SCANDINAVIAN JOURNAL OF MEDICINE & SCIENCE IN SPORTS

Consensus recommendations on training and competing in the heat

S. Racinais¹, J. M. Alonso^{2,3}, A. J. Coutts⁴, A. D. Flouris⁵, O. Girard⁶, J. González-Alonso⁷, C. Hausswirth⁸, O. Jay⁹, J. K. W. Lee^{10,11,12}, N. Mitchell¹³, G. P. Nassis¹⁴, L. Nybo¹⁵, B. M. Pluim¹⁶, B. Roelands¹⁷, M. N. Sawka¹⁸, J. E. Wingo¹⁹, J. D. Périard¹

¹Athlete Health and Performance Research Centre, Aspetar, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar, ²Sports Medicine Department, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar, ³Medical and Anti-doping Commission, International Association of Athletics Federations (IAAF), Montecarlo, Monaco, ⁴Sport and Exercise Discipline Group, University of Technology Sydney (UTS), Lindfield, New South Wales, Australia, ⁵FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece, ⁶ISSUL, Institute of Sport Sciences, Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland, ⁷Centre for Sports Medicine and Human Performance, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK, ⁸French National Institute of Sport (INSEP), Research Department, Laboratory of Sport, Expertise and Performance, Paris, France, ⁹Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney, Lidcombe, New South Wales, Australia, ¹⁰Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, ¹¹Yong Loo Lin School of Medicine, National University of Singapore, Singapore, ¹²Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, ¹³British Cycling and "Sky Pro Cycling", National Cycling Centre, Manchester, UK, ¹⁴National Sports Medicine Programme, Excellence in Football Project, Aspetar, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar, ¹⁵Department of Nutrition, Exercise and Sport, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark, ¹⁶Medical Department, Royal Netherlands Lawn Tennis Association (KNLTB), Amersfoort, The Netherlands, ¹⁷Department of Human Physiology, Vrije Universiteit Brussel, Brussels, Belgium, ¹⁸School of Applied Physiology, College of Science, Georgia Institute of Technology, Atlanta, Georgia, USA, ¹⁹Department of Kinesiology, University of Alabama, Tuscaloosa, Alabama, USA

Corresponding author: Sébastien Racinais, PhD, Athlete Health and Performance Research Centre, Aspetar, Qatar Orthopaedic and Sports Medicine Hospital, PO Box 29222, Doha, Qatar. Tel: +974 4413 2544, Fax: +974 4413 2020, E-mail: sebastien.racinais@aspetar.com

Accepted for publication 10 March 2015

Exercising in the heat induces thermoregulatory and other physiological strain that can lead to impairments in endurance exercise capacity. The purpose of this consensus statement is to provide up-to-date recommendations to optimize performance during sporting activities undertaken in hot ambient conditions. The most important intervention one can adopt to reduce physiological strain and optimize performance is to heat acclimatize. Heat acclimatization should comprise repeated exercise-heat exposures over 1–2 weeks. In addition, athletes should initiate competition and training in a euhydrated state and minimize dehydration during exercise. Following the development of commercial cooling systems (e.g., cooling vest), athletes can implement cooling strategies to facilitate heat loss or increase heat storage capacity before training or competing in the heat. Moreover, event organizers should plan for large shaded areas, along with cooling and rehydration facilities, and schedule events in accordance with minimizing the health risks of athletes, especially in mass participation events and during the first hot days of the year. Following the recent examples of the 2008 Olympics and the 2014 FIFA World Cup, sport governing bodies should consider allowing additional (or longer) recovery periods between and during events for hydration and body cooling opportunities when competitions are held in the heat.

Aim and scope

Most of the major international sporting events such as the Summer Olympics, the FIFA World Cup, and the Tour de France – i.e., the three most popular events in terms of television audience worldwide – take place during the summer months of the northern hemisphere, and often in hot ambient conditions. On 23–24 March 2014, a panel of experts reviewed and discussed the during a topical conference held at Aspetar Orthopaedic and Sports Medicine Hospital in Doha, Qatar. The conference ended with a roundtable discussion, which has resulted in this consensus statement. This document is intended to provide up-to-date rec-

ommendations regarding the optimization of exercise capacity during sporting activities in hot ambient conditions. Given that the performance of short-duration

specificities of Training and Competing in the Heat

activities (e.g., jumping and sprinting) is at most marginally influenced, or can even be improved, in hot ambient conditions (Racinais & Oksa, 2010), but that prolonged exercise capacity is significantly impaired (Nybo et al., 2014), the recommendations provided in this consensus statement focus mainly on prolonged sporting events.

Introduction

When exercising in the heat, skin blood flow and sweat rate increase to allow for heat dissipation to the surrounding environment. These thermoregulatory adjustments, however, increase physiological strain and may lead to dehydration during prolonged exercise. Heat stress alone will impair aerobic performance when hyperthermia occurs (Rowell, 1974; Galloway & Maughan, 1997; Périard et al., 2011; Nybo et al., 2014). Consequently, athletes perform endurance, racket, or team sport events in the heat at a lower work rate than in temperate environments (Ely et al., 2007; Morante & Brotherhood, 2008; Mohr et al., 2012; Périard et al., 2014; Nassis et al., 2015; Racinais et al., 2015). In addition, dehydration during exercise in the heat exacerbates thermal and cardiovascular strain (Adolph, 1947; Strydom & Holdsworth, 1968; Sawka et al., 1985; Montain & Coyle, 1992; González-Alonso et al., 1998; Trangmar et al., 2014) and further impairs aerobic performance (González-Alonso et al., 2008; Sawka et al., 2011; Nybo et al., 2014). The document contains recommendations and strategies to adopt in order to sustain/ enhance performance during training and competition in the heat, as well as minimize the risk of exertional heat illness. As presented in the first section, the most important intervention one can adopt to reduce physiological strain and optimize performance is to heat acclimatize. Given that dehydration can impair physical performance and exacerbate exercise-induced heat strain, the second section of the consensus statement provides recommendations regarding hydration. The third section highlights the avenues through which it is possible to decrease core and skin temperatures before and during exercise via the application of cold garments to the skin such as ice packs, cold towels, and cooling vests, as well as through cold water immersion (CWI) or ice slurry ingestion.

Given the lack of data from real competitions, the International Olympic Committee recently highlighted the necessity for sports federations, team doctors, and researchers to collaborate in obtaining data on the specific population of elite athletes exercising in challenging environments (Bergeron et al., 2012). Several international sporting federations such as FIFA, FINA, FIVB, IAAF, and ITF have responded to this challenge by initiating a surveillance system to assess environmental conditions during competition, along with their adverse outcomes (e.g., Grantham et al., 2010; Bahr & Reeser, 2012; Mountjoy et al., 2012; Nassis et al., 2015).

Training and competing in the heat

A number of sporting federations have also edited their guidelines to further reduce the risks of exertional heat illness. These guidelines are reviewed in the fourth section of this consensus statement. Recommendations are offered to event organizers and sporting bodies on how to best protect the health of the athlete and sustain/ enhance performance during events in the heat.

Section 1: Heat acclimatization

Although regular exercise in temperate conditions elicits partial heat acclimatization (Armstrong & Pandolf, 1988), it cannot replace the benefits induced by consecutive days of training in the heat (Gisolfi & Robinson, 1969; Nadel et al., 1974; Roberts et al., 1977; Armstrong & Pandolf, 1988). Heat acclimatization improves thermal comfort and submaximal as well as maximal aerobic exercise performance in warm-hot conditions (Nielsen et al., 1993; Lorenzo et al., 2010; Racinais et al., 2015). The benefits of heat acclimatization are achieved via increased sweating and skin blood flow responses, plasma volume expansion, and hence improved cardiovascular stability (i.e., better ability to sustain blood pressure and cardiac output) and fluidelectrolyte balance (Sawka et al., 1996, 2011; Périard et al., 2015). Exercise-heat acclimatization is therefore essential for athletes preparing competitions in warmhot environments (Sawka et al., 1996). This section describes how to practically implement heat acclimatization protocols and optimize the benefits in athletes.

Induction of acclimatization

Duration

Most adaptations (i.e., decreases in heart rate, skin and rectal temperature, increases in sweat rate, and work capacity) develop within the first week of heat acclimatization and more slowly in the subsequent 2 weeks (Robinson et al., 1943; Ladell, 1951; Flouris et al., 2014). Adaptations develop more quickly in highly trained athletes (up to half the time) compared with untrained individuals (Pandolf et al., 1977; Armstrong & Pandolf, 1988). Consequently, athletes benefit from only few days of heat acclimatization (Sunderland et al., 2008; Garrett et al., 2011; Chalmers et al., 2014), but may require 6-10 days to achieve near complete cardiovascular and sudomotor adaptations (Nielsen et al., 1993; Lorenzo et al., 2010; Karlsen et al., 2015b), and as such 2 weeks to optimize aerobic performance (i.e., cycling time trial) in hot ambient conditions (Racinais et al., 2015).

Training

The principle underlying any heat acclimatization protocol is an increase in body (core and skin) temperature to

induce profuse sweating and increase skin blood flow (Sawka et al., 1996, 2011). Repeated heat-exercise training for 100 min was originally shown to be efficient at inducing such responses (Lind & Bass, 1963). Reportedly, exercising daily to exhaustion at 60% VO_{2max} in hot ambient conditions (40 °C, 10% RH) for 9–12 consecutive days increases exercise capacity from 48 to 80 min (Nielsen et al., 1993). Ultimately, the magnitude of adaptation depends on the intensity, duration, frequency, and number of heat exposures (Sawka et al., 1996; Périard et al., 2015). For example, Houmard et al. (1990) reported similar physiological adaptations following moderate-intensity short-duration (30–35 min, 75% VO_{2max}) and low-intensity long-duration (60 min, 50% VO_{2max}) exercise.

As acclimatization develops, constant workload exercise protocols may result in a progressively lower training stimulus (i.e., decreases in relative exercise intensity). In turn, this may limit the magnitude of adaptation if the duration and/or the intensity of the heatexercise training sessions are not increased accordingly (Taylor, 2014). When possible, an isothermic protocol (e.g., controlled hyperthermia to a core temperature of at least 38.5 °C) can be implemented to optimize the adaptations (Patterson et al., 2004; Garrett et al., 2009). However, isothermic protocols may require greater control and the use of artificial laboratory conditions, which could limit their practicality in the field. Alternatively, it has recently been proposed to utilize a controlled intensity regimen based on heart rate to account for the need to increase absolute intensity and maintain a similar relative intensity throughout the acclimatization process (Périard et al., 2015). Lastly, athletes can adapt by training outdoors in the heat (i.e., acclimatization) using selfpaced exercise, or maintaining their regular training regimen. The efficacy of this practice has been demonstrated with team sport athletes (Racinais et al., 2012, 2014), without interfering with their training regimen.

Environment

Heat acclimatization in dry heat improves exercise in humid heat (Bean & Eichna, 1943; Fox et al., 1967) and

Table 1. Examples of heat acclimatization strategies

vice versa (Eichna et al., 1945). However, acclimatization in humid heat evokes higher skin temperatures and circulatory adaptations than in dry heat, potentially increasing maximum skin wettedness and therefore the maximum rate of evaporative heat loss from the skin (Candas et al., 1979; Sawka et al., 1996; Périard et al., 2015). Although scientific support for this practice is still lacking, it may be potentially beneficial for athletes to train in humid heat at the end of their acclimatization sessions to dry heat to further stress the cardiovascular and thermoregulatory systems. Nevertheless, despite some transfer between environments, other adaptations might be specific to the climate (desert or tropic) and physical activity level (Sawka et al., 2003). Consequently, it is recommended that athletes predominantly acclimatize to the environment in which they will compete.

Athletes who do not have the possibility to travel to naturally hot ambient conditions (so-called "acclimatization") can train in an artificially hot indoor environment (so-called "acclimation"). However, while acclimation and acclimatization share similar physiological adaptations, training outdoors is more specific to the competition setting as it allows athletes to experience the exact nature of the heat stress (Hellon et al., 1956; Edholm, 1966; Armstrong & Maresh, 1991).

Decay and periodization of short-term acclimatization

Heat adaptations decay at different rates with the fastest adaptations also decaying more rapidly (Pandolf et al., 1977). However, the rate of decay of heat acclimatization is generally slower than its induction, allowing maintenance of the majority of benefits (e.g., heart rate, core temperature) for 2–4 weeks (Dresoti, 1935; Lind, 1964; Weller et al., 2007; Daanen et al., 2011; Flouris et al., 2014). Moreover, during this period, individuals (re)acclimatize faster than during the first acclimatization period (Weller et al., 2007) (Table 1). These studies are however mainly based on physiological markers of heat acclimatization and the decay in competitive sporting performance remains to be clarified.

	Objective	Duration	Period	Content	Environment
Pre-/in-season training camp	Enhance/boost the training stimulus	1–2 weeks	Pre-season or in-season	Regular or additional training (75–90 min/day) to increase body temperature and induce profuse sweating	Natural or artificial heat stress
Target competition preparatory camp	Optimize future reacclimatization and evaluate individual responses in the heat	2 weeks	1 month before competing in the heat	Regular or additional training, simulated competition, and heat response test	Equivalent to or more stressful than target competition
Target competition final camp	Optimize performance in the heat	1–2 weeks – depending on results of preparatory camp	Just before the competition	Pre-competition training	Same as competition

Individualized heat acclimatization

Heat acclimatization clearly attenuates physiological strain (Eichna et al., 1950; MacDonald & Wyndham, 1950). However, individual acclimatization responses may differ and should be monitored using simple indices, such as the lessened heart rate increase during a standard submaximal exercise bout (Lee, 1940; Ladell, 1951; Buchheit et al., 2011, 2013). Other more difficult and likely less sensitive markers for monitoring heat acclimatization include sweat rate and sodium content (Dill et al., 1938), core temperature (Ladell, 1951), and plasma volume (Glaser, 1950). The role of plasma volume expansion in heat acclimatization remains debated as an artificial increase in plasma volume does not appear to improve thermoregulatory function (Sawka & Coyle, 1999; Watt et al., 2000), but the changes in hematocrit during a heat response test following shortterm acclimatization correlate to individual physical performance (Racinais et al., 2012, 2014). This suggests that plasma volume changes might represent a valuable indicator, even if it is probably not the physiological mechanism improving exercise capacity in the heat. Importantly, measures in a temperate environment cannot be used as a substitute to a test in hot ambient temperatures (Armstrong et al., 1987; Racinais et al., 2012, 2014).

As with its induction, heat acclimatization decay also varies between individuals (Robinson et al., 1943). It is therefore recommended that athletes undergo an acclimatization procedure months before an important event in the heat to determine their individual rate of adaptation and decay (Bergeron et al., 2012; Racinais et al., 2012) (Table 1).

Heat acclimatization as a training stimulus

Several recent laboratory or uncontrolled-field studies have reported physical performance improvement in temperate environments following training in the heat (Hue et al., 2007; Scoon et al., 2007; Lorenzo et al., 2010; Buchheit et al., 2011; Racinais et al., 2014). Athletes might therefore consider using training camps in hot ambient conditions to improve physical performance both in-season (Buchheit et al., 2011) and pre-season (Racinais et al., 2014) (Table 1). Bearing in mind that training quality should not be compromised, the athletes benefiting the most from this might be experienced athletes requiring a novel training stimulus (Racinais et al., 2014), whereas the benefit for highly trained athletes with limited thermoregulatory requirement (e.g., cycling in cold environments) might be more circumstantial (Karlsen et al., 2015a).

Summary of the main recommendations for heat acclimatization

• Athletes planning to compete in hot ambient conditions should heat acclimatize (i.e., repeated training

in the heat) to obtain biological adaptations lowering physiological strain and improving exercise capacity in the heat.

- Heat acclimatization sessions should last at least 60 min/day and induce an increase in body core and skin temperatures, as well as stimulate sweating.
- Athletes should train in the same environment as the competition venue, or if not possible, train indoors in a hot room.
- Early adaptations are obtained within the first few days, but the main physiological adaptations are not complete until ~1 week. Ideally, the heat acclimatization period should last 2 weeks in order to maximize all benefits.

Section 2: Hydration

The development of hyperthermia during exercise in hot ambient conditions is associated with a rise in sweat rate, which can lead to progressive dehydration if fluid losses are not minimized by increasing fluid consumption. Exercise-induced dehydration, leading to a hypohydrated state, is associated with a decrease in plasma volume and an increase in plasma osmolality that are proportional to the reduction in total body water (Sawka et al., 2011). The increase in the core temperature threshold for vasodilation and sweating at the onset of exercise is closely linked to the ensuing hyperosmolality and hypovolemia (Nadel et al., 1980; Fortney et al., 1984). During exercise, plasma hyperosmolality reduces the sweat rate for any given core temperature and decreases evaporative heat loss (Montain et al., 1995). In addition, dehydration decreases cardiac filling and challenges blood pressure regulation (González-Alonso et al., 1995, 1998; Stöhr et al., 2011). The rate of heat storage and cardiovascular strain is therefore exacerbated and the capacity to tolerate exercise in the heat is reduced (Sawka et al., 1983; Sawka, 1992; González-Alonso et al., 2000).

Despite decades of studies in this area (Cheuvront & Kenefick, 2014), the notion that dehydration impairs aerobic performance in sport settings is not universally accepted and there seems to be a two-sided polarized debate (Goulet, 2011, 2013; Cotter et al., 2014). Numerous studies report that dehydration impairs aerobic performance in the condition that exercise is performed in warm-hot environments and that body water deficits exceed at least ~2% of body mass (Eichna et al., 1945; Adolph, 1947; Below et al., 1995; Cheung & McLellan, 1998; Ebert et al., 2007; Kenefick et al., 2010; Merry et al., 2010; Sawka et al., 2012; Cheuvront & Kenefick, 2014). On the other hand, some recent studies suggest that dehydration up to 4% body mass does not alter cycling performance under ecologically valid conditions (Goulet, 2011, 2013; Wall et al., 2013). However, these results must be interpreted in context; i.e., in well-trained male cyclists typically exercising for 60 min in ambient

conditions up to 33 $^{\circ}\mathrm{C}$ and 60% relative humidity and starting exercise in a euhydrated state. Nonetheless, some have advanced the idea that the detrimental consequences of dehydration have been overemphasized by sports beverage companies (Cohen, 2012). As such, it has been argued that athletes should drink to thirst (Goulet, 2011, 2013; Wall et al., 2013). However, many studies (often conducted prior to the creation and marketing of "sport drinks") have repeatedly observed that drinking to thirst often results in body water deficits which may exceed 2-3% body mass when sweat rates are high and exercise is performed in warm-hot environments (Adolph & Dill, 1938; Bean & Eichna, 1943; Eichna et al., 1945; Adolph, 1947; Greenleaf & Sargent, 1965; Greenleaf et al., 1983; Armstrong et al., 1985; Greenleaf, 1992; Cheuvront & Haymes, 2001). Ultimately, drinking to thirst may be appropriate in many settings, but not in circumstances where severe dehydration is expected (e.g., Ironman Triathlon) (Cotter et al., 2014).

In competition settings, hydration is dependent on several factors, including fluid availability and the specificities of the events. For example, while tennis players have regular access to fluids due to the frequency of breaks in a match, other athletes such as marathon runners have less opportunity to rehydrate. There are also differences among competitors. Whereas the fastest marathon runners do not consume large volume of fluids and become dehydrated during the race, some slower runners may conversely overhydrate (Zouhal et al., 2011), with an associated risk of "water intoxication" (i.e., hyponatremia) (Noakes et al., 1985). The predisposing factors related to developing hyponatremia during a marathon include substantial weight gain, a racing time above 4 h, female sex, and low body mass index (Noakes, 2003; Almond et al., 2005). Consequently, although the recommendations below for competitive athletes explain how to minimize the impairment in performance associated with significant dehydration and body mass loss (i.e., $\geq 2\%$), recreational athletes involved in prolonged exercise should be cautious not to overhydrate during the exercise.

Pre-exercise hydration

Resting and well-fed humans are generally well hydrated (Institute of Medicine, 2004) and the typical variance in day-to-day total body water fluctuates from 0.2% to 0.7% of body mass (Adolph & Dill, 1938; Cheuvront et al., 2004). When exposed to heat stress in the days preceding competition, it may however be advisable to remind athletes to drink sufficiently and replace electrolyte losses to ensure that euhydration is maintained. Generally, drinking 6 mL of water per kg of body mass during this period every 2–3 h as well as 2–3 h before training or competition in the heat is advisable.

There are several methods available to evaluate hydration status, each one having limitations depending upon how and when the fluids are lost (Cheuvront et al., 2010, 2013). The most widely accepted and recommended methods include monitoring body mass changes, measuring plasma osmolality and urine specific gravity. Based on these methods, one is considered euhydrated if daily body mass changes remain <1%, plasma osmolality is <290 mmol/kg and urine specific gravity is <1.020. These techniques can be implemented during intermittent competitions lasting for several days (e.g., cycling stage race, tennis/team sport tournament) to monitor hydration status. Establishing baseline body mass is important as daily variations may occur. It is best achieved by measuring post-void nude body mass in the morning on consecutive days after consuming 1-2 L of fluid the prior evening (Cheuvront & Kenefick, 2014). Moreover, since exercise, diet, and prior drinking influence urine concentration measurements, first morning urine is the preferred assessment time point to evaluate hydration status (Cheuvront & Kenefick, 2014). If first morning urine cannot be obtained, urine collection should be preceded by several hours of minimal physical activity, fluid consumption, and eating.

Exercise hydration

Sweat rates during exercise in the heat vary dramatically depending upon the metabolic rate, environmental conditions, and heat acclimatization status (Cheuvront et al., 2007). While values ranging from 1.0 to 1.5 L/h are common for athletes performing vigorous exercise in hot environments, certain individuals can exceed 2.5 L/h (Adams et al., 1975; Bergeron et al., 1995a, b; Shirreffs et al., 2006). Over the last several decades, mathematical models have been developed to provide sweat loss predictions over a broad range of conditions (Shapiro et al., 1982; Barr & Costill, 1989; Montain et al., 2006; Gonzalez et al., 2009, 2012; Jay & Webb, 2009). While these have proven useful in public health, military, occupational, and sports medicine settings, these models require further refinement and individualization to athletic populations, especially elite athletes.

The main electrolyte lost in sweat is sodium (20-70 mEq/L) (Costill, 1977; Verde et al., 1982) and supplementation during exercise is often required for heavy and "salty" sweaters to maintain plasma sodium balance. Heavy sweaters may also deliberately increase sodium (i.e., salt) intake prior to and following hot weather training and competition to maintain sodium balance (e.g., 3.0 g of salt added to 0.5 L of a carbohydrate-electrolyte drink). To this effect, the Institute of Medicine (2004) has highlighted that public health recommendations regarding sodium ingestion do not apply to individuals who lose large volumes of sodium in sweat, such as athletes training or competing in the heat. A salt intake that would not compensate sweat sodium losses would result in a sodium deficit that might prompt muscle cramping when reaching 20-30% of the exchangeable sodium pool (Bergeron, 2008). During exercise lasting longer than 1 h, athletes should therefore aim to consume a solution containing 0.5– 0.7 g/L of sodium (Casa, 1999; Von Duvillard et al., 2004; Sawka et al., 2007). In athletes experiencing muscle cramping, it is recommended to increase the sodium supplementation to 1.5 g/L of fluid (Bergeron, 2003). Athletes should also aim to include 30–60 g/h of carbohydrates in their hydration regimen for exercise lasting longer than 1 h (Von Duvillard et al., 2004), and up to 90 g/h for events lasting over 2.5 h (Burke et al., 2011). This can be achieved through a combination of fluids and solid foods.

Post-exercise rehydration

Following training or competing in the heat, rehydration is particularly important to optimize recovery. If fluid deficit needs to be urgently replenished, it is suggested to replace 150% of body mass losses within 1 h following the cessation of exercise (Shirreffs & Maughan, 1998; Sawka et al., 2007), including electrolytes, to maintain total body water. From a practical perspective, this may not be achievable for all athletes for various reasons (e.g., time, gastrointestinal discomfort). Thus, it is more realistic to replace 100–120% of body mass losses. The preferred method of rehydration is through the consumption of fluids with foods (e.g., including salty food).

Given that exercise in the heat increases carbohydrate metabolism (Febbraio et al., 1994; González-Alonso et al., 1999a), endurance athletes should ensure that not only water and sodium losses are replenished, but carbohydrate stores as well (Burke, 2001). To ensure the highest rates of muscle glycogen resynthesis, carbohydrates should be consumed during the first hour after exercise (Ivy et al., 1988). Moreover, a drink containing protein (e.g., milk) might allow to better restore fluid balance after exercise than a standard carbohydrateelectrolyte sport drink (James, 2012). Combining protein (0.2-0.4 g/kg/h) and carbohydrate (0.8 g/kg/h) has also been reported to maximize protein synthesis rates (Beelen et al., 2010). Therefore, athletes should consider consuming drinks such as chocolate milk, which has a carbohydrate-to-protein ratio of 4:1, as well as sodium, following exercise (Pritchett & Pritchett, 2012).

Summary of the main recommendations for hydration

- Before training and competition in the heat, athletes should drink 6 mL of fluid per kg of body mass every 2–3 h in order to start exercise euhydrated.
- During intense prolonged exercise in the heat, body water mass losses should be minimized (without increasing body weight) to reduce physiological strain and help preserve optimal performance.

Training and competing in the heat

- Athletes training in the heat have higher daily sodium (i.e., salt) requirements than the general population. Sodium supplementation might also be required during exercise.
- For competitions lasting several days (e.g., cycling stage race, tennis/team sport tournament), simple monitoring techniques such as daily morning of body mass and urine specific gravity can provide useful insights into the hydration state of the athlete.
- Adequately rehydrating after exercise-heat stress by providing plenty of fluids with meals is essential. If aggressive and rapid replenishment is needed, then consuming fluids and electrolytes to offset 100–150% of body mass losses will allow for adequate rehydration.
- Recovery hydration regimens should include sodium, carbohydrates, and protein.

Section 3: Cooling strategies

Skin cooling will reduce cardiovascular strain during exercise in the heat whereas whole-body cooling can reduce organ and skeletal muscle temperatures. Several studies carried out in controlled laboratory conditions (e.g., uncompensable heat stress), in many cases with or without reduced fanning during exercise, have reported that precooling can improve endurance (Booth et al., 1997; González-Alonso et al., 1999b; Quod et al., 2008; Duffield et al., 2010; Ihsan et al., 2010; Ross et al., 2011; Siegel et al., 2012), high-intensity (Marsh & Sleivert, 1999) and intermittent- or repeated-sprint exercise performance (Duffield & Marino, 2007; Castle et al., 2011; Minett et al., 2011; Brade et al., 2014). However, several other studies reported no performance benefits of precooling on intermittent- or repeated-sprint exercise performance in the heat (Duffield et al., 2003; Cheung & Robinson, 2004; Duffield & Marino, 2007; Brade et al., 2013). Whole-body cooling (including cooling of the exercising muscles) may even be detrimental to performance during a single sprint or the first few repetitions of an effort involving multiple sprints (Sleivert et al., 2001; Castle et al., 2006).

Therefore, whereas several reviews concluded that cooling interventions can increase prolonged exercise capacity in hot conditions (Marino, 2002; Quod et al., 2006; Duffield, 2008; Jones et al., 2012; Siegel & Laursen, 2012; Ross et al., 2013; Tyler et al., 2015; Bongers et al., 2015), it has to be acknowledged that most laboratory-based precooling studies might have overestimated the effect of precooling as compared with an outdoor situation with airflow (Morrison et al., 2014), or do not account for the need to warm up before competing. As a consequence, the effectiveness of cooling in competitive setting remains equivocal and the recommendations below are limited to prolonged exercise in hot ambient conditions with no or limited air movement.

Cold water immersion

A range of CWI protocols are available (for reviews, see Leeder et al., 2012; DeGroot et al., 2013; Ross et al., 2013; Versey et al., 2013), but the most common techniques are whole-body CWI for ~30 min at a water temperature of 22-30 °C, or body segment (e.g., legs) immersion at lower temperatures (10–18 °C) (Ross et al., 2013). However, cooling of the legs/muscles will decrease nerve conduction and muscle contraction velocities (Racinais & Oksa, 2010) and athletes might therefore need to rewarm up before competition. Consequently, other techniques involving cooling garments have been developed to selectively cool the torso, which may prevent the excessive cooling of active muscles while reducing overall thermal and cardiovascular strain.

Cooling garments

Building on the early practice of using iced towels for cooling purposes, several manufacturers have designed ice-cooling jackets to cool athletes before or during exercise (Cotter et al., 2001; Arngrimsson et al., 2004; Duffield & Marino, 2007; Duffield et al., 2010). The decrease in core temperature is smaller with a cooling vest than with CWI or mixed-cooling methods (Bongers et al., 2015), but cooling garments present the advantage of lowering skin temperature and thus reducing cardiovascular strain and eventually heat storage (Cheuvront et al., 2003). Cooling garments are practical in reducing skin temperature without reducing muscle temperature, and athletes can wear them during warm-up or recovery breaks.

Cold fluid ingestion

Cold fluids can potentially enhance endurance performance when ingested before (Lee et al., 2008a; Byrne et al., 2011), but not during (Lee & Shirreffs, 2007; Lee et al., 2008b) exercise. Indeed, it is suggested that a downside of ingesting cold fluids during exercise might be a reduction in sweating and therefore skin surface evaporation (Bain et al., 2012) due to the activation of thermoreceptors probably located in the abdominal area (Morris et al., 2014).

Ice slurry beverages

Based on the theory of enthalpy, ice requires substantially more heat energy (334 J/g) to cause a phase change from solid to liquid (at 0 °C) compared with the energy required to increase the temperature of water (4 J/g/°C). As such, ice slurry may be more efficient than cold water ingestion in cooling athletes. However, it is not yet clear if the proportional reduction in sweating observed with the ingestion of cold water during exercise (Bain et al., 2012) occurs with ice slurry ingestion. Several recent reports support the consumption of an ice slurry beverage since performance during endurance or intermittent-sprint exercise is improved following the ingestion of an ice slurry beverage (~1 L crushed ice at ≤ 4 °C) either prior to (Siegel et al., 2010, 2012; Yeo et al., 2012) or during exercise (Stevens et al., 2013), but no benefit was evident when consumed during the recovery period between two exercise bouts in another study (Stanley et al., 2010). Consequently, ingestion of ice slurry may be a practical complement or alternative to external cooling methods (Siegel & Laursen, 2012) but more studies are still required during actual outdoor competitions.

Mixed methods cooling strategies

Combining techniques (i.e., using both external and internal cooling strategies) has a higher cooling capacity than the same techniques used in isolation, allowing for greater benefit on exercise performance (Bongers et al., 2015). Indeed, mixed methods have proven beneficial when applied to professional football players during competition in the tropics (Duffield et al., 2013), lacrosse players training in hot environments (Duffield et al., 2009), and cyclists simulating a competition in a laboratory (Ross et al., 2011). In a sporting context, this can be achieved by combining simple strategies such as the ingestion of ice slurry, wearing cooling vests, and providing fanning.

Cooling to improve performance between subsequent bouts of exercise

There is evidence supporting the use of CWI (5-12 min in 14 °C water) during the recovery period (e.g., 15 min) separating intense exercise bouts in the heat to improve subsequent performance (Yeargin et al., 2006; Peiffer et al., 2010). The benefits of this practice would relate to a redistribution of the blood flow, probably from the skin to the central circulation (Vaile et al., 2011), as well as a psychological (i.e., placebo) effect (Hornery et al., 2005). In terms of internal cooling, the ingestion of cold water (Lee et al., 2013) or ice slurry (Stanley et al., 2010) during the recovery period might attenuate heat strain in the second bout of work, but not necessarily significantly improve performance (Stanley et al., 2010). Together, these studies suggest that cooling might help recovery from intense exercise in uncompensable laboratory heat stress and, in some cases, might improve performance in subsequent intense exercise bouts. The effects of aggressive cooling vs simply resting in the prevailing hot ambient conditions, or in cooler conditions, remain to be validated in a competition setting (e.g., half time in team sports).

Summary of the main recommendations for cooling

• Cooling methods include external (e.g., application of iced garments, towels, water immersion, or fanning) and internal methods (e.g., ingestion of cold fluids or ice slurry).

Training and competing in the heat

Table 2.	Examples of	recommended actions	by various sport	aovernina	bodies based	on the wet bulb	globe tempera	ture (WBGT)
				9			9	

WBGT (°C)	Organization	Athlete concerned	Recommendation
32.3 32.2 32.2 32.0 30.1 30.1 30.1 28.0 28.0 21.0	ACSM ITF WTA FIFA ACSM ITF-WTA ITF ITF ITF Australian Open Marathon in northern latitudes	Acclimatized, fit, and low-risk individuals Junior and wheelchair tennis players Female tennis players Football players Non-acclimatized, unfit, and high-risk individuals Junior and female tennis players Wheelchair tennis players Wheelchair tennis players Tennis players Runners in mass participation events	Participation cutoff Immediate suspension of play Immediate suspension of play Additional cooling break at 30 and 75 min Participation cutoff 10-min break between second and third sets Suspension of play at the end of the set in progress 15-min break between second and third sets 10-min break between second and third sets Cancel marathon

ACSM, American College of Sports Medicine; ITF, International Tennis Federation; WTA, Women's Tennis Association; FIFA, Fédération Internationale de Football Association.

Data from Armstrong et al. (2007), Roberts (2010), and from the following website: http://www.fifa.com/aboutfifa/footballdevelopment/medical/ playershealth/risks/heat.html, http://www.itftennis.com/media/194281/194281.pdf, http://www.itftennis.com/media/195690/195690.pdf, http:// www.wtatennis.com/SEWTATour-Archive/AboutTheTour/rules2015.pdf, http://www.ausopen.com/en_AU/event_guide/a_z_guide.html.

- Precooling may benefit sporting activities involving sustained exercise (e.g., middle- and long-distance running, cycling, tennis, and team sports) in warmhot environments. Internal methods (i.e., ice slurry) can be used during exercise whereas tennis and team sport athletes can also implement mixed-cooling methods during breaks.
- Such practice may not be viable for explosive or shorter duration events (e.g., sprinting, jumping, throwing) conducted in similar conditions.
- A practical approach in hot-humid environments might be the use of fans and commercially available ice-cooling vests, which can provide effective cooling without impairing muscle temperature. In any case, cooling methods should be tested and individualized during training to minimize disruption to the athlete.

Section 4: Recommendations for event organizers

The most common set of recommendations followed by event organizers to reschedule or cancel an event is based on the wet bulb globe temperature (WBGT) index empirically developed by the U.S. military, popularized in sports medicine by the American College of Sports Medicine (Armstrong et al., 2007), and adopted by various sporting federations (Table 2). However, WBGT might underestimate heat stress risk when sweat evaporation is restricted (i.e., high humidity and/or low air movement) (Budd, 2008). Thus, corrected recommendations have been proposed (Gonzalez, 1995) (Table 3). Moreover, the WBGT is a climatic index and does not account for metabolic heat production or clothing and therefore cannot predict heat dissipation (Sawka et al., 2011). Therefore, the recommendations below provide guidelines for various sporting activities rather than fixed cutoffs based on the WBGT index.

Table 3. Corrected estimation of the risk of exertional heat illness based on the wet bulb globe temperature (WBGT) taking into account that WBGT underestimates heat stress under high humidity

Estimated risk	WBGT (°C)	Relative humidity (%)
Moderate	24	50
Moderate	20	75
Moderate	18	100
High	28	50
High	26	75
High	24	100
Excessive	33	50
Excessive	29	75
Excessive	28	100

Adapted from the categories proposed by Gonzalez (1995) to estimate the risk of exertional heat illness during a marathon.

Cancelling an event or implementing countermeasures?

Further to appropriate scheduling of any event with regard to expected environmental conditions, protecting athlete health might require stopping competition when combined exogenous and endogenous heat loads cannot be physiologically compensated. The environmental conditions in which the limit of compensation is exceeded depend on several factors, such as metabolic heat production (depending on workload and efficiency/ economy), athlete morphology (e.g., body surface area to mass ratio), acclimatization state (e.g., sweat rate), and clothing. It is therefore problematic to establish universal cutoff values across different sporting disciplines. Environmental indices should be viewed as recommendations for event organizers to implement preventive countermeasures to offset the potential risk of heat illness. The recommended countermeasures include adapting the rules and regulations with regard to cooling breaks and the availability of fluids (time and locations), as well as providing active cooling during rest periods. It is also recommended that medical response protocols

and facilities to deal with cases of exertional heat illnesses be in place.

Specificity of the recommendations

Differences among sports

Hot ambient conditions impair endurance exercise such as marathon running (Ely et al., 2007), but potentially improve short-duration events such as jumping or sprinting (Racinais & Oksa, 2010). In many sports, athletes adapt their activity according to the environmental conditions. For example, compared with cooler conditions, football players decrease the total distance covered or the distance covered at high intensity during a game, but maintain their sprinting activity/ability (Mohr et al., 2012; Aughey et al., 2014; Nassis et al., 2015), while tennis players reduce point duration (Morante & Brotherhood, 2008) or increase the time between points (Périard et al., 2014) when competing in the heat (WBGT ~ 34 °C). Event organizers and International Federations should therefore acknowledge and support such behavioral thermoregulatory strategies by adapting the rules and refereeing accordingly.

Differences among individuals within a given sport

When comparing two triathlon races held in Melbourne, in similar environmental conditions (i.e., WBGT raising from 22 to 27 °C during each race), 2 months apart, Gosling et al. (2008) observed 15 cases of exertional heat illness (including three heat strokes) in the first race that was held in unseasonably hot weather at the start of summer, but no cases in the second race. This suggests that the risk of heat illness was increased in competitors that were presumably not seasonally heat acclimatized (Gosling et al., 2008) and supports many earlier studies regarding increased risk of heat illness in early summer, or with hot weather spikes (Sartor et al., 1995). Nevertheless, exertional heat stroke can occur in individuals who are well acclimatized and have performed similar activities several times before, as they may suffer from prior viral infection or similar ailment (Sawka et al., 2011). In one of the very few epidemiological studies linking WBGT to illness in athletes, Bahr and Reeser (2012) investigated 48 beach volleyball matches (World Tour and World Championships) over 3 years. They reported only one case of a heat-related medical forfeit, which was related to an athlete with compromised fluid balance due to a 3-day period of acute gastroenteritis (Bahr & Reeser, 2012). Moreover, while healthy runners can also finish a half-marathon in warm and humid environments without developing heat illness (Byrne et al., 2006), exertional heat stroke has been shown to occur during a cool weather marathon in a runner recovering from a viral infection (Roberts, 2006).

In fact, prior viral infection is emerging as potentially important risk factor for heat injury/stroke (Sonna et al., 2004; Sawka et al., 2011). Event organizers should therefore pay particular medical attention to all populations potentially at a greater risk, including participants currently sick or recovering from a recent infection, those with diarrhea, recently vaccinated, with limited heat dissipation capacity due to medical conditions (e.g., Paralympic Athletes), or individuals involved in sports with rules restricting heat dissipation capacity (e.g., protective clothing/equipment). Unacclimatized participants are also to be considered at risk. Although it is impractical to screen every athlete during large events, organizers are encouraged to provide information, possibly in registration kits, advising all athletes of the risk associated with participation under various potential compromised states and suggesting countermeasures.

Summary of the main recommendations for event organizers

- The WBGT is an environmental heat stress index and not a representation of human heat strain. It is therefore difficult to establish absolute participation cutoff values across sports for different athletes and we rather recommend implementing preventive countermeasures, or evaluating the specific demands of the sport when preparing extreme heat policies.
- Countermeasures include scheduling the start time of events based on weather patterns, adapting the rules and refereeing to allow extra breaks or longer recovery periods, and developing a medical response protocol and cooling facilities.
- Event organizers should pay particular attention to all "at risk" populations. Given that unacclimatized participants (mainly in mass participation events) are at a higher risk for heat illness, organizers should properly advise participants of the risk associated with participation, or consider canceling an event in the case of unexpected or unseasonably hot weather.

Overall conclusion

Our current knowledge on heat stress is mainly derived from military and occupational research fields, while the input from sport sciences is more recent. Based on this literature, athletes should train for at least 1 week and ideally 2 weeks to acclimatize using a comparable degree of heat stress as the target competition. They should also be cautious to undertake exercise in a euhydrated state and minimized body water deficits (as monitored by body mass losses) through proper rehydration during exercise. They can also implement specific countermeasures (e.g., cooling methods) to reduce heat storage and physiological strain during competition and training especially when the environmental conditions are uncompensable. Event organizers and sport governing bodies can support athletes by allowing additional (or longer) recovery periods for enhanced hydration and cooling opportunities during competitions in the heat.

Key words: Temperature, exercise, thermoregulation, hydration, dehydration, cooling, cold water immersion, acclimatization, heat exhaustion, wet bulb globe temperature, performance.

Acknowledgements

The authors thank the following conference attendees for their participation in the 2 days of discussion: Carl Bradford, Martin Buchheit, Geoff Coombs, Simon Cooper, Kevin De Pauw, Sheila

References

- Adams WC, Fox RH, Fry AJ, MacDonald IC. Thermoregulation during marathon running in cool, moderate, and hot environments. J Appl Physiol 1975: 38: 1030–1037.
- Adolph EF. Physiology of man in the desert. New York: Interscience, 1947.
- Adolph EF, Dill DB. Observations on water metabolism in the desert. Am J Physiol 1938: 123: 369–378.
- Almond CS, Shin AY, Fortescue EB, Mannix RC, Wypij D, Binstadt BA, Duncan CN, Olson DP, Salerno AE, Newburger JW, Greenes DS.
 Hyponatremia among runners in the Boston Marathon. N Engl J Med 2005: 352: 1550–1556.
- Armstrong LE, Maresh CM. The induction and decay of heat acclimatization in trained athletes. Sports Med 1991: 12: 302–312.
- Armstrong LE, Pandolf KB. Physical training, cardiorespiratory physical fitness and exercise-heat tolerance. In: Pandolf KB, Sawka MN, Gonzalez RR, eds. Human performance physiology and environmental medicine at terrestrial extremes. Indianapolis, IN: Benchmark Press, 1988: 199–226.
- Armstrong LE, Costill D, Fink WJ. Influence of diuretic-induced dehydration on competitive running performance. Med Sci Sports Exerc 1985: 17: 456–461.
- Armstrong LE, Hubbard RW, DeLuca JP, Christensen EL, Kraemer WJ. Evaluation of a temperate environment test to predict heat tolerance. Eur J Appl Physiol 1987: 56: 384–389.
- Armstrong LE, Casa DJ, Millard-Stafford M, Moran DS, Pyne SW, Roberts WO. American College of Sports Medicine Position Stand. Exertional heat illness during training and competition. Med Sci Sports Exerc 2007: 39: 556–572.
- Arngrimsson SA, Petitt DS, Stueck MG, Jorgensen DK, Cureton KJ. Cooling vest worn during active warm-up improves 5-km run performance in the heat. J Appl Physiol 2004: 96: 1867–1874.

- Aughey RJ, Goodman CA, McKenna MJ. Greater chance of high core temperatures with modified pacing strategy during team sport in the heat. J Sci Med Sport 2014: 17: 113–118.
- Bahr R, Reeser JC. New guidelines are needed to manage heat stress in elite sports – The Federation Internationale de Volleyball (FIVB) Heat Stress Monitoring Programme. Br J Sports Med 2012: 46: 805–809.
- Bain AR, Lesperance NC, Jay O. Body heat storage during physical activity is lower with hot fluid ingestion under conditions that permit full evaporation. Acta Physiol (Oxf) 2012: 206: 98–108.
- Barr SI, Costill DL. Water: can the endurance athlete get too much of a good thing? J Am Diet Assoc 1989: 89: 1629–1632, 1635.
- Bean WB, Eichna LW. Performance in relation to environmental temperature. Reactions of normal young men to simulated desert environment. Fed Proc 1943: 2: 144–158.
- Beelen M, Burke LM, Gibala MJ, van Loon LJ. Nutritional strategies to promote postexercise recovery. Int J Sport Nutr Exerc Metab 2010: 20: 515–532.
- Below PR, Mora-Rodríguez R, González-Alonso J, Coyle EF. Fluid and carbohydrate ingestion independently improve performance during 1 h of intense exercise. Med Sci Sports Exerc 1995: 27: 200–210.
- Bergeron MF. Heat cramps: fluid and electrolyte challenges during tennis in the heat. J Sci Med Sport 2003: 6: 19–27.
- Bergeron MF. Muscle cramps during exercise – Is it fatigue or electrolyte deficit? Curr Sports Med Rep 2008: 7: S50–S55.
- Bergeron MF, Armstrong LE, Maresh CM. Fluid and electrolyte losses during tennis in the heat. Clin Sports Med 1995a: 14: 23–32.
- Bergeron MF, Maresh CM, Armstrong LE, Signorile JF, Castellani JW,

Training and competing in the heat

Dervis, Abdulaziz Farooq, Oliver Gibson, Mark Hayes, Carl James, Stefanie Keiser, Luis Lima, Alex Lloyd, Erin McLeave, Jessica Mee, Nicholas Ravanelli, Jovana Smoljanic, Steve Trangmar, James Tuttle, Jeroen Van Cutsem, and Matthijs Veltmeijer. Bart Roelands is a postdoctoral fellow of the Fund for Scientific Research Flanders (FWO).

Conflicts of interest: José González-Alonso has received research funding from the Gatorade Sports Science Institute, Pepsico. Michael N. Sawka was a member of the Gatorade Sports Science Institute Expert Panel in 2014.

- Kenefick RW, LaGasse KE, Riebe D. Fluid-electrolyte balance associated with tennis match play in a hot environment. Int J Sport Nutr 1995b: 5: 180–193.
- Bergeron MF, Bahr R, Bartsch P, Bourdon L, Calbet JA, Carlsen KH, Castagna O, González-Alonso J, Lundby C, Maughan RJ, Millet G, Mountjoy M, Racinais S, Rasmussen P, Singh DG, Subudhi AW, Young AJ, Soligard T, Engebretsen L. International Olympic Committee consensus statement on thermoregulatory and altitude challenges for high-level athletes. Br J Sports Med 2012: 46: 770–779.
- Bongers CC, Thijssen DH, Veltmeijer MT, Hopman MT, Eijsvogels TM. Precooling and percooling (cooling during exercise) both improve performance in the heat: a meta-analytical review. Br J Sports Med 2015: 49: 377–384.
- Booth J, Marino F, Ward JJ. Improved running performance in hot humid conditions following whole body precooling. Med Sci Sports Exerc 1997: 29: 943–949.
- Brade C, Dawson B, Wallman K. Effect of precooling and acclimation on repeat-sprint performance in heat. J Sports Sci 2013: 31: 779–786.
- Brade C, Dawson B, Wallman K. Effects of different precooling techniques on repeat sprint ability in team sport athletes. Eur J Sport Sci 2014: 14: S84–S91.
- Buchheit M, Voss SC, Nybo L, Mohr M, Racinais S. Physiological and performance adaptations to an in-season soccer camp in the heat: associations with heart rate and heart rate variability. Scand J Med Sci Sports 2011: 21: e477–e485.
- Buchheit M, Racinais S, Bilsborough J, Hocking J, Mendez-Villanueva A, Bourdon PC, Voss S, Livingston S, Christian R, Périard J, Cordy J, Coutts AJ. Adding heat to the live-high train-low altitude model: a practical insight from professional football. Br J

Sports Med 2013: 47 (Suppl. 1): i59–i69.

- Budd GM. Wet-bulb globe temperature (WBGT) – its history and its limitations. J Sci Med Sport 2008: 11: 20–32.
- Burke LM. Nutritional needs for exercise in the heat. Comp Biochem Physiol A Mol Integr Physiol 2001: 128: 735–748.

Burke LM, Hawley JA, Wong SH, Jeukendrup AE. Carbohydrates for training and competition. J Sports Sci 2011: 29: S17–S27.

Byrne C, Lee JK, Chew SA, Lim CL, Tan EY. Continuous thermoregulatory responses to mass-participation distance running in heat. Med Sci Sports Exerc 2006: 38: 803–810.

Byrne C, Owen C, Cosnefroy A, Lee JK. Self-paced exercise performance in the heat after pre-exercise cold-fluid ingestion. J Athl Train 2011: 46: 592–599.

Candas V, Libert JP, Vogt JJ. Influence of air velocity and heat acclimation on human skin wettedness and sweating efficiency. J Appl Physiol Respir Environ Exerc Physiol 1979: 47: 1194–1200.

Casa DJ. Exercise in the heat. II. Critical concepts in rehydration, exertional heat illnesses, and maximizing athletic performance. J Athl Train 1999: 34: 253–262.

Castle P, Macdonald AL, Philp A, Webborn ADJ, Watt PW, Maxwell N. Precooling leg muscle improves intermittent sprint exercise performance in hot, humid conditions. J Appl Physiol 2006: 100: 1377–1384.

Castle P, Mackenzie RW, Maxwell N, Webborn AD, Watt PW. Heat acclimation improves intermittent sprinting in the heat but additional pre-cooling offers no further ergogenic effect. J Sports Sci 2011: 29: 1125–1134.

Chalmers S, Esterman A, Eston R, Bowering KJ, Norton K. Short-term heat acclimation training improves physical performance: a systematic review, and exploration of physiological adaptations and application for team sports. Sports Med 2014: 44: 971–988.

Cheung S, Robinson A. The influence of upper-body pre-cooling on repeated sprint performance in moderate ambient temperatures. J Sports Sci 2004: 22: 605–612.

Cheung SS, McLellan TM. Heat acclimation, aerobic fitness, and hydration effects on tolerance during uncompensable heat stress. J Appl Physiol 1998: 84: 1731–1739.

Cheuvront SN, Haymes EM. Ad libitum fluid intakes and thermoregulatory responses of female distance runners in three environments. J Sports Sci 2001: 19: 845–854. Cheuvront SN, Kenefick RW. Dehydration: physiology, assessment, and performance effects. Compr Physiol 2014: 4: 257–285.

Cheuvront SN, Kolka MA, Cadarette BS, Montain SJ, Sawka MN. Efficacy of intermittent, regional microclimate cooling. J Appl Physiol 2003: 94: 1841–1848.

Cheuvront SN, Carter R III, Montain SJ, Sawka MN. Daily body mass variability and stability in active men undergoing exercise-heat stress. Int J Sport Nutr Exerc Metab 2004: 14: 532–540.

Cheuvront SN, Montain SJ, Goodman DA, Blanchard L, Sawka MN. Evaluation of the limits to accurate sweat loss prediction during prolonged exercise. Eur J Appl Physiol 2007: 101: 215–224.

Cheuvront SN, Ely BR, Kenefick RW, Sawka MN. Biological variation and diagnostic accuracy of dehydration assessment markers. Am J Clin Nutr 2010: 92: 565–573.

Cheuvront SN, Kenefick RW, Charkoudian N, Sawka MN. Physiologic basis for understanding quantitative dehydration assessment. Am J Clin Nutr 2013: 97: 455–462.

Cohen D. The truth about sports drinks. BMJ 2012: 345: e4737.

Costill DL. Sweating: its composition and effects on body fluids. Ann N Y Acad Sci 1977: 301: 160–174.

Cotter JD, Sleivert GG, Roberts WS, Febbraio MA. Effect of pre-cooling, with and without thigh cooling, on strain and endurance exercise performance in the heat. Comp Biochem Physiol A Mol Integr Physiol 2001: 128: 667–677.

Cotter JD, Thornton SN, Lee JKW, Laursen PB. Are we being drowned in hydration advice? Thirsty for more? Extrem Physiol Med 2014: 3: 18.

Daanen HA, Jonkman AG, Layden JD, Linnane DM, Weller AS. Optimising the acquisition and retention of heat acclimation. Int J Sports Med 2011: 32: 822–828.

DeGroot DW, Gallimore RP, Thompson SM, Kenefick RW. Extremity cooling for heat stress mitigation in military and occupational settings. J Thermal Biol 2013: 38: 305–310.

Dill DB, Hall FG, Edwards HT. Changes in composition of sweat during acclimatization to heat. Am J Physiol 1938: 123: 412–419.

Dresoti AO. The results of some investigations into the medical aspects of deep mining on the Witwatersrand. J Chem Metal Mining Soc S Afr 1935: 6: 102–129.

Duffield R. Cooling interventions for the protection and recovery of exercise

performance from exercise-induced heat stress. Med Sport Sci 2008: 53: 89–103.

Duffield R, Marino FE. Effects of pre-cooling procedures on intermittent-sprint exercise performance in warm conditions. Eur J Appl Physiol 2007: 100: 727–735.

Duffield R, Dawson B, Bishop D, Fitzsimons M, Lawrence S. Effect of wearing an ice cooling jacket on repeat sprint performance in warm/humid conditions. Br J Sports Med 2003: 37: 164–169.

Duffield R, Steinbacher G, Fairchild TJ. The use of mixed-method, part-body pre-cooling procedures for team-sport athletes training in the heat. J Strength Cond Res 2009: 23: 2524–2532.

Duffield R, Green R, Castle P, Maxwell N. Precooling can prevent the reduction of self-paced exercise intensity in the heat. Med Sci Sports Exerc 2010: 42: 577–584.

Duffield R, Coutts A, McCall A, Burgess D. Pre-cooling for football training and competition in hot and humid conditions. Eur J Sport Sci 2013: 13: 58–67.

Ebert TR, Martin DT, Bullock N, Mujika I, Quod MJ, Farthing LA, Burke LM, Withers RT. Influence of hydration status on thermoregulation and cycling hill climbing. Med Sci Sports Exerc 2007: 39: 323–329.

Edholm OG. The physiology of adaptation. Eugen Rev 1966: 58: 136–142.

Eichna LW, Bean WB, Ashe WF, Nelson NG. Performance in relation to environmental temperature. Reactions of normal young men to hot, humid (simulated jungle) environment. Bull Johns Hopkins Hosp 1945: 76: 25058.

Eichna LW, Park CR, Nelson N, Horvath SM, Palmes ED. Thermal regulation during acclimatization in a hot, dry (desert type) environment. Am J Physiol 1950: 163: 585–597.

Ely MR, Cheuvront SN, Roberts WO, Montain SJ. Impact of weather on marathon-running performance. Med Sci Sports Exerc 2007: 39: 487–493.

Febbraio MA, Snow RJ, Stathis CG, Hargreaves M, Carey MF. Effect of heat stress on muscle energy metabolism during exercise. J Appl Physiol 1994: 77: 2827–2831.

Flouris AD, Poirier MP, Bravi A, Wright-Beatty HE, Herry C, Seely AJ, Kenny GP. Changes in heart rate variability during the induction and decay of heat acclimation. Eur J Appl Physiol 2014: 114: 2119–2128.

Fortney SM, Wenger CB, Bove JR, Nadel ER. Effect of hyperosmolality on control of blood flow and sweating.J Appl Physiol Respir Environ Exerc Physiol 1984: 57: 1688–1695.

Fox RH, Goldsmith R, Hampton IF, Hunt TJ. Heat acclimatization by controlled

hyperthermia in hot-dry and hot-wet climates. J Appl Physiol 1967: 22: 39–46.

- Galloway SD, Maughan RJ. Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med Sci Sports Exerc 1997: 29: 1240–1249.
- Garrett AT, Goosens NG, Rehrer NJ, Patterson MJ, Cotter JD. Induction and decay of short-term heat acclimation. Eur J Appl Physiol 2009: 107: 659–670.
- Garrett AT, Rehrer NJ, Patterson MJ. Induction and decay of short-term heat acclimation in moderately and highly trained athletes. Sports Med 2011: 41: 757–771.
- Gisolfi C, Robinson S. Relations between physical training, acclimatization, and heat tolerance. J Appl Physiol 1969: 26: 530–534.
- Glaser EM. Acclimatization to heat and cold. J Physiol 1950: 110: 330–337.
- González-Alonso J, Mora-Rodríguez R, Below PR, Coyle EF. Dehydration reduces cardiac output and increases systemic and cutaneous vascular resistance during exercise. J Appl Physiol 1995: 79: 1487–1496.
- González-Alonso J, Calbet JAL, Nielsen B. Muscle blood flow is reduced with dehydration during prolonged exercise in humans. J Physiol 1998: 513: 895–905.
- González-Alonso J, Calbet JAL, Nielsen B. Metabolic and thermodynamic responses to dehydration-induced reductions in muscle blood flow in exercising humans. J Physiol 1999a: 520: 577–589.
- González-Alonso J, Teller C, Andersen SL, Jensen FB, Hyldeg T, Nielsen B. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol 1999b: 86: 1032–1039.
- González-Alonso J, Mora-Rodríguez R, Coyle EF. Stroke volume during exercise: interaction of environment and hydration. Am J Physiol Heart Circ Physiol 2000: 278: H321–H330.
- González-Alonso J, Crandall CG, Johnson JM. The cardiovascular challenge of exercising in the heat. J Physiol 2008: 586: 45–53.
- Gonzalez RR. Biophysics of heat exchange and clothing: applications to sports physiology. Med Exerc Nutr Health 1995: 4: 290–305.
- Gonzalez RR, Cheuvront SN, Montain SJ, Goodman DA, Blanchard LA, Berglund LG, Sawka MN. Expanded prediction equations of human sweat loss and water needs. J Appl Physiol 2009: 107: 379–388.

- Gonzalez RR, Cheuvront SN, Ely BR, Moran DS, Hadid A, Endrusick TL, Sawka MN. Sweat rate prediction equations for outdoor exercise with transient solar radiation. J Appl Physiol 2012: 112: 1300–1310.
- Gosling CM, Gabbe BJ, McGivern J, Forbes AB. The incidence of heat casualties in sprint triathlon: the tale of two Melbourne race events. J Sci Med Sport 2008: 11: 52–57.
- Goulet ED. Effect of exercise-induced dehydration on time-trial exercise performance: a meta-analysis. Br J Sports Med 2011: 45: 1149–1156.
- Goulet ED. Effect of exercise-induced dehydration on endurance performance: evaluating the impact of exercise protocols on outcomes using a meta-analytic procedure. Br J Sports Med 2013: 47: 679–686.
- Grantham J, Cheung SS, Connes P, Febbraio MA, Gaoua N, González-Alonso J, Hue O, Johnson JM, Maughan RJ, Meeusen R, Nybo L, Racinais S, Shirreffs SM, Dvorak J. Current knowledge on playing football in hot environments. Scand J Med Sci Sports 2010: 20 (Suppl. 3): 161–167.
- Greenleaf JE. Problem: thirst, drinking behavior, and involuntary dehydration. Med Sci Sports Exerc 1992: 24: 645–656.
- Greenleaf JE, Sargent F. Voluntary dehydration in man. J Appl Physiol 1965: 20: 719–724.
- Greenleaf JE, Brock PJ, Keil LC, Morse JT. Drinking and water balance during exercise and heat acclimation. J Appl Physiol Respir Environ Exerc Physiol 1983: 54: 414–419.
- Hellon RF, Jones RM, Macpherson RK, Weiner JS. Natural and artificial acclimatization to hot environments. J Physiol 1956: 132: 559–576.
- Hornery DJ, Papalia S, Mujika I, Hahn A. Physiological and performance benefits of halftime cooling. J Sci Med Sport 2005: 8: 15–25.
- Houmard JA, Costill DL, Davis JA, Mitchell JB, Pascoe DD, Robergs R. The influence of exercise intensity on heat acclimation in trained subjects. Med Sci Sports Exerc 1990: 22: 615–620.
- Hue O, Antoine-Jonville S, Sara F. The effect of 8 days of training in tropical environment on performance in neutral climate in swimmers. Int J Sports Med 2007: 28: 48–52.
- Ihsan M, Landers G, Brearley M, Peeling P. Beneficial effects of ice ingestion as a precooling strategy on 40-km cycling time-trial performance. Int J Sports Physiol Perform 2010: 5: 140–151.
- Institute of Medicine. Dietary reference intakes for water, potassium, sodium,

Training and competing in the heat

- chloride, and sulfate. Washington, DC: The National Academies Press, 2004: 73–423.
- Ivy JL, Katz AL, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. J Appl Physiol 1988: 64: 1480–1485.
- James L. Milk protein and the restoration of fluid balance after exercise. Med Sport Sci 2012: 59: 120–126.
- Jay O, Webb P. Improving the prediction of sweat losses during exercise. J Appl Physiol 2009: 107: 375–376.
- Jones PR, Barton C, Morrissey D, Maffulli N, Hemmings S. Pre-cooling for endurance exercise performance in the heat: a systematic review. BMC Med 2012: 10: 166.
- Karlsen K, Racinais S, Jensen M, Nørgaard S, Bonne T, Nybo L. Heat acclimatization does not improve VO_{2max} or cycling performance in a cool climate in trained cyclists. Scand J Med Sci Sports 2015a: 25 (Suppl. 1): 269–276.
- Karlsen K, Nybo L, Nørgaard SJ, Jensen MV, Bonne T Racinais S. Time course of natural heat acclimatization in welltrained cyclists during a two week training camp in the heat. Scand J Med Sci Sports 2015b: 25 (Suppl. 1): 240–249.
- Kenefick RW, Cheuvront SN, Palombo LJ, Ely BR, Sawka MN. Skin temperature modifies the impact of hypohydration on aerobic performance. J Appl Physiol (1985) 2010: 109: 79–86.
- Ladell WS. Assessment of group acclimatization to heat and humidity. J Physiol 1951: 115: 296–312.
- Lee DHK. A basis for the study of man's reaction to tropical climate. Vol. 1. Queensland, Australia: Queensland University Papers, 1940: 86.
- Lee JK, Shirreffs SM. The influence of drink temperature on thermoregulatory responses during prolonged exercise in a moderate environment. J Sports Sci 2007: 25: 975–985.
- Lee JK, Shirreffs SM, Maughan RJ. Cold drink ingestion improves exercise endurance capacity in the heat. Med Sci Sports Exerc 2008a: 40: 1637–1644.
- Lee JK, Shirreffs SM, Maughan RJ. The influence of serial feeding of drinks at different temperatures on thermoregulatory responses during cycling. J Sports Sci 2008b: 26: 583–590.
- Lee JK, Yeo ZW, Nio AQ, Koh AC, Teo YS, Goh LF, Tan PM, Byrne C. Cold drink attenuates heat strain during work-rest cycles. Int J Sports Med 2013: 34: 1037–1042.
- Leeder J, Gissane C, van Someren K, Gregson W, Howatson G. Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med 2012: 46: 233–240.

- Lind AR. Physiologic responses to heat. In: Licht S, ed. Medical climatology. Baltimore, MD: Waverly Press, 1964: 164–195.
- Lind AR, Bass DE. Optimal exposure time for development of acclimatization to heat. Fed Proc 1963: 22: 704–708.
- Lorenzo S, Halliwill JR, Sawka MN, Minson CT. Heat acclimation improves exercise performance. J Appl Physiol 2010: 109: 1140–1147.
- MacDonald DK, Wyndham CH. Heat transfer in man. J Appl Physiol 1950: 3: 342–364.
- Marino FE. Methods, advantages, and limitations of body cooling for exercise performance. Br J Sports Med 2002: 36: 89–94.
- Marsh D, Sleivert G. Effect of precooling on high intensity cycling performance. Br J Sports Med 1999: 33: 393–397.
- Merry TL, Ainslie PN, Cotter JD. Effects of aerobic fitness on hypohydrationinduced physiological strain and exercise impairment. Acta Physiol 2010: 198: 179–190.
- Minett GM, Duffield R, Marino FE, Portus M. Volume-dependent response of precooling for intermittent-sprint exercise in the heat. Med Sci Sports Exerc 2011: 43: 1760–1769.
- Mohr M, Nybo L, Grantham J, Racinais S. Physiological responses and physical performance during football in the heat. PLoS ONE 2012: 7: e39202.
- Montain SJ, Coyle EF. Influence of graded dehydration on hyperthermia and cardiovascular drift during exercise. J Appl Physiol 1992: 73: 1340–1350.
- Montain SJ, Latzka WA, Sawka MN. Control of thermoregulatory sweating is altered by hydration level and exercise intensity. J Appl Physiol 1995: 79: 1434–1439.
- Montain SJ, Cheuvront SN, Sawka MN. Exercise associated hyponatraemia: quantitative analysis to understand the aetiology. Br J Sports Med 2006: 40: 98–105. discussion 98–105.
- Morante SM, Brotherhood JR. Autonomic and behavioural thermoregulation in tennis. Br J Sports Med 2008: 42: 679–685.
- Morris NB, Bain AR, Cramer MN, Jay O. Evidence that transient changes in sudomotor output with cold and warm fluid ingestion are independently modulated by abdominal, but not oral thermoreceptors. J Appl Physiol 2014: 116: 1088–1095.
- Morrison SA, Cheung S, Cotter JD. Importance of airflow for physiologic and ergogenic effects of precooling. J Athl Train 2014: 49: 632–639.
- Mountjoy M, Alonso JM, Bergeron MF, Dvorak J, Miller S, Migliorini S, Singh DG. Hyperthermic-related challenges in

aquatics, athletics, football, tennis and triathlon. Br J Sports Med 2012: 46: 800–804.

- Nadel ER, Pandolf KB, Roberts MF, Stolwijk JA. Mechanisms of thermal acclimation to exercise and heat. J Appl Physiol 1974: 37: 515–520.
- Nadel ER, Fortney SM, Wenger CB. Effect of hydration state of circulatory and thermal regulations. J Appl Physiol Respir Environ Exerc Physiol 1980: 49: 715–721.
- Nassis GP, Brito J, Dvorak J, Chalabi H, Racinais S. The association of environmental heat stress with performance: analysis of the 2014 FIFA World Cup Brazil. Br J Sports Med 2015. [Online First].
- Nielsen B, Hales JR, Strange S, Christensen NJ, Warberg J, Saltin B. Human circulatory and thermoregulatory adaptations with heat acclimation and exercise in a hot, dry environment. J Physiol 1993: 460: 467–485.
- Noakes TD. Overconsumption of fluids by athletes. BMJ 2003: 327: 113–114.
- Noakes TD, Goodwin N, Rayner BL, Branken T, Taylor RK. Water intoxication: a possible complication during endurance exercise. Med Sci Sports Exerc 1985: 17: 370–375.
- Nybo L, Rasmussen P, Sawka MN. Performance in the heat – physiological factors of importance for hyperthermia-induced fatigue. Compr Physiol 2014: 4: 1–33.
- Pandolf KB, Burse RL, Goldman RF. Role of physical fitness in heat acclimatisation, decay and reinduction. Ergonomics 1977: 20: 399–408.
- Patterson MJ, Stocks JM, Taylor NA. Sustained and generalized extracellular fluid expansion following heat acclimation. J Physiol 2004: 559: 327–334.
- Périard JD, Cramer MN, Chapman PG, Caillaud C, Thompson MW. Cardiovascular strain impairs prolonged self-paced exercise in the heat. Exp Physiol 2011: 96: 134–144.
- Périard JD, Racinais S, Knez WL, Herrera CP, Christian RJ, Girard O. Thermal, physiological and perceptual strain mediate alterations in match-play tennis under heat stress. Br J Sports Med 2014: 48 (Suppl. 1): i32–i38.
- Périard JD, Racinais S, Sawka MN. Adaptation and mechanisms of human heat acclimation. Scand J Med Sci Sports 2015: 25 (Suppl. 1): 20–38.
- Peiffer JJ, Abbiss CR, Wall BA, Watson G, Nosaka K, Laursen PB. Effect of a 5 min cold water immersion recovery on exercise performance in the heat. Br J Sports Med 2010: 44: 461–465.
- Pritchett K, Pritchett R. Chocolate milk: a post-exercise recovery beverage for endurance sports. Med Sport Sci 2012: 59: 127–134.

- Quod MJ, Martin DT, Laursen PB. Cooling athletes before competition in the heat: comparison of techniques and practical considerations. Sports Med 2006: 36: 671–682.
- Quod MJ, Martin DT, Laursen PB, Gardner AS, Halson SL, Marino FE, Tate MP, Mainwaring DE, Gore CJ, Hahn AG. Practical precooling: effect on cycling time trial performance in warm conditions. J Sports Sci 2008: 26: 1477–1487.
- Racinais S, Oksa J. Temperature and neuromuscular function. Scand J Med Sci Sports 2010: 20 (Suppl. 3): 1–18.
- Racinais S, Mohr M, Buchheit M, Voss SC, Gaoua N, Grantham J, Nybo L.
 Individual responses to short-term heat acclimatisation as predictors of football performance in a hot, dry environment.
 Br J Sports Med 2012: 46: 810–815.
- Racinais S, Buchheit M, Bilsborough J, Bourdon PC, Cordy J, Coutts AJ. Physiological and performance responses to a training-camp in the heat in professional Australian football players. Int J Sports Physiol Perform 2014: 9: 598–603.
- Racinais S, Périard JD, Karlsen A, Nybo L. Effect of heat and heat-acclimatization on cycling time-trial performance and pacing. Med Sci Sports Exerc 2015: 47: 601–606.
- Roberts MF, Wenger CB, Stolwijk JA, Nadel ER. Skin blood flow and sweating changes following exercise training and heat acclimation. J Appl Physiol Respir Environ Exerc Physiol 1977: 43: 133–137.
- Roberts WO. Exertional heat stroke during a cool weather marathon: a case study. Med Sci Sports Exerc 2006: 38: 1197–1203.
- Roberts WO. Determining a "do not start" temperature for a marathon on the basis of adverse outcomes. Med Sci Sports Exerc 2010: 42: 226–232.
- Robinson S, Turell ES, Belding HS, Horvath SM. Rapid acclimatization to work in hot climates. Am J Physiol 1943: 140: 168–176.
- Ross M, Abbiss C, Laursen P, Martin D, Burke L. Precooling methods and their effects on athletic performance: a systematic review and practical applications. Sports Med 2013: 43: 207–225.
- Ross ML, Garvican LA, Jeacocke NA, Laursen PB, Abbiss CR, Martin DT, Burke LM. Novel pre-cooling strategy enhances time trial cycling in the heat. Med Sci Sports Exerc 2011: 43: 123–133.
- Rowell LB. Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev 1974: 54: 75–159.
- Sartor F, Snacken R, Demuth C, Walckiers D. Temperature, ambient ozone levels, and mortality during

summer 1994, in Belgium. Environ Res 1995: 70: 105–113.

- Sawka MN. Physiological consequences of hypohydration: exercise performance and thermoregulation. Med Sci Sports Exerc 1992: 24: 657–670.
- Sawka MN, Coyle EF. Influence of body water and blood volume on thermoregulation and exercise performance in the heat. Exerc Sport Sci Rev 1999: 27: 167–218.
- Sawka MN, Toner MM, Francesconi RP, Pandolf KB. Hypohydration and exercise: effects of heat acclimation, gender, and environment. J Appl Physiol 1983: 55: 1147–1153.
- Sawka MN, Young AJ, Francesconi RP, Muza SR, Pandolf KB. Thermoregulatory and blood responses during exercise at graded hypohydration levels. J Appl Physiol 1985: 59: 1394–1401.
- Sawka MN, Wenger CB, Pandolf KB. Thermoregulatory responses to acute exercise-heat stress and heat acclimation. In: Fregly MJ, Blatteis CM, eds. Handbook of physiology, section 4, environmental physiology. New York: Oxford University Press, 1996: 157–185.
- Sawka MN, Cheuvront SN, Kolka MA. Human adaptations to heat stress. In: Nose H, Mack GW, Imaizumi K, eds. Exercise, nutrition and environmental stress. Traverse City, MI: Cooper Publishing, 2003: 129–153.
- Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS. American College of Sports Medicine position stand: exercise and fluid replacement. Med Sci Sports Exerc 2007: 39: 377–390.
- Sawka MN, Leon LR, Montain SJ, Sonna LA. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress. Compr Physiol 2011: 1: 1883–1928.
- Sawka MN, Cheuvront SN, Kenefick RW. High skin temperature and hypohydration impair aerobic performance. Exp Physiol 2012: 97: 327–332.
- Scoon GS, Hopkins WG, Mayhew S, Cotter JD. Effect of post-exercise sauna bathing on the endurance performance of competitive male runners. J Sci Med Sport 2007: 10: 259–262.
- Shapiro Y, Pandolf KB, Goldman RF. Predicting sweat loss response to exercise, environment and clothing. Eur J Appl Physiol 1982: 48: 83–96.
- Shirreffs SM, Maughan RJ. Volume repletion after exercise-induced volume depletion in humans: replacement of water and sodium losses. Am J Physiol 1998: 274: F868–F875.

- Shirreffs SM, Sawka MN, Stone M. Water and electrolyte needs for football training and match-play. J Sports Sci 2006: 24: 699–707.
- Siegel R, Laursen PB. Keeping your cool: possible mechanisms for enhanced exercise performance in the heat with internal cooling methods. Sports Med 2012: 42: 89–98.
- Siegel R, Mate J, Brearley MB, Watson G, Nosaka K, Laursen PB. Ice slurry ingestion increases core temperature capacity and running time in the heat. Med Sci Sports Exerc 2010: 42: 717–725.
- Siegel R, Mate J, Watson G, Nosaka K, Laursen PB. Pre-cooling with ice slurry ingestion leads to similar run times to exhaustion in the heat as cold water immersion. J Sports Sci 2012: 30: 155–165.
- Sleivert GG, Cotter JD, Roberts WS, Febbraio MA. The influence of whole-body vs torso pre-cooling on physiological strain and performance of high-intensity exercise in the heat. Comp Biochem Physiol 2001: 128: 657–666.
- Sonna LA, Wenger CB, Flinn S, Sheldon HK, Sawka MN, Lilly CM. Exertional heat injury and gene expression changes: a DNA microarray analysis study. J Appl Physiol 2004: 96: 1943–1953.
- Stanley J, Leveritt M, Peake JM. Thermoregulatory responses to ice-slush beverage ingestion and exercise in the heat. Eur J Appl Physiol 2010: 110: 1163–1173.
- Stevens CJ, Dascombe B, Boyko A, Sculley D, Callister R. Ice slurry ingestion during cycling improves Olympic distance triathlon performance in the heat. J Sports Sci 2013: 31: 1271–1279.
- Stöhr EJ, González-Alonso J, Pearson J, Low DA, Ali L, Barker H, Shave R. Dehydration reduces left ventricular filling at rest and during exercise independent of twist mechanics. J Appl Physiol 2011: 111: 891–897.
- Strydom NB, Holdsworth LD. The effects of different levels of water deficit on physiological responses during heat stress. Int Z Angew Physiol 1968: 26: 95–102.
- Sunderland C, Morris JG, Nevill ME. A heat acclimation protocol for team sports. Br J Sports Med 2008: 42: 327– 333.
- Taylor NAS. Human heat adaptation. Compr Physiol 2014: 4: 325–365.
- Trangmar SJ, Chiesa ST, Stock CG, Kalsi KK, Secher NH, González-Alonso J. Dehydration affects cerebral blood flow but not its metabolic rate for oxygen

during maximal exercise in trained humans. J Physiol 2014: 592: 3143–3160.

- Tyler CJ, Sunderland C, Cheung SS. The effect of cooling prior to and during exercise on exercise performance and capacity in the heat: a meta-analysis. Br J Sports Med 2015: 49: 7–13.
- Vaile J, O'Hagan C, Stefanovic B, Walker M, Gill N, Askew CD. Effect of cold water immersion on repeated cycling performance and limb blood flow. Br J Sports Med 2011: 45: 825–829.
- Verde T, Sheppard RJ, Corey P, Moore R. Sweat composition in exercise and in heat. J Appl Physiol 1982: 53: 1540–1545.
- Versey NG, Halson SL, Dawson BT. Water immersion recovery for athletes: effect on exercise performance and practical recommendations. Sports Med 2013: 43: 1101–1130.
- Von Duvillard SP, Braun WA, Markofski M, Beneke R, Leithauser R. Fluids and hydration in prolonged endurance performance. Nutrition 2004: 20: 651–656.
- Wall BA, Watson G, Peiffer JJ, Abbiss CR, Siegel R, Laursen PB. Current hydration guidelines are erroneous: dehydration does not impair exercise performance in the heat. Br J Sports Med 2013: (in press). [Online First].
- Watt MJ, Garnham AP, Febbraio MA, Hargreaves M. Effect of acute plasma volume expansion on thermoregulation and exercise performance in the heat. Med Sci Sports Exerc 2000: 32: 958–962.
- Weller AS, Linnane DM, Jonkman AG, Daanen HA. Quantification of the decay and re-induction of heat acclimation in dry-heat following 12 and 26 days without exposure to heat stress. Eur J Appl Physiol 2007: 102: 57–66.
- Yeargin SW, Casa DJ, McClung JM, Knight JC, Healey JC, Goss PJ, Harvard WR, Hipp GR. Body cooling between two bouts of exercise in the heat enhances subsequent performance. J Strength Cond Res 2006: 20: 383–389.
- Yeo ZW, Fan PW, Nio AQ, Byrne C, Lee JK. Ice slurry on outdoor running performance in heat. Int J Sports Med 2012: 33: 859–866.
- Zouhal H, Groussard C, Minter G, Vincent S, Cretual A, Gratas-Delamarche A, Delamarche P, Noakes TD. Inverse relationship between percentage body weight change and finishing time in 643 forty-two-kilometre marathon runners. Br J Sports Med 2011: 45: 1101–1105.

Training and competing in the heat