
UNIVERSITE DE LAUSANNE - FACULTE DE BIOLOGIE ET DE MEDECINE 

CENTRE OMS DE RECHERCHE ET DE FORMATION EN IMMUNOLOGIE 

(EPALINGES) 

The early IL-4 response to Leishmania major responsible for progressive 

disease in BALB/c mice is subject to the control of autocrine IL-2 production 

and regulatory CD4+CD25+ T cells 

THESE 

préparée sous la direction du Professeur associé ad personam Jacques A. Louis, et 

présentée à la Faculté de biologie et de médecine de l'Université de Lausanne pour 

l'obtention du grade de 

,J j \ 

DOCTEUR EN MEDECINE 

par 

Alain GUMY 

Médecin diplômé de la Confédération Suisse 

Originaire d'Avry-sur-Matran (FR) 

Lausanne 

2009 



ue U11iversitaire 
c:le Mc')decin:-=: / LJl\ll 

CHUV-!3HOf\ - E\U(JllOll 

Cl 1-· IO 1 1 lair::rnnc1 

2 

\ \ 1 



Résumé 

La majorité des souches de souris de laboratoire sont résistantes à l'infection par le 
parasite Leishmania major (L. major). A l'opposé, les souris de la souche BALB développent 
une maladie évolutive. La résistance et la sensibilité sont corrélées avec l'apparition de 
lymphocytes T CD4+ spécifiques du parasite, Thl (de l'anglais T helper) ou Th2 
respectivement. La réponse aberrante Th2 chez les souris de la souche BALB/c dépend, au 
moins en partie, de façon critique de la production rapide d'IL-4 suite à l'infection. Ce pic 
précoce d'IL-4 est produit par une population de lymphocytes T CD4+ restreinte aux 
molécules du MHC de classe II, exprimant les chaînes du récepteur des cellules T V~4-Va8. 
Ces lymphocytes sont spécifiques d'un épitope de l'homologue Leishmania de la molécule 
RACKI des mammifères, appelée LACK. Il a été clairement démontré que l'IL-4 rapidement 
produite par ces cellules T CD4+ V~4-Va8 induit la maturation Th2 responsable de la 
sensibilité vis-à-vis de L. major. 

Des expériences ont été entreprises pour étudier la régulation de cette réponse précoce 
d'IL-4. Dans ce travail, nous avons documenté, dans les cellules provenant des ganglions de 
souris sensibles infectées par L. major, une augmentation de la transcription de l' ARNm de 
l'IL-2 qui précède la réponse précoce d'IL-4. La neutralisation de l'IL-2 durant les premiers 
jours d'infection induit la maturation des cellules Thl et la résistance vis-à-vis de L. major. 
Ces effets de l'anticorps anti-IL-2 neutralisant sont liés à sa capacité d'interférer avec la 
transcription rapide d'IL-4 des cellules CD4+ réactives à l'antigène LACK. Une augmentation 
similaire d'IL-2 survient chez les souris résistantes C57BL/6 qui sont incapables de générer la 
réponse précoce d'IL-4. Cependant, la protéine LACK induit une transcription précoce d'IL-2 
uniquement chez les souris sensibles. Des expériences de reconstitution utilisant des souris 
C.B.-17 SCID et des cellules T CD4+ réactives à LACK provenant de souris BALB/c TL-T1

-

démontrent un mode d'action autocrine de l'IL-2 sur la régulation de la réponse précoce d'IL-
4. Par conséquent, chez les souris C57BL/6, l'absence du pic précoce d' ARNm de l'IL-4 
important pour la progression de la maladie paraît liée à l'incapacité des cellules T CD4+ 
réactives à LACK de produire de l'IL-2. 

Un rôle dans le contrôle de la production précoce d'IL-4 par les cellules T régulatrices 
CD4+CD25+ a été investigué en déplétant in vivo cette population de cellules. La déplétion 
induit une élévation du pic précoce de l' ARNm de l'IL-4 dans les ganglions drainant de souris 
BALB/c, ainsi qu'une exacerbation du cours de la maladie avec des taux augmentés d'IL-4 
dans les ganglions. La réponse rapide d'IL-2 vis-à-vis de L. major est aussi significativement 
augmentée chez les souris BALB/c déplétées en cellules CD4+CD25+. De plus, nous avons 
démontré que le transfert de 107 cellules provenant de la rate de souris BALB/c déplétées en 
cellules T régulatrices CD4+CD25+ rend les souris SCID sensibles à l'infection et permet la 
différentiation Th2. Au contraire, les souris SCID reconstituées avec 107 cellules de la rate de 
souris BALB/c contrôle sont résistantes à infection par L. major et développent une réponse 
Thl. Chez les souris SCID reconstituées avec des cellules de rate déplétées en cellules 
exprimant le marqueur CD25, le traitement avec un anticorps neutralisant l'IL-4 au moment 
de l'infection par L. major prévient le développement de la réponse Th2 et rend ces souris 
résistantes à l'infection. Ces résultats démontrent que les cellules T régulatrices CD4+CD25+ 
jouent un rôle dans la régulation du pic précoce d'IL-4 responsable du développement 
cellulaire Th2 dans ce modèle d'infection. 
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Summary 

Mice from most strains are resistant to infection with Leishmania major (L. major). In 
contrast., BALB mice develop progressive disease. Resistance and susceptibility result from 
parasite-specific CD4 1 Thl or Th2 cells, respectively. The aberrant Th2 response in BALB/c 
mice depends, at least in pati, upon the production of IL-4 early after infection. The CD4+ 
T cells responsible for this early IL-4 response to L. major express a restricted TCR repertoire 
(V~4-Va8) and respond to an I-Acl-restricted epitope of the Leishmania homologue of 
mammalian RACKl, designated LACK. The role of these cells and the IL-4 they produce for 
subsequent Th2 cell development and disease progression in BALB/c mice was clemonstrated. 

Experiments have been undertaken to study the regulation of the rapid IL-4 production 
to L. major. In this report, we document an IL-2 mRNA burst, preceding the reported early 
IL-4 response, in draining lymph nodes of susceptible mice infected with L. mqjor. 
Neutralization of IL-2 during the first clays of infection redirected Thl cell mah1ration and 
resistance to L. major, through interference with the rapid IL-4 transcription in LACK­
reactive CD4+ cells. A burst of IL-2 transcripts also occurred in infected C57BL/6 mice that 
do not mount an early IL-4 response. However, although the LACK protein inducecl IL-2 
transcripts in susceptible mice, it failecl to trigger this response in resistant C57BL/6 mice. 
Reconstitution experiments using C.B.-17 SCID mice and LACK-reactive CD4 1 T cells from 
IL-2-1

- BALB/c mice showecl that triggering of the early IL-4 response required autocrine IL-
2. Thus, in C57BL/6 mi ce, the inability of LACK-reactive CD4+ T cells to express early IL-4 
mRNA transcription, important for clisease progression, appears due to an incapacity of these 
cells to procluce IL-2. 

A role for CD4+CD25+ regulatory T cells in the control of this early IL-4 production 
was investigated by clepleting in vivo this regulatory T cell population. Depletion induced an 
increase in the early burst ofIL-4 mRNA in the draining lymph nodes of BALB/c mice, and 
exacerbated the course of disease with higher levels of IL-4 mRNA and protein in their lymph 
nodes. The rapid IL-2 response to L. major is also significantly enhanced in BALB/c mice 
depletecl of CD4+CD25+ cells. We further showed that transfer of 107 BALB/c spleen cells 
that were depleted of CD4+CD25+ regulatory T cells rendered SCID mice susceptible to 
infection and allowed Th2 differentiation while SCID mi ce reconstituted with 10 7 control 
BALB/c spleen cells were resistant to infection with L. major and developed a Thl response. 
Treatment with a mAb against IL-4 upon infection with L. major in SCID mice reconstitutecl 
with CD25-depleted spleen cells prevented the development of Th2 polarization and renclered 
them resistant to infection. These results demonstrate that CD4+CD25+ regulatory T cells play 
arole in regulating the early IL-4 mRNA and the subsequent clevelopment of a Th2 response 
in this model of infection. 
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The murine model of infection with Leishmania major and maturation of T 

helper subsets. 

1 The murine model of infection with Leishmania major. 

Upon experimental infection with Leishmania major (L. major), distinct features of 

the spectrum of clinical manifestations seen in patients with cutaneous leishmaniasis can be 

reproduced in inbred mice of different genetic backgrounds.' 2 Mice from the majority of 

inbred strains (C3H/He, CBA, C57BL/6, 129Sv/Ev) develop locally cutaneous lesions which 

spontaneously resolve after four to eight weeks. These mice do not develop lesions after a 

second inoculation of L. major and belong to the resistant phenotype. Mice from a few strains 

(BALB/c, DBA/2) develop severe and uncontrolled lesions without becoming immune to 

reinfection and are representative of the susceptible phenotype.3 This murine model of 

infection has been used to characterize the immune responses developing in both resistant and 

susceptible mice. 

1.1 The parasite life cycle. 

L. major exist in the sand fly vector as extracellular, flagellated, spindle-shaped fotms 

termed promastigotes that develop in close approximation to epithelial cells in the insect 

midgut (Figure A (1)). The major surface glycoconjugate lipophosphoglycan (LPG) 

constitutes a dense glycocalyx that covers the entire surface of the parasite including the 

flagellum.4 Immature organisms, called procyclics, express shorter LPG molecules.5 During 

development in the insect, LPG undergoes developmental modification, named 

metacyclogenesis, that involves capping of terminal residues that obscures the epithelial­

binding domain of LPG, allowing the mature forms, called metacyclics, to be released from 

the midgut (Figure A (2)) and to migrate to the salivary glands of the fly (Figure A (3)) from 

where they are inoculated during the blood meal of the sand fly, into the dermis of its 

mammalian host (Figure A (4)).6 The parasite invades preferentially mononuclear cells, either 

in a direct way or by receptor-mediated uptake through the complement receptor 3 (CR3) 

(Figure A (5)). Once inside the phagolysosomes of the macrophage, the main host cell of the 

parasite, the promastigotes transform themselves into a non-flagellated intracellular form 

called amastigotes, a developmental form in which they remain in the vertebrate host (Figure 
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A (6)). Amastigotes replicate by binary fission (Figure A (7)), eventually rupturing the 

macrophage (Figure A (8)) and spreading to uninfected cells (Figure A (9)). A new sand fly 

will take its blood meal from an infected mammalian host and the cycle is closed (Figure A 

(10)). In the fly, the macrophages taken up by the blood meal are digested and the amastigotes 

transform into promastigotes in the stomach of the insect (Figure A (11)).6 

Mammnlhm host 

Figure A. The parasite life cycle. Modified from Nature Reviews Immunology 2, 845-858 (2002). 

1.2 Expression of resistant or susceptible phenotypes during infection with L. 

major is the result of a CD4+ T helper 1 (Thl) or T helper 2 (Th2) 

response. 

As described in chapter 1.1, L. major is an intracellular parasite located within the 

phagolysomal compartment of macrophages where major histocompatibility complex (MHC) 

class II processing for antigen presentation also takes place. Infection with L. major induces 

the expansion of parasite-specific CD4+ T cells that recognize Leishmania antigens presented 

in association with MHC class II molecules on the surface of antigen presenting cells (APCs). 
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The role of T cells in the resistance of mice to infection with L. major has been demonstrated 

by results showing that adoptive transfer of T lymphocytes into susceptible nu/nu mice 

allowed them to control the disease.3 Using monoclonal antibodies directed against CD4+ T 

cells, it has been further demonstrated that parasite-specific T cells from the CD4+ 

subpopulation were responsible for the spontaneous resolution of primary lesions in mice of 

resistant strains. Further adoptive transfer studies have also demonstrated that CD4+ T cells 

were also responsible for susceptibility to infection. 7-
11 

Following the description of two functionally distinct CD4+ T cell subsets, Thl and Th2, the 

characterization of CD4+ subpopulations playing a role in resistance or susceptibility to 

infection with L. major was possible. 

1.2.1 Defining Thl and Th2 phenotypes. 

The characterization of cytokine production from long term murine CD4+ T cell clones 

was first published more than 10 years ago. 12 In these studies, it was shown that distinct CD4+ 

T cells produced two distinct patterns of cytokines, which were designated Thl and Th2 

(Figure B). Thl cells were found to exclusively produce interleukin-2 (IL-2), interferon-y 

(IFN-y) and lymphotoxin (LT), while Th2 clones exclusively produced IL-4, IL-5, IL-6 and 

IL-13 .13 Somewhat later, additional cytokines, IL-9 and IL-10, were isolated from Th2 

clones. 14 15 Finally, other cytokines, such as IL-3, granulocyte-macrophage colony-stimulating 

factor (GM-CSF) and tumor necrosis factor-a (TNF-a) were found to be secreted by both 

Thl and Th2 cells. 

The observation that CD4+ T cells could be segregated into distinct subsets based on the types 

of cytokines they produced was of great interest, because Thl cytokines (i.e., IL-2, IFN-y) 

were associated with cellular immune functions such as delayed type hypersensitivity 

response (DTHR), 16
-
19 while Th2 cytokines (i.e., IL-4, IL-5, IL-6, IL-10, IL-13) enhance 

antibody production from B cells and induce several aspects of the allergie response. 17 In 

addition, it was soon appreciated that these specific cytokines produced from Thl and Th2 

cells (IFN-y and IL-4, respectively) were also potent cross-inhibitors of the two cell types.20 

Thus, these differences in cytokine profiles allowed for different effector functions, as well as 

the ability to cross-regulate each other's function. 

Recently, CD4+CD25+ regulatory T cells (Treg cells) and Thl 7 cells have been described as 

two subsets distinct from Thl and Th2 cells. Treg cells expressing the forkhead/winged helix 
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transcription factor (Foxp3) have an anti-inflammatory role and maintain tolerance to self 

components by contact-dependent suppression or releasing anti-inflammatory cytokines [IL-

10 and transforming growth factor-~l (TGF-~l)] (discussed in chapter 1.5),263 while Thl 7 

cells expressing retinoic acid-related orphan receptor yt (RORyt) play critical roles in the 

development of autoimmunity and allergie reactions by producing IL-17 and, to a lesser 

extent, TNF-a and IL-6.264 So the balance between Thl 7 and Treg cells may be important in 

the development/prevention of inflammatory and autoimmune diseases ( exhaustively 

reviewed in Refs. 263 to 268). 

Cytokines 
TypeofAPC 

Dose of antigen 

Extent ofTCR engagement 

Nature of costimulatory molecules 

Administration route of the antigen 

Cell-mediated 
inflammatory 

reactions 

Lymphotoxin 

ThO 
G) 

Figure B. Naive CD4+ T helper cells can develop into two different effector subsets: Thl and Th2. 

Humoral 
response 

The murine model of infection with L. major provided the first correlation in vivo 

between 1) the development of protective immunity and an expansion of Thl CD4+ T cells in 

resistant mice and 2) the expression of progressive disease and the development of a CD4+ 

Th2 cell response in susceptible mice (Figure C).21 22 If similar levels ofIFN-y have been later 

described in either resistant or susceptible mice, the inverse relationship between IL-4 

production and resistance to infection is a paradigm of the L. major infection.23 Indeed, the 

expression ofIL-4 in susceptible BALB/c mice is persistent during the course of infection and 

this IL-4 production correlates with the number of parasites in the lesions and the 
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development of lesions.24 Furthermore, the correlation between resistance to infection and the 

absence of a Th2 response was confirmed by results showing that treatment of susceptible 

mice with anti-IL-4 monoclonal antibodies during the first days of infection with L. major 

inhibited the maturation of a Th2 response rendering these mi ce resistant to infection. 25 

Differentiated L. mqjor-specific Thl and Th2 cells can by themselves mediate respectively 

resistance and susceptibility to infection with L. major. This contention is supported by 

studies, which have shown that adoptive transfer of Thl cells derived from infected BALB/c 

rendered resistant to infection as a result of treatment with anti-CD4 antibodies9 to immuno­

deficient SCID mice allowed them to resolve L. major-induced lesions whereas transfer of 

Th2 cells derived from infected BALB/c mice led to the development oflarger lesions.26 

.-, e e 
"-" 
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0 1 2 3 4 5 6 7 8 9 10 
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Th l response 
Presence of IFN-y 
and absence of 

Figure C. Expression of a resistant or susceptible phenotype during infection with L. major is the result of a Thl 
or Th2 response. 

1.3 Acquired immune eff ector mechanisms mediating protection or 

susceptibility to infection with L. major. 

Activation of macrophages to a parasiticidal state is the main anti-Leishmania effector 

mechanism. IFN-y produced by Thl cells in synergy with TNF-a has been demonstrated to 

induce the synthesis of nitric oxide (NO) synthase that leads to the L-arginine dependent 
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production of reactive nitrogen radicals toxic for the parasite.27
-
30 Thus, genetically resistant 

mice lacking either IFN-y or the IFN-y receptor gene are unable to control parasite growth.31 32 

Neutralization of nitric oxide radicals by inhibitors of the iNOS pathway (N-iminoethyl L­

omithine, L-N-iminoethyl-Lysine or L-Nco monoethyl-Arginine) renders the macrophages 

unable to destroy the parasite. 27 3° Furthermore, administration of these inhibitors to resistant 

mice renders the mice susceptible to infection28 33 34 and resistant mice, in which the gene for 

the iNOS has been inactivated, are susceptible to infection with L. major.35 

It had been shown in vitro that Thl CD4+ T cell-mediated cytotoxicity requires a functional 

Fas (CD95)-Fas ligand (FasL) pathway36
-
38 and that Th2 cells do not mediate apoptosis of 

target cells through Fas/FasL interactions. Unlike Thl cells, Th2 effectors express high levels 

of Fas-associated phosphatase (F AP-1 ), a protease that is thought to be an inhibitor of Fas 

signaling.39 In contrast to wild-type C57BL/6 resistant mice, C57BL/6 mice lacking either a 

functional FasL or Fas were unable to heal lesions induced by L. major in spite of the fact that 

they developed a CD4+ Thl response and their macrophages produced normal levels of 

reactive nitrogen in response to IFN-y in vitro. These results suggested that the phenotype 

observed was due to a defective Fas/FasL pathway of cytotoxicity. This conclusion is 

supported by results showing that restoration of a functional Fas-FasL cytotoxicity pathway 

by exogenous FasL in FasL-deficient mice allowed complete resolution of the cutaneous 

lesions.40 An apoptotic death of infected macrophages would result in a decrease in the ratio 

of infected macrophages to IFN-y-producing Thl cells, thus increasing the efficiency of 

macrophage activation to a microbicidal state. In contrast, Th2 cells produce IL-4, a cytokine 

which exerts a macrophage deactivating function since it inhibits the IFN-y-triggered 

activation of macrophages.41 

1.4 Factors influencing the development of Thl or Th2 CD4+ T cells. 

Thl and Th2 CD4+ T cells develop from a common naïve CD4+ T cell precursor.42 43 

Several parameters have been reported to influence the pathway of differentiation of CD4+ T 

cell precursors, including the type of APCs,44 the nature of the costimulatory signals,45 the 

extent of T cell receptor (TCR) engagement,46 the dose of antigen,47 the route of antigen 

administration,48 the number of cell cycles.49 Among these different T cell polarizing signals, 

cytokines have now been recognized as crucial inducers of CD4+ T cell differentiation (Figure 

B). 
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1.4.1 The role of cytokines in the development of polarized CD4+ Th responses. 

1.4.1.1 The role of IL-12 in Thl cell development. 

IL-12 is a cytokine produced by many cells such as dendritic cells (DCs), 

macrophages, polymorphonuclear cells and B cells.50 Biologically active IL-12 was 

determined to be a heterodimeric protein, composed of a heavy chain (p40) and a covalently 

associated light chain (p35). 51 Noteworthy, IL-12 producers typically express far more IL-

12p40 chain than IL- l 2p3 5 chain, 52 53 resulting in the formation and the secretion of IL-12p40 

homodimers.54 55 The IL-12p40 homodimer binds to the IL-12R, but fails to mediate a signal, 

thereby serving as a functional antagonist to IL-12p70 heterodimers.5657 

The possibility to obtain large population of naïve CD4+ T cells specific for a single T cell 

epitope, derived from TCR-transgenic mice, allowed the study of the role of IL-12 in T cell 

differentiation. Addition of exogenous IL-12 during priming of CD4+ T cells in vitro induced 

the development of Th 1 cells, characterized by high levels of IFN-y and virtual absence of IL-

4 in the supernatants.58 Interestingly, examining how endogenous production of IL-12 by 

APCs could influence the Thl response, it was shown that macrophages exposed to heat­

killed Listeria monocytogenes (HKLM) induced Thl development and inhibited the 

generation of IL-4-producing cells.59 Furthermore, anti-IL-12 inhibited the ability of 

macrophages exposed to HKLM to induce IFN-y, suggesting that IL-12 produced by APCs in 

response to some pathogens plays an important role in Thl development in vivo. The most 

convincing evidence for IL-12 having a role in regulating IFN-y responses was shown in 

studies using IL-12-deficient mice. 6° Following in vitro and in vivo stimulation, there was 

impairment in IFN-y production and type 1 cytokine responses. Studies in IL-12-deficient 

mice have demonstrated an essential role for endogenous IL-12 in resistance to different 

pathogens such as L. major,61 Toxoplasma gondii62 and Mycobacterium tuberculosis.63 

Resistance to other intracellular bacteria such as Listeria monocytogenes involved IL-12-

dependent and -independent mechanisms.64 

The role of IL-12 in vivo was most widely studied in the murine model of infection 

with L. major. Exogenous IL-12 injected during the first week of infection with L. major in 

susceptible BALB/c mice resulted in the development of a CD4+ Thl response associated 

with decreased production of IL-4 by lymph node T cells in vitro and allowed these otherwise 
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susceptible BALB/c mice to resolve their lesions.65 66 Conversely, neutralization of IL-12 by 

polyclonal antisera against IL-12 in resistant mice led to an increase in the production ofIL-4 

(a Th2 cytokine) and to the generation of a susceptible phenotype. 66 67 

The importance of IL-12 in Thl cell development during infection with L. major has been 

further tested using mice genetically deficient in either the p35 or p40 subunits of IL-12. 

These mice, generated on a resistant genetic background, developed progressive lesions. This 

was associated with an important increase in the levels of IL-4 mRNA in their lymph nodes 

reaching values comparable to those observed in similarly infected susceptible BALB/c mice. 

Conversely, levels of IFN-y were markedly decreased in IL-12-deficient mice, which did not 

exhibit a Thl-mediated DTHR to L. major antigens normally observed in mice from resistant 

strains.61 In spite of the evidence for the role ofIL-12 in directing Thl cell maturation in mice 

infected with L. major, the precise timing ofIL-12 production in vivo following infection with 

this parasite is still a matter of debate.68 69 Results from one study have shown that IL-12 

transcripts were neither detected in susceptible nor in resistant mice before 7 days post­

infection, a period corresponding to the transformation of promastigotes into amastigotes in 

vivo, suggesting a stage-specific evasion of IL-12 induction by promastigotes. 68 Other 

observations, however, have found elevated levels of IL-12 in the lymph nodes of mice from 

the C3H resistant strain, early (1 or 2 days) after infection, which remained elevated during 

the first week of infection. A burst ofIL-12 production was also seen in susceptible BALB/c 

mice during the first two days of infection, but in these mice levels of IL-12 returned rapidly 

to baseline values. In mice from another resistant strain, i.e. C57BL/6, no increase in IL-12 

production was observed during the first days of infection. 69 70 

1.4.1.2 The role of IFN-y in Thl cell development. 

Thl development is also dependent on IFN-y,59 71 although the requirement for this 

factor is still unclear. Results from several studies using in vitro stimulated naïve CD4+ TCR 

a~-transgenic T cells indicate that IFN-y is required for the induction of Thl cell 

development.59 72 73 However, other studies, also using CD4+ T cells from a~ TCR-transgenic 

mice did not identify a requirement for IFN-y in Thl cell maturation.74 Nevertheless, the 

effects of IFN-y on Thl development may be mediated via action on the macrophage to up­

regulate IL-12 production50 or by direct effects on the T cell. The molecular basis of IL-12 

unresponsiveness of Th2 cells ( discussed in chapter 1.4.1.3 .4) has been delineated in both 
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mouse and human systems.75 76 This is at least in part due to down-regulation of the IL-12Rf32 

by IL-4 and furthermore the up-regulation of the IL-12Rf32 by IFN-y, which counteracts the 

inhibitory effects ofIL-4.75 76 Thus, BALB/c mice, which produce a substantial amount ofIL-

4,77 may inhibit the IL-12Rf32 expression, imposing the reported requirement for IFN-y in Thl 

development.76 Moreover, since IFN-y has some anti-proliferative effects on CD4+ Th2 cells 

but not on CD4+ Thl cells,78 it could favour Thl differentiation simply by inhibiting Th2 

development. 

The data are also debated concerning the importance of IFN-y in favouring Thl cell 

response and inhibiting Th2 cell response during infection with L. major. Administration to 

resistant mice (C57BL/6 or C3H/He) of specific anti-IFN-y antibodies within the first 2 days 

of infection rendered these mi ce unable to resolve their lesions and lead to the appearance of a 

Th2 response.25 71 79 80 In agreement with these findings, IFN-y-deficient C57BL/6 mice 

developed a Th2 response after L. major infection.81 In contrast, resistant 129/Sv/Ev mice 

deficient for the binding chain of the IFN-y receptor (IFN-yR), which are exquisitely 

susceptible to infection, still developed a Thl response.32 Interestingly, these conflicting 

results have been obtained using mice from different genetic backgrounds. In as much as i) 

IFN-y is capable of superseding the inhibition ofIL-12Rf32-chain expression caused by IL-476 

and ii) in contrast to anti-IFN-y-treated C57BL/6 mice,80 Svl29 IFN-yK1
- mice do not produce 

an early burst of IL-4 mRNA expression in their draining lymph nodes in response to L. major 

and maintain IL-12Rf32-chain mRNA expression on their CD4+ T cells at least up to 6 days 

after infection,82 it has been proposed that in the absence of IL-4, activated CD4+ T cells do 

not require IFN-y signaling for the maintenance of IL-12Rf32-chain expression and IL-12 

signaling in vivo. 82 

1.4.1.3 The role of IL-4 in Th2 cell development. 

The role of IL-4 in directing the differentiation of IL-4-producing cells from naïve 

CD4+ T cells was first elucidated in in vitro experiments in which murine cells were 

stimulated with mitogens for several days under various conditions and then restimulated to 

evaluate the types of cytokines produced. In these studies, it was clearly shown that the 

development of Th2 cells from naïve precursors is regulated by the presence of IL-4 in the 

priming cultures. 83
-
86 IL-4 could lead to the differentiation of IL-4-producing cells in an APC-
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independent manner, providing evidence for a direct effect of IL-4 on CD4+ T cells. 85 Similar 

studies were done using CD4+ T cells from transgenic mice for a TCR specific for a particular 

antigen, such as cytochrome c or ovalbumin. These systems provided a more physiologie 

model than did the priming experiments highlighted above, in which polyclonal mitogens 

were used to stimulate T cells. In addition, it allowed to vary the type of APCs and the 

amount of antigen to see if they also had an effect on the differentiation of IL-4-producing 

cells. Similar to the findings discussed above, the presence of IL-4 in priming cultures 

directed the development of IL-4-producing cells regardless of the type of APCs used in the 

priming culture.87 88 The effect of IL-4 in the development of Th2 responses appears to 

dominate over Thl polarizing cytokines, since Th2 differentiation is observed even when bath 

cytokines (i.e. IL-4 and IL-12) are present.20 The dominant effect of IL-4 could be related to 

the ability of IL-4 to down-regulate the IL-12R~2-chain on CD4+ T cells. 76 The most 

definitive evidence for IL-4 having a role in regulating IL-4 production was shown in vivo 

using IL-4-, STAT6-, or IL-4Ra-deficient mice. 89
-
95 

The critical role of IL-4 in Th2 cell development in vivo has been established in 

several experimental systems, among which murine Leishmaniasis has been studied most 

intensively. The genetic mapping of resistant loci suggests that the outcome to L. major 

infection is a complex polygenetic trait, controlled by at least six genes.96 One of these loci 

maps to chromosome 11, which contains the IL-4/IL-13 gene cluster. However, it is important 

to keep in mind that the presence of all six loci was not essential for healing, and no single 

locus appeared to be necessary, clearly showing the genetic complexity of the healer 

phenotype. Studies in vivo using the murine model of infection with L. major have established 

that IL-4, during the early stages of infection, has an important role on the subsequent 

development of specific CD4+ Th2 cells. The first evidence was that administration of anti­

IL-4 antibodies to BALB/c mice at the onset of infection abrogated Th2 polarization, caused 

an expansion of Thl cells and consequently led to resistance to infection.25 The importance of 

IL-4 has been further established by results showing that all other immune manipulations, 

effective only at the initiation of infection, that are able to revert the Th2 phenotype of the L. 

major specific immune response in BALB/c mice towards a healing Thl phenotype, appear to 

diminish the IL-4 production during the first week of infection.9 25 65 66 97
-
99 Advances of 

genetic manipulations knocking out the gene for IL-4 have not yet helped in understanding 

the exact role of IL-4 in the murine model of infection with L. major. Genetically pure IL-4-

deficient BALB/c mice were generated from a BALB/c embryonic stem (ES) cell line. 
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Conflicting results were obtained by two independent groups. 92 100 One group reported that 

these mice still express a susceptible phenotype to infection with L. major100 and that IL-4-

deficient mice lose their IL-12 responsiveness equally as do wild-type BALB/c mice. 101 

Furthermore, susceptibility to infection with L. major could be prevented by administration of 

IL-12 to these IL-4-deficient BALB/c mice. 101 On the opposite, the other group described that 

these IL-4-deficient BALB/c mice express a resistant phenotype to infection with L. major.92 

Factors that are believed to contribute to the divergent results with the IL-4-knockout mice 

include differences in both i) the L. major strain used; differences in the virulence of these 

two substrains were suggested to be one possible explanation for these conflicting results102 

and ii) the dose of the parasites used in the various studies; at very low parasite doses, even 

wild-type BALB/c mice can control L. major infection. 103 

1.4.1.3.1 Susceptible BALB/c mice exhibit a burst of IL-4 in the draining lymph 

nodes within the first day after infection with L. major. 

As discussed previously, studies using neutralizing anti-IL-4 antibodies or mice with 

disruption of the gene encoding IL-4 have defined a critical role for this cytokine in mediating 

the differentiation of the Th2 subset in vivo and the failure of BALB/c mice to control L. 

major infection.25 92 Direct evidence has been obtained that BALB/c mice produce a burst of 

IL-4 extremely rapidly in response to infection with L. major (Figure D). 104 Indeed, 16 hours 

after subcutaneous infection BALB/c mice exhibited a peak in IL-4 mRNA expression in the 

draining lymph nodes, before retuming to baseline levels by 48 hours. Importantly, this IL-4 

production occurs during the period when neutralizing IL-4 antibodies are capable of 

redirecting protective Thl development in BALB/c mice.25 105 From day 5, a second wave of 

IL-4 mRNA was observed that remained elevated during the entire course of infection, 

reflecting the Th2 cell differentiation normally observed in these susceptible mice. 104 106 In 

contrast, no increase in IL-4 mRNA expression was observed in resistant mice (i.e. C57BL/6) 

during the first 2 days of infection with L. major (Figure D). 104 
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Figure D. Kinetics ofIL-4 mRNA expression in draining lymph nodes ofmice infected with L. major. 

1.4.1.3.2 Cellular origin of the IL-4 produced in susceptible BALB/c mice within 

the first day of infection with L. major. 

There are several candidates for IL-4 production early in an immune response, which 

may be responsible for Th2 differentiation; these include MHC class II-restricted CD4+ T 

cells (memory and possibly naïve), 17 47 107 108 the NKJ .1 + subset of CD4+ and double negative 

(DN) T cells, 109 and non-T cells, such as mast cells, basophils and eosinophils. 110 111 

The increased IL-4 mRNA expression during the first day of infection with L. major was not 

observed in draining lymph nodes of BALB/c mice depleted of CD4+ T cells by treatment 

with anti-CD4 monoclonal antibodies, thus demonstrating that CD4+ T cells contributed to 

this early IL-4 burst. 104 Quantification of IL-4 mRNA in CD4+ T cell populations purified 

from lymph nodes of BALB/c mice 16 hours after infection directly identified CD4+ T cells as 

the source of IL-4. 104 These CD4+ T cells did not belong to the CD4+ NKl.1 + minor 

subpopulation of CD4+ T cells known to produce IL-4 very rapidly in response to injections 
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of anti-CD3 or anti-IgD antibodies,112 113 as demonstrated by experiments characterizing the 1 
V~ chain usage of the TCR in these CD4+ T cells. The IL-4 mRNA expression seen after L. 

major infection in BALB/c mice, did not occur in CD4+ T cells expressing the V~ 8,7,2 I. 
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chains which are used by CD4+ NKl.1+ cells. 104 Analysis of the TCR Vf3 and Va usage of 

CD4+ T cells producing IL-4 within the first day of infection with L. major demonstrated that 

all of the IL-4 mRNA present at this time was produced by CD4+ T cells that expressed the 

Vf34 and the Va8 TCR chains. 114 The contribution of these Vf34-Va8 CD4+ T cells to the 

early burst ofIL-4 mRNA expression in BALB/c mice in response to infection was confirmed 

by experiments showing that this response was absent in BALB/c mice rendered selectively 

deficient in the Vf34+CD4+ T cell population. 114 These results are consistent with experiments 

showing an expansion of cells with the same TCR in draining lymph nodes 10 days after 

infection. 115 Cloned T cell lines and hybridoma derived from CD4+ T cells that expressed the 

Vf34-Va8 TCR were shown to recognize the Leishmania homolog of mammalian RACKl 

designated LACK (Leishmania Activated c Kinase ). 116 Interestingly, the LACK antigen from 

L. major induced comparably early IL-4 mRNA expression in the same Vf34-Va8 population 

of BALB/c mice as did the intact parasites. 114 This response was driven by a single dominant 

I-Ad-restricted T cell epitope in the fourth WD domain of LACK, comprising amino acid 

residues 156-173 .114 In addition, there is some degree of homology between LACK and 

RACKl, particularly within the region of the immuno-dominant I-Ad epitope of LACK 

eliciting the rapid IL-4 response by Vf34-Va8 CD4+ T cells in BALB/c mice. 114 116 

In contrast to susceptible BALB/c mice, C57BL/6 and other resistant mice do not mount an 

early IL-4 response following infection with L. major or injection of LACK. 104 114 Treatment 

of resistant C57BL/6 mice with either anti-IFN-y or anti-IL-12 antibodies at the onset of 

infection has been shown to result in the development of a Th2 response and in susceptibility 

to infection.67 79 Interestingly, recent findings have demonstrated that neutralization of either 

IL-12 or IFN-y in C57BL/6 mice at the initiation of infection allows the expression of this 

rapid IL-4 response to L. major or LACK (Figure E). 80 Strikingly, LACK-reactive CD4+ T 

cells that express the Vf34-Va8 TCR chains were also the source of this early IL-4 response in 

these mice and were found to be required for reversal of the natural resistance of C57BL/6 

mice following a single administration of anti-IL-12 or -IFN-y mAbs.80 Analysis of the 

epitopes recognized by these Vf34-Va8 CD4+ T cells from C57BL/6 mice is being carried out. 

Preliminary results clearly show that C57BL/6 Vf34-Va8 CD4+ T cells recognize an I-Ab­

restricted epitope different from the I-Ad-restricted LACK056_173) peptide seen by BALB/c 

Vf34-Va8 CD4+ T cells (P. Launois, unpublished data). Noteworthy, the IL-4 produced during 

the early stage of infection in resistant mice treated with anti-IL-12 antibodies at the initiation 

of infection accounted for the increased susceptibility of these mice. 80 Together with data 
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showing that treatment of BALB/c mice with recombinant IFN-y or recombinant IL-12 

suppresses the early IL-4 response to L. major, 104 these results indicate that an impairment in 

mechanism(s) down-regulating the early IL-4 response by VJ34-Va8 CD4+ T cells might 

underlie the susceptibility of BALB/c mi ce. 
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Figure E. An early burst of IL-4 instructs Th2 cell development in anti-IFN-y-treated C57BL/6 mice infected 
with L. major. 

1.4.1.3.3 The IL-4 produced by LACK-reactive VJ34-V a.8 CD4+ T cells within the 

first day of infection of BALB/c with L. major instructs subsequent Th2 

cell development and susceptibility to L. major. 

The mouse mammary tumor v1ruses MMTV(SIM) and MMTV(SW) encode a 

superantigen that ultimately leads to systemic deletion of CD4+ T cells expressing the VJ34 or 

VJ36 TCR chain, respectively. 117 118 In contrast to wild-type BALB/c mice or BALB/c mice 

deficient in VJ36+CD4+ T cells as a result of neonatal exposure to MMTV(SW), BALB/c mice 

deficient in VJ34+CD4+ T cells by prior infection with MMTV(SIM) were not capable of 

generating early IL-4 transcripts in CD4+ T cells following infection with L. major, developed 

a Thl response and were resistant to infection. 114 Conversely, administration of exogenous 
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IL-4 to VP4-deficient BALB/c mice only during the first 64 hours of infection restored Th2 

cell development at later stage and susceptibility to infection. 119 Furthermore, the induction of 

a specific unresponsive state in LACK-reactive VP4-Va8 CD4+ T cells following treatment 

of BALB/c mice with altered LACK proteins that differ by a single amino acid from the 

natural I-Ad-restricted epitope antagonizes early IL-4 response to the wild-type LACK 

epitope, inhibits Th2 cell development, redirects Thl cell maturation and results in long term 

protection. 120 These data are also supported by results which have shown that BALB/c mice 

tolerant to LACK, as a result of the transgenic expression of this molecule in the thymus 

under MHC class II promoters, are resistant to L. major and develop a Thl response. 121 

Collectively, these results imply that the role of these VP4-Va8 CD4+ T cells is limited to 

providing the IL-4 necessary for Th2 maturation and suggest that in BALB/c mice, a single 

antigen (LACK) from this highly complex micro-organism drives the early IL-4 response that 

underlies subsequent Th2 cell maturation resulting in progressive disease. These data also 

show that VP4-Va8 CD4+ T cells are not essential at the effector phase of the Th2 response. 

1.4.1.3.4 The IL-4 produced in BALB/c mice by VP4-Va.8 CD4+ T cells within the 

first day of infection with L. major rapidly renders parasite-specific CD4+ 

T cells unresponsive to IL-12. 

Elegant in vitro studies using CD4+ T cells from ap TCR-transgenic mice of BALB/c 

and Blü.D2 genetic background, demonstrated a T cell intrinsic bias towards a Th2 or Thl 

response, respectively.77 122 Guler et al., proposed that Th2 development may be a functional 

consequence of a rapid loss of IL-12 responsiveness in BALB/c mice during priming in 

vitro.77 Interestingly, it has been shown that a rapid down-regulation of the IL-12RP2-chain 

represents the molecular mechanism responsible for this loss of IL-12 responsiveness.76 The 

IL-12 receptor is composed of two chains termed p 1123 and p2. 124 The p2 subunit is necessary 

to form a high affinity receptor124 and to provide IL-12 signaling through the STAT/JAKS 

pathway.76 Expression of the IL-12RP2-chain is controlled by IFN-y and IL-4. Engagement of 

the TCR induces the expression of the IL-12RP1- and P2-chains. The IL-4 mediated down­

regulation of IL-12RP2-chain expression in CD4+ T cells from ap TCR-transgenic mice 

could be overridden by addition ofIFN-y into the primary cultures.76 Results obtained by our 

laboratory have documented that there was a short period of time of less than 48 hours after 

infection during which the IL-4, produced as a result of the 16 hours burst in IL-4 
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transcription, must be biologically active m order to enforce subsequent Th2 cell 

development. During that time IL-4 rendered L. major-specific CD4+ T cells totally 

unresponsive to IL-12. 106 Neutralization of the early IL-4 production in L. mqjor-infected 

BALB/c mice maintained IL-12 responsiveness and as a result led to Thl development. 106 

Interestingly, extinction of IL-12 signaling in BALB/ c mi ce is due to a rapid down-regulation 

ofIL-12RP2-chain mRNA expression in CD4+ T cells, from 48 hours and at least up to day 8 

after infection. Neutralization of the IL-4 produced in BALB/c mice by VP4-Va8 CD4+ T 

cells during the first days of infection resulted in maintenance of the IL-12RP2-chain mRNA 

expression. Resistant C57BL/6 mice, which do not mount an early IL-4 rnRNA burst 

following infection with L. major, 104 maintain the expression of the IL-12RP2-chain on their 

specific CD4+ T cells, which remain responsive to IL-12. 82 

1.4.1.4 The role of IL-2 in Th2 cell development. 

1.4.1.4.1 The IL-2/IL-2 receptor system. 

IL-2 is a 15,5 kDa glycoprotein produced principally by activated T cells (i.e. Thl 

cells), 17 although activated B cells may also have the ability to produce small amounts of IL-

2.125-127 IL-2 acts on a large variety of target cells including T and B lymphocytes, NK cells, 

and macrophages/monocytes. 128 This cytokine plays a critical role in the regulation of 

immune responses. It is an important growth factor for T cells following stimulation by 

antigen and also fonctions to promote T cell survival, probably by inducing the expression of 

Bcl-2 and related proteins. 128-132 However, mice that lack IL-2 or a fonctional IL-2 receptor 

(IL-2R) accumulate activated T cells and develop autoimmunity, 133
-
135 suggesting that the 

dominant role of IL-2 in vivo is to terminate T cell responses and to maintain tolerance. A 

possible mechanistic explanation of this fonction is provided by the observation that IL-2 

renders activated T cells susceptible to activation induced cell death (AICD), 131 136 137 a 

pathway of cell death that serves to eliminate autoreactive T cells. 138 Surprisingly, IL-2-

deficient mice have little fonctional impairrnent and are able to generate in vivo CTL 

responses, produce B and T helper responses against viral challenge, and show in vivo T cell 

proliferation. 139 
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The high affinity IL-2 receptor is comprised of three component chains, IL-2Ra 

(CD25), IL-2RP and IL-2Ry. 128 140 141 IL-2RP and IL-2Ry are present constitutively in resting 

lymphocytes. 142 143 In contrast IL-2Ra is expressed only following activation. 128 140 144 IL-2RP 

is part of the IL-15 receptor, 145 and appears to be required for peripheral immune regulation, 

since mice lacking this chain exhibit T and B cell activation in vivo as well as 

autoimmunity. 134 IL-2Ry is shared by the receptors specific for IL-4, IL-7, IL-9 and IL-15. 141 

146-148 Mutations in the IL-2Ry gene result in X-linked severe combined immune deficiency in 

humans and a similar severe defect in lymphoid development in mice, presumably owing to 

defects in several of these signaling pathways. 141 149 150 Together, the IL-2RP and IL-2Ry 

chains forma low affinity IL-2 receptor, which is sufficient to effect signal transduction upon 

ligation; however, the physiologie role of this low affinity IL-2R is not known. 151 152 While 

the IL-2Ra chain is incapable of independently generating intracellular signals, its association 

with the IL-2RP and IL-2Ry chains forms the high affinity IL-2 receptor. 153 154 Therefore, one 

function of IL-2Ra is to regulate the sensitivity of activated lymphocytes to IL-2. In humans, 

the IL-2Rpy complex can bind IL-2 with intermediate affinity. In contrast, the murine 

heterodimeric IL-2Rpy does not show any affinity for IL-2, and expression of IL-2Ra is 

necessary to complete the functional receptor (IL-2Rapy). 155 The IL-2Ra chain has not been 

found in association with any other receptors and is not known to internet with any ligand 

other than IL-2. 135 Part of the complex IL-2 receptor signal transduction pathways that 

contribute to the overall cellular response induce by IL-2 has been defined and reviewed in 

detail.144 156 157 

1.4.1.4.2 Regulation of Th cell differentiation by IL-2. 

In addition to the prominent role that IL-4 plays on the differentiation of Th2 effector 

cells, evidences have been provided in vitro and in vivo that IL-2 is necessary for IL-4 

production by CD4+ T cells from normal mice and the development of Th2 responses. Thus, 

IL-2 was required for IL-4 production by CD4+ T cells from naïve donors polyclonally 

activated in vitro, an effect that did not appear related to a possible IL-2-influenced 

preferential proliferation or survival of CD4+ T cells with the potential to make IL-4. 85 158 159 

Furthermore, priming of CD4+ T cells for Th2 differentiation in vitro, although dependent 

upon IL-4, also required IL-2. 85 86 158-163 An essential role for IL-2 in Th2 cell development in 

vivo is also supported by several experimental results. 98 133 164-167 In this context, Ehrhardt et 
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al. 165 reported that IL-2-deficient mice immunized with TNP-KLH exclusively generated Thl 

cells which triggered the inflammatory bowel disease; and reduced IL-4 mRNA expression in 

CD4+ T cells was observed in IL-2-knockout mice infected with Salmonella. 167 In addition, 

weekly treatment of BALB/c mice infected with L. major with anti-IL-2 mAbs resulted in 

resistance to infection and reduced IL-4 production by specifically stimulated lymph node 

cells in vitro.98 In contrast to these results, other data, some obtained with IL-2-deficient mice, 

suggest that Th2 cell development may be possible in the absence of IL-2. 134 168-17° For 

example, CD4+ T cells from IL-2-deficient DOll.10 TCR-transgenic mice were able to 

differentiate in vitro into Th2 effector cells. 17° Further evidences that IL-2 is not required for 

the development of Th2 cells are provided in vivo by the observations that increased 

production of the Th2-dependent isotypes IgG 1 and IgE can occur in mice deficient for IL-

2168 and that the over-production of these isotypes is lost in IL-2 x IL-4 double deficient 

animals. 169 

The molecular and cellular mechanisms through which IL-2 acts to promote IL-4 production 

by CD4+ T cells and the development of Th2 responses have not been established and require 

further investigations. However, substantial progresses have been made in the understanding 

of the mechanisms involved in the transcriptional regulation of the IL-2 gene. 171-173 

1.5 CD4+CD25+ regulatory T cells. 

1.5.1 Mechanisms of immune suppression. 

The development of autoimmune disease involves a breakdown in the mechanisms 

that control self vs non-self discrimination. The primary mechanism that leads to self 

tolerance is thymie deletion of autoreactive T cells, but thymie deletion is not perfect and 

autoreactive T cells do escape to the periphery. Cells that escape thymie deletion are then 

subject to mechanisms of peripheral tolerance including T cell anergy174 and T cell 

ignorance/indifference. 175 However, anergy can be reversible and ignorant T cell populations 

have the potential to be activated when their target self-Ags are released into the lymphoid 

system during the course of an infection or when they are activated by cross-reactive epitopes 

present on infectious agents. 176 Thus, these "passive" mechanisms for self-tolerance may not 

be sufficient to completely control potentially pathogenic T cells. Over the past 10 years, 

evidence has accumulated for an "active" mechanism of immune suppression in which a 
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distinctsubset of cells suppresses the activation of autoreactive T cells that have escaped the 

other mechanisms of tolerance. 177 

A variety of organ-specific autoimmune diseases can be induced in rodent strains that 

are not normally susceptible by interfering with normal T cell maturation or by causing a 

partial T cell deficiency. 178 In general, a defined subset of T cells from syngeneic healthy 

donors can prevent the development of autoimmunity on transfer to lymphopenic recipients, 

indicating that the normal immune system contains immunoregulatory T cells that can prevent 

the activation of autoreactive T cells. 179 For example, Powrie et al. 180 have shown that colitis 

can be induced in immunodeficient SCID mice by transfer of the CD45RBhigh subset of CD4+ 

T cells from normal mice, but not by the CD45RB10
w population. The CD45RB10

w population, 

when transferred together with the CD45RBhigh population, completely inhibited development 

of the disease. Evidence for the existence of regulatory T cells has also been obtained in both 

the bio-breeding rat and nonobese diabetic (NOD) mouse strains that spontaneously develop 

autoimmune diabetes. 181 182 CD4+ T cells that express TCRs encoded by endogenous a/~­

chain genes are also likely to be responsible for the relative disease resistance of mice that 

express a transgenic (Tg) 175 TCR specific for a peptide from myelin basic protein. 183 

Studies using two different model systems have demonstrated that a patent CD4+ 

immunoregulatory T cell population can be defined by expression of the IL-2R a-chain 

(CD25). In the first model system, 184 185 genetically susceptible mice that were thymectomized 

on day 3 of life (d3Tx) developed organ-specific autoimmune disease involving one or more 

organs. The disease process was mediated by CD4+ T cells; however, CD4+ T cells from 

normal adult mice could inhibit the development of disease in the d3Tx animais if they were 

transferred by day 14 of life. Furthermore, the inhibitory activity was completely contained 

within the minor (10%) subset of CD4+ T cells that coexpressed CD25. 186 187 In the second 

model, when CD4+CD25+ T cells were depleted from CD4+ T cells isolated from peripheral 

lymphoid tissues of normal adult mice and the remaining CD4+CD2S- cells injected into nu/nu 

mice recipients, the recipients developed a high incidence of organ-specific autoimmune 

disease. 186 188 Again, cotransfer of populations emiched in CD4+CD25+ prevented the 

induction of disease by the CD4+CD25- population. In addition, CD4+CD25+ T cells can 

inhibit the capacity of a cloned line of autoantigen-specific effector cells to transfer disease to 

nu/nu recipients. 189 Thus, the CD4+CD25+ population can inhibit both the induction and 

effector function of autoreactive T cells. 
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1.5.2 Regulatory T cell subsets. 

It is has been conceded that several types of regulatory or suppressor cells exist, some 

of which are induced in response to infectious challenge and some that are considered natural 

regulators. 190 191 Inducible regulatory T cells (Treg cells) such as TRI or T helper type 3 (TH3) 

cells can develop from conventional CD4+ T cells that are exposed to specific stimulatory 

conditions such as the blockade of costimulatory signais, deactivating cytokines or drugs. 

These cell types have been discussed in several reviews. 190 192 193 Natural Treg cells, however, 

arise during the normal process of maturation in the thymus and survive in the periphery as 

Treg cells. This segregation between natural Treg cells and induced Treg cells could prove to be 

arbitrary, with the relationship between the populations requiring clarification. Nevertheless, 

natural Treg cells obey defined rules and express a specific set of markers. 191 194 For example, 

only natural Treg cells constitutively express CD25, the T cell inhibitory receptor CTLA-4 and 

the glucocorticoid-inducible tumor necrosis factor receptor (GITR). The unique transcription 

factor Foxp3 is required for the generation of natural Treg cells, and this represents their most 

specific marker identified so far. 194 

The capacity of naturally occurring Treg cells to inhibit the proliferation of naive T 

cells in vitro requires cell-cell contact; 195 however, in vivo, these cells can also function 

through induction of inhibitory cytokines, such as transforrning growth factor-~ (TGF-~) 196 

and IL-10, 197
-
201 although in a separate study, these cytokines were shown not to be required 

for the function of naturally occurring Treg cells. 195 200 Indeed, naturally occurring Treg cells 

protect lymphopaenic mice from colitis202
-
204 and diabetes196 205 through the actions of IL-10 

and/or TGF-~, and they can also inhibit transplant rejection.206 207 Conversely, the ability of 

naturally occurring Treg cells to inhibit the immune response to tumours can be damaging to 

the host.208 209 Naturally occurring Treg cells have also been shown to regulate both Thl and 

Th2 210 211 11 . t th h L . h . . 201 responses, as we as immune responses o pa ogens suc as ezs manza mCIJor 

and HIV,212
-
214 and to allergens.215

-
217 So, although naturally occurring Treg cells can limit an 

immune response to a pathogen or an allergen, thereby inhibiting immune pathology, they 

might allow immune evasion and persistent infection by a pathogen. It has recently been 

suggested that naturally occurring Treg cells might be associated with favourable clinical 

markers of disease status in HIV infection213 and might maintain immunity to re-infection 
. hL . 201 wlt . ma;or. 
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1.5.3 In vitro suppression: The fonction of interleukin-2. 

Soon after it became apparent that CD4+CD25+ T cells are endowed with suppressor 

function in vivo, an in vitro system was established that has been widely used to analyze 

possible modes of suppression. 195 Typically, this system analyzes the proliferation of 

nonsuppressive CD4+ and CDS+ effector T cells either alone or in culture together with 

CD25+ suppressor cells. 

In vitro analyses have concluded that CD25+ suppressor T cells are anergie; that is, they do 

not proliferate in culture when stimulated with antibodies to CD3 or antigens unless 

supplemented with high doses of interleukin 2 (IL-2). 195 In the absence of exogenous IL-2, 

stimulated CD25+ T cells suppress the proliferation of CD4+ as well as CDS+ T cells by a 

reaction that is independent ofIL-10 and TGF-~ secretion, as has been shown with suppresor 

T cells from IL-10-deficient and TGF-~-deficient mi ce, which seem to suppress effectively .195 

However, others have postulated an essential function for cell-bound TGF-~ on the basis of 

inhibition of suppression by antibodies to TGF-~.218 The suppression of proliferation requires 

direct cell contact between suppressor and suppressed cells, as suppression does not occur 

when cells are separated by a permeable membrane. The presence of antigen-presenting cells 

(APCs) is not required, as suppression occurs in APC-free cultures. In all cases, the 

suppression requires activation of suppressor T cells by TCR ligands or antibodies to CD3. 195 

The target of suppression seems to be transcriptional control of 112 in effector cells. 195 A 

reevaluation of the function of IL-2 has concluded that the initial production of IL-2 by the 

cells to be suppressed is essential for initiation of the function (and some proliferation) of the 

suppressor cells.219 Those in vitro experiments did not definitively rule out the possibility that 

the observed inhibition may often be due to the competitive consumption of IL-2 by 

suppressor T cells220 that have much higher expression of the IL-2 receptor and hence 

favorably compete for IL-2, which represents an essential growth factor for freshly stimulated 

T cells in vitro. Overall, the in vitro results indicate that suppression involves direct cell 

contact between suppressor and effector T cells, targets Il2 and thereby inhibits T cell 

proliferation. 

With CD25 and Foxp3 as specific molecular markers for detecting and manipulating 

naturally occurring Treg cells, there is now accumulating evidence that the Foxp3+CD4+CD25+ 

Treg cell population is actively engaged in the negative control of a variety of physiological 
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and pathological immune responses and can be exploited not only for the prevention or 

treatment of autoimmune diseases but also for the induction of immunological tolerance to 

non-self antigens (such as transplantation tolerance), negative control of aberrant immune 

responses (such as allergy and immunopathology) and enhancement of host defense (such as 

tumor immunity and microbial immunity).221 
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1.6 Aim of the projects. 

Although confirming the pathogenic role of the LACK-specific CD4+ T cells in the 

expression of the susceptible phenotype, recent studies, using multivalent MHC/LACK 

peptides and IL-4 reporter mice, have shown that the precursor frequency, the expansion and 

the IL-4 expression of these cells were similar in susceptible BALB/c and resistant B 10.D2 

mice. 222 Together, these results suggest that signals other than IL-4 are involved in Th2 

differentiation and susceptibility to L. major. 

In this context, weekly treatment of BALB/c mice with anti-IL-2 mAb resulted in resistance 

to infection and reduced IL-4 production by specifically stimulated lymph node cells in 

vitro.98 Furthe1111ore, lymph node cells from BALB/c mice with progressive disease produced 

more IL-2 in culture than cells from healed C57BL/6 mice and IL-2 synthesis was increased 

in C57BL/6 rendered susceptible by anti-IFN-y or anti-IL-12.223 These results suggest arole 

for IL-2 in susceptibility to L. major. In other experimental systems, studies indicating that the 

priming of CD4' T cells for Th2 differentiation, although dependent upon IL-4, also requires 

IL-286 162 have been extended by results demonstrating the direct involvement ofIL-2 in Th2 

cell differentiation.224 However, Th2 cell development in the absence of IL-2 was reported. 168 

169 Therefore, we initiated studies to directly assess the IL-2 dependence of the early IL-4 

response involved in Th2 differentiation and susceptibility to L. mqjor. 

The possibility of modulating the rapid IL-4 response by treatment with either 

exogenous IL-12 or IFN-y104 suggests that LACK-specific VP4-Va8 CD4+ T cells are not 

irreversibly committed to IL-4 production. In fact, we have documented the functional 

plasticity of these cells in terms of cytokines production.225 Together, these results suggest 

that these cells are sensitive to regulatory processes. 

In the past few years, the concept that subpopulations of T cells were specialized in the 

suppression of immune responses has been revisited. Considerable attention has been given to 

a minor subpopulation of CD4+ T cells constitutively expressing CD25, the a-chain of the IL-

2 receptor. Both in mice and humans, these cells, named regulatory T cells, have been shown 

capable of suppressing the proliferation of other T cell populations (reviewed in Refs. 199 and 

226). 

The present study was undertaken to determine whether or not, following infection of 

BALB/c mice with L. major, the early production of IL-4 by LACK-reactive VP4-Va8 CD4+ 
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T cells and the resulting Th2 responses were subject to the control of regulatory CD4+CD25+ 

T cells. The results obtained show that CD4+CD25+ T cells negatively regulate the magnitude 

of the early IL-4 response to L. major in BALB/c mice as well as the importance of 

subsequent Th2 cell maturation. These data suggest that CD4+CD25+ T cells may also 

regulate harmful immune responses to infectious pathogens. 
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2.1 Mice. 

Female BALB/c, C57BL/6 and C.B.-17 SCID mi ce, purchased from IFF A Credo (St. 

Germain sur !'Arbresle, France) or from Harlan Olac Ltd. (Bicester, UK), were used at 6-8 wk 

of age. ABLE mice express a transgenic VP4-Va8 TCR recognizing an epitope comprising 

amino acids 156-173 from the LACK antigen m the context of MHC class II I-Ad 

molecules.227 IL-2-1
- mice 169 obtained from Dr. A. Abbas (University California, San 

Francisco, CA) and ABLE mice on a BALB/c background were bred in a barrier-contained 

facility. IL-2-deficient mice were backcrossed eight generations to ABLE mice and then self­

mated. Mice were maintained under pathogen-free conditions in the animal facility of the 

Swiss Institute for Experimental Cancer Research (ISREC), University of Lausanne 

(Switzerland). 

2.2 Parasites and infection. 

L. major LV 39 (MRHO/Sv/59/P strain) were maintained as described.228 For 

infection, mice were inoculated s.c. into the hind footpad with 3xl06 stationary-phase 

L. mqjor promastigotes in 50 ~tL DMEM. The lesions were measured weekly with a vernier 

caliper and compared to the thickness of the uninfected footpad. The number of parasites per 

les ion was evaluated by limiting dilution analysis. 229 

2.3 Reagents, mAb and treatment of mice. 

Mi ce were injected with 5 ~tg of recombinant LACK protein in 50 ~tL DMEM s.c. into 

the hind footpad. 114 The following mAb were used: biotin-conjugated 103 (anti-CD 19); PE­

conjugated l 7A2 (anti-CD3); Cy-Chrome- and PE-conjugated GKl.5 (anti-CD4); FITC­

conjugated KT4-10 (anti-Vp4); PE-conjugated RA3-6B2 (anti-CD45R/B220); FITC­

conjugated 53-6.7 (anti-CD8); PE-conjugated Hl.2F3 (anti-CD69) and MEL-14 (anti­

CD62L), all from Pharmingen (San Diego, CA). 2.4G2 (anti-CD16/32); RR4-7 (anti-Vp6); 

S4B6 (anti-IL-2); XMG 1.2 (anti-IFN-y); 145-2Cll (anti-CD3); 2.4G2 (anti-FcR); PC61 (anti­

CD25)230 and llBll (anti-IL-4) mAbs were affinity-purified on protein A column from 

hybridoma culture supernatants. Purified, unlabeled, and FITC-conjugated 5A2 (anti­

CD25),231 was kindly provided by Dr. M. Nabholz (Swiss Institute for Cancer Research, 
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Epalinges, Switzerland). PE-conjugated PC61 was obtained from Dr. A. Wilson (Ludwig 

Institute of Cancer Research, Epalinges, Switzerland). CFSE was purchased from Molecular 

Probes (Eugene, OR). Flow cytometry analysis was performed on a F ACScan using 

CellQuest software (BD Biosciences, Mountain View, CA). Designated mice were treated i.p. 

with 0.5 mg of anti-IL-2 antibodies 20 h and 4 h before infection with L. major. Selected mice 

received 1 mg of anti-IFN-y antibodies 18 h before inoculation. 80 Other mice from designated 

groups received 1 mg of PC61 mAb i.p. 72 h before infection. Sorne mice were also treated 

with anti-IL-4 mAb (llBll) i.p. at indicated doses and time points. Purified murine rIL-4 was 

a gift from Dr. A. D. Levine (Monsanto, St. Louis, MO). 

2.4 Fluorescent cell sorting. 

Draining popliteal lymph node cells were stained with designated antiboclies and 

sorted into positive and negative populations using a F ACScan Plus Flow cytometer (Becton 

Dickinson). To block non-antigen-specific bincling of Ig on FcR, anti-CD 16 mAb was used in 

each staining. The purity of the sorted cell populations expressing the corresponding marker 

was >98%. 

2.5 RNA extraction, competitive and qualitative PCR analysis. 

Total RNA was isolated from total popliteal lymph node cells or from sorted cell 

populations using TRISOL Reagent (Gibco BRL) according to the manufacturer's 

instructions. First-strancl cDNA synthesis was performecl on total RNA using a first-strand 

cDNA synthesis kit (Pharmacia, Uppsala, Sweden). The competitive PCR developed by 

Reiner et al. 232 was performed as described. Results are expressed as the fold increase in 

mRNA expression in mice infected with L. major or injected with the LACK protein as 

compared with control mice. 

2.6 Cell sorting and reconstitution of C.B.-17 SCID mice. 

vp4+ T cells were removed from spleen cells of naive 1111ce usmg magnetic cell 

colunms (Miltenyi Biotec GmbH, Bergisch Glaclbach, Germany) according to the 

manufacturer's instructions. Briefly, spleen cells clepleted of red blood cells by lysis in Tris-
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buffered NH4Cl solution were first stained with the anti-V04 rnAb during 20 min on ice. 

Following washes, cells were re-suspendecl in rnagnetic beads conjugatecl with goat anti-rat 

IgG antibodies and theV04-depleted population was negatively selected after exposure of 

positive cells to magnetic field. The same procedure was applied for removal of Vp6+ T cells 

or CD4+CD25+ cells from spleen cells using the anti-V06 mAb or anti-CD25 mAb 5A2 

respectively. This procedure generally resulted in the removal of CD4+CD25+ cells from the 

spleen cell suspension to background levels of <1.5% of total CD4+ cells, as detected by flow 

cytometry with subsequent staining using PC61, a second anti-CD25 mAb that binds to a 

different epitope on the IL-2Ra molecule.230 231 In some experiments, depletion was 

performed with a combination of FITC-labeled 5A2 and anti-FITC microbeads. The 

efficiency of depletion was similar. 

Purification of vp4+ CD4+ cells from naive IL-2+/- and IL-T1
- ABLE-transgenic mice was 

clone in two steps. First non-CD4+ T cells were depleted using a cocktail of biotin-conjugated 

antibodies against CD8, CD45R, DX5, CDllb and Ter-1 and anti-biotin-microbeads 

accorcling to the manufacturer's instructions (Miltenyi Biotec ). Isolation of the highly pure 

CD4+ T cells was obtained by depletion of magnetically labelled cells. Then, seconclary 

positive selection of vp4+ cells in the purified CD4+ T cells was applied. In experiments 

where SCID mice were adoptively transferred with 108 spleen cells depleted in vp4+ cells, 

mice from some groups also received 3x104 transgenic LACK-reactive V04-Va8 CD4+ 

T cells. 

C.B.-17 SCID mice were bled in the tail vein and PBMC were obtained by Ficoll-Hypaque 

centrifugation. The PBMC were stainecl for CD4, CD8, and B220 and screened by flow 

cytometry. SCID mice that had <1 % peripheral B or T cells were reconstituted i.v. with 

designatecl numbers of spleen cells from wild-type BALB/c mice. In some experiments, SCID 

mice were reconstituted with CFSE-labeled spleen cells as above. 

2.7 Lymphocyte cultures and detection of cytokines in supernatants. 

Draining popliteal lymph node cells (5x106
) were cultured in a final volume of 1 ml in 

DMEM supplemented with 5% heat inactivated FCS, 216 µg/ml L-glutamine, 5x10-5 M 2-

ME,and 10 mM HEPES at 3 7°C in an atmosphere of 7% C02 in the presence or absence of 

UV-irracliated L. major promastigotes (lxl06/ml) or soluble anti-CD3 (2 µg/ml). Supematants 

were collected at 48 h from cultures stimulated with soluble anti-CD3 or at 72 h for cultures 
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stimulated with Leishmania Ags, and frozen at -20°C until use. IFN-y was measured in 

supematants by ELISA as described. 233 Mo use rIFN-y ( supematant of L 1210 cells transfected 

with the murine IFN-y gene; a gift from Y. Watanabe, Kyoto University, Kyoto, Japan) was 

used as the standard. The limit of detection of the assay was 10 U/ml. IL-4 was measured by a 

bioassay using the CTLL-44 cell line (a gift from P. Erb, University of Basel, Basel, 

Switzerland) as described.234 Recombinant murine IL-4 secreted by X63Ag-653 cells (a gift 

from F. Melchers, Basel Institute of Immunology, Basel, Switzerland) was used as the 

standard. The limit of detection of the assay was 20 pg/ml. For proliferation assays, 5xl05 

cells were cultured with UV-irradiated stationary phase L. major promastigotes (lxl06/ml) or 

anti-CD3 (0.5 µg/ml) in 200 µl DMEM/5% FCS, and were pulsed with 1 µCi of 

[3H]thymidine for the final 6 h of culture. Harvested cells were measured for radioactivity 

using a beta scintillation counter. 

2.8 Cell counting. 

Cells were either counted using a Neubauer chamber or using the FACS; cell 

suspensions were resuspended in a volume of 300 µl, and 105 bacterial count microbeads 

(Molecular Probes) were added to each tube and cells were then analyzed by FACS. Gates 

were assigned to the microbeads and lymphocytes by forward and size scatter characteristics. 

The ratio of beads to lymphocytes was determined for each specimen from the electronic 

counts on F ACScan. 

2.9 Statistics. 

Statistical analysis was done usmg the two-tailed t test for unpaired data. The 

estimation of the frequency of parasites by limiting dilution was calculated by the Taswell 

method using the program Estimfree.235 
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3.1 LACK-reactive CD4+ T cells require autocrine IL-2 to mediate 

susceptibility to Leishmania major. 

3.1.1 Barly IL-2 mRNA expression following infection with L. major or injection 

ofLACK. 

The results in Fig. lA confinn the kinetics of IL-4 mRNA expression in response to 

L. major in BALB/c and anti-IFN-y-treated C57BL/6 mice, with an increase of IL-4 

transcripts within the first day of infection. 80 104 As reported, C57BL/6 mi ce did not exhibit an 

increase of IL-4 transcripts in response to L. mqjor and the kinetics of IL-4 mRNA expression 

in C57BL/6 mice treated with anti-IFN-y mAb were different from that of BALB/c mice with 

a burst at 16 h remaining stable during the first 10 days of infection. 80 104 The increased IL-4 

mRNA expression was confirmed by real-time RT-PCR during the first day of infection in 

BALB/c mice. However, the second wave of IL-4 mRNA from day 5 of infection was higher 

(data not shown). 

A burst of IL-2 mRNA was observed 10 h after infection in draining lymph node cells 

from all mice tested, which decreased thereafter, reaching the levels of uninfected mice on 

day 6 (Fig. lA). The early burst of IL-2 transcription reproducibly preceded the IL-4 mRNA 

burst in susceptible mice. In a few experiments, similar increases and kinetics of IL-2 mRNA 

expression were also seen with quantitative real-time RT-PCR (data not shown). 

Since previous results have shown that recognition of the LACK antigen drives the 

early IL-4 response responsible for Th2 cell differentiation in BALB/c mice, 114 the capacity of 

LACK to elicit IL-2 mRNA transcription was also tested. Results in Fig. lA show that LACK 

elicited an early IL-2 mRNA response in BALB/c and anti-IFN-y-treated C57BL/6 mice. 

Noteworthy, the LACK-induced IL-2 mRNA expression was an order of magnitude lower in 

C57BL/6 than in BALB/c and anti-IFN-y-treated C57BL/6 mice (Fig. lA). As reported,80 114 

IL-4 transcripts were detected within the first day and decayed over the following 10 days 

after injection of LACK in either BALB/c or in anti-IFN-y-treated C57BL/6 mice. No 

increase in IL-4 mRNA expression was seen after injection of LACK in C57BL/6 mice (Fig. 

lA). 
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Figure 1. IL-2 is produced in response to infection with L. major or injection of LACK and enables the 
early lL-4 mRNA expression in BALB/c mice and in anti-IFN-y-treated C57BL/6 mice infected with 
L. major. (A) Kinetics of the IL-2 mRNA expression in popliteal lymph nodes following s.c. injection of 
3xl06 stationary-phase L. major promastigotes or 5 ~tg of LACK in BALB/c and C57BL/6 mice treated or not 
with anti-IFN-y mAb. Various times following injection, mice were killed, RNA extracted from the draining 
lymph nodes and the relative levels of IL-2 and IL-4 mRNA were determined by competitive RT-PCR. Results 
are expressed as the fold increase in IL-2 and IL-4 mRNA expression in mice injected with L. major or LACK as 
compared to non-injected mice from the corresponding group. The results are from one of two experiments, 
which gave the same results. (B) Five-lumdred micrograms of anti-IL-2 mAb was administrated i.p. 20 and 4 h 
prior s.c. injection of 3xl06 L. major or 5 ~tg of LACK. Similarly injected mice not treated with anti-IL-2 were 
used as controls. Mice were killed 16 h after injection, and the relative IL-2 (filled bars) and IL-4 ( empty bars) 
mRNA expression detenninecl in draining lymph nocles. For mice treatecl with anti-IL-2, results are expressed as 
the increase in cytokine mRNA expression in treatecl mice injected with either L. 111qjor or LACK as compared to 
mice from the corresponcling group treated with anti-IL-2 but not receiving L. major or LACK. Results are from 
one of three experiments, which gave the same results. 
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3.1.2 Importance of the early IL-2 response on the rapid IL-4 mRNA expression in 

susceptible mice. 

Although the early burst of IL-2 transcripts was observed in both resistant and 

susceptible mice, experiments were designed to assess the importance of the IL-2 produced on 

the levels of IL-4 mRNA expression in draining lymph nodes of BALB/c and anti-IFN-y­

treated C57BL/6 mice 16 h after either infection with L. major or injection with LACK. The 

administration of 0.5 mg neutralizing anti-IL-2 mAb 20 and 4 h before injection of L. major 

or 5 ~tg of LACK abrogated the early increase in IL-4 transcripts (Fig. lB). This did not 

represent an abenant kinetic response to L. major but rather a markedly attenuated IL-4 

response in the absence ofIL-2 (data not shown). Treatment with anti-IL-2 mAb had no effect 

on the burst of IL-2 transcripts (Fig. lB). Together, these results show that the early IL-4 

mRNA increase in response to L. major/LACK in susceptible mice requires IL-2. 

Furthermore, mice treated with anti-IL-2 mAb at the onset of infection developed a 

Thl response and became resistant to infection (data not shown), confirming observations by 

others of the ability of four weekly administrations of anti-IL-2 mAb or two weekly 

administrations of anti-IL-2R antibodies to cure susceptible BALB/c mice. 98 The inhibitory 

effects of anti-IL-2 treatment on Th2 cell maturation and disease progression could be 

overcome by exogenous IL-4 ( l µg) during the first 64 h of infection (data not shown). 

3.1.3 Cellular origin of the IL-2 mRNA rapidly expressed in response to L. major. 

Since IL-2 bas been demonstrated, in other experimental systems, to be produced 

mainly by activated CD4+ T cells and to a lower extend by activatecl B cells, 125
-
127 we 

analysed, l 0 h after infection with L. mqjor, the cellular source of the early IL-2 transcripts in 

draining lymph nocles from BALB/c and C57BL/6 mice treatecl or not with anti-IFN-y. In 

both, BALB/c and C57BL/6 mice, irrespective of treatment with anti-IFN-y, the increase in 

IL-2 transcripts occurrecl mainly in CD4+ T cells, but was not confined to those expressing the 

V~4 TCR chain (Fig. 2A), in contrast to the early IL-4 response only produced by the 

restricted population of V~4-Va8 CD4+ T cells in susceptible mice. Furthermore, IL-2 

transcripts were also detected in B cells (CD3- CD 19+), but at significantly lower levels, in all 

groups of mice infected with L. major. Interestingly, CD3- CD 19- cells did not contribute to 
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IL-2 production, indicating that the production of IL-2 by dendritic cells did not account for 

the observed response. 

Analysis of the cellular ongm of the early IL-2 mRNA express10n induced by 

injection of LACK revealed that it occurred only in CD4+ T cells that expressed the VP4 TCR 

chain and to a lower degree in B cells from BALB/c and anti-IFN-y-treated C57BL/6 mice 

(Fig. 2A). Strikingly, in C57BL/6 mice, injection of LACK resulted in a smalt IL-2 mRNA 

increase only in B cells (Fig. 2A). Results in Fig. 2B confirm that the increased IL-4 mRNA 

transcription in response to infection or injection of LACK occurred only among the CD3" 

CD4+ vp4+ T cell population in BALB/c and anti-IFN-y-treated C57BL/6 mice and was not 

seen in C57BL/6 mice. 

BALB/c C57BL/6 C57BL/6 anti-IFN-y 

co3+co4+vp~ -liiiiiiiiiiiiiiiiiiiiiiiji""llflllllllllllllllllflllllllllllll,.-1 
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CD3"CD19· -

co3+ co4+ vp~ 
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Fold increase in IL-4 mRNA expression 
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Figure 2. Cellular origin of IL-2 transcripts cletected 10 h after infection with L. major or injection of 
LACK. Ten and 16 h after infection with either 3x 106 L. mqjor prornastigotes or injection of 5 ~tg of LACK, 
draining lyrnph node cells of rnice from the designated groups were stained with the designated antibodies and 
sorted into positive and negative subpopulations by flow cytornetry for determination of IL-2 and IL-4 mRNA 
levels. Results are expressed as the fold increase in IL-2 and IL-4 rnRNA expression in designated cell 
population of rnice injected with either L. 111qjor or LACK as compared to the same population in non-infected 
mi ce from the corresponding group. These results are from one of two experiments with identical results. 
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Figure 3. Absence of LACK-specific V~4-Va.8 CD4+ T cells prevents the early IL-4 response, progressive 
disease and Th2 cell maturation in SCID mice reconstituted with 108 BALB/c spleen cells and infected 
with L. 11u~jor. C.B.-17 SCID mice were reconstituted with 108 BALB/c splenocytes depleted or not of V04+ 
CD4+ T cells or V06+ CD4+ T cells. Five days atler cell transfei· mice were infected with 3xl06 L. mqjor. 
Similarly infected unreconstituted SCID mice and BALB/c mice were used as controls. (A) The size of the 
footpad lesions was monitored in mice from the designated groups. (B) Sixteen hours after infection, the relative 
levels of IL-2 and IL-4 mRNA were detennined in popliteal lymph node cells. Results are expressed as the fold 
increase in IL-2 and IL-4 mRNA compared with levels in uninfected mice from the corresponding group. (C) 
The levels of IL-4 and IFN-y mRNA in draining popliteal lymph node cells were determined 13 wk after 
infection. Similar results were obtained in two individual experiments; n.cl.: not detected; tu.: not reconstituted. 
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Figure 4. Transfer of IL-2-deficient LACK-reactive CD4+ T cells to SCID mice interferes with the early 
IL-4 response and directs Thl cell clevelopment and resistance to L. major. (A) C.B.-17 SCID mice were 
adoptively transferred with either 108 BALB/c spleen cells or l 08 V~4+ CD4+-depleted spleen cells 
supplemented or not with LACK-specific V~4-Va8 CD4+ T cells from either IL-2·1- or IL-2+/- ABLE-transgenic 
mice. Five days after cell transfer, mice were infected with 3xl06 L. major. Similarly infected SCID mice 
reconstituted with 108 spleen cells depleted in V~C CD4+ T cells, unreconstituted SCID and BALB/c mi ce were 
used as contrais. Sixteen hours after infection, the relative levels of IL-2 and IL-4 mRNA were detennined in 
draining lymph nodes. (B) The course of infection (mean size of lesions) was monitored in recipient SCID mice 
from the designated groups. (C) IL-4 and IFN-y mRNA levels in draining lymph node cells were detennined 
13 wk after infection. Similar results were obtained in two individual experiments using four mice in each group; 
n.d.: not detected; n.r.: not reconstituted. 
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3.1.4 Th2 response to L. major reguires IL-2 producing LACK reactive CD4+ 

T cells. 

Given the vanous possible sources for the early IL-2 response in BALB/c m1ce 

infected with L. mqjor, the cellular source of the IL-2 biologically active on the IL-4 response 

was determined. C.B.-17 SCID mice were adoptively transfeITed as previously described3 

with either 108 spleen cells from naive BALB/c mice or 108 BALB/c splenocytes depleted in 

either V~4+ or V~6+ CD4+ T cells. Five days later, mice were inoculated with 3xl06 L. mqjor 

and lesions monitored. Results in Fig. 3A confirm that SCID mice reconstituted with 

108 naive spleen cells are unable to contrai infection as wild-type BALB/c mice. In contrast, 

SClD mice reconstituted with 108 spleen cells depleted of Vp4+ CD4+ T cells were resistant to 

infection whereas SCID mi ce reconstituted with 108 spleen cells depleted of the V~6+ CD4
1 

T cells were fully susceptible. 

SCID mice reconstituted with spleen cells depleted in Vp6+ CD4+ T cells like wild­

type BALB/c mice and SCID mice reconstituted with 108 nonnal spleen cells produced an 

early IL-4 mRNA burst (Fig. 3B). Quantification of IL-4 and IFN-y mRNA expression in 

lymph nocle cells 13 wk after infection clearly showecl that these mice mountecl a specific Th2 

response (Fig. 3C). In contrast, SCID mice reconstitutecl with l 08 spleen cells clepletecl in 

Vp4+ CD4+ T cells clicl not mount an early IL-4 response and clevelopecl a Thl response (Fig. 

3B, C). Noteworthy, SCID mice reconstitutecl with 108 total spleen cells became resistant to 

infection when treatecl with anti-IL-4 mAb (data not shown). All groups of mice were able to 

mount an early IL-2 response, even SCID mice receiving 108 spleen cells depleted in Vp4 

CD4+ T cells, further indicating that the source of IL-2 produced after infection with L. major 

was not restricted to CD4+ Vp4+ T cells (Fig. 3B). As expected, non-reconstituted SCID mice 

did not develop IL-2, IL-4 and IFN-y responses. 

Since the early IL-4 mRNA express1011 was abolished following anti-IL-2 mAb 

treatment (Fig. lB) and only CD4+ T cells expressing the VP4 TCR chain from susceptible 

mice transcribed IL-2 and IL-4 mRNA following injection of the LACK protein (Fig. 2), we 

used this SCID model to test the hypothesis that the IL-2 produced by LACK-reactive Vp4-

Va8 CD4+ T cells is necessary for IL-4 production by cells from the same subset. Thus, we 

investigated whether the substitution of wild-type Vp4 CD4+ T cells by LACK-specific VP4-
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Va8 T cells from IL-2-deficient m1ce would interfere with the early IL-4 response to 

L. major. SCID mice were adoptively transferred with 108 spleen cells depleted of vp4+ CD4+ 

T cells and supplemented with 3xl04 VP4-Va8 CD4+ T cells (the estimated proportion of 

VP4-Va8 T cells in 108 spleen cells) from either homozygous IL-T1
- or heterozygous IL-2+/­

ABLE (LACK-specific TCR-transgenic) BALB/c mice. As controls, SCID mice were 

reconstituted or not with 108 spleen cells or with 108 spleen cells depleted in either vp4+ or 

Vp6+ T cells. Mice from all groups were infected with L. mqjor 5 days after cell transfer and 

the levels ofIL-2 and IL-4 mRNA expression were assessed 16 h later. 

As shown in Fig. 4A, although SCID mice that received IL-2+/- LACK-specific VP4-

Va8 CD4+ T cells or 108 spleen cells depleted or not in VP6 CD4+ T cells transcribed IL-4 

mRNA early after infection with L. major, no increase in IL-4 transcripts was detected in the 

draining lymph nodes of SCID mice adoptively transferred with IL-2-1
- LACK-reactive CD4f 

T cells or with 108 spleen cells depleted in VP4 CD4f T cells. Noteworthy, no significant 

differences in early IL-2 mRNA expression were observed in all groups of mice infected with 

L. major. These results directly support the hypothesis that the IL-2 produced by LACK­

specific VP4-Va8 CD4f T cells is necessary for the induction of the early IL-4 response. 

The course of disease was also monitored in SCID mice reconstituted as above. As 

shown in Fig. 4B, mice that received 108 spleen cells depleted or not in Vp6+ CD4+ T cells 

developed progressive lesions whereas SCID mice reconstituted with l 08 spleen cells depleted 

in vp4+ CD4+ cells controlled their lesions. More interestingly, SCID mice reconstituted with 

vp4+ CD4+ depleted spleen cells supplemented with IL-2-1
- LACK-specific CD4+ T cells 

controlled disease progression, whereas SCID mice reconstituted with spleen cells depleted of 

vp4+ CD4+ cells and supplemented with IL-2+/- LACK-specific CD4+ T cells were fully 

susceptible. At the tüne of resolution of the lesions, analysis of the cytokine mRNA 

expression did not reveal an increased IL-4 mRNA expression in draining lymph nodes from 

SCID mice reconstituted with cells comprising IL-2-1
- LACK-specific CD4+ T cells. In 

contrast, high levels of IL-4 were detected in SCID mice receiving IL-2+/- LACK-specific 

CD4+ T cells (Fig. 4C). Thus, healing of lesions in SCID mice receiving IL-2-deficient 

LACK-specific VP4-Va8 CD4+ T cells was associated with a Thl response. 
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To directly assess whether or not the IL-2 produced by cells other than LACK-specific 

CD4+ T cells was required for the early IL-4 mRNA expression, SCID mice were 

reconstituted with 108 spleen cells depleted in V~4 CD4+ cells frorn either IL-2-deficient or 

wild-type BALB/c mice together with 3xl04 IL-2+/- LACK-reactive V~4-Va8 CD4+ T cells 

from ABLE mice and inoculated with L. major 5 days later. Results in Fig. 5 show that SCID 

mi ce reconstituted with either l 08 IL-2+/- or IL-T1
- spleen cells depleted in V~4 cells 

supplemented with 3x 104 IL-2+/- LACK-specific V~4-Va8 CD4+ T cells exhibited a similar 

burst of IL-4 trancripts in draining lymph nodes. As expected, decrease in IL-2 mRNA 

expression was observed in infected SCID mice reconstituted with IL-T1
- V~4-depleted 

spleen cells. Together these results strongly suggest that the Th2 response to L. mqjor in 

SCID mice reconstituted with 108 spleen cells depends on the ability of LACK-reactive V~4-

Va8 CD4+ T cells to produce IL-2. 
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108 VJ34-depleted -J 
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Figure 5. The triggering of an early IL-4 response to L. 11U(ior does not clepend upon the IL-2 proclucecl by 
cells other than LACK-specific VP4-Va8 CD4+ T cells. C.B.-17 SCID mice were adoptively transferred with 
108 V~4+ CD4+-depleted spleen cells from either wild-type or IL-i-1

- BALB/c mice supplemented with 
3xl04 LACK-specific V~4-Va8 CD4+ T cells from IL-2+/- ABLE-transgenic mice. BALB/c mice and SCID 
mice reconstituted or not with 108 spleen cells or 108 spleen cells depleted in either V~4+ or V~6+ CD4+ T cells 
were used as controls. Mice were infected 5 days after cell transfer and 16 h later the relative levels of IL-2 and 
IL-4 rnRNA were delermined in draining lymph nodes. Similar results were obtained in Iwo separate 
experirnents; n.d.: not detected; n .. r.: not reconstiluted. 
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3.2 The early IL-4 response to Leishmania major and the resulting 

Th2 cell maturation steering progressive disease in BALB/c 

mice are subject to the control of regulatory CD4+CD25+ T 

cells. 

3.2.J Depletion of CD4+CD25+ regulatory T cells before infection with L. major 

exacerbates the development of lesions in BALB/c mice. 

To study the role of the CD4+CD25+ regulatory T cells in vivo, BALB/c mice were 

treated i.p. once with 1 mg of anti-CD25 mAb PC61.230 Seventy-two hours following such 

treatment, the proportion of CD4+CD25+ T cells dropped from around 10% to below 2% of 

the CD4+ T cell population in lymph nodes (data not shown). The percentage of CD4+CD25+ 

T cells within the lymph nodes remained low for over 10 days. The percentage of the 

CD4+CD25+ subpopulation in peripheral blood was also reduced to around 2% of the 

circulating CD4+ T cells (data not shown). This depletion was also long-lasting as reported by 

others.208 

Compared with similarly infected control BALB/c mice, mice treated with 1 mg of 

PC61 mAb 72 h before infection with 3x106 L. major promastigotes developed significantly 

larger lesions (Fig. 6A) that contained higher numbers of parasites (Fig. 6B). The number of 

parasites measured in lesions of PC61-treated BALB/c mice was consistently significantly 

higher than that measured in lesions of BALB/c mice in five different experiments (p = 

0.019). The development of severe lesions in BALB/c mice depleted of CD4+CD25+ T cells 

was correlated with an enhanced IL-4-producing Th2 response. Results in Fig. 6C show that 

15 days after infection with L. major the amounts of IL-4 transcripts in draining lymph nodes 

are already five times higher in BALB/c mice depleted of CD4+CD25+ cells than in similarly 

infected control BALB/c mice. Comparable results were obtained when supematants of L. 

major-activated lymph node cells were analyzed for the accumulation of IL-4 (Fig. 6D). This 

difference in IL-4 production between CD4+CD25+ cell-depleted and normal BALB/c mice 

was also observed at later times after infection (data not shown). In most experiments, the 

level of IFN-y in supematants of cultures from draining lymph nodes of mice depleted of 

CD4+CD25+ cells was equivalent to, or only slightly higher, than that measured in cultures of 

lymph nodes from nondepleted BALB/c mice (Fig. 6D). 
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Figure 6. Infection of BALB/c mice depleted of CD4+CD25+ regulatory cells with L. major leads to an 
exacerbated course of disease and an enhanced Th2 response. (A) BALB/c, C57BL/6, and BALB/c mice 
depleted of CD4+CD25+ cells were infected with 3xl06 stationary phase L. major promastigotes s.c. in the 
footpads. The course of infection was monitored by weekly measurement of the diameter of footpads with a 
metric caliper. The mean size of lesions (increase in diameter of footpads due to infection) and SD are shown 
(four mice per group ). Similar results were obtained in three other experiments. *, p < 0.001 between 
CD4+CD25+ depleted vs nondepleted BALB/c mice. (B) Parasite load in the footpads of mice sacrificed 15 and 
42 days after infection with L. major was determined by limiting dilution assay. The mean counts of two 
footpads per group is shown. Data are representative of two experiments. (C) IL-4 mRNA levels in popliteal 
lymph nodes of BALB/c mice depleted or not of CD4+CD25+ T cells. BALB/c mice and BALB/c mice depleted 
of CD4+CD25+ T cells were infected with 3xl06 stationary phase L. major promastigotes s.c. in the hind 
footpads. Control groups were untreated or noninfected BALB/c mice treated with PC61. Fifteen days later, 
mice were sacrificed, mRNA was extracted from their popliteal lymph nodes and the relative level of IL-4 
mRNA was determined by semiquantitative RT-PCR as described in Materials and Methods (n = 4 mice per 
group ). Results are expressed as fold increase relative to similarly treated, noninfected control mice. The results 
represent one of three independent experiments. (D) IL-4 and IFN-y production by lymph node cells of mice 15 
days after infection with L. major. Popliteal lymph node cells were isolated 15 days after infection with L. major 
and 5xl06 cells from mice of each group (three mice per group) were stimulated in vitro with 106 UV-iffadiated 
L. major promastigotes for 72 h. IFN-y and IL-4 production was evaluated in the supernatant as described in 
Materials and Methods. Results are expressed as mean and SD of triplicate measurements. The data shown are 
representative of two independent experiments. 
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Depletion of CD4+CD25+ T cells in C57BL/6 mice before infection with L. major did 

not alter the course of infection (data not shown). In three independent experiments, no 

significant difference in the size oflesions between PC61-treated and control C57BL/6 mice 

was observed, and both groups resolved their lesions. Furthermore, the level of cytokines 

produced (no IL-4, high level of IFN-y) in the draining lymph nodes of both groups of mice 

did not differ. However, parasite load in the footpads of CD25+ T cell-depleted C57BL/6 mice 

5 wk after infection was 10 times lower than in control C57BL/6 mice infected with L. major 

simultaneously; 8 wk after infection parasites in the lesions of PC61 treated mi ce disappeared 

almost completely (75% of mice with no parasites detectable and 25% of mice with 3-10 

parasites/footpad) while C57BL/6 mice not depleted of CD25+ T cells still had 0.5-6.7xl03 

parasites per lesion. 

3.2.2 The early IL-4 response to L. major is significantly enhanced in BALB/c 

mice depleted ofCD4+CD25+ cells. 

We have previously documented a burst of IL-4 mRNA expression in draining lymph 

nodes of BALB/c mice within 1 day of infection with L. major. 104 This early IL-4 burst occurs 

in a restricted population of LACK-reactive CD4+ T cells expressing the VP4-Va8 TCR 

chains. 106 The causal relationship between this early IL-4 response and subsequent Th2 cell 

maturation in BALB/c mice was demonstrated. 119 

To investigate whether or not CD4+CD25+ regulatory T cells control the early IL-4 

mRNA response to L. major, BALB/c mice treated or not with 1 mg of anti-CD25 PC61 mAb 

were inoculated, 3 days later, with L. major in one hind footpad. Sixteen hours after infection, 

total mRNA from draining lymph nodes was analyzed for IL-4 mRNA expression using a 

semiquantitative RT-PCR. Compared with infected mice not treated with PC61 mAb, higher 

levels ( 6-10 times) of IL-4 mRNA transcripts were consistently observed in lymph nodes of 

CD4+CD25+ T cell-depleted mice (Fig. 7). This increase in IL-4 mRNA was confirmed in five 

independent experiments where, 16 hr after infection with L. major, the level of IL-4 mRNA 

measured in PC61-treated mice was significantly higher (p = 0.0001) compared with that 

measured in BALB/c mice that were not injected with the mAb. The IL-4 mRNA was 

detected only in the VP4-Va8 CD4+ T cell population (data not shown). Comparable results 

were obtained by real-time PCR, 16 h after infection with L. major (data not shown). It is 
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noteworthy that in the absence of infection with L. major, treatment of BALB/c mice with the 

mAb PC61 did not affect the basal level of IL-4 mRNA transcripts. In five independent 

experiments, no statistically significant difference was observed between the level of IFN-y 

transcripts measured in draining lymph nodes of BALB/c mice depleted or not of CD25+ cells 

16 h after infection with L. major (data not shown). 

BALB/c 

BALB/c 
depleted 

10 100 

Fold increase in IL-4 mRNA expression 

Figure 7. Depletion of CD4+CD25+ T cells in BALB/c mice enhances the early IL-4 burst observed 1 day 
after infection with L. major. BALB/c mice were treated with 1 mg PC61 i.p. and infected s.c. with 3x106 

stationary phase L. major promastigotes 72 h later. Control groups consisted of noninfected mice treated with 
PC61, and mice infected without any prior treatment. Mice (four to five per group) were sacrificed 16 h after 
infection and mRNA was extracted from popliteal lymph nodes. The relative level of IL-4 mRNA was 
determined by semiquantitative RT-PCR (as described in Materials and Methods). For mice injected with the 
PC61 mAb, results are expressed as the increase in IL-4 mRNA in popliteal lymph nodes of mice treated with 
PC61 and infected with L. major compared with that measured in noninfected mice similarly treated with the 
mAb. For untreated mice, the results are expressed as fold increase in IL-4 mRNA in mice infected with L. 
major compared with that in noninfected mice. Results are representative of three independent experiments. 
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3.2.3 Demonstration of the inhibitory role of CD4+CD25+ regulatory cells on 

diseuse progression and Th2 cell development using an adoptive cell transfer 

system. 

In addition to depleting cells from the minor CD4+CD25+ regulatory subset, treatment 

of mice with the anti-CD25 mAb PC61 could also lead to depletion of other CD4+ T cells 

induced to express CD25 following activation by L. major Ags. To circumvent this potential 

problem, we directly tested the regulatory potential of CD4+CD25+ cells using an adoptive 

cell transfer system originally described by Mitchell et al.3 and subsequently by others.26 236 

237 Reconstitution of syngeneic nu/nu or SCID mice with 107 spleen cells from naive BALB/c 

mice was demonstrated to render these otherwise highly susceptible immunocompromised 

mice resistant to infection with L. major. These reconstituted SCID mice were shown to 

develop polarized Thl response to infection. Conversely, reconstitution of SCID mice with 

108 spleen cells from naive BALB/c mice was shown to restore the susceptible phenotype 

characterized by the development of unhealing lesions. These reconstituted SCID mice 

developed polarized Th2 differentiation following infection with L. major. 

Therefore, to study the role of CD4+CD25+ regulatory cells in Th cell maturation 

following infection with L. major, SCID mice were adoptively transferred with either 107 

spleen cells obtained from normal naive BALB/c mice, or 107 spleen cells depleted in CD25+ 

cells by MACS sorting. Five days later, all mice were infected with 3xl06 L. major into the 

hind footpad and the development of lesions was monitored. Results in Fig. 8A confirm that 

SCID mice reconstituted with 107 naive BALB/c spleen cells are capable of controlling 

infection. In contrast, mice reconstituted with spleen cells depleted in CD25+ cells developed 

progressive lesions (Fig. 8A). Estimation of the numbers of viable parasites in lesions by 

limiting dilution analysis substantiated these findings because 10 wk after infection, the 

parasite burden was 3-5 log higher in lesions of SCID mice reconstituted with CD25+ cell­

depleted spleen cells compared with mice reconstituted with unseparated spleen cells (Fig. 

8B). Susceptibility of these mice to L. major was correlated with ultimate Th2 cell 

development because after stimulation with L. major in vitro their lymph node cells produced 

elevated amounts ofIL-4 and reduced amounts ofIFN-y (Fig. SC). 
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Figure 8. SCID mice reconstituted with 107 spleen cells from syngeneic BALB/c mice depleted of 
CD4+CD25+ T cells mount a polarized Th2 response to L. major infection and develop a progressive 
disease. (A) Evolution of lesion in SCID mice reconstituted with BALB/c spleen cells depleted of CD4+CD25+ 
T cells. SCID mice were reconstituted with 107 total spleen cells or 107 spleen cells depleted of CD4+CD25+ T 
cells as described in Materials and Methods. Nonreconstituted SCID and BALB/c mice were used as controls. 
Bach group of mice was infected with 3xl 06 stationary phase L. major promastigotes and the course of infection 
was monitored by measuring the diameter of the footpads weekly with a metric caliper. The mean size of lesions 
(increase in diameter of footpads due to infection) and SD for three to five mice per group is shown. Similar 
results were obtained in three other experiments including three to seven mice per group. *, p < 0.001 between 
the size of lesions in SCID mice that received spleen cells depleted vs not depleted of CD4+CD25+ regulatory T 
cells. (B) Parasite burden in the footpads of SCID mice reconstituted with BALB/c spleen cells depleted or not 
of CD4+CD25+ T cells 10 wk after infection with L. major. SCID mice were reconstituted with 107 total spleen 
cells or BALB/c splenocytes depleted of CD4+CD25+ regulatory T cells and infected 5 days later with 3xl06 

stationary phase L. major promastigotes in the footpads. Nonreconstituted SCID mice were similarly infected as 
contrai. Ten weeks later, mice were sacrificed and the parasite burden in their footpads was determined by 
limiting dilution analysis as described in Materials and Methods. The results are the mean counts from two 
footpads per group in two separate experiments. (C) Cytokine production in lymph node cells from SCID mice 
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reconstituted with spleen cells depleted of CD4+CD25+ T cells and infected with L. major. Popliteal lymph node 
cells were isolated l 0 wk after infection and 5xl06 cells from each group of reconstituted mice (three mi ce per 
group) were stimulated in vitro with 106 UV-irradiated L. major promastigotes for 72 h. IFN-y and IL-4 
production was evaluated in the supernatants as described in Materials and Methods. Results are expressed as 
mean of three measurements. The data shown are representative of three independent experiments. n.d., not 
detectable. 

It is noteworthy that reconstituted SCID mice were infected with L. major 5 days after 

adoptive cell transfer, a time when significant repopulation of lymph nodes with donor cells 

had occurred. Using flow cytometry and establishing a ratio of 105 bacterial count microbeads 

to lymphocytes, an equivalent number of cells was measured in the lymph nodes and spleens 

of SCID mi ce reconstituted with CD25+ -depleted or undepleted spleen cells 5 days after 

reconstitution (data not shown). 

3.2.4 Demonstration of the inhibitory role of CD4+CD25+ regulatory cells on the 

early IL-4 response to L. major in BALB/c mice using an adoptive cell 

transfer system. 

The requirement for LACK-reactive V~4-Va8 CD4+ T cells and the IL-4 they 

produce, within one day of infection with L. major for subsequent Th2 cell development and 

expression of a susceptible phenotype in BALB/c mice, has been demonstrated. 114 121 

Therefore, experiments were designed to determine whether the susceptible phenotype of 

mice reconstituted with CD25+ cell-depleted spleen cells and the resistant phenotype of SCID 

mice reconstituted with 107 BALB/c spleen cells were correlated with the expression of an 

early IL-4 mRNA burst in response to L. major or lack thereof, respectively. Five days after 

reconstitution with either 107 total or CD25-depleted spleen cells, SCID mice were infected 

with 3x106 L. major and 16 h later IL-4 transcripts were quantitated in their draining lymph 

node cells by RT-PCR. The lymph nodes of SCID mice that received CD25-depleted BALB/c 

spleen cells showed a rapid increase in IL-4 mRNA similar in magnitude to that observed in 

BALB/c mice simultaneously infected with L. major. In contrast, no increase in IL-4 mRNA 

expression was observed in lymph node cells of mice that received an equivalent number of 

BALB/c spleen cells not depleted in CD4+CD25+ regulatory T cells (Fig. 9). These results 

show that in this model system, as in BALB/c mice, an early IL-4 burst precedes Th2 cell 

maturation. Experiments aimed at identifying the cellular origin of the rapid IL-4 mRNA 

burst in SCID mice reconstituted with CD25+ cell-depleted spleen cells have revealed that it 

occurred in CD4+ T cells that express the V~4 TCR chain (data not shown). 
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Because use of anti-CD25 mAb is likely depleting all CD25+ T cells including the 

small percentage (<2%) of CD4-CD25+ T cells, experiments were performed to directly assess 

the suppressive role of CD4+CD25+ T cells on the early IL-4 mRNA burst. FACS-sorted 

CD4+CD25+ T cells (2.8xl05
) isolated from BALB/c spleen were added to spleen cells 

depleted of CD25+ T cells by MACS and 107 cells were injected i.v. into SCID mice. Five 

days later, mice were injected with 3xl06 L. major promastigotes and IL-4 mRNA was 

measured in their draining lymph nodes 16 h later. No significant increase in IL-4 mRNA was 

detectable in the draining lymph nodes of these reconstituted SCID mice when compared with 

similarly reconstituted uninfected SCID mice. However, SCID mice that received 107 CD25-

depleted spleen cells with no inclusion of CD4+CD25+ cells showed an increase of 38 times in 

IL-4 mRNA as compared with similarly reconstituted SCID mice that were not infected (data 

not shown). These results show that CD4+CD25+ T cells are indeed regulating the early IL-4 

mRNA burst observed 16 h after parasite inoculation. 

BALB/c 

SCID +non depleted 

SCID + depleted 

10 100 

Fold increase in IL-4 mRNA expression 

Figure 9. Draining lymph node cells from SCID mice reconstituted with BALB/c spleen cells depleted of 
CD4+CD25+ T cell and infected with L. major show an early IL-4 burst similar to that observed in BALB/c 
mice 16 h after infection. SCID mice were reconstituted with 107 BALB/c splenocytes depleted or not of 
CD4+CD25+ T cells in vitro and infected or not with 3xl06 stationary phase L. major promastigotes in the 
footpad. Four mice per group were sacrificed 16 h after infection and mRNA was extracted from their popliteal 
lymph nodes. The relative levels ofIL-4 mRNA were determined by semiquantitative RT-PCR (Materials and 
Methods). Results are expressed as fold increase relative to the noninfected similarly treated control mice. This is 
a representative experiment of five. 
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Figure 10. Absence of CD4+CD25+ regulatory T cells leads to enhanced proliferation of BALB/c lymph 
node cells in response to antigenic restimulation in vitro. BALB/c and BALB/c mice depleted of CD4+CD25+ 
T cells by i.p. administration of 1 mg of PC61 mAb 72 h before infection were injected with 3xl06 stationary 
phase L. major promastigotes s.c. in the hind footpads (four mice per group ). Draining lymph node cells were 
removed at 15 days after infection and 5xl05 cells were stimulated with 0.5 µg anti-CD3 or 2xl05 UV-irradiated 
L. major for 48 or 72 h, respectively. [3H]Thymidine was added for the last 6 h of culture. Shawn are the mean 
and SD of scintillation cpm for triplicate cultures. Data are representative of two separate experiments. 

3.2.5 Depletion of CD4+CD25+ cells leads to enhanced proliferation of CD4+ T 

cellsfollowing infection ofmice with L. major. 

Once activated, CD4+CD25+ cells are capable of inducing cell cycle arrest of activated 

CD4+ T cells in an Ag-nonspecific manner.238 239 In most of our experiments with BALB/c 

mice, the total lymphocyte count from the popliteal lymph nodes of CD25+ depleted mice was 

higher than that from nondepleted mice for the same duration of infection (data not shown). 

Therefore, we tested whether draining lymph node cells from CD25-depleted and nondepleted 

BALB/c mice infected with L. major differed in their proliferative capacity to specific 

stimulation in vitro. As shown in Fig. 10, cells from CD25-depleted mice showed a higher 

rate of thymidine incorporation in response to L. major or anti-CD3 in culture. This was also 

observed in nonrestimulated cells as a higher background. Surprisingly, this difference was 

still apparent 5 wk after infection, at least for lymph node cells stimulated with anti-CD3, 

suggesting that the state of activation of CD4+ cells in the periphery has been altered by the 

absence of the CD4+CD25+ T cells in vivo during the initial infection with L. major. 
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No preferential expansion of vp4+ cells was found when cultured cells were stained 

and tested by flow cytometry (data not shown), suggesting that the state of activation rather 

than the preferential expansion of vp subsets leads to the increased proliferation observed in 

lymph node cell cultures from mice depleted of CD4+CD25+ T cells. 

Upon stimulation with L. major in vitro, the proliferative response of lymph node cells 

obtained 10 wk after infection with L. major from SCID mice reconstituted with 107 CD25+ T 

cell-depleted splenocytes was clearly higher than that observed in lymph node cells of 

similarly infected SCID mice reconstituted with the same number of total spleen cells (Fig. 

11). 

none 
107 total 

L. major 

none 
1O7 depleted 

L. major 

0 10 20 30 40 50 

(3H) Thymidine incorporation (cpmx10-3) 

Figure 11. Increased in vitro proliferative response to L. major stimulated lymph node cells isolated from 
infected SCID mice reconstituted with CD4+CD25+-depleted spleen cells. Thymidine incorporation of cells 
from SCID mice reconstituted with spleen cells depleted or not of CD4+CD25+ T cells and subsequently infected 
with L. major. Draining lymph node cells were removed 10 wk after infection and 5xl05 cells were restimulated 
in vitro with 2xl05 UV-irradiated L. major for 72 h. [3H]Thymidine was added for the last 6 h of culture. Shawn 
are the mean and SD of scintillation cpm for triplicate cultures. Data are representative of two separate 
experiments. 
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3.2.6 Neutralization of IL-4 prevents Th2 cell maturation and susceptibility to L. 

major in SCID mice reconstituted with 107 BALB/c spleen cells depleted of 

CD4+CD25+ T cells. 

Treatment of BALB/c mice with anti-IL-4 mAb at the initiation of infection is capable 

of redirecting protective Thl cell development resulting in resistance to L. major.25 105 106 

Similarly to BALB/c mice, infection with L. major of SCID mice reconstituted with 107 

BALB/c spleen depleted of the CD4+CD25+ regulatory T cell population results in a rapid 

burst ofIL-4 mRNA expression in draining lymph node cells (Fig. 9). Experiments were then 

designed to determine whether the Th2 response developing in these mice was also instructed 

by the IL-4 produced as a result of this early IL-4 mRNA burst. SCID mice reconstituted with 

107 BALB/c spleen cells depleted of CD25+ cells were infected with 3x106 L. major and 

treated or not with 1 mg of anti-IL-4 mAb llBll at the onset of infection. Control groups 

included similarly infected nonreconstituted SCID mi ce, SCID mi ce reconstituted with 10 7 

unseparated spleen cells, and BALB/c mice treated or not with anti-IL-4 mAb. Monitoring the 

development of lesions in mice from these various groups clearly showed that, similarly to 

BALB/c mice, treatment with anti-IL-4 renders SCID mice reconstituted with 107 spleen cells 

devoid of CD25+ T cells fully resistant to L. major (Fig. 12A). Furthermore, the numbers of 

parasites recovered after culture in vitro of footpad tissues, removed 12 wk after infection, 

confirmed that parasite growth was controlled in these mice (2xl 03 L. major/footpad lesion vs 

3x108 in control mice not treated with anti-IL-4 mAb ). Resistance to infection was correlated 

with the ultimate development of Thl responses 12 wk after infection. Results in Fig. 12B 

show that SCID mice reconstituted with spleen cells free of CD25+ cells and treated with anti­

IL-4 mAb exhibited a > 10-fold decrease in the amounts of IL-4 transcripts in their draining 

lymph node lymphocytes compared with similarly infected SCID mice not treated with anti­

IL-4 mAb. As previously observed, it is noteworthy that the responses of the mice from the 

various groups could not be discriminated on the basis of the amounts of IFN-y transcripts. 

Comparable results were obtained when supernatants of specifically activated lymph node 

cells were analyzed for the accumulation ofIL-4 or IFN-y (data not shown). 

Importantly, the anti-IL-4 treatment did not affect the proliferation rate of transferred 

CD4+ T cells in reconstituted SCID mice as assessed by determining the CFSE profile in 

draining lymph node cells 15 days after transfer of CFSE-labeled spleen cells, i.e., 10 days 

after infection with L. major (data not shown). 
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Figure 12. Neutralization of IL-4 abrogates the Th2 response of SCID mice reconstituted with CD4+CD25+ 
T cell-depleted splenocytes following L. major infection and leads to control of lesions. (A) SCID mice were 
reconstituted with 107 spleen cells depleted or not of CD4+CD25+ regulatory T cells and infected with 3xl06 L. 
major promastigotes 5 days later. A group of mice reconstituted with depleted cells was treated with 1 mg of 
anti-IL-4 mAb i.p. at the time of infection. Lesion size was monitored with a metric caliper. Data are from five 
mice per group. n.r., SCID mice nonreconstituted. *,p < 0.00001 between SCID + 107 depleted and SCID + 107 

depleted anti IL-4. (B) mRNA was isolated from the lymph nodes of mice 12 wk after infection with L. major. 
cDNA was prepared from each group, and semiquantitative PCR was performed for IL-4 and IFN-y as described 
in Material and Methods. Results are expressed as fold increase in mRNA of mice infected with L. major 
compared with mice similarly treated but not infected. n.r., SCID mice nonreconstituted. 
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3.2. 7 The early IL-2 response to L. major is significantly enhanced in BALB/c 

mice depleted o/CD4+CD25+ cells. 

The suppressive capacity of the CD4+CD25+ population likely results, at least in part, 

from its ability to inhibit IL-2 transcription and IL-2 production in the target T cell 

population.240 Interestingly, we have previously documented that triggering of the early IL-4 

response subject to the control ofregulatory CD4+CD25+ T cells required autocrine IL-2. 

To investigate whether or not CD4+CD25+ regulatory T cells control the early IL-2 

mRNA response to L. major, BALB/c mice treated or not with 1 mg of anti-CD25 PC61 mAb 

were injected s.c., 3 days later, with L. major into the hind footpads. Draining popliteal lymph 

nodes were removed at various times after infection for RNA extraction and IL-2 or IL-4 

mRNA levels were quantified by semiquantitative RT-PCR. The results in Fig. 13 confinn the 

kinetics of IL-2 and IL-4 mRNA expression in response to L. mcu'or in BALB/c mi ce, with a 

early burst of IL-2 transcription reproducibly preceded the IL-4 mRNA burst. Compared with 

infected mice not treated with PC61 mAb, higher levels of early IL-2 mRNA transcripts were 

consistently observed in lymph nodes of CD4+CD25+ T cell-depleted mice (Fig. 13B). The 

significant increase in the level ofIL-4 mRNA measured in PC61-treated mice compared with 

that measured in BALB/c mice that were not injected with the mAb confirmed previous 

results (Fig. 13A). It is noteworthy that in the absence of infection with L. major, treatment of 

BALB/c mice with the mAb PC61 did not affect the basal level of IL-2 and IL-4 mRNA 

transcripts. 
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Figure 13. Depletion of CD4+CD25+ T cells in BALB/c mice enhances the early IL-2 burst observed 1 day 
after infection with L. major. BALB/c mice were treated with 1 mg PC61 i.p. and infected s.c. with 3xl06 

stationary phase L. major promastigotes 72 h later. Control groups consisted of noninfected mice treated with 
PC6 l, mice infected without any prior treatment and noninfected untreated mice. Various times following 
infection mi ce were killed and mRNA was extracted from popliteal lymph nodes. The relative level of IL-4 (A) 
and IL-2 (B) mRNA was determined by semiquantitative RT-PCR. For mice injected with the PC61 mAb and 
infected, results are expressed as the increase in IL-2 and IL-4 mRNA in popliteal lymph nodes of mice treated 
with PC61 and infected with L. major compared with that measured in noninfected mice similarly treated with 
the mAb. For mice only injected with the PC61 mAb, the results are expressed as fold increase in IL-2 and IL-4 
mRNA in mice treated with PC61 and compared with untreated and noninfected mice. For untreated mice, the 
results are expressed as fold increase in IL-2 and IL-4 mRNA in mice infected with L. major compared with that 
in noninfected mice. 
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4.1 LACK-reactive CD4+ T cells require autocrine IL-2 to mediate 

susceptibility to Leishmania major. 

In this report, we document a burst of IL-2 mRNA expression peaking in draining 

lymph node cells of BALB/c, C57BL/6 and anti-IFN-y-treated C57BL/6 mice around 10 h 

after infection with L. major. This rapid IL-2 production appears necessary for expression of 

the burst of IL-4 transcripts that occurs 16 h after infection and plays a role in Th2 cell 

development and susceptibility to L. major in BALB/c and anti-IFN-y-treated C57BL/6 

mice. 80 104 Indeed, neutralisation of IL-2 redirected Thl cell maturation and resistance to 

L. major in otherwise susceptible mice through interference with the generation of an early 

IL-4 response. That only the IL-2 producecl by LACK-reactive VP4-Va8 CD4+ T cells is 

essential for IL-4 production by the same subpopulation of cells represents a prominent 

fin ding of this study. 

The mechanisms by which IL-2 favours disease progression are not known. 

Particularly, it could be that the effect of IL-2 in this model system results from the ability of 

this cytokine to promote T cell growth or to stimulate IL-4 production by CD4+ T cells. Our 

present data strongly suggest that the main fonction of the early IL-2 produced following 

infection with L. mqjor is to allow the initial IL-4 production to exceed the thresholcl required 

for Th2 lineage commitment. 

The IL-2 dependence of the early IL-4 response by LACK-reactive VP4-Va8 CD4+ 

T cells in susceptible mice could also proceed from an IL-2-driven enhanced proliferation and 

survival of these cells. This hypothesis seems unlikely given the rapidity of IL-4 production 

following infection with L. major or injection of LACK104 and our unpublished observation 

that CFSE-labelled VP4-Va8 CD4+ T cells from ABLE mice adoptively transferred to either 

normal or anti-IL-2-treated BALB/c mice proliferated similarly following injection of 

recipient mice with L. major or LACK. The IL-2 requirement for IL-4 production by primed 

or naive CD4+ T cells using other experimental systems was also not correlated with 

preferential proliferation or survival of IL-4-producing cells.85 158 Remarkably, in other 

systems, the effect of IL-2 on Th2 cell development was recently related to its capacity to 

stabilize the accessibility of the IL-4 gene. 224 
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The expression of an early IL-4 response in BALB/c mice infected with L. mqjor 

unlikely results from an excessive production of IL-2, since a similar burst of early IL-2 

mRNA expression is also observed in draining lymph nodes of infected resistant C57BL/6 

mice (Fig. 1 ). The fact that the IL-2 produced in C57BL/6 mice did not induce IL-4 

express10n in LACK-specific VP4-Va8 CD4+ T cells could result from differences in 

responsiveness of these cells to IL-2 between resistant and susceptible mice. 241 This 

hypothesis appears unlikely since it implies that neutralisation of IFN-y in C57BL/6 mice 

increases the IL-2 responsiveness of CD4+ T cells. 

The observation that up-regulation of IL-4 expression by LACK-reactive VP4-Va8 

CD4+ T cells depends upon the cellular source of IL-2, which differs between BALB/c and 

C57BL/6 mice, is the prominent finding of our study. Following infection with L. major, 

CD4+ T cells, presumably expressing a large repertoire of vp TCR chains (Vp4+ and Vp4), 

rapidly expressed IL-2 transcripts in susceptible BALB/c or anti-IFN-y-treated C57BL/6 mice 

as well as in resistant C57BL/6 mice. Remarkably, the injection of LACK induced an early 

IL-2 response in susceptible BALB/c and anti-IFN-y-treated C57BL/6 mice but failed to 

induce IL-2 mRNA expression in vp4+ CD4+ T cells in resistant C57BL/6 mice. The 

demonstration of a rapid IL-2 response by vp4+ CD4+ T cells in C57BL/6 mice treated with 

anti-IFN-y mAb combined with previous data documenting a rapid IL-4 response to L. major 

by LACK-reactive VP4-Va8 CD4+ T cells in C57BL/6 mice treated with anti-IFN-y mAb80 

indicate that autocrine production of IL-2 was required for IL-4 expression in LACK-reactive 

VP4-Va8 CD4+ T cells. 

The identification of LACK-reactive VP4-Va8 CD4+ T cells as the source of the IL-2 

required for IL-4 expression in the same cells came from experiments performed in mice from 

the BALB/c background. Reconstituted C.B.-17 SCID mice where the only cells genetically 

unable to produce IL-2 were LACK-reactive CD4+ T cells failed to generate an early IL-4 

response and were resistant to infection. Conversely, reconstituted SCID mice where VP4-

Va8 CD4+ T cells are the only cells capable of IL-2 production mount an early IL-4 mRNA 

response, showing that the IL-2 produced by cells other than LACK-specific V~4-Va8 CD4+ 

T cells was not involved in the regulation of this early IL-4 mRNA expression after infection. 

Together these results strongly indicate that IL-4 production by LACK-reactive VP4-Va8 
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CD4+ T cells and manifestations of their pathogenic role in disease progression are contingent 

on autocrine IL-2. 

The reason why only the IL-2 produced by LACK-specific CD4+ T cells plays a role 

in the expression ofIL-4 mRNA by the same V~4-Va8 CD4+ T cells is not known. It appears 

that cytokines exert their activity locally rather than at a distance.242 In this context, it has 

been elegantly shown that, after activation, on the one hand the IL-2Ra chain co-polarizes 

with the TCR at the site of the immunological synapse243 and, on the other hand, IL-2 

secretion also occurs toward the immunological synapse.244 Accordingly, it is possible that 

only autocrine production of IL-2 by LACK-specific V~4-Va8 CD4+ T cells would provide 

sufficient levels of this cytokine at the site where its receptors are concentrated. 

Thus, the two types of signalling by cytokines - autocrine and paracrine - appear to 

coexist during the early response of susceptible mice to infection with L. major. First, IL-2 is 

produced by LACK-specific CD4+ T cells and steers these cells to IL-4 production. Second, 

as already proposed, the IL-4 produced by LACK-specific CD4+ T cells might serve to allow 

the spread of IL-4 production to CD4+ T cells of specificities for other antigens from 

L. mqjor.222 245 It is of interest that the IL-4 receptors do not appear to co-localize with the 

TCR at the site of the immunological synapse.243 

The nature of the cellular and molecular events upstream the induction of IL-2 

production by LACK-reactive cells in susceptible mice is not known. The results presented in 

this report indicate that this rapid IL-2 response is down-regulated by IFN-y in resistant 

C57BL/6 mice. Thus, it is possible that an early production of IFN-y in resistant mice could 

account for the inability of V~4-Va8 LACK-reactive cells to produce IL-2. Since cells from 

the innate immune system, i.e. NK cells, can produce IFN-y, it would thus be possible that 

differences in NK cell activation and IFN-y production following infection with L. major 

between resistant and susceptible mice explain the observed difference in the induction of the 

early IL-2 response. This hypothesis is rendered unlikely by recent results from our laboratory 

clearly showing that NK cells from resistant and susceptible mice exhibit similar increase in 

IFN-y mRNA expression early following infection with L. major (unpublished observation). 
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In conclusion, the results reported here provide evidence that the IL-2 produced early 

during infection of susceptible mice with L. mqjor by LACK-specific V~4-Va8 CD4+ T cells 

plays a crucial role in promoting Th2 maturation and disease progression. Furthermore, the 

inability of LACK-specific V~4-Va8 CD4+ T cells to express an IL-4 mRNA burst in 

response to L. mqjor in resistant C57BL/6 mice appears to stem from the incapacity of these 

cells to produce IL-2. 
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4.2 The early IL-4 response to Leishmania major and the resulting 

Th2 cell maturation steering progressive disease in BALB/c 

mice are subject to the control of regulatory CD4+CD25+ T 

cells. 

In this report, we show that compared with normal BALB/c mice, BALB/c mice 

depleted of CD4+CD25+ regulatory T cells three days before infection with L. major develop 

significantly more severe lesions that contain higher numbers of parasites. This enhanced 

disease progression was correlated with the faster development of robust IL-4-producing 

CD4+ T cell responses. In the absence of CD4+CD25+ regulatory T cells, the early IL-4 

transcriptional burst seen in BALB/c mice within 1 day of infection with L. major was 

significantly enhanced. Inhibition of the activation of MHC class II-restricted parasite-specific 

CD4+ T cells due to the persistence of the anti-CD25 PC61 depleting mAb is unlikely to 

account for the observed effects. Indeed, SCID mice reconstituted with BALB/c spleen cell 

populations, depleted of CD25+ regulatory T cells in vitro, also exhibited increased levels of 

IL-4 transcripts in the draining lymph nodes 1 day following infection with L. major, 

enhanced disease progression and Th2 cell development. 

Studying the requirement for IL-2 signaling on the progression of lesions in BALB/c 

mice infected with L. major, others have reported that the biweekly administration of anti-IL-

2Ra (CD25) mAb PC61 during the first 4 wk of infection renders BALB/c mice resistant.98 In 

these experiments, it is likely that persistent blocking of the IL-2R and/or depletion of CD4+ T 

cells, that are induced to express the IL-2Ra chain following specific activation, preferentially 

interfered with the expansion of recently activated CD4+ Th2 cells because IL-2 signaling has 

been reported to be required for the establishment and maintenance of Th2 responses.98 246 247 

Interestingly, in this study restricting the administration of the anti-IL-2Ra PC6 l mAb to the 

first day of infection with L. major either did not modify or sometimes exacerbated disease 

progression.98 Because we show in this study that an interval of 3 days after the injection of 

PC61 mAb is required for the maximal depletion of CD25+ T cells, it is likely that when the 

anti-CD25 mAb is administered the day of infection, the exacerbating effect on disease 

progression varies depending upon the numbers of CD25+ regulatory T cells available. In this 

context, at least in vitro, the degree of suppression mediated by CD4+CD25+ regulatory T 

cells has been demonstrated to be proportional to the numbers ofregulatory T cells.238 
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Even in the absence of antigenic stimulation, the results in this report show an 

increased proliferation and repopulation of lymph nodes by adoptively transferred CD4+ T 

cells in syngeneic SCID recipients when the CD4+CD25+ population was removed from the 

spleen cell inoculum before transfer. That CD25+ regulatory cells regulate the size of the 

peripheral lymphoid compartment is also supported by several other observations. Thus, a 

shortage of CD25+ regulatory T cells has been reported in IL-2- or IL-2Ra-deficient mice that 

exhibit a dysregulation of both the size and the content of their peripheral lymphoid 

compartment resulting m autoimmunity. 135 248 Similarly, the activated/memory 

CD45RB10wCD4+ T cell population, containing natural regulatory T cells, was clearly shown 

to limit the peripheral expansion of naive CD45RBhighCD4+ T cells when both CD4+ T cell 

subpopulations were transferred into syngeneic Rag-2°10 recipients.249 Furthermore, depletion 

of CD25+ cells in vivo with the PC61 mAb led to an increased expansion of adoptively 

transferred C57BL/6 spleen T cells in syngeneic nude mice. 135 

In contrast to naive classical CD4+ T cells that need to be activated to express CTLA-

4, CD4+CD25+ regulatory cells have been shown to express CTLA-4 constitutively.203 205 250 

Blockade of CTLA-4 using anti-CTLA-4 mAb has been reported to decrease the suppressive 

capacity of CD25+ regulatory T cells in vitro250 and to interfere in vivo with the ability of 

these cells to control intestinal inflammation.203 250 It is presently not known whether the 

CTLA-4 molecules on CD25+ regulatory T cells prevent interaction between the CD28 

molecules on target cells with the B7 (CD80/CD86) molecules on APC250 or, alternatively, 

cross-linking the CTLA-4 molecules on CD25+ cells results in TGF-P production.251 In this 

context, treatment with anti-CTLA-4 mAb has been shown to exacerbate disease progression 

and to lead to enhanced Th2 responses in BALB/c mice infected with L. major252 effects 

similar to those reported in this study following depletion of CD4+CD25+ regulatory T cells. 

Using different antigenic systems, other studies have shown that mice expressing a transgenic 

TCR on a CTLA-4_1
_ background preferentially develop Th2 responses and conversely that 

signaling through CTLA-4 inhibits Th2 maturation.253 Thus CTLA-4 would limit the 

magnitude of Th2 differentiation. Therefore, the similarities between the effects observed 

either in the absence of CD4+CD25+ regulatory T cells or following the blockade of CTLA-4 

support the hypothesis that CTLA-4 may play a role in the suppressive activity of 

CD4+CD25+ regulatory T cells. 
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The suppressive capacity of the CD4+CD25+ population likely results, at least in part, 

from its ability to inhibit IL-2 transcription and IL-2 production in the target T cell 

population.240 As a result, these responder cells fail to proliferate and undergo cell cycle arrest 

at the Go/G1 phase.240 Whether this inhibition, dependent on cell contact between the 

regulatory and the responder cells, is mediated by other cytokines, in soluble or membrane­

bound forms, is still a matter of debate (reviewed in Refs. 199 and 254). In this context, we 

show in this study that up to 5 wk after infection with L. major, the draining lymph node cells 

of either BALB/c mice depleted of CD4+CD25+ regulatory T cells or SCID mice reconstituted 

with spleen cells depleted in regulatory T cells in vitro exhibited significantly enhanced 

proliferative responses upon specific restimulation in vitro. Likewise, following infection with 

L. major, enhanced CD4+ T cell proliferation was also observed in vivo in SCID recipients of 

CSFE-labeled CD4+CD25+-depleted BALB/c spleen cell populations. This increased 

proliferative capacity likely results from enhanced IL-2 production in mice lacking CD25+ 

regulatory cells because we have detected, soon after infection with L. major, higher levels of 

IL-2 transcripts in draining lymph node cells of BALB/c mice depleted of CD25+ T cells as 

compared with normal BALB/c mice. 

Cell cycling favors cytokine gene express10n. Although entry into the S phase is 

necessary for the expression of the IFN-y and IL-4 genes,227 255 there is a controversy 

regarding possible differences in the number of cell divisions required for naive CD4+ T cells 

to differentiate toward either IFN-y-producing Thl cells or IL-4-producing Th2 cells.256 In the 

absence of CD4+CD25+ regulatory T cells, results presented in this study show that donor 

CD4+ T cells proliferate more intensively in response to L. major in vitro. Combined with the 

present demonstration of the inhibitory role of CD4+CD25+ regulatory T cells on Th2 cell 

maturation following infection with L. major, these results could indicate that the magnitude 

of the Th2 response is dependent upon the proliferation rate. However, more likely is that the 

enhanced IL-4 production by V~4-Va8 CD4+ T cells during the first day of infection with L. 

major observed in the absence of CD4+CD25+ regulatory T cells could account for the 

subsequent development of magnified Th2 responses. Such a hypothesis is strongly supported 

by the results in this report showing that neutralization of the IL-4 produced during the early 

stage of infection with L. major led to a significant inhibition of Th2 cell development in 

SCID mice reconstituted with syngeneic spleen cells depleted of CD4+CD25+ regulatory T 

cells without affecting the proliferation rate of the transferred CD4+ T cells. Therefore, we 
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believe that an excessive production early after infection of the IL-4, necessary for instructing 

further Th2 cell development, by LACK-reactive VP4-Va8 CD4+ T cells is a major 

consequence of the depletion of CD25+ regulatory T cells in this experimental system. The 

requirement for LACK-reactive VP4-Va8 CD4+ T cells and the IL-4 they produce during the 

first day of infection with L. major for subsequent Th2 cell maturation and disease 

progression in susceptible BALB/c mice has been firmly established. 106 119 121 The mechanism 

by which CD25+ regulatory T cells down-regulate IL-4 production by LACK-specific Vp4-

Va8 CD4+ T cells is not known. However, given our findings that this early IL-4 response to 

L. major is regulated by autocrine IL-2 (see chapter 3.1), it is possible that a CD25+ regulatory 

T cell-mediated inhibition of IL-2 gene transcription by LACK-specific CD4+ T cells could 

affect IL-4 production by the same VP4-Va8 CD4+ T cells. The enhanced early IL-2 response 

to L. major in BALB/c mice depleted of CD4+CD25+ cells support this hypothesis. 

Although anergie in terms of proliferation, CD4+CD25+ regulatory T cells have been 

reported to express their suppressive activity at concentrations of Ags significantly lower than 

those necessary for activation of other (naive) T cells.238 In this context, results from elegant 

experiments indicated that the development of CD4+CD25+ regulatory T cells requires higher 

avidity of their TCR for MHC class II/self-peptides than other (naive) T cells.257 The LACK 

Ag of L. major is the Leishmania homolog of mammalian RACKl and there is some degree 

of homology between the two proteins, particularly within the region of the immunodominant 

I-Ad epitope of LACK eliciting the rapid IL-4 response by VP4-Va8 CD4+ T cells in BALB/c 

mice. u 4 116 It is thus tempting to speculate that some CD4+CD25+ regulatory T cells 

expressing TCR with high avidity for a peptide in mammalian RACKl are positively selected 

in the thymus and readily activated in the periphery to exert suppression following injection 

of LACK. The mechanism by which regulatory CD4+CD25+ T cells suppress IL-4 production 

by LACK-reactive cells remains elusive. However, ifregulatory CD25+ T cells and VP4-Va8 

CD4+ T cells recognize their specific epitope on the same APC, the possibility that activated 

regulatory CD25+ T cells renders this APC unable to provide costimulatory signals necessary 

for IL-2 transcription in VP4-Va8 CD4+ T cells is attractive. In this context, some 

observations already strongly suggest that the CD25+ suppressor T cell population acts on 

APC,226 and suppress naive T cells by inhibition of a common pathway leading to IL-2 

secretion258 as long as both T cells are of the same antigen specificity258
-
260 and are contacting 

the same APC.258 

78 



Noteworthy, depletion of CD25+ T cells in C57BL/6 mice before infection with L. 

major had no significant effect on the resolution of lesion; however, the transient absence of 

CD25+ regulatory T cells resulted in reduced parasite numbers within lesions and suppressed 

almost totally the parasite reservoir remaining normally in clinically cured C57BL/6 mice. 

CD4+CD25+ regulatory T cells have been reported to produce IL-10 in vivo. 197 261 Because IL-

10 is a cytokine important in controlling the residual parasites in clinically cured C57BL/6 

mice,262 depletion ofregulatory T cells which last for over a month, could result in loss ofIL-

10 and thus reduce the number of residual parasites within the lesions. In BALB/c mice, 

depletion of CD4+CD25+ T cells leads to the opposite phenomenon, i.e., increased parasite 

growth. Thus in strains of mice susceptible to infection with L. major, CD4+CD25+ T cells act 

very early on cells responsible for driving Th2 differentiation, regulating early IL-4 secretion, 

but in resistant strains developing Thl responses following infection, CD4+CD25+ T cells 

may produce the IL-10 found necessary for the persistence of parasites in clinically cured 

animais. 262 Additional experiments are needed to further decipher the mechanism of action for 

CD4+CD25+ T cells in strains of mice resistant to infection with L. major. 

In summary, in this study we have shown that regulatory T cells, highly efficient in 

controlling self-reactive effector T cells and preventing autoimmunity, are also able to restrain 

the development of detrimental Th2 responses to an intracellular parasite in genetically 

susceptible hosts. Defining the fine specificities of CD25+ regulatory T cells, understanding 

the cellular and molecular mechanisms involved in suppression and their role in controlling 

pathologies induced by specific Th subsets remain important issues that deserve further 

studies. This knowledge could ultimately lead to the design of new strategies for manipulating 

the development of effector responses to the host' s benefit. 
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5 Conclusions. 

The murine model of infection with L. major has not only allowed to validate in vivo 

the existence of functionally distinct CD4+ T cell subpopulations, but has demonstrated their 

crucial role on the outcome of infectious diseases. This model is now revealing itself as a 

powerful tool to understand the cellular and molecular mechanisms operating in the selective 

maturation of peripheral effector CD4+ T cells in vivo. A thorough definition of these 

mechanisms is a prerequisite for the rational development of efficient immunoprophylactic 

and immunotherapeutic measures applicable to humans. Information gained by studying this 

disease, which afflicts mainly the developing world, has no doubt significantly added to our 

understanding of critical issues related to the T cell response. It is important that this 

knowledge foments the development of novel interventional strategies for the prevention and 

treatment of this and other serious infection diseases. In general, the results accumulated have 

clarified certain aspects of Th cell differentiation. Continued work in this area should also 

provide critical information as to how to direct immune responses to the type of effector 

function that would be most useful in eliminating or preventing a given type of infectious 

disease, in diminishing immunologie tissue damage in autoimmunity, and in mounting 

effective anti-tumor immunity. 
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