokine un-

paired3 (upd3; Table S4), is involved in antiviral immunity (Zhu

et al. 2013), we also measured the survival of flies upon infection

with Drosophila C virus (DCV). This assay was carried out only

with young, not aged flies, but we again found that long-lived

flies survived infection with DCV much better than control flies

(Fig. 5D,E). The evolution of prolonged lifespan might thus be

accompanied–or partly be caused – by selection for improved

realized immunity.

Next, we examined the ability of selection and control flies to

successfully clear bacterial (Ecc15) infections over a 6-day period

postinfection. The ability of control flies to clear an infection was
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Figure 4. Age-dependent differential expression of immunity genes. (A) Baseline mRNA expression levels of three antimicrobial peptides

(AMPs), Drosomycin (Drs), Attacin A (AttA), and Diptericin (Dpt) in uninfected (nonpricked) young (5–6-day-old) and aged (25–26-day-old)

female flies. The panel shows relative expression levels (based on efficiency-corrected �Ct-values), normalized to the geometric mean

of two control transcripts, Rp49 (RpL32) and Gapdh2. Unselected control flies upregulate AMP expression with age, but selected flies

do not (ANOVA; significant Age x Regime interactions for Drs: P = 0.003 and for AttA: P = 0.005; while for Dpt the interaction was not

significant, a post-hoc test revealed that at old age Dpt levels were significantly lower in selected than in control flies: P = 0.038). Error

bars shows standard errors of the mean. See Table S5 for full details of statistical analysis. (B) Induction of Drs, AttA, and Dpt upon prick

infection of young (5–6-day-old) and aged (25–26-day-old) female flies with Erwinia carotovora carotovora 15 (Ecc15) relative to aseptic

prick (mock) controls, 4–6 hours after jabbing. The panel shows the ratio of the expression values for infected relative to uninfected

(mock prick control) flies, based on efficiency-corrected �Ct-values normalized to the geometric mean of two control transcripts, Rp49

(RpL32) and Gapdh2. Relative to mock infected flies, AMP induction upon infection in long-lived flies tends to be slightly higher at young

age, but lower at old age (ANOVA on expression ratios (infected/mock infected); significant Age x Regime interactions for Drs: P = 0.026

and for AttA: P = 0.03; the same trend, albeit not significant, is seen for Dpt). Error bars shows standard errors of the mean. Full statistical

details are given in Table S5.

higher than that of long-lived flies at young age but declined at

old age; in contrast, clearance was overall lower in long-lived flies

yet did not change with age (Fig. 5F). The lower clearance ability

of long-lived selected flies, independent of their age, together

with their improved survival upon infection, possibly indicates

that they have evolved to be more tolerant to infections than

unselected control flies (Best et al. 2008; Ayres and Schneider

2008, 2012; Felix et al. 2012).

REDUCED TOLL SIGNALING EXTENDS LIFESPAN BUT

OVERACTIVATION IS DETRIMENTAL

Our results above support the idea that improved age-dependent

regulation of immunity contributes to longevity and late-life

fertility, but how immune genes affect lifespan is not well studied,

especially in Drosophila (DeVeale et al. 2004; Libert et al. 2006;

Fernando et al. 2014; Guo et al. 2014; Kounatidis et al. 2017;

Loch et al. 2017). For example, previous work has shown

that constitutive upregulation of the peptidoglycan recognition

proteins PGRP-LE and PGRP-LC causes hyperactivation of

Imd signaling and reduces lifespan (DeVeale et al. 2004; Libert

et al. 2006). Similarly, several mutants of negative regulators of

Imd signaling display shortened lifespan (Fernando et al. 2014;

Kounatidis et al. 2017). While we also identified PGRP-LE as

a lifespan candidate gene, most immunity genes in our analysis

belong to the Toll pathway (Fig. 3, Table S4).

To examine whether Toll signaling affects lifespan, we

used transgenic RNAi to silence four longevity candidate genes

of the Toll pathway: the ligand spz, the receptor Tl, the in-

hibitor cact, and the NFκB transcription factor Dif. To pre-

vent deleterious side effects of knocking down these develop-

mentally critical genes (Nüsslein-Volhard and Wieschaus 1980;

Belvin and Anderson 1996) we used a mifepristone-inducible

daughterless (da)-GeneSwitch(GS)-GAL4 driver (Tricoire et al.

2009) to direct expression of UAS-RNAi constructs against
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Figure 5. Long-lived flies survive infections better than control flies. (A–D) Survival of selected and control flies upon infection with

the fungus Beauveria bassiana (Bb) (A), the gram-negative bacterium Erwinia carotovora carotovora 15 (Ecc15) (B), the gram-positive

bacterium Enterococcus faecalis (Ef) (C), and with Drosophila C virus (DCV) (D). Except for DCV infection, assays were performed with

both young (1–4-days-old) and aged (22–25-days-old) female flies. All survival assays were terminated after 7 days and the remaining flies

censored for analysis. Red curves show average survival of selection lines and black curves survival of control lines; dashed lines represent

young flies and solid lines aged flies. For statistics see Fig. 4E and Table S5. (E) Summary of infection-induced mortality in selection and

control lines. Shown are estimates of the hazard ratios of selection relative to control lines; negative values indicate superior survival

of selection lines relative to control lines. P-values for the effect of regime are from Cox (proportional hazards) regression with χ2 tests;
∗P < 0.05, ∗∗∗P < 0.001. Error bars show the lower and upper 95th percentiles; see Table S5 for statistical details. (F) Clearance ability of

selection and control lines over a 6-day postinfection period. Percentage of successful (100%) clearance of young (5–6-days old) and aged

(23–25-days old) female flies after infection with Ecc15. Error bars show binomial standard errors. Binomial GLM revealed a significant

Age x Regime interaction (P = 0.018): clearance stays constant with age in selected flies but starts out higher and then declines with age

in control flies; this might be consistent with the hypothesis that selected flies are more tolerant. Details of statistical analysis are given

in Table S5.

these genes specifically during adulthood and throughout the fly

body.

Downregulation of the Tl receptor–but not of its ligand spz–

mildly but significantly extended lifespan (Fig. 6A,B,C,D), while

silencing the antagonist cact–leading to Toll pathway hyperac-

tivation (Lemaitre et al. 1996; Aggarwal and Silverman 2008)–

drastically reduced lifespan (Fig. 6E,F), similar to the effects of

overactivation or derepression of Imd signaling (DeVeale et al.
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Figure 6. Decreased Toll signaling promotes longevity while hyperactivation shortens lifespan. (A–H) Adult survival upon ubiquitous,

adult-specific transgenic RNAi directed against four canonical components of the Toll signaling pathway: the Toll ligand spätzle (spz) (A,

B), the receptor Toll (Tl) (C, D), the Toll inhibitor cactus (cact) (E, F), and the NFκB transcription factor Dorsal-related immunity factor (Dif)

(G, H). (A, C, E, G) show data for female flies and (B, D, F, H) represent data for male flies. Silencing the Tl receptor (C, D) – but not the

spz ligand (A, B)–extends lifespan, while silencing the antagonist cact dramatically shortens lifespan (E, F); silencing Dif has opposite

effects on female and male lifespan (G, H). For details of statistical analysis using mixed-effects Cox (proportional hazards) regression see

Table S5.

Expression of the different UAS-RNAi responder constructs was driven with a mifepristone-inducible daughterless(da)-GeneSwitch(GS)-

GAL4 driver. Solid red curves: 200 μg/mL (466 μM) mifepristone (RNAi); dashed curves: 0 μg/mL mifepristone (control). For experimental

details see Supplementary methods.

2004; Libert et al. 2006; Guo et al. 2014; Kounatidis et al.

2017). Interestingly, we found opposite lifespan effects of Dif-

RNAi for females (Fig. 6G) and males (Fig. 6H). In agreement

with our findings for females, two studies have previously found

that a loss-of-function mutant of Dif lives longer than wild-type

(Le Bourg et al. 2012; Petersen et al. 2013), but why silencing

Dif reduces male lifespan remains unclear. Our results thus estab-

lish that downregulation of Toll signaling increases lifespan (al-

beit weakly so), whereas overactivation of this pathway strongly

shortens life.
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Our findings for the Toll pathway are also consistent with

recent studies of IMD signaling showing that lifespan is extended

under conditions of reduced lifetime IMD activity (Loch et al.

2017) or when the IMD AMPs AttacinC (AttC) and Diptericin

B (DiptB) are downregulated in the fat body (Lin et al. 2018).

The evidence available to date therefore suggests that decreased

activity of the immune system can promote lifespan (DeVeale

2004), possibly by reducing the costs of immune deployment

(McKean and Lazzaro 2011). Moreover, as we show here, longer

lifespan can evolve – at least partly – via evolutionary changes in

immunity.

Conclusion
Explaining the genetic basis of variation in longevity is a long-

standing problem in evolutionary genetics and the biology of

aging (Finch 1990; Rose 1991; Zwaan 1999; Partridge and Gems

2006; Flatt and Schmidt 2009; Flatt and Partridge 2018). Here

we have performed a whole-genome sequencing analysis of an

over 35-year-long selection experiment for postponed aging and

late-life fertility in Drosophila (Luckinbill et al. 1984).

Notably, among the longevity candidate genes identified in

our genomic screen, we found an enrichment of immune genes, es-

pecially in the Toll pathway. By comparing our data to those from

two previous genomic studies of longevity selection in Drosophila

(Remolina et al. 2012; Carnes et al. 2015) we infer that–while dif-

ferent studies might identify different immune genes as longevity

candidates–immune function likely represents a general process-

level mechanism underlying the evolution of longevity assurance

and of late-life performance (Martin et al. 1996; Partridge and

Gems 2002; McElwee et al. 2007). This is particularly notewor-

thy in view of the growing evidence that aging, inflammation and

immunity are intricately linked at the molecular level (DeVeale

et al. 2004 ; Kurz and Tan 2004; Finch 2007; Salminen et al. 2008;

Eleftherianos and Castillo 2012). However, how immunity con-

tributes to longevity and correlated fitness traits is largely unclear.

While aged wild-type flies upregulate immune gene expres-

sion (Pletcher et al. 2002; Seroude et al. 2002; Landis et al. 2004),

they typically have a reduced capacity to fight off and survive in-

fections, suggesting that they suffer from immune overactivation

and immunopathology (Zerofsky et al. 2005; Ren et al. 2007;

Ramsden et al. 2008). Here, we show that long-lived flies, by

contrast, tend to downregulate the induction of immune effector

genes (AMPs) with age yet have substantially improved survivor-

ship upon infection. This seems to confirm that elevated immune

gene expression at old age might either be ineffective or even

detrimental, perhaps as a consequence of senescent dysregula-

tion of gene expression (Zerofsky et al. 2005; Khan et al. 2017).

The downregulation of AMPs seen in the long-lived selection

lines might also be a byproduct of selection for late-life fertility

in these lines since elevated AMP expression upon infection is

known to reduce fecundity (Zerofsky et al. 2005).

Since optimal immunity depends on the balance between

efficient clearance of pathogens and limiting immunity-induced

damage (Cassedevall and Pirofski 1999; Read et al. 2008; Råberg

et al. 2009; Medzhitov et al. 2012), we propose that selection for

longevity and late-life fertility leads to improved age-dependent

immune homeostasis and alleviates the trade-off between immu-

nity and immunopathology. This trade-off can be decoupled to

some degree by tolerance mechanisms (Medzhitov et al. 2012),

suggesting that the improved immunity of long-lived flies might–

at least in part–be due to increased tolerance. In line with the

notion of a trade-off between immunity and immunity-induced

damage, work in the mealworm beetle shows that deployment of

the immune effector phenoloxidase (PO) causes early-life inflam-

mation, faster aging, and immunopathology at old age, whereas

RNAi silencing of PO extends lifespan and improves survival af-

ter infection (Khan et al. 2017). This is consistent with the fact

that hyperactivation or derepression of Imd signaling (DeVeale

et al. 2004; Libert et al. 2006; Fernando et al. 2014; Kounatidis

et al. 2017) and, as we observe here, of Toll signaling reduces

lifespan. Conversely, we find that adult downregulation of Toll

signaling mildly promotes lifespan, similar to recent findings for

the Imd pathway (Kounatidis et al. 2017; Lin et al. 2018).

Together, our work reveals the existence of a causal–but

mechanistically still poorly understood–link between improved

age-dependent immunity and the evolution of longevity and late-

life fertility (Garschall and Flatt 2018). This relationship clearly

warrants further mechanistic and evolutionary study.

Methods
All methods are given in the Supplementary methods file (see Sup-

porting Information section below), including details of selection

and control lines, next-generation sequencing, bioinformatic, and

statistical analyses, gene expression analyses, immunity assays,

transgenic RNAi, and lifespan assays.
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