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Abstract

Elevated serum uric acid levels cause gout and are a risk factor for cardiovascular disease and diabetes. To investigate the
polygenetic basis of serum uric acid levels, we conducted a meta-analysis of genome-wide association scans from 14 studies
totalling 28,141 participants of European descent, resulting in identification of 954 SNPs distributed across nine loci that
exceeded the threshold of genome-wide significance, five of which are novel. Overall, the common variants associated with
serum uric acid levels fall in the following nine regions: SLC2A9 (p = 5.26102201), ABCG2 (p = 3.1610226), SLC17A1
(p = 3.0610214), SLC22A11 (p = 6.7610214), SLC22A12 (p = 2.061029), SLC16A9 (p = 1.161028), GCKR (p = 1.461029), LRRC16A
(p = 8.561029), and near PDZK1 (p = 2.761029). Identified variants were analyzed for gender differences. We found that the
minor allele for rs734553 in SLC2A9 has greater influence in lowering uric acid levels in women and the minor allele of
rs2231142 in ABCG2 elevates uric acid levels more strongly in men compared to women. To further characterize the
identified variants, we analyzed their association with a panel of metabolites. rs12356193 within SLC16A9 was associated
with DL-carnitine (p = 4.0610226) and propionyl-L-carnitine (p = 5.061028) concentrations, which in turn were associated
with serum UA levels (p = 1.4610257 and p = 8.1610254, respectively), forming a triangle between SNP, metabolites, and UA
levels. Taken together, these associations highlight additional pathways that are important in the regulation of serum uric
acid levels and point toward novel potential targets for pharmacological intervention to prevent or treat hyperuricemia. In
addition, these findings strongly support the hypothesis that transport proteins are key in regulating serum uric acid levels.
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Introduction

Uric acid (UA) is the final catabolic, heterocyclic purine

derivative resulting from the oxidation of purines in humans.

Due to the loss of hepatic uricase activity during human evolution,

UA is excreted as such and is not further metabolized into carbon

dioxide and ammonia. A major mechanism underlying hyperuri-

cemia is impaired renal excretion of urate. Most notably, UA is

causally involved in the pathogenesis of gouty arthritis that results

from deposition of monosodium urate crystals in the joints [1].

Increased UA concentrations have been implicated in cardiovas-

cular disease for more than five decades [2]. In addition, elevated

urate is associated with obesity, blood pressure and insulin

resistance, and consequently with the metabolic syndrome and

type 2 diabetes [2,3]. However, UA also has a positive role as an

antioxidant, and is correlated with longevity in mammals [4].

Thus, human physiology is especially sensitive to the precise range

of UA levels.

Besides environmental factors, there is evidence for a strong

genetic influence upon serum UA concentrations, with heritability

estimates of up to 73% [5]. Recently, genome-wide association

(GWA) studies have identified single nucleotide polymorphisms

(SNPs) in the SLC2A9 gene (solute carrier family 2, member 9

gene), a putative glucose transporter, which are strongly associated

with serum UA concentrations and gout [6–9]. This novel gene

locus functions as a high-capacity urate transporter in humans

[8,10]. This emphasises the power of GWA studies in expanding

our understanding at the molecular level of disease mechanisms

and in pointing to innovative therapeutic strategies.

The power of GWA studies to detect common variants with

modest effects directly depends on the size of the study group.

Therefore, the present study sought to detect novel genetic

variants related to serum UA levels by conducting a meta-analysis

of GWA findings from 14 studies (BRIGHT, CoLaus, CROATIA,

Health 2000, KORA F3, KORA S4, ORCADES, PROCARDIS,

NSPHS, SardiNIA, SHIP, SSAGA, MICROS, and TwinsUK)

totalling 28,141 participants. In addition, the meta-analysis was

performed independently on sex specific GWA results to address

the pronounced gender differences in the regulation of UA

concentrations that have previously been reported [1,6]. Identified

variants were further analyzed for association with metabolite

profiles.

Results

The sample size and participant characteristics for each

participating study are shown in Table S1. Meta-analysis of

Author Summary

Elevated serum uric acid levels cause gout and are a risk
factor for cardiovascular disease and diabetes. The
regulation of serum uric acid levels is under a strong
genetic control. This study describes the first meta-analysis
of genome-wide association scans from 14 studies
totalling 28,141 participants of European descent. We
show that common DNA variants at nine different loci are
associated with uric acid concentrations, five of which are
novel. These variants are located within the genes coding
for organic anion transporter 4 (SLC22A11), monocarbox-
ylic acid transporter 9 (SLC16A9), glucokinase regulatory
protein (GCKR), Carmil (LRRC16A), and near PDZ domain-
containing 1 (PDZK1). Gender-specific effects are shown for
variants within the recently identified genes coding for
glucose transporter 9 (SLC2A9) and the ATP-binding
cassette transporter (ABCG2). Based on screening of 163
metabolites, we show an association of one of the
identified variants within SLC16A9 with DL-carnitine and
propionyl-L-carnitine. Moreover, DL-carnitine and propio-
nyl-L-carnitine were strongly correlated with serum UA
levels, forming a triangle between SNP, metabolites and
UA levels. Taken together, these associations highlight
pathways that are important in the regulation of serum
uric acid levels and point toward novel potential targets
for pharmacological intervention to prevent or treat
hyperuricemia.
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GWA data of 28,141 individuals of European ancestry yielded 954

SNPs (full list is provided in Table S4) that exceeded the genome-

wide significance threshold of 561028 (Figure 1A).

Those SNPs cluster around nine loci (Table 1), four of which are

well known regulators of serum UA levels: SLC2A9

(p = 5.26102201), ABCG2 (p = 3.1610226), SLC17A1

(p = 3.0610214), and SLC22A12 (p = 2.061029). The first, SLC2A9,

was identified in previous GWA scans (Figure 2C) [6–9]. A total of

788 SNPs reached the genome-wide significance threshold at the

SLC2A9 locus. The strongest associated marker was the intronic

SNP rs734553 (p = 5.26102201, Table 1), which is in high linkage

disequilibrium (r2 = 0.88) with the missense mutation rs16890979

previously described [11]. The second locus was on chromosome

4q22, harbouring the ABCG2 gene (Figure 2D). In accordance with

previous results, the strongest observed association was at rs2231142

(p = 3.1610226, Table 1), a coding SNP leading to a glutamine-to-

lysine amino acid change at position 141 [11]. The third previously

implicated locus influencing UA levels was on chromosome 6p23-

p21.3, which contains the SLC17A3 gene (Figure 2F) [11]. The top

associated marker was SNP rs1183201 (p = 3.0610214, Table 1),

intronic of SLC17A1, but the association signal encompassed a

larger region including the SLC17A1, SLC17A3, SLC17A4 genes and

downstream to HIST1H4C, in agreement with the linkage

disequilibrium at this locus. SNP rs1183201 is in high linkage

disequilibrium (r2 = 0.97) with rs1165205, a SNP intronic of

SLC17A3 gene identified by a previous GWA scan [11].

Among the novel loci identified, the strongest was on

chromosome 11q13. One locus was localized upstream and within

the SLC22A11 gene, and represented by SNP rs17300741

(p = 6.7610214, Table 1, Figure 2H). The second signal was

SNP rs505802 (p = 2.061029), representative of all associated

markers falling within and downstream the extensively studied

SLC22A12 gene coding for URAT1 (Figure 2I). The p-value plot

as well as the LD block structure (r2 = 0.09) suggested two nearby

but independently associated regions, which was verified in

multiple regression analysis (Table S5).

The second novel region was on chromosome 2p23.3-p23.2

(Figure 2B). The most significant SNP in this region was SNP

rs780094 (p = 1.461029), intronic of GCKR, a glucokinase regulator

protein recently associated with several quantitative traits including

the regulation of triglycerides levels [12]. We also identified genome-

wide significant association on chromosome 1q21 (Figure 2A). The

top ranking SNP in this region was rs12129861 (p = 2.761029,

Table 1), located 2 kb upstream of PDZK1 coding for PDZ domain-

containing 1 reported to interact with URAT1 [13]. The fourth

newly detected region was found on chromosome 6p22.2 (Figure 2E),

where the association signal spans two genes, LRRC16A and SCGN,

within one highly preserved LD block. The strongest p-value was

observed for the SNP rs742132, located within an intron of LRRC16A

(p = 8.561029, Table 1). Independence of the LRRC16A and the

SLC17A1 loci (r2 = 0.07) was verified in multiple regression analysis.

P-values and effect estimates only slightly changed between single

SNP analysis and multiple regression analysis (Table S5). Finally, we

also observed some evidence of association on chromosome 10q21.3

(Figure 2G). One SNP within SLC16A9, rs12356193, reached

genome-wide significance (p = 1.161028). However, there were

several additional SNPs within this gene with borderline significance,

supporting the hypothesis that this locus may be a true signal rather

than a false positive result.

Sex-Stratified Meta-Analysis Identifies Male and Female
Specific Variants

We have also performed a meta-analysis of sex specific GWA

results using all 14 studies (12,328 males, 15,813 females).

Although the results did not show any additional genome-wide

significant locus (Figure 1B and 1C), we were able to query which

of the aforementioned SNPs have sex-specific effects on serum UA

levels (Table 2). For the SLC2A9 gene, we found that in males the

top ranking SNP was still rs734553 (p = 1.1610241), while for

women it was the nearby intronic SNP rs12498742

(p = 2.46102196). Supporting previously reported results, we found

for both markers that the effect size of the minor allele observed in

women was twice the effect size observed in men (p,3.8610217,

Table 2) [6]. The minor allele of rs2231142 in the ABCG2 gene

showed a greater effect size in men compared to women (p = 0.01,

Table 2). Similar, the effect size of the most significant SNP for

males in the ABCG2 gene locus, rs2199936, was greater in men

compared to women (p = 0.008, Table 2). The effect sizes of the

other SNPs were comparable in men and women (Table 2).

Association of Identified Variants with Metabolite Profiles
To further characterize the identified variants, we analyzed

their association with a panel of 163 metabolites measured in the

KORA F4 survey. After correction for multiple testing, one SNP

within SLC16A9, rs12356193, was associated with DL-carnitine

concentrations (b= 23.58, p = 4.0610226), which in turn were

associated with serum UA levels (b= 0.06, p = 1.4610257). In

addition, this SNP was associated with propionyl-L-carnitine

(b= 20.06, p = 5.061028). Similar to DL-carnitine, propionyl-L-

carnitine concentrations were also strongly associated with serum

UA levels (b= 1.78, p = 8.1610254), forming a triangle between

SNP, metabolites and UA levels. None of the other SNPs were

significantly associated with the measured metabolites.

Discussion

Based on meta-analysis of GWA studies including 28,141

individuals, we have mapped 5 novel loci and confirmed 4

previously implicated loci that influence serum UA levels.

Altogether, these associations highlight biological pathways that

are important in the regulation of urate concentrations and may

point to novel targets for pharmacological interventions to prevent

or treat hyperuricemia.

A genome-wide significant p-value was observed for one SNP

within SLC16A9 gene locus, coding for monocarboxylic acid

transporter 9 (MCT9). This is a member of the monocarboxylate

co-transporter family that has been demonstrated to catalyze

transport of monocarboxylic acids across cell membranes [14].

MCT9 is expressed in various tissues including the kidney [15]. As

other sodium monocarboxylate transporters have been found to

influence urate in knockout models this MCT9 isoform might be a

sodium-dependent transporter in the kidney. The second newly

identified locus was GCKR (glucokinase regulatory protein) a

regulator of glucokinase, the first glycolytic enzyme which serves as

a glucose sensor, responsible for glucose phosphorylation in the

liver. Recently, GWA studies for type 2 diabetes identified the

same rs780094 SNP as a potential marker for modulation of

triglyceride levels [16]. Meanwhile, GCKR polymorphisms were

also shown to be associated with metabolic traits like fasting

glucose and, modestly, type 2 diabetes [12,17,18]. Several

potential mechanisms have been proposed to link serum UA

concentrations with metabolic traits. Exogenous insulin decreases

renal sodium and urate excretion [19]. Furthermore, renal

clearance of UA is inversely related to the degree of insulin

resistance [20]. Finally, insulin resistance is thought to be

accompanied by impaired oxidative phosphorylation in hepatic

mitochondria, leading to increased concentrations of co-enzyme A

esters and thus to increased systemic adenosine concentrations

Meta-Analysis on Uric Acid Levels

PLoS Genetics | www.plosgenetics.org 3 June 2009 | Volume 5 | Issue 6 | e1000504



Figure 1. Genome-wide association results. Manhattan plots showing significance of association of all SNPs in the meta-analysis for (A) men and
women combined, (B) men only, and (C) women only. SNPs are plotted on the x-axis according to their position on each chromosome against
association with uric acid concentrations on the y-axis (shown as 2log10 p-value).
doi:10.1371/journal.pgen.1000504.g001
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Figure 2. Regional association plots of nine urate loci. P-value plots showing the association signals in the region of (A) PDZK1 on
chromosome 1, (B) GCKR on chromosome 2, (C) SLC2A9 on chromosome 4, (D) ABCG2 on chromosome 4, (E) LRRC16A on chromosome 6, (F) SLC17A1
on chromosome 6, (G) SLC16A9 on chromosome 10, (H) SLC22A11 on chromosome 11, and (I) SLC22A12 on chromosome 11. 2log10 p-values are
plotted as a function of genomic position (NCBI Build 36). Large diamonds in red indicate the most significant SNP in the region while other SNPs in
the region are given as colour-coded smaller diamonds. Red diamonds indicate high correlation with the lead SNP (r2.0.8), orange diamonds
indicate moderate correlation with the most significant SNP (0.5,r2,0.8), yellow indicates markers in weak correlation with the most significant SNP
(0.2,r2,0.5), white indicates no correlation with the most significant SNP (r2,0.2). Estimated recombination rates (HapMap Phase II) are given in
light blue, genes as well as the direction of transcription (NCBI) are displayed by green bars.
doi:10.1371/journal.pgen.1000504.g002

Table 1. Nine loci associated with uric acid concentrations.

Loci SNP Chr* Position (bp) Allele
Frequency
(Effect allele) All individuals

Explained
variability

Effect Other N beta [95% CI] p-value

PDZK1 rs12129861 1 144437046 A G 46.40% 25627 20.062 [20.083; 20.042] 2.68E-09 0.19%

GCKR rs780094 2 27594741 T C 41.70% 27991 0.052 [0.035; 0.068] 1.40E-09 0.13%

SLC2A9 rs734553 4 9532102 T G 76.81% 27817 0.315 [0.294; 0.335] 5.22E-201 3.53%

ABCG2 rs2231142 4 89271347 T G 10.77% 23622 0.173 [0.141; 0.205] 3.10E-26 0.57%

LRRC16A rs742132 6 25715550 A G 69.57% 27923 0.054 [0.036; 0.072] 8.50E-09 0.12%

SLC17A1 rs1183201 6 25931423 A T 48.24% 27908 20.062 [20.078; 20.459] 3.04E-14 0.19%

SLC16A9 rs12356193 10 61083359 A G 82.68% 23559 0.078 [0.051; 0.105] 1.07E-08 0.17%

SLC22A11 rs17300741 11 64088038 A G 51.06% 27727 0.062 [0.046; 0.078] 6.68E-14 0.19%

SLC22A12 rs505802 11 64113648 T C 69.83% 27967 20.056 [20.074; 20.038] 2.04E-09 0.13%

*Chromosome.
Shown is the most significant SNP for each independent locus associated (p,561028) with uric acid concentrations on meta-analysis in the complete dataset. Position
is given for NCBI Build 36. Effect estimates result from additive linear regression on Z-scores of uric acid concentrations. P-values have been combined weighting by the
inverse variance. The effect allele is the allele to which the beta (effect) estimate refers.
doi:10.1371/journal.pgen.1000504.t001
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[21]. Increased adenosine, in turn, may result in renal retention of

sodium, urate, and water [21,22]. This provides a putative

mechanism for hyperuricaemia via both the break down of

adenosine to urate and increased renal urate retention [21,22].

We also found evidence for association in a region containing

two genes, LRRC16A and SCGN. The strongest association was

located within LRRC16A coding for CARMIL. This large protein

is most abundant in kidney and epithelial tissues and serves as an

inhibitor of the heterodimeric actin capping protein (CP), an

essential element of the actin cytoskeleton which binds to the

barbed ends of actin filaments and regulates their polymerization

[23]. The multiple biochemical functions associated with CAR-

MIL raise many possibilities for its mechanism of action in cells,

but the relation of CARMIL to UA concentration is thus far

unclear. The nearby SCGN is coding for Secretagogin, a calcium-

binding protein selectively expressed in neuroendocrine tissue and

pancreatic beta-cells. The function of Secretagogin is unknown,

but it has been suggested to influence calcium influx and insulin

secretion [24].

We also demonstrated association of SNPs in SLC22A11 and

SLC22A12 with UA concentrations. SLC22A12 encodes the

extensively studied URAT1, a member of the organic anion

transporter (OAT) family [25]. URAT1, a well known candidate

gene for UA accumulation/transport, mediates the non-voltage-

dependent exchange of urate for several organic anions [1].

SLC22A11 codes for OAT4, an OAT isoform which, like URAT1,

is localized at the apical membrane of the proximal tubules. OAT4

serves as an organic anion–dicarboxylate exchanger, which

mediates urate transport across the apical membrane of kidney

[26,27]. In combination with these findings, we also identified

genome-wide significant association of SNPs in and upstream of

PDZK1, coding for PDZ domain containing 1, a scaffolding

protein reported to interact with OAT4, URAT1 and NTP1

(SLC17A1) via their C-terminal PDZ motifs [13,28]. It has been

proposed that the PDZ scaffold may form a bidirectional transport

system by linking URAT1 (reabsorption) and NPT1 (secretion)

leading to a functional complex responsible for the balanced urate

transport regulation at the apical membrane of renal proximal

tubules [1,28].

In accordance with previous genome-wide studies, the strongest

effect on serum UA concentrations was detected for SLC2A9, [6–9]

coding for GLUT9, which has been shown to be strongly

associated with hyperuricemia and gout and to serve as a high-

capacity urate transporter in humans [8,10]. Additional confirmed

loci include ABCG2 and SLC17A1 [11]. ABCG2 is a member of the

ATP-binding cassette (ABC) superfamily of membrane transport-

ers, while the SLC17A1 locus, located directly downstream of the

recently identified SLC17A3 locus (NPT4), encodes NPT1 (renal

sodium phosphate transport protein 1). The human NPT1 is

localized at the apical membrane of renal proximal tubules and

serves as a voltage-driven UA transporter in model systems [28].

Although several of the SNPs associated with uric acid

concentrations in this meta-analysis are located within genes that

are plausible candidates for influencing uric acid concentrations,

our association approach is not able to identify underlying genes or

mechanisms in the regions of association signals. Therefore, other

genes might be responsible for the observed associations and

functional studies are warranted to identify the causal variants and

provide insights in the underlying biological mechanisms.

Pronounced gender differences in the regulation of serum UA

concentrations have been reported for both humans and animals

[1,6]. In line with our previous findings, [6] the strongest gender-

specific effect was observed for the minor allele of rs734553

(SLC2A9), resulting in a 2-fold larger effect size on serum UA

concentrations in women compared to men. For ABCG2, the effect

of the minor allele of rs2231142 demonstrated a larger effect on

UA concentrations in men compared to women. For the other

loci, effect sizes did not significantly differ by gender.

The rapidly evolving field of metabolomics aims at a

comprehensive measurement of endogenous metabolites in a cell

or body fluid [29]. Based on screening of 163 metabolites, we have

observed an association of one of the identified variants,

rs12356193 within SLC16A9, with DL-carnitine and propionyl-

L-carnitine. Moreover, DL-carnitine and propionyl-L-carnitine

were strongly correlated with serum UA levels, forming a triangle

between SNP, metabolites and UA levels. Carnitine is acquired

from diet and endogenous biosynthesis. Its primary function is in

the transport of long chain fatty acids. After strenuous physical

exercise, both acylcarnitine and UA levels increase in the serum of

healthy humans [30]. In spontaneously hypertensive rats, L-

carnitine decreases serum UA levels and the age-dependent rise in

serum UA [31,32]. Kidneys absorb 95% of carnitine from the

glomerular filtrate via an active Na+-dependent transport

mechanism [33]. Impairment of this reabsorptive function can

lead to carnitine deficiency, in which hyperuricemia may be

present because carnitine competes for renal tubular excretion

[34]. Although experimental data are few, currently available data

suggest that urinary acylcarnitine, which reflects the balance

between dietary intake of carnitine and renal excretion, may be

linked to serum UA via oxidative stress pathways [35]. Given that

palmitoyl carnitine inhibits binding of Ca2+ channel ligands to rat

brain cortical membranes and to inhibit voltage-activated Ca2+

channel currents, acylcarnitines may also have direct influences on

MCT9 [36].

Overall, serum UA concentrations are mainly determined by

the balance between urate production and renal excretion. We

have identified nine loci that are associated with serum UA levels

and six of them harbor genes that code for renal transport

proteins. Most notably, five of these transport proteins belong to

the family–and moreover, to one phylogenetic cluster within this

family [37]. These findings strongly support the hypothesis that

genetic variation in urate transport proteins are the key influences

upon regulation of serum UA levels in humans.

Materials and Methods

Study Participants
The present meta-analysis combined data from 14 GWA scans:

British Genetics of Hypertension (BRIGHT), Cohorte Lausan-

noise (CoLaus), Vis Island Isolate Study (CROATIA), Health

2000 cohort (Health 2000), two surveys of the Cooperative Health

Research in the Region of Augsburg (KORA F3, KORA S4),

Orkney Complex Disease Study (ORCADES), Precocious Coro-

nary Artery Disease (PROCARDIS), Northern Swedish Popula-

tion Health Study (NSPHS), SardiNIA Study of Aging (SardiNIA),

Study of Health in Pomerania (SHIP), Semi-Structured Assess-

ment for Genetics of Alcoholism (SSAGA), Microisolates in South

Tyrol (MICROS), and UK Adult Twin Register (TwinsUK).

Altogether, the meta-analysis comprises 28,141 individuals (12,328

males, 15,813 females) of European ancestry with measured serum

UA concentrations (Table S1). Approval was obtained by local

ethic committees for all studies and informed consent was given

from the study participants. A detailed individual description of

study designs is provided in Text S1.

Genome-Wide Genotyping and Imputation
Six different platforms/arrays were used for genotyping: the

Affymetrix 500 K GeneChip array (4 cohorts, n = 13,103), the

Meta-Analysis on Uric Acid Levels
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Affymetrix 6.0 GeneChip array (2 cohorts, n = 5,901), Illumina

HumanHap 300 (5 cohorts, n = 3,609), Illumina Human 610 K

Beadchip (1 cohort, n = 2,212), Illumina HumanHap 300-Duo (1

cohort, n = 2,113), and Illumina Human 1 M beadchip (1 cohort,

n = 1,203). Imputation of allele dosage of SNPs typed in the

HapMap CEU population was performed using either MACH

[38] or IMPUTE [39] with parameters and pre-imputation filters

as specified in Table S2. All SNPs with a minor allele frequency

,0.01 were excluded from analysis. SNPs were also excluded if

the cohort-specific imputation quality as assessed by r2.hat

(MACH) or .info (IMPUTE) metrics was ,0.30 or ,0.40,

respectively. In total, up to 2,493,963 genotyped or imputed

autosomal SNPs were analyzed.

Uric Acid Measurements
Non-fasting blood samples were obtained from study partici-

pants of BRIGHT, KORA, NSPHS, SardiNIA, SHIP and

SSAGA and fasting samples from those of CoLaus, PROCAR-

DIS, CROATIA, Health 2000, MICROS, ORCADES and

TwinsUK. UA analyses were carried out on fresh samples in all

studies except from BRIGHT, NSPHS, CROATIA, MICROS

and SSAGA, where frozen serum was used that was stored at

220uC (BRIGHT) or 270uC (NSPHS, SSAGA, CROATIA,

MICROS). UA concentrations were measured using an uricase/

peroxidase method (CROATIA, MICROS, NSPHS and OR-

CADES: DVIA1650-Autoanalyzer, Siemens Healthcare Diagnos-

tics) or an uricase method (BRIGHT: Hitachi, Roche Diagnostics;

CoLaus: uricase PGP, Roche Diagnostics; Health 2000: Thermo

Fisher Scientific, Vantaa; KORA F3: URCA Flex, Dade Behring;

KORA S4: UA Plus, Roche; PROCARDIS: Hitachi 917, Roche

Diagnostics; SardiNIA: Bayer; SHIP: UA PAP, Boehringer;

SSAGA: Hitachi 747, Boehringer; TwinsUK: Ektachem/Vitros

system, Johnson & Johnson Clinical Diagnostics).

Metabolite Measurements
Metabolomic analyses were conducted in 2020 randomly

selected participants (ages 32–81 years) of the KORA F4 survey,

a follow-up survey of KORA S4. Genotype information was

available for 1814 of these participants. Fasting blood samples

were collected in 2006–2008. Blood was drawn into serum gel tube

in the morning between 8 and 10 am. The tube was gently

inverted two times, followed by 30 minutes resting at room

temperature to obtain complete coagulation, and finally centrifu-

gation of blood was performed at 2750 g, 15uC for 10 minutes for

serum collection. Serum was aliquoted and kept at 4uC for a

maximum of 6 hours, after which it was frozen at 280uC until

analyses. Liquid handling of serum samples (10 ml) was performed

with Hamilton Star (Hamilton Bonaduz AG, Bonaduz, Switzer-

land) robot and prepared for quantification with AbsoluteIDQ kit

(BIOCRATES Life Sciences AG, Innsbruck, Austria). Sample

analyses were done on API4000 Q TRAP LC/MS/MS System

(Applied Biosystems, Darmstadt, Germany) equipped with Schi-

madzu Prominence LC20AD pump and SIL-20AC auto sampler.

The complete analytical process (e.g. the targeted metabolite

concentration) was performed using the MetIQ software package,

which is an integral part of the AbsoluteIDQ Kit. A total of 163

metabolites were measured. The metabolomics dataset contains 14

amino acids, one sugar, 41 acylcarnitines, 15 sphingolipids, and 92

glycerophospholipids.

Statistical Analysis
GWA scans were made using an additive genetic model on Z-

scores, calculated by adjusting serum UA levels for age and sex

using linear regression and standardizing residuals. In sex-specific

association testing Z-scores were calculated in each stratum

separately. Study-specific results of the most significant SNP at

each locus are presented in Table S3. The results from all 14

GWA scans were combined into a fixed-effects meta-analysis with

inverse variance weighting, using the METAL package (www.sph.

umich.edu/csg/abecasis/metal). The individual studies were

corrected for residual inflation of the test statistic using genomic

control methods for genotyped and imputed SNPs combined [40].

For the overall meta-analysis, the inflation factor was 1.028, no

further correction was applied. Quantile-quantile plots of the

association results are shown in Figure S1, study-specific quantile-

quantile plots are illustrated in Figure S2 and S3. Associations

were considered genome-wide significant below p = 561028,

which corresponds to a Bonferroni correction for the estimated

one million independent common variant tests in the human

genome of European individuals [41]. We also tested whether the

effect estimate resulting from the gender-specific fixed effect meta-

analysis differed significantly between men and women by

applying a t-test comparing effect and standard error estimates

in men with the effect and standard error estimates in women.

Genome-wide significant SNPs were tested for independent

associations, by including all SNPs in a multiple regression model,

and then performing inverse variance weighted meta-analysis,

across all cohorts (except for Health 2000), of the coefficient for

each SNP. The analysis of metabolites was performed using the

same linear regression adjusted by sex and gender as in the

genome-wide scan. To specify the dependency of uric acid on

metabolite concentration, a univariate regression model without

further transformation or adjustment was used. The multiple

regression and metabolite analysis were performed using either

posterior expected allele dosages, or on best-guess imputed

genotypes, with the statistical analysis software R.

Accession Numbers
The OMIM (http://www.ncbi.nlm.nih.gov/OMIM) accession

numbers for genes mentioned in this article are PDZK1 (603831),

GCKR (600842), SLC2A9 (606142), ABCG2 (603756), LRRC16A

(609593), SLC17A1 (182308), SLC22A11 (607097), and SLC22A12

(607096). The HGNC (http://www.gene.ucl.ac.uk) accession

number for SLC16A9 is 23520.

Supporting Information

Figure S1 Quantile-quantile plots of association results. Meta-

analysis was performed using sample-size weighted Z-scores after

cohort-specific genomic control. Shown are expected p-values

plotted against observed p-values resulting from meta-analysis

based on all subjects (1st row), only males (2nd row) and only

females (3rd row) for all analysed SNPs (left column) and for all

analysed SNPs excluding the SLC2A9 region (GLUT9, right

column).

Found at: doi:10.1371/journal.pgen.1000504.s001 (1.25 MB TIF)

Figure S2 Study-specific quantile-quantile plots. Shown are

expected p-values plotted against observed p-values resulting from

each single study before (black dots) and after (blue dots) genomic

control correction. The study-specific l-values were l= 1.007

(BRIGHT), l= 1.025 (CoLaus), l= 1.013 (CROATIA), l= 1.024

(Health 2000), l= 1.006 (KORA F3), l= 1.016 (KORA S4),

l= 1.246 (MICROS), l= 1.253 (NSPHS), l= 1.182 (OR-

CADES), l= 1.022 (PROCARDIS), l= 1.090 (SardiNIA),

l= 1.031 (SHIP), l= 1.022 (SSAGA) and l= 1.122 (TwinsUK).

For the overall meta-analysis, the inflation factor was 1.028.

Found at: doi:10.1371/journal.pgen.1000504.s002 (1.95 MB TIF)
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Figure S3 Study-specific quantile-quantile plots excluding

GLUT9. Shown are expected p-values plotted against observed

p-values resulting from each single study before (black dots) and

after (blue dots) genomic control correction, excluding SNPs in the

SLC2A9 (GLUT9) region on chromosome 4 (positions 9194245 to

10270832).

Found at: doi:10.1371/journal.pgen.1000504.s003 (1.91 MB TIF)

Table S1 Study sample characteristics. Characteristics are

shown by study for British Genetics of Hypertension (BRIGHT),

Cohorte Lausannoise (CoLaus), Vis island isolate study (CROA-

TIA), Health 2000 cohort (Health 2000), two surveys of the

Cooperative Health Research in the Region of Augsburg (KORA

F3, KORA S4), Orkney Complex Disease Study (ORCADES),

Precocious Coronary Artery Disease (PROCARDIS), Northern

Swedish Population Health Study (NSPHS), SardiNIA Study of

Aging (SardiNIA), Study of Health in Pomerania (SHIP), Semi-

Structured Assessment for Genetics of Alcoholism (SSAGA),

Microisolates in South Tyrol (MICROS) and UK Adult Twin

Register (TwinsUK). Age is given as mean and range in brackets.

Uric acid concentrations (UA) are given as mean and appropriate

standard deviation (SD). NA indicates not applicable.

Found at: doi:10.1371/journal.pgen.1000504.s004 (0.06 MB

DOC)

Table S2 Genotyping, imputation and analysis procedures by

study. Shown are the genotyping platforms, quality control (QC)

filters applied before imputation, imputation software, number of

SNPs and genotype-phenotype association software.

Found at: doi:10.1371/journal.pgen.1000504.s005 (0.07 MB

DOC)

Table S3 Study-specific results. Shown are study-specific results

of the most significant SNP at each locus.

Found at: doi:10.1371/journal.pgen.1000504.s006 (0.23 MB

DOC)

Table S4 Full list of genome-wide significant SNPs. Shown is a

full list of SNPs that exceeded the threshold of genome-wide

significance (p,561028). Position is given for NCBI Build 36.

Effect estimates result from additive linear regression on Z-scores

of uric acid concentrations. P-values have been calculated using

weighting by the inverse variance. The effect allele is the allele to

which the beta (effect) estimate refers.

Found at: doi:10.1371/journal.pgen.1000504.s007 (2.01 MB

DOC)

Table S5 Multiple regression analysis. Genome-wide significant

SNPs were tested for independent associations, by including all

nine SNPs in a multiple regression model, and then performing

inverse variance weighted meta-analysis, across participating

cohorts (except for Health2000), of the coefficient for each SNP.

Found at: doi:10.1371/journal.pgen.1000504.s008 (0.04 MB

DOC)

Text S1 Study design. This section describes additional study

specific characteristics.

Found at: doi:10.1371/journal.pgen.1000504.s009 (0.14 MB

DOC)
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