
1

Social-Aware Replication in Geo-Diverse
Online Systems

Stefano Traverso, Kévin Huguenin, Member, IEEE, Ionut Trestian, Student Member, IEEE,
Vijay Erramilli, Nikolaos Laoutaris, and Konstantina Papagiannaki

Abstract—Distributing long-tail content is a difficult task due to the low amortization of bandwidth transfer costs as such content
has limited number of views. Two recent trends are making this problem harder. First, the increasing popularity of user-generated
content and online social networks create and reinforce such popularity distributions. Second, the recent trend of geo-replicating
content across multiple points of presence spread around the world, done for improving quality of experience (QoE) for users.
In this paper, we analyze and explore the tradeoff involving the “freshness” of the information available to the users and WAN
bandwidth costs, and we propose ways to reduce the latter through smart update propagation scheduling, by leveraging on the
knowledge of the mapping between social relationships and geographic location, the timing regularities and time differences
in end user activity. We first assess the potential of our approach by implementing a simple social-aware scheduling algorithm
that operates under bandwidth budget constraints and by quantifying its benefits through a trace-driven analysis. We show that
it can reduce WAN traffic by up to 55% compared to an immediate update of all replicas, with a minimal effect on information
freshness and latency. Second, we build TailGate, a practical system that implements our social-aware scheduling approach,
which distributes on the fly long-tail content across PoPs at reduced bandwidth costs by flattening the traffic. We evaluate
TailGate by using traces from an OSN and show that it can decrease WAN bandwidth costs by as much as 80% and improve
QoE. We deploy TailGate on PlanetLab and show that even in the case when imprecise social information is available, it can still
decrease by a factor of 2 the latency for accessing long-tail YouTube videos.

Index Terms—Social networks, Content Distribution, Long-Tail, Geo-Replication

F

1 INTRODUCTION

ONLINE content distribution technologies have
witnessed many advancements over the last

decade, from large content distribution networks
(CDN) to peer-to-peer (P2P) technologies, but most of
these technologies are inadequate in handling unpop-
ular or long-tailed1 content [1]. With the term long-
tailed, we refer to web-objects (photos, videos, etc.),
generally user-generated, which are requested a low
number of times. Such contents represent a significant
portion of the content found on OSNs. CDNs find it
economically infeasible to deal with such content – the
distribution costs for content that will be consumed by
very few people is higher than the utility derived from
delivering such content [2]. Unmanaged P2P systems
suffer from peer/seeder shortage and meeting band-
width and QoE constraints for such content.

The problem of delivering such content is further
exacerbated by two recent trends: the increasing pop-
ularity of user-generated content (UGC), and the rise

• Stefano Traverso is with the DET, Politecnico di Torino, 10129 Torino,
Italy. E-mail: stefano.traverso@polito.it

• Kévin Huguenin is with the LCA1, School of Computer and Commu-
nication Systems, EPFL, 1015 Lausanne, Switzerland.
E-mail: kevin.huguenin@epfl.ch

• Ionut Trestian is with the EECS Department, Northwestern Univer-
sity, 60208 Evanston, IL, USA.

• Vijay Erramilli, Nikolaos Laoutaris, and Konstantina Papagiannaki are
with Telefónica I+D, 08019 Barcelona, Spain.

1. The “long-tail” term was first coined by Chris Anderson in [1].

of online social networks (OSNs) with large user bases
distributed across the entire planet [3], [4], as a distri-
bution mechanism that has helped reinforce the long-
tailed nature of content. For instance, Facebook hosts
more images than all other popular photo hosting
websites [5], and they now host and serve a large
amount of videos [6]. Content created and shared on
social networks is predominantly long-tailed with a
limited interest group, in particular if one considers
notions such as Dunbar’s number [7]. The increasing
adoption of smartphones, which are capable of taking
pictures or shooting videos and uploading the content
to the OSN, will further drive this trend.

In order to deliver content and handle a geo-diverse
user-base [8], [9], most large distributed systems are
relying on geo-diversification, with storage in the
network [3], [4], [10]. One can push content to geo-
diversified Points of Presence (PoP) closest to the user,
thus limiting the parts of the network affected by a
request and improving latency for the user. However,
it has been shown that transferring content between
such PoPs can be expensive due to WAN bandwidth
costs [11], [12] and can raise consistency issues. For
long-tailed content, the problem is more acute: one
can push content to PoPs, only to have it not con-
sumed, thus wasting bandwidth. Inversely one can
resort to pull and transfer content only upon request,
but this will lead to increased latencies and potentially
contributing to the peak load. Given the factors above,
along with the inability of current technologies to

2

distribute long-tailed content [2], [13] while keeping
bandwidth costs low, it appears that the problem
of distributing long-tailed content is and will be a
difficult endeavor.

The peak-based pricing policy used on WAN links
raises a trade-off between the freshness2 of the informa-
tion available to the user and bandwidth costs. Specif-
ically, the problem of finding a balance turns out to be
a scheduling problem. Instantaneously transmitting
content uploaded by users to replicas provides the
best achievable information freshness (i.e., contents
produced by a user at one PoP are made available
immediately to the users at the other PoPs), however,
as users’ activity follows diurnal patterns with a peak
at the end of the day [14], [15], the bandwidth costs
are high for the total volume of data sent. Delaying
updates to replicas reduces traffic peaks but comes at
the price of reduced freshness (i.e., staleness).
Our Contribution: We first analyze the feasibility
of our social-aware approach to scheduling with a
simple algorithm that optimizes information fresh-
ness under WAN budget constraints by scheduling
the transmission of updates, leveraging on specific
aspects of geo-diverse OSNs. For example, our al-
gorithm prioritizes the update of replicas that serve
many of a user’s friends, especially if these friends
have a high probability of accessing the content. We
couple this simple algorithm with a budget allocation
mechanism that determines the bandwidth spent on
updating each PoP.

Second, we present a practical system called Tail-
Gate, specifically designed to work online, and in-
spired by the above algorithm, that can distribute
long-tailed content while lowering bandwidth costs
and improving QoE. For the sake of practicality, Tail-
Gate does not operate under hard budget constraints
but instead it flattens the traffic by distributing update
replication over sliding time windows. The key to
distribution is knowing (i) where the content will likely
be consumed, and (ii) when. If we know the answers,
we can push content wherever it is needed, at a time
before it is needed, and such that bandwidth costs
are minimized under peak based pricing schemes,
e.g., 95th percentile pricing. In short, 95th percentile
billing works as follows: The client, i.e., the social
network operator using the link, is charged over a
billing period (typically a month). The billing period
is partitioned in intervals (typically 30-second to 5-
minute intervals). During each intervals, the average
bandwidth is computed. The 95th percentile is the
value x such that 95% of the intervals have an average
bandwidth lower than x. More details can be found
in [16], [17]. Although in this paper we will focus

2. We use the term information freshness here to denote the fact
that, at a given instant, the content uploaded by a user is available
to her friends, and it is captured by the penalty metric introduced
in Section 3. We call staleness the fact that the information available
to the user is not fresh (i.e., not up-to-date).

on this pricing scheme, it needs to be stressed that
lowering the peak is beneficial also under flat rate
schemes or even with owned links, as in both cases
network dimensioning depends on the peak band-
width consumption.

More specifically, TailGate relies on rich and ubiq-
uitous information: friendship links, regularity of ac-
tivity and information dissemination via the social
network. TailGate is built around the following no-
tions that dictate the consumption patterns of users.
First, users follow strong diurnal trends when ac-
cessing data [18]. Second, in a geo-diverse system,
there exist time-zone differences between sites. Third,
the social graph provides information on who will
likely consume the content. At the center of TailGate
is a scheduling mechanism that uses these notions.
TailGate schedules content by exploiting time-zone
differences that exist so as to spread and flatten out
the traffic caused by moving content. The scheduling
scheme enforces an informed push scheme, reduces
peaks, hence the costs. In addition, the content is
pushed to the relevant sites before it is likely to be
accessed, thus reducing the latency for the end-users.
Note that latency is indeed a critical issue as a small
increase in latency can translate into a significant loss
of revenues for the service providers [19].

The practical system proposed and the simple algo-
rithm used for the motivation target the same prob-
lem of optimizing bandwidth usage when replicating
content across a geo-diverse social network. However,
they differ because the social-aware scheduling algo-
rithm we present strictly flattens the traffic between
PoPs (using hard limits) and schedules updates so as
to minimize the staleness of content. The heuristic
TailGate is instead an online solution that pushes
content that is likely to be accessed at remote data
centers. In this latter case, traffic is not flat as when
we access content that is not available at the current
PoP, we retrieve it from a remote one.
Results at a glance: In order to first understand char-
acteristics of users that can be used by TailGate and
if these characteristics are useful, we turn to a large
dataset collected from an OSN (Twitter), consisting of
over 8M users and over 100M content links shared.
This data helps us understand where requests can
come from, as well as give us an idea of when.

With regard to results, we first indicate using trace-
driven simulations that social-aware scheduling algo-
rithm can reduce WAN traffic by 55% without sacri-
ficing information freshness. Also, for a given WAN
bandwidth budget, our solution increases information
freshness (wrt our penalty-based metric) by an order
of magnitude compared to FIFO update scheduling.

As for the online solution, TailGate, we compare
its performance in terms of reduction in bandwidth
costs and improvement of latency for the user under
different scenarios by using real data. When compared
with a naive push policy, we see a reduction of the

3

95th bandwidth percentile of 80% in some scenarios
and a reduction of ∼ 30% over a pull-based solution
that is employed by most CDNs. For only long-tailed3

content, the improvement is even higher. We vary the
quality of information available to TailGate and find
that, even when it has less precise information, it still
performs better than push and is similar to pull in
terms of bandwidth costs, while lowering latency for
up to 10 times of the requests over pull. We show that
even in an extreme setting, where it has lower access
to information, TailGate reduces latency by a factor of
2 when the users access long-tailed content.

The rest of this paper is organized as follows. In
Sec. 2 we introduce the architecture of our system
that we will use throughout the paper. In Sec. 3 we
introduce the main contribution of this paper, the
social aware scheduling algorithm, and the online
solution inspired to it, named TailGate. Using the
dataset described in Sec. 4 and in the supplementary
material, we show the benefits brought by our social
aware scheduling algorithm in Sec. 5 and we evaluate
TailGate performance in Sec. 7 and in the supple-
mental material. We introduce several deployment
scenarios based on who operates the system and what
social information is available in Sec. 8, survey related
work in Sec. 9, and conclude the paper in Sec. 10.

2 PRELIMINARIES

Telco link (95-percentile)

Social network

PoP (Datacenter)

Fig. 1. Generic architecture: PoPs geo-distributed,
handling content for geographically close users. Con-
tent created is first uploaded to the closest PoP, then
this content is distributed to other PoPs.

For the sake of exposition, we describe a generic
distributed architecture that will provide the template
for the design and analysis of our solutions. In Sec. 8,
we show how this architecture can be used for differ-
ent scenarios: OSN providers and CDNs.

2.1 Architecture
We consider an online service with users distributed
across the world. In order to cater to these users,

3. In the rest of the paper, we call long-tailed contents those that
are requested less than 1,100 times. The threshold was determined
experimentally: we observed a modal shift around this value in the
popularity distribution of the contents in our dataset.

the service is operated on a geo-diverse system com-
prising multiple points-of-presence (PoPs) distributed
globally. These PoPs can be data centers managed by
an OSN provider such as Facebook or CDN nodes.
These PoPs are connected to each other by links.
These links can be owned by the entity that owns the
PoPs (for instance, online service providers such as
Facebook or a Telco-operated CDN) or the bandwidth
on these links can be leased from network providers.

Consider an application with a user base around the
world. Users are assigned to and served out of their
nearest (geographically) PoP, for all their requests.
Placing data close to the users is a maxim followed
by most CDNs, replicated services, as well as research
proposals such as Volley [20]. Therefore all content
uploaded by users is first uploaded to the nearest re-
spective PoP. When content is requested by users, the
nearest PoP is contacted and, if the content is available
there, the request is served. The content can be present
at the same PoP if content was first uploaded there
or was brought there by some other request. If the
content is not available, then a pull request is made
and the content is brought to the PoP and served.
This is the de facto mechanism (also known as a cold-
miss) used by most CDNs [21]. We use this ‘serve-
if-available’, or ‘pull-when-not available’ mechanism
in some cases, as the baseline and we show that this
scheme can lead to high bandwidth costs. An example
of this architecture is shown in Fig. 1 where there are
multiple interconnected PoPs around the world each
serving a local user group.

2.2 Why Social Aware Scheduling is Necessary?

Consider user Bob living in Boston and assigned
to the Boston PoP. Bob likes to generate and share
content (videos, photos) with his friends and family.
Most of Bob’s social contacts are geographically close
to him, but he has a few friends on the West Coast, in
Europe and in Asia. These geographically distributed
friends are assigned to the nearest PoP, respectively.
Bob logs in to the OSN at 6PM local time (peak time)
and uploads a family video he wants to share. 4

Like Bob, many users perform similar operations.
A naive way to ensure this content to be as close
as possible to all users before any accesses happen
would be to push the updates/content to other PoPs
immediately, at 6PM. Aggregated over all users, this
process of pushing immediately can lead to a traffic
spike in the upload link. Worse still, this content might
not be consumed at all, thus having contributed to the

4. Note that the content uploaded might not be original and thus
may already be hosted at some of the PoPs. In particular, such a
situation occurs when a user shares a content posted by another
user. In this case, the content is not replicated on the PoPs that
already hold a copy of it. Such mechanisms, referred to as de-
duplication, are widely used in cloud storage systems and are often
implemented by means of hash functions. In the remainder of the
paper, we assume that all the uploaded content is original.

4

spike unnecessarily. Alternatively, instead of pushing
data immediately, we can wait till the first friend of
Bob in each PoP accesses the content. For instance
Alice, a friend of Bob’s in London logs in at 12PM
local time and requests the content, and the system
triggers a pull request, pulling it from Boston. How-
ever, user activity follows strong diurnal trends with
peaks (12PM London local), hence multiple requests
by different users will lead to multiple pulls, leading
to yet another traffic spike. The ineffectiveness of
caching long-tailed content is well documented [2],
and this problem is further exacerbated when Alice
is the only friend of Bob’s in London interested in
that content and there are many such Alices in dif-
ferent geographic regions. Hence all these “Alices”
will experience a low QoE (as they have to wait
for the content to be downloaded) and the provider
experiences higher bandwidth costs.
Our Approach: Instead of pushing content as soon
as Bob uploads it, we wait till 2AM Boston local
time, which is off-peak for the uplink, to push the
content to London where it will be 7AM local time,
again off-peak for downlink in London. Pushing the
content at 7AM is still early enough to provide fresh
content to Alice when she logs in, as she is not likely
to do so before 12PM. Therefore Alice can access
Bob’s fresh content quickly, hence experience high
QoE despite the fact that some delay was introduced.
The provider has transferred the content during off-
peak hours, thus decreasing costs. Our systems are
built upon this intuition where such time differences,
between content being uploaded and content being
accessed, are exploited. In a geo-diverse system, such
time differences exist anyway. In order to exploit these
differences, we need information about the social
graph (Alice is a friend of Bob), where a user’s friend
reside (Alice lives in London) and the access patterns
of the friend (Alice will likely access it at 12PM).

2.3 System Requirements
Our systems need to address and balance the follow-
ing requirements:
Reduce bandwidth costs: Despite the dropping price
of leased WAN bandwidth, the growth rate of UGC,
combined with the incorporation of media rich long-
tailed content (e.g., images and videos), makes WAN
traffic costs a major concern [12], [22].
Decrease latency: The latency is due to two factors:
one is the latency in the link between the user to the
nearest PoP; the other lies in getting that content from
the source PoP, if not available at the nearest PoP. As
the former is beyond our reach, we focus on placing
the content to the closest PoPs.
Online and reactive: The scale of UGC systems [23]
can lead to thousands of transactions per second, as
well as a large volume of content being uploaded per
second. In order to handle such volume, any solution
has to be online, simple and react quickly.

2.4 What Social-Aware Scheduling Does Not Do
Social-aware scheduling optimizes for bandwidth
costs and does not consider storage constraints. It is
interesting to consider storage as well, but we believe
the relatively lower costs of storage puts the emphasis
on reducing bandwidth costs [21]. The system we
envision in this paper is not dealing with dynamic
content such as profile information etc. in OSNs as
other systems do, e.g., SPAR [24] (note that SPAR
reduces bandwidth costs by reducing the inter-PoP
traffic volume but does not optimize the scheduling,
unlike TailGate that reduces the costs by flattening5

the inter-PoP traffic). The scheduling algorithm we
propose and its online adaptation TailGate deal with
large static UGC that is long-tailed and hence not
amenable to existing solutions. Note that TailGate
could still benefit from more sophisticated placement
algorithms (instead of simply placing a user’s profile
on the closest PoP), such as SPAR..

3 SOCIAL-AWARE SCHEDULING

We now introduce our social-aware scheduling algo-
rithm for OSN to assess the potential of our approach.
We then explain why such a solution cannot work
online and introduce its practical adaptation, TailGate.

The problem addressed by our algorithm is in mini-
mizing the perceived information staleness under cost
constraints. It operates in two steps. First, it solves the
problem of scheduling updates under a budget alloca-
tion among PoPs. Second, it uses a greedy heuristic to
optimize the budget allocation. We compare the per-
formance of the social-aware scheduler to the solution
used in practice. The sizes of contents are chosen ac-
cording to the distributions observed in popular video
and photo hosting systems (e.g., Fickr and YouTube),
accessed from Twitter. The bandwidth prices, for the
cities where PoPs are located, obtained from a large
ISP for a DS-3 link at 155Mbps are: London $30,
Chicago $29, Houston $30, LA $29, Boston $27, Tokyo
$80, and Delhi $370. The prices are given per Mbps
of the 95th percentile of the link usage.

3.1 Scheduling
As previously mentioned, perceived information stal-
eness is caused by the reads that occur before the
updates. Therefore, a solution that minimizes per-
ceived information staleness (captured by the penalty,
in our evaluation) is to prioritize updates that are
more likely to be imminently read and thus might
incur a penalty. In a nutshell, the penalty is the total
number of missing updates (because the replication
of some updates is postponed by the scheduler) upon
a read. Assume Alice, who lives in Europe, makes

5. By “flattening” the traffic, we mean decreasing the maximum
(or the 95th percentile) of the bandwidth usage while keeping the
volume of data constant.

5

2 posts at 10AM and that TailGate schedules them
for replication to the US at 10:30AM and 11:00AM
respectively. If Bob, who lives in the US, reads Alice’s
profile at 10:15AM, at 10:45AM, and at 11:15AM the
total penalty is incremented by 3 (2 posts are missing
on the US replica when Bob reads Alice’s profile at
10:15, 1 post is missing for the 10:45 read, and 0 post
are missing for the 11:15 read). We consider a discrete-
time model in which time is divided into intervals cor-
responding to those used for the computation of the
95th percentile of the bandwidth usage (e.g., 1 hour).
The scheduler decides which updates to replicate to
other PoPs, at each time interval, based on a priority
metric. For a given time interval t, the social-aware
scheduler assigns a priority to each update based on
the expected penalty and its size:

pr(t, s, n, k) =
1

s

∑
m∈Fn∩Sk

ρ[t]m (1)

for an update of size s posted by user n and to
be replicated on the k-th PoP. Here, Fn denotes the
set of friends of user n, Sk denotes the set of users
attached to the k-th PoP and ρ

[t]
m denotes the proba-

bility that user m reads the profiles of its friends (e.g.,
its newsfeed) at time t. The priority is dynamically
recomputed at every time t because the probability
ρ
[t]
m to read a profile varies over time. The updates are

replicated by the social-aware scheduling algorithm
by decreasing priority. The priority queue can be
maintained by one specific PoP that organizes the
replication between all PoPs. A decentralized solution
is to make each PoP upload its local updates by
decreasing priority. Similarly, each PoP downloads
remote updates that originate from the other PoPs
by decreasing priority. Note that due to the prior-
ity function in (1), selective replication is performed
transparently: if a user has no followers attached to a
given PoP, the priority of her updates to be replicated
to this PoP falls to 0 and thus the updates are not
replicated. In the case of 3 PoPs, selective replication
reduces the total replication traffic volume by 55%.

3.2 Budget Allocation
As the number of users varies from one PoP to
another, assigning evenly the budget between PoPs is
sub-optimal. We thus optimize the budget allocation
among PoPs by using a greedy algorithm run on a
small learning period (say a day) and recomputed
periodically to self-adapt to potential changes of user
upload behaviors, new users joining, etc. The adjust-
ment of the budget allocation should be performed at
the beginning of a billing time period, over which the
95th percentile of the bandwidth usage is computed,
as changing the budget within such a period cannot
decrease the costs: If a given bandwidth cap has been
used during the first half of the period, imposing
a lower cap on the bandwidth for the rest of the

period will not decrease the 95th percentile, hence
the cost. Therefore, a typical time between two re-
computations of the budget allocation is the billing
period (typically 1 month) [17].

In a nutshell, the total budget is split in small
budget increments (say $1,000) that are iteratively
assigned to one of the PoPs in such a way that the
total penalty is minimized at each iteration. Consider
the case of 3 PoPs. Initially, all PoPs are assigned
a budget of $0. At each iteration, we compute the
total penalty when the budget increment is allocated
to the first PoP, to the second, or to the third. For
instance at the first step of the iteration, we run
the scheduling algorithm for the following budget
allocations: ($1,000; $0; $0), ($0; $1,000; $0) and ($0; $0;
$1,000). Assume that the corresponding penalties for
the three budget allocations are 2000, 500 and 1000.
Then the first budget increment is assigned to the
second PoP as it brings the smallest penalty (i.e., 500
cold misses) and a new iteration is performed. The
second iteration considers the following allocations:
($1,000; $1000; $0), ($0; $2,000; $0) and ($0; $1000;
$1,000). Assume that the corresponding penalties are
200, 450 and 300. Then the second budget increment
is assigned to the first PoP (i.e., ($1,000; $1000; $0)),
and so on until the whole budget is allocated. (see the
supplementary material for a pseudo-code version).

4 DATASETS
As our solution aims at exploiting social informa-
tion, the questions to consider are (i) what type of
information is useful and available, (ii) how can such
information be used? To answer these questions we
used a large dataset obtained through a massive crawl
of Twitter [25], which we completed by collecting loca-
tion information and tweets. We ended up with 6.3M
active users and approximately 499M tweets from
which we extracted 101M URLs pointing to UGC. We
considered several PoP locations and assigned users
to the nearest PoP (w.r.t. the Haversine distance [26]).
We focus our analysis on two time periods extracted
from this trace. The first one we call day is the set
of activities on the day with the maximum number
of tweets in our dataset; and the second one we
call week consists of the week showing traffic values
closest to average computed over the dataset. For
the read activity, we performed an analysis of the
outgoing traffic on a link connecting a university
in Italy to the Internet and we used SONG [27] to
generate read patterns. One of our main findings is
that on average 9.8% of the posted links were clicked
on. More details about the datasets and its limitations
for our intended usage model can be found in the
supplementary material.

5 SOCIAL-AWARE SCHEDULING
In this section we show how effective our social-aware
scheduling policy can be in terms of bandwdith sav-

6

ings and in terms of paid penalties. First we will show
how we assigned users to the closest PoP for QoS
purposes. It is well known that contacts or ‘friends’ in
social networks are located close together with respect
to geographical distance. This fact can have large
scale repercussions for assigning users to PoPs in an
OSN. In order to understand the distribution of users
and their contacts around the world, we proceed as
follows. We consider 7 locations around the world (in
this order): Boston, London, LA, Houston, Chicago,
Tokyo, and Delhi, where we can place PoPs. We assign
users to the nearest PoP.

Fig. 2 shows the link between geographical proxim-
ity and the number of followers. It shows the average
number of followers assigned to the same PoP as the
user, the average number of followers assigned to all
other PoPs, and the maximum number of followers
assigned to any other PoP. The considered PoPs are,
in this order, Boston, London, LA, Chicago, Houston,
Tokyo, and Delhi (see supplemental material). We see
that the number of followers assigned to the same PoP
is more than the maximum number of followers as-
signed to any other PoP, which suggests that users are
assigned to PoPs where they have the most followers.

 0
 5

 10
 15
 20
 25
 30
 35

2
Centers

3
Centers

4
Centers

5
Centers

6
Centers

7
Centers

F
ol

lo
w

er
s

-
A

ve
ra

ge

Followers Inside cluster
Followers Outside cluster

Followers Max. Outside cluster

Fig. 2. Avg. number of followers inside/outside PoPs.

In order to get an idea of the distribution of fol-
lowers across different PoPs, we compute the mean
number of PoPs a user has followers in. For the 2-7
PoPs we consider, we obtain values from 1.2 to 2.6.
In other words, on average a user has followers in
60% of the PoPs in the case with 2 PoPs; and has
followers in 37% of the PoPs when we consider all 7
PoPs. This further suggests that, instead of copying
content in 7 PoPs, the provider needs to copy content
in only 2.6 PoPs. This result strongly suggests that
exploiting the notion of selective replication, where
users are replicated in PoPs where their followers are.

We compare our social-aware scheduler to FIFO
scheduling where updates are replicated by decreas-
ing age. For the sake of fairness, we complement FIFO
with selective replication: updates are not replicated
where the user has no followers. In Fig. 3, we plot
the penalty as a function of the total monthly budget
distributed among the PoPs using greedy allocation:
each PoP receives the same bandwidth budget (repre-
sented on the x-axis). We vary the total budget from

the budget needed to replicate all the updates over
one time period and the budget needed to replicate
all updates instantaneously. It can be seen that the
social-aware scheduler outperforms FIFO by several
orders of magnitude.

Encouraged by these promising results we devel-
oped the online adaptation of this algorithm, named
TailGate which we present in the next section.

 10
 100

 1000
 10000

 100000
 1e+006
 1e+007
 1e+008
 1e+009

 14 16 18 20 22 24

P
en

al
ty

Budget (k$)

3 PoPs

Social-aware
FIFO

 26 28 30 32 34 36 38 40 42 44

Budget (k$)

5 PoPs

Social-aware
FIFO

Fig. 3. Penalty function of the budget.

6 TAILGATE

In this section, we describe TailGate, a practical imple-
mentation of our social-aware scheduling approach.

6.1 Heuristic
To keep TailGate simple, we resort to a greedy heuris-
tic for scheduling content. At a high level, we consider
load on different links to be divided into discrete time
bins (for instance 1 hour bins; this bins can correspond
to those used for the 95th bandwidth percentile for
pricing). Then, the heuristic is simple–given an upload
performed by a given user at a given time at a given
PoP that needs to be distributed to different sites–
TailGate (1) determines (or estimates) the first bin
in the future during which the content is likely be
read by some uploader’s friend, and then (2) schedule
this content in the least loaded bin amongst the set
of bins: [current bin, bin in which read occurs]. If
more than one candidate bin is found, we pick a
bin at random to schedule the content. Simultaneous
uploads are handled randomly; no special preference
is given to one upload over another. Consider the
following example: Bob, who lives in Boston, uploads
two videos at 10PM local time. Because Bob is friends
with Alice, who lives in London, the videos must be
replicated to the London PoP. Based on Alice’s read
patterns, Tailgate determines that Alice is most likely
to read Bob’s profile at 6AM local time (12AM in
Boston). Given that the 10PM and 11PM time slots
are the two least loaded, TailGate will schedule the
replication of the first video in the 10PM time slot6.
The second video is the scheduled for replication in
the least loaded time slot, i.e., the 11PM slot.

6. The choice is done at random when 2 slots are equally loaded.

7

Assuming a static social network and steady read
patterns for the users, TailGate needs to maintain, at
each PoP, and for each tuple (user,time,destination
PoP), the estimated time of the next read. Assuming
that users are evenly distributed among the K PoPs,
the number of users at each PoP is N/K. The number
of time slots is proportional to the length T of a period
of the read patterns (e.g., a day). In addition, each
PoP maintains a replication queue to each of the other
PoPs, and each queue contains (in the worst case) all
the updates produced by its N/K users. Therefore, the
data-structure used by TailGate grows linearly with
N and T , and only the T factor is due to TailGate
(FIFO/Push approach grows linearly with N only
since it does not implement any scheduling). It can
also be observed that the running time of TailGate
grows linearly with N (to process each update of the
queues) and with log T (to find the least loaded time
slot among at most T and to update its load).

We highlight the salient points of this approach:
(i) This is an online scheme in the sense that content is
scheduled as it is uploaded. (ii) This scheme optimizes
only for upload bandwidth; we tried a greedy vari-
ant where we optimized for upload and download
bandwidth, but we did not see much improvement
(results omitted for space reasons), so we settled for a
simpler scheme. (iii) If we have perfect reads, TailGate
produces no penalties by design. However, this is not
the case and we quantify the tradeoff in the next
section. (iv) In the presence of background traffic,
one can use available bandwidth estimation tools to
measure and forecast. (v) As the scheme relies on
time difference between the current bin and the bin in
which the content is likely to be read, the larger the
difference, the better the results. (vi) Flash crowds are
inherently unpredictable. TailGate performs as well as
other schemes when there is a flash-crowd. However,
as TailGate mainly deals with UGC (long-tailed), flash
crowds will be rare, and in addition, UGC have very
distinct (and slow) request characteristics [28].

6.2 Existing Solutions

We describe two solutions: Push/FIFO and a Pull-
based approach that mimic various cache-based so-
lutions (including CDNs), which can be used to dis-
tribute long-tailed content.

For all the schemes we consider, we assume that
storage is inexpensive and that once content (e.g.,
a video) is delivered to a PoP, all future requests
for that content originating from users of that PoP
will be served locally. In other words, content is
moved between sites only once. Flash-crowd effects
are therefore handled by the nearest PoP. The key
difference between the considered schemes is when the
content is delivered.
Immediate Push/FIFO: The content is distributed to
the PoPs as soon as it is uploaded. Assuming there

 0

 200

 400

 600

 800

 1000

Boston LA London Tokyo

95
th

 P
er

ce
nt

ile
s

(in
 M

B
)

PUSH - FIPR/FIIR
PULL - FIPR

TailGate - FIPR

TailGate - FIIR
PUSH - NIIR

TailGate - NIIR

Fig. 4. 95th percentile bandwidth, for all contents.

 0

 100

 200

 300

 400

 500

Boston LA London Tokyo

95
th

 P
er

ce
nt

ile
s

(in
 M

B
)

PUSH - FIPR/FIIR
PULL - FIPR

TailGate - FIPR

TailGate - FIIR
PUSH - NIIR

TailGate - NIIR

Fig. 5. 95th percentile bandwidth, for LT contents.

is no loss in the network, FIFO decreases latency as
content is always served from the nearest PoP.
Pull: The content is distributed only when the first
read request is made for that content. This scheme
therefore depends on read patterns and we use the
synthetic reads to figure out the first read for each
upload. Note that in this scenario, the user who issues
the first read will experience higher latency, as the
object is fetched from a far away PoP across a WAN.

7 EVALUATING TAILGATE

We now evaluate the practical adaptation of the social-
aware algorithm presented in Section 3 TailGate by
using the datasets of day and week described in Sec. 4
assuming the PoPs are located in Boston, London,
LA and Tokyo. We evaluate TailGate against existing
schemes, namely Push and Pull, under different mod-
els and we compare bandwidth costs and penalties.

7.1 Metrics
The main metric we use for comparison is the 95th
percentile bandwidth of a traffic time-series for the
given period under study. For the day and the week
dataset, we calculate the 95th percentile bandwidth
over 5 min bins. We also look at penalties, which is
the number of requests pulled from the source and
indicates higher latencies.

7.2 Scenarios Examined
We describe the scenarios we study that are designed
to explore the effect of different types of information
on performance metrics and to study where the ben-
efits come from. The key inputs are the knowledge of
reads and where these reads come from.
Full Information, Perfect Reads (FI, PR): In this
model, we assume TailGate has access to the social

8

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000

Boston LA London Tokyo

P
en

al
tie

s

PULL - FIPR
TailGate - FIIR/NIIR

 0

 5000

 10000

 15000

 20000

 25000

 30000

Boston LA London Tokyo

P
en

al
tie

s

PULL - FIPR
TailGate - FIIR/NIIR

Fig. 6. Penalty at all PoPs for all (left)/LT (right) content.

graph. This helps in deciding where to distribute
content: to only those PoPs that host friends of a
user. In addition, we assume that TailGate has access
to read patterns of users at a fine scale. Pull gets
perfect reads as the transfer happens when a read
request is made. In order to simulate the notion of
perfect reads, we use reads that have been assigned to
individual users (as described in Sec. 4). If we assume
the probability of a friend of a user requesting the
content is ρ, then at the k-th PoP the probability of
requesting the content is 1 − (1 − ρ)|Fn∩Sk| where Fn

is the set of user n’s friends and Sk is the set of users
attached to the k-th PoP. We use ρ = 0.1, based on
the measure of the read activity shown in Sec. 4. In
order to calculate penalties, we first note that for Push
and TailGate there are no penalties, whereas for Pull,
penalties is simply the number of uploads transmitted
to different PoPs, as these uploads face higher latency.
Full Information, Imperfect Reads (FI, IR): In this
model, we assume TailGate has access to the social
graph, but has imperfect knowledge of read patterns;
TailGate has access to generic read trends; diurnal
patterns. In order to simulate the notion of imperfect
reads, we use generic reads described in Sec. 4. Generic
reads are based on a probability distribution that
depends on the time of day (obtained by learning the
diurnal patterns from the traffic observed in a recent
past). In simulations, we draw samples from the
aforementioned distribution to determine if a write
was successful. Note that this is conservative and it
stacks the odds against TailGate: we transfer more
data close to the peak time, and, as the read prob-
ability is higher towards the peak, the set of bins that
TailGate works with is lower. As there is inaccuracy
in read information, TailGate can schedule data after
the actual read happens – in effect leading to a Pull
request to get data to serve that read request. Hence,
TailGate suffers from penalties. In order to quantify
this, we first extract the time when an upload is
scheduled by TailGate under inaccurate information.
Then we compare this against the schedule under
accurate information. For all transmissions scheduled
after the actual read request, there is a penalty.
No Information, Imperfect Reads (NI, IR): In this
model, we assume TailGate has no access to the social
graph and has imperfect knowledge of read patterns.

In this case, content is distributed to all PoPs; band-
width costs will consequently increase, as we pay the
price of using limited/inaccurate read information.

7.3 Results

The results of our trace-driven simulations are pre-
sented in Fig. 4 and in Fig. 5. They report the 95th
percentile of the bandwidth for all content (Fig. 4)
and specifically for long-tailed (LT) content (Fig. 5).
The results presented in Fig. 4 and Fig. 5 have to
be observed together with those in Fig. 6, where we
report the penalties paid by Pull and TailGate for all
content (left plot) and for long-tailed content (right
plot), respectively. We present results from our week
dataset for space considerations, and all the results
presented here assumes each PoP has one uplink
and one downlink. We also studied the case where
each PoP has seperate uplinks/downlinks to other
PoPs (for instance service providers such as Google,
Facebook, etc. and their geo-diverse data center sys-
tem). The results for this and our day dataset are
qualitatively similar. The results are presented for all
content and for only long-tailed content (defined as
objects with views < 1,100). As Pull and TailGate rely
on synthetic reads, we simulate multiple instances
and report means, along with the standard deviations.
Performance of TailGate TailGate always outper-
forms Push in terms of the 95th percentile bandwidth
across all PoPs in all scenarios. In the case of full
information and perfect reads; TailGate reduces the
95th percentile bandwidth of Push upto 75% and upto
28% of Pull. For specifically long-tailed content, this
number still grows: upto 88% of Push and 30% of Pull.
Effect of information quality There are two types of
inaccuracies: one in read patterns when we go from
per user reads to generic reads; the other is when we
do not know the fraction of friends who will request
content. When we look at the former, we note that
though TailGate still performs better than Push (when
we consider (Full Information,Imperfect Reads)), by
upto 40%. However, TailGate has similar bandwidth
costs as Pull (that has accurate information, hence
is reported once). We then looked into the penalties.
For Pull, the aggregated penalty is 126,846, while for
TailGate under (Full Information,Imperfect Reads), it
is 12,044. This happens at each considered location as
shown in Fig. 6 which report the penalties paid by
Pull and TailGate under (Full Information,Imperfect
Reads). We remark that Push and TailGate under (Full
Information, Perfect Reads) pay no penalty by design.
In other words, though the effect of inaccurate reads
is comparable bandwidth costs, the penalties are still
10 times lower than for Pull. Similar results for LT
datasets (Pull: 95,087 vs TailGate: 9,162), as depicted
in Fig. 6 specifically for each location. Taken together
with the conservative nature of the evaluation, we
believe TailGate is highly competitive to Pull, in terms

9

of bandwidth costs and latency.7

When we consider the inaccuracy in parameter p,
we see that we need p ≥ 0.4 to surpass Pull in terms
of bandwidth costs. In other words, TailGate handles
the inaccuracy in the click-rates much better than
inaccuracy in read patterns. Moreover, TailGate still
outperforms Pull in terms of penalties by almost 12
times even when the available read pattern is affected
by an error of 2 hours (not shown in the paper).
Where do improvements come from? Under the
considered scenario (4 PoPs), we find that knowledge
of the social graph provides modest improvements –
when we consider (Full Information,Imperfect Reads)
and (No Information,Imperfect Reads), the only extra
information used is the social network and we find
a modest increase in the bandwidth costs as data is
being uploaded to all PoPs instead of to only PoPs that
have friends. However, this will change if we consider
more PoPs. As for the accuracy of reads, it plays a
stronger role in reducing costs.

In the supplemental material we present a study
of the case where TailGate has little access to social
information (NI, IR), but can help with QoE in the
case of long-tailed YouTube videos [10], [21], [23]. Our
experimental results show that TailGate increases the
QoE by a factor 2, especially for long-tailed content.

8 DEPLOYMENT SCENARIOS

OSN running our systems: An OSN provider such as
Facebook can run TailGate. In this case, all the neces-
sary information can be provided and as shown, Tail-
Gate provides the maximum benefit. The distributed
architecture we consider throughout the paper is dif-
ferent from that employed currently by Facebook that
operates three data centers (one being the master)
and leases space at other centers [4]. However, we
believe that large OSNs will eventually gravitate to
the distributed architecture we described in Sec. 2.1,
for reasons of performance and reliability mentioned
in Sec. 1, as well as recent work that has shown that
handling reads/writes out of one geographical site
can be detrimental to performance for an OSN [29],
pointing to an architecture that relies on distributed
state. If the OSN provider leases bandwidth from
external providers, our solutions decrease costs. If the
provider owns the links, then they make optimal use
of the link capacity, delaying equipment upgrades as
links are provisioned for the peak.
CDNs with social information: Systems like CDNs
are in general highly distributed (e.g., Akamai), but
the architecture we used in this paper captures fun-
damental characteristics such as users being served
out of the nearest PoP [8]. Existing CDN providers
might not get access to social information, yet might

7. Observe that the number of penalties paid by TailGate under
(No Information, Imperfect Reads) scenario is the same as in (Full
Information,Imperfect Reads).

be used by existing OSN providers to handle content.
We have shown that even with limited access, the
CDN provider can still optimize for bandwidth costs
after making assumptions about access patterns.
CDNs without social information: Even without ac-
cess to OSN information, a CDN can access publicly
available information (e.g., Tweets) and use it to im-
prove performance for its own customers.

9 RELATED WORK

Distribution of long-tailed content has been addressed
by several works, mostly in P2P networks [30], [31].
However, such swarm systems need extra resources
(by way of replicates) and, as such, do not address
transit bandwidth costs or latency constraints explic-
itly – requirements that TailGate addresses.

The popularity of OSNs has led to work that ex-
ploits social networking information to better inform
system design. Solutions presented in this paper are,
in part, motivated by findings presented by Wittie et
al. [29] where the authors analyze the current Face-
book architecture and uncover network performance
problems the architecture introduces, including high
bandwidth utilization and large delays. Distributing
states to improve performance, based on geography
or via clustering users on a social graph, has been
explored in [32].

Recent work combines information from OSNs to
improve CDN service [33], hence is similar in moti-
vation to our system. The authors propose a similar
mechanism to Buzztraq [34], wherein social cascades
can be used to place content close to users. We also
place content close to users, yet our focus is on when
to distribute such content to minimize bandwidth
costs (i.e., we consider a more realistic cost model).
Our social-aware schedulers can be used along with
the approach proposed in [33] that answers where.
Similarly, in [35] the authors predict the popularity of
videos and the origins of the views by analyzing the
trends on micro-blogging sites, in order to optimize
the video placement. Work by Laoutaris et al. [11]
describes NetStitcher, a system that aims to do bulk
transfers between data centers, by exploiting off-peak
hours and storage in the network to send bulk data.
NetSticher operates at the network layer, whereas
we rely on information about access patterns at the
application layer. Hence they are complementary.

In [36], the authors tackle a similar problem, keep-
ing users’ event feeds up to date through a combina-
tion of pushes from low-rate producers and pulls from
high-rate producers. The main difference with our
approach is that their aim is to minimize cumulative
cost in terms of CPU or I/O and keeping latency
at an acceptable level for users while we aim at
reducing peak replication traffic (therefore traffic cost)
and keeping latency at an acceptable level for users
through the geo-diversified nature of our system.

10

10 CONCLUSION

Handling delivery of long-tailed content is a difficult
task made harder with the wide proliferation of OSNs
and geo-diversification of the underlying architecture.

We have proposed a social-aware scheduler, and its
lightweight online adaptation to solve the above prob-
lem. They exploit information from social networks,
e.g., the social graph and the regularity of activity
patterns, to distribute long-tailed content while de-
creasing bandwidth costs.

With regard to the social-aware scheduler, our find-
ings are: (1) the total WAN traffic is decreased by
55% by not sending updates to PoPs where they
are not accessed; and (2) under the same monetary
budget the social-aware scheduler improves informa-
tion freshness, by several orders of magnitude (w.r.t.
our penalty-based metric), over FIFO scheduling of
updates. Such results encouraged us towards the de-
velopment of an online solution named TailGate.

Using large traces gleaned from an OSN, we have
shown that TailGate can reduce costs by as much as
80% over a naive FIFO based mechanism and as much
as 30% over a pull-based approach that is employed
by CDNs. Even in limited information scenarios, Tail-
Gate performs as well as Pull but reduces latency by
10X over Pull. In addition, we develop and deploy a
simple prototype of TailGate on PlanetLab and show
that it can help reduce end-user latency for long-tailed
content. Taken together with bandwidth cost savings,
and the fact that TailGate is lightweight, we envision
it as complementary to existing CDN technologies.

11 ACKNOWLEDGEMENTS

Part of this work appeared in the proceedings of
WWW 2012 [37]. This work has been partially sup-
ported by the FP7 project ENVISION of the EU.

REFERENCES

[1] C. Anderson, The Long Tail: Why the Future of Business is Selling
Less of More. Hyperion, 2006.

[2] B. Ager, F. Schneider, J. Kim, and A. Feldmann, “Revisiting
Cacheability in Times of User Generated Content,” in GI, 2010.

[3] “Twitter plans major data-center expansion,” http://www.
datacenterknowledge.com/archives/2013/05/10/twitter-
plans-huge-data-center-expansion, visited Feb 2014.

[4] “Facebook Data Center FAQ,” http://www.
datacenterknowledge.com/the-facebook-data-center-faq,
visited June 2013.

[5] “Facebook Hosts More Photos than Flickr and Photo-
bucket,” http://www.tothepc.com/archives/facebook-hosts-
more-photos-than-flickr-photobucket/, visited June 2013.

[6] Facebook, “Facebook Ranked Second Largest Video Site,”
http://vator.tv/news/2010-09-30-facebook-ranked-second-
largest-video-site, visited June 2013.

[7] R. I. M. Dunbar, “Neocortex Size as a Constraint on Group
Size in Primates,” Journal of Human Evolution, vol. 22, no. 6,
pp. 469–493, 1992.

[8] C. Huang, A. Wang, J. Li, and K. W. Ross, “Measuring and
Evaluating Large-Scale CDNs,” in IMC, 2008.

[9] G. Linden, “Marissa Mayer at Web 2.0,” http://glinden.
blogspot.com/2006/11/marissa-mayer-at-web-20.html,
visited June 2013.

[10] R. Torres, A. Finamore, J. R. Kim, M. Mellia, M. M. Munafo,
and S. Rao, “Dissecting Video Server Selection Strategies in
the YouTube CDN,” in ICDCS, 2011.

[11] N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez, “Inter-
Datacenter Bulk Transfers with NetStitcher,” in SIGCOMM,
2011.

[12] Forrester Consulting, “The Future of Data Center Wide
Area Networking,” http://infineta.broadchoice.com/orphan/
forrester_report_download, visited June 2013.

[13] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel, “Finding a
needle in Haystack: Facebook’s photo storage,” in OSDI, 2010.

[14] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida, “Char-
acterizing user behavior in online social networks,” in IMC,
2009.

[15] F. Schneider, A. Feldmann, B. Krishnamurthy, and W. Will-
inger, “Understanding online social network usage from a
network perspective,” in IMC, 2009.

[16] “Burstable Billing,” http://en.wikipedia.org/wiki/Burstable_
billing, visited June 2013.

[17] X. Dimitropoulos, P. Hurley, A. Kind, and M. P. Stoecklin, “On
the 95-percentile billing method,” in PAM, 2009.

[18] F. Schneider, A. Feldmann, B. Krishnamurthy, and W. Will-
inger, “Understanding Online Social Network Usage from a
Network Perspective,” in IMC, 2009.

[19] J. Hamilton, “The cost of latency,” http://perspectives.
mvdirona.com/2009/10/31/TheCostOfLatency.aspx, visited
October 2013.

[20] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, and A. Wol-
man, “Volley: Automated Data Placement for Geo-Distributed
Cloud Services,” in NSDI, 2010.

[21] “YouTube CDN Architecture,” Private Communication, Con-
tent Delivery Platform, Google.

[22] J. Hamilton, “Inter-datacenter replication and geo-
redundancy,” http://perspectives.mvdirona.com/2010/05/
10/InterDatacenterReplicationGeoRedundancy.aspx, visited
June 2013.

[23] highscalability, “YouTube Architecture,” http://
highscalability.com/youtube-architecture, visited June 2013.

[24] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris,
P. Chhabra, and P. Rodriguez, “The Little Engines that Could:
Scaling Online Social Networks,” in SIGCOMM, 2010.

[25] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a
Social Network or a News Media?” in WWW, 2010.

[26] R. W. Sinnott, “Virtues of the Haversine,” Sky and Telescope,
vol. 68, p. 159, 1984.

[27] V. Erramilli, X. Yang, and P. Rodriguez, “Explore what-
if scenarios with SONG: Social Network Write Generator,”
http://arxiv.org/abs/1102.0699, 2011.

[28] R. Crane and D. Sornette, “Robust dynamic classes revealed
by measuring the response function of a social system,” PNAS,
vol. 105, no. 41, pp. 15 649–15 653, 2008.

[29] M. P. Wittie, V. Pejovic, L. Deek, K. C. Almeroth, and B. Y.
Zhao, “Exploiting Locality of Interest in Online Social Net-
works,” in CoNEXT, 2010.

[30] R. S. Peterson and E. G. Sirer, “AntFarm: Efficient Content
Distribution with Managed Swarms,” in NSDI, 2009.

[31] D. S. Menasche, A. A. Rocha, B. Li, D. Towsley, and
A. Venkataramani, “Content Availability and Bundling in
Swarming Systems,” in CoNEXT, 2009.

[32] T. Karagiannis, C. Gkantsidis, D. Narayanan, and A. Rowstron,
“Hermes: Clustering Users in Large-Scale E-mail services,” in
SoCC, 2010.

[33] S. Scellato, C. Mascolo, M. Musolesi, and J. Crowcroft, “Track
globally, deliver locally: Improving content delivery networks
by tracking geographic social cascades,” in WWW, 2012.

[34] N. Sastry, E. Yoneki, and J. Crowcroft, “Buzztraq: Predicting
Geographical Access Patterns of Social Cascades Using Social
Networks,” in SNS, 2009.

[35] Z. Wang, L. Sun, C. Wu, and S. Yang, “Guiding Internet-
Scale Video Service Deployment Using Microblog-based Pre-
diction,” in INFOCOM, 2012.

[36] A. Silberstein, J. Terrace, B. F. Cooper, and R. Ramakrishnan,
“Feeding frenzy: Selectively materializing users’ event feeds,”
in SIGMOD, 2010.

[37] S. Traverso, K. Huguenin, I. Trestian, V. Erramilli, N. Laoutaris,
and K. Papagiannaki, “TailGate: Handling Long-Tail Content
with a Little Help from Friends,” in WWW, 2012.

11

Stefano Traverso earned his Ph.D. degree
in Networking Engineering at Politecnico di
Torino, Italy, in 2012. His research interests
include P2P networks, overlay networks, net-
work measurement, and content delivery net-
works. During his Ph.D. and Post-doc he has
been visiting Telefonica I+D research center
in Barcelona, Spain, and NEC Laboratories
in Heidelberg, Germany. He is currently a
Post-doc Fellow of TNG group of Politecnico
di Torino.

Kévin Huguenin earned his M.Sc. degree
from Ecole Normale Supérieure de Cachan
and the Université de Nice – Sophia Antipo-
lis, France, in 2007 and his Ph.D. in com-
puter science from the Université of Rennes,
France, in 2010. His research interests in-
clude performance, security and privacy in
networks and distributed systems. He is cur-
rently a Post-Doctoral Researcher at EPFL,
Switzerland, in the LCA group.

Ionut Trestian earned his B.Sc. degree in
Computer Science from the Technical Uni-
versity of Cluj-Napoca, Romania, in 2007. He
recently earned his Ph.D degree at North-
western University. His research interests in-
clude network measurement, network secu-
rity, overlay networks and social networks.
He currently works as a Software Engineer
at Amazon.

Vijay Erramilli earned the Ph.D. degree in
Computer Science from Boston University,
Boston, MA, in 2008. He then joined Telefon-
ica Research, Barcelona, Spain, in January
2009, where he is currently an Associate
Researcher.

Nikolaos Laoutaris earned the Ph.D. de-
gree in Computer Science from the Univer-
sity of Athens, Athens, Greece, in 2004. He
then went to Boston University, Boston, MA,
for a post-doctoral position, and later Harvard
University, Cambridge, MA. He joined Tele-
fonica Research, Barcelona, Spain, in 2007
and is currently a Senior Researcher.

Konstantina Papagiannaki earned the first
degree in electrical and computer engineer-
ing from the National Technical University of
Athens (NTUA), Athens, Greece, in 1998,
and the Ph.D. degree from the Computer
Science Department of University College
London (UCL), London, U.K., in 2003. She is
the scientific director of the Internet Systems
and Networking scientific group at Telefonica
I+D in Barcelona.

1

Supplemental File: Social-Aware Replication
in Geo-Diverse Online Systems

Stefano Traverso, Kévin Huguenin, Member, IEEE, Ionut Trestian, Student Member, IEEE,
Vijay Erramilli, Nikolaos Laoutaris, and Konstantina Papagiannaki

F

1 BUDGET ALLOCATION

Algorithm 1 Budget allocation across K PoPs
Input: B . Total budget
Output: b . Budget allocation

1: b← 0 . Total budget allocated
2: b← (0, . . . , 0) . Budget allocation
3: while b < B do
4: pmin ←∞ . Minimum penalty
5: kmin ← ⊥
6: for k ∈ {1, . . . , K} do
7: bk ← bk + δb . Allocates a budget increment to the k-th PoP
8: p← penalty(b) . Computes the penalty for a given budget

allocation
9: bk ← bk − δb

10: if p < pmin then
11: pmin ← p . Update minimum penalty
12: kmin ← k
13: end if
14: end for
15: bkmin

← bkmin
+ δb . Allocate the budget to the PoP s.t. the

penalty is minimized
16: b← b+ δb
17: end while

Where B is the total budget to be allocated to the
PoPs, b is the budget allocation (i.e., a vector of real
values where the k-th element of b is the budget allo-
cated to the k-th PoP), and δb is the budget increment
for the iterative algorithm (i.e., the budget increment
to be allocated at each iteration of the allocation algo-
rithm). The variable b is the total budget allocated so
far, and pmin denotes the minimum penalty obtained,
at a given iteration, for all the possible allocations of
the budget increment δb (and kmin denotes the PoP
to which the budget increment is assigned in the
allocation that achieves the minimum penalty).

2 DATA DETAILS

We rely on a large dataset of 41.7M users with 1.47B
edges obtained through a massive crawl of Twitter
between June – Sept. 2009 [1]. We then collected the
users’ location information by conducting our own
crawl and translated everything to latitude/longitude
using Google Maps API. In the end, we extracted
locations for 8,092,624 users from about 11M users
that had entered location information. We use this
social graph only between these nodes for our analysis
in this paper. With regards to the user’s locations

in the dataset, we find that US has the most users
(55.7%), followed by UK (7.02%) and Canada (3.9%).

2.1 Upload Activity

For the users who had entered their locations, we col-
lected their tweets. We found that the mean number
of tweets was 42 per user. Not all users had tweet
activity; the number of active users (who tweeted at
least once) was 6.3M users. For these 6.3M users, we
ended up collecting approximately 499M tweets, until
Nov. 2010.

This dataset is valuable for characterizing activity
patterns of users. From these tweets, we extracted
those that contain hyperlinks pertaining to pictures
(plixi, Twitpic, etc.) and videos (Youtube, Dailymo-
tion, etc.) that we consider as UGC1, which gave us
101,079,568 links. Here, we consider that posting a
URL pointing to a video is equivalent to uploading
the same video as in a social network that offers the
option to host multimedia content (e.g., Facebook for
photos), a user would have uploaded her generated
content directly instead of uploading it to a third party
service and posting a URL pointing to it.

We recorded the size of each piece of content that
is shared, resolving URL shorteners when needed.
The largest file happened to be of a cricket match on
YouTube, with a size 1.3G on 480p (medium quality).
We collected the number of views for each link,
wherever available, and the closest (Kullback-Leibler
(KL) distance) fit was the log-normal distribution
(parameters: (10.29,3.50)); we found around 30% of
the content to be viewed less than 500 times. The most
popular was a music video by Lady Gaga on YouTube,
viewed more than 300M times.

2.2 Geo-distributed PoPs

To study the effects of geo-diversity on bandwidth
costs, we use location data and assign users to PoPs

1. Note that the popularity distribution of such content exhibit a
shorter tail [2], [3] than the content uploaded on highly-social plat-
forms on which users upload content for a more limited audience,
e.g., pictures of events with friends or family members.

2

12AM 12PM 12AM
0

200

400

600

800

1000

1200

1400

1600

1800

time (5 min bins)

w
ri
te

s
/r

e
a
d
s

writes

reads

(a)

9AM 9PM 9AM
0

100

200

300

400

500

600

700

800

900

time (5 min bins)

w
ri
te

s
/r

e
a
d
s

writes

reads

(b)

5PM 5AM 5PM
0

200

400

600

800

1000

1200

1400

1600

1800

time (5 min bins)

w
ri
te

s
/r

e
a
d
s

writes

reads

(c)

8PM 8AM 8PM
0

500

1000

1500

2000

2500

3000

time (5 min bins)

w
ri
te

s
/r

e
a
d
s

writes

reads

(d)

Fig. 1. Writes along with synthetic reads (a) London (b) Tokyo (c) LA (d) Boston.

distributed around the world. We assume the dis-
tributed architecture as described in the preliminaries.
Because we simulate the actual effects of different PoP
locations, for the social-aware scheduler we consider
multiple placements. The number of PoPs is a free
variable but the locations we choose are fixed as we
do not address the PoP placement problem here. The
results are shown in Table 1. Because of the high
number of users that are located in the US, several of
the PoPs will cover this region and this also explains
the imbalance observed in the number of users for
the 2 PoPs case. Note that for the above 3 PoPs, the
number of users is relatively balanced across them.

City 2 PoPs 3 PoPs 4 PoPs 5 PoPs 6 PoPs 7 PoPs
Boston 5,608,894 3,476,676 2,187,867 1,318,388 1,318,388 1,318,388
London 2,483,730 2,274,409 2,274,406 2,274,374 1,684,098 1,492,839
LA 2,341,539 1,569,944 1,563,705 1,267,445 1,267,445
Houston 2,060,407 1,454,755 1,454,755 1,454,455
Chicago 1,481,402 1,481,366 1,481,366
Tokyo 886,572 533,166
Delhi 544,965

TABLE 1
Users per given PoP for different layouts.

For TailGate, we assume there exist data centers
in these four locations: Boston, London, LA and
Tokyo. We assign users to locations by using a simple
method: compute the distance of a user to a location,
and assign the user to the nearest location (w.r.t.
the Haversine distance). For the four locations, we
observe the following distribution of users: (Boston:
3,476,676, London: 1,684,101, LA: 2,045,274, Tokyo:
886,573). The East Coast of the US dominates in our
datasets. The relatively low number of users in Asia
is due to the fact that most users in Asia prefer
local versions of OSNs. However, we choose Tokyo
precisely for this point – users in Asia comprise social
contacts of users from around the world, sharing and
requesting content, and adding to bandwidth costs.
We find that, on average, a user has 19.72 followers
in her own PoP and 8.91 followers in each of the other
PoPs. It is well known that friends in social networks
are located close together with respect to geographical
distance [4].

2.3 Read Activity
Our systems rely on information about accesses, i.e.,
reads. The ideal information will be about who re-
quests the content and when. We could not obtain
direct read patterns from Twitter/FB, so we proceeded
as follows.

To get an idea on who requests, we collected packet
traces via TCPDump from an outgoing link that con-
nected a university in northern Italy (9th Mar, 2011) to
the rest of the Internet. The collection was carried out
for two distinct periods: from 11AM to 4PM and from
10AM to 6PM. We extracted HTTP-POST, HTTP-GET
requests that correspond to the Facebook domain. We
further collected all links corresponding to pictures
and videos that show up on users’ wall feeds. The
clicks on these icons lead to new HTTP-GET requests,
that are counted as requests for the content. We found
that, on average, 9.8% of the posted links were clicked
on. It was hard for us to obtain a per-user metric,
as the users were behind a NAT device. We looked
at smaller set of 200 users that were not behind a
NAT device, and observed a similar 10% click rate.
Note that in some social networks, users might exhibit
much more selective behaviors, varying from one
relationship to another (as shown in [5], [6]) while in
some cases (e.g., when using a thick client) the content
might be downloaded automatically. Therefore, the
click-through rate might be very different from one
application context to another. We use the observed
rate as the probability of a friend requesting content
(ρ) for our evaluation, when needed.

Note that future reads are impossible to know,
but due to strong regularity in user behavior [7], an
OSN such as Facebook or Twitter can predict future
accesses with high accuracy. For the purposes of this
work – we make the assumption that read patterns
follow a diurnal trend similar to write/upload pat-
terns, as observed by other authors [8], [9]. In order
to generate read patterns at a fine time scale (seconds),
we use SONG [10], which we also describe in the
Appendix.

For TailGate, we are interested in evaluating differ-
ent scenarios, as well as studying the affect of quality
of information on performance gains from TailGate.
In order to do this, we generate two different types of

3

read patterns: the first type is when social information
is available at a fine scale, for instance when Facebook
is operating TailGate; and the second is when little or
no social information is available, for instance when
a CDN is operating TailGate.
Reads with fine grained information: Each user is
assigned reads. For this, we make the assumption that
the distribution of the number of reads per user fol-
lows the same distribution as the number of uploads
per user; a log-normal distribution.
Reads with no social information: We assume we
do not have enough information to predict reads
accurately, but rather general trends, such as diurnal
trends, are known. For this, once we generate reads
over time bins, we normalize all bins with the total
number of reads found across all bins. In other words,
we create a diurnal trend for reads. In Fig. 1, we plot
the update patterns given by the data and synthetic
reads generated for the day dataset for all the four
centers we consider. Note that the updates follow a
diurnal trend and the synthetic reads follow a similar
pattern.

Finally, we distinguish long-tailed contents as those
which were requested less than 1,100 times (roughly
corresponding to 70% of the contents available in our
trace). This choice was driven by a modal shift we ob-
served around this value in our dataset. We however
evaluated the sensitivity of our results with respect
to this choice, varying the threshold for long-tailed
content from 500 to 4,000, but we could not appreciate
any significant variation in TailGate performance.

2.4 Limitations and Assumptions
We note here that Twitter now has around ∼200M
users2 and our dataset is a relatively small sample.
Hence all numbers presented in this paper should
be interpreted in this context. An ideal dataset for
evaluation would be the UGC that is uploaded and
shared on an OSN, but such data is not available
to us. Instead, we use the links collected above as
proxy for the media, which can be shared over OSNs,
and we recognize that activity patterns with regards
to posting and sharing media content should follow
similar diurnal patterns [9]. We assume read patterns
follow a diurnal trend similar to write patterns [8],
[9]. Note that we are more interested in time-of-day
effects; more sophisticated read patterns where we
consider content interest, quality of content, etc. can
be used, but we do not have sufficient information
to calibrate these effects. We also assume a simple
homogeneous click through model in which all users
click on the links shared by their friends with a fixed
probability, constant across users. In addition, we
assume that all the contents uploaded by the users are
unique, which is not the case when users can re-share
contents shared by their friends (e.g., on Facebook).

2. http://en.wikipedia.org/wiki/Twitter

ALL POP LT
d_time1 d_time2 d_time1 d_time2 d_time1 d_time2

Boston 4.11 (6.63) 4.81 (8.51) 3.69 (6.61) 4.39 (7.67) 4.73 (6.67) 4.68 (8.35)
LA 2.94 (5.53) 2.70 (5.71) 1.59 (2.55) 1.72 (3.33) 4.70 (7.46) 3.49 (6.50)
Lon 5.15 (5.06) 4.56 (5.11) 4.57 (3.53) 4.06 (3.37) 6.43 (6.72) 4.88 (5.92)
Tokyo 6.18 (6.76) 5.09 (5.64) 5.36 (6.23) 5.10 (5.42) 6.88 (6.67) 4.65 (4.27)

TABLE 2
Average download times (in seconds) with standard

deviations for buffering stages.

3 CASE STUDY: LONG-TAILED VIDEOS ON
YOUTUBE

In this section, we study the case where TailGate has
little access to social information (NI, IR), but can
help with QoE in the case of long-tailed YouTube
videos [11], [12], [13]. The entity controlling TailGate
(e.g., CDN) can rely on publicly available information
(e.g., Tweets), as we do here, and use TailGate to
request or “pull” content to intelligently prefetch con-
tent before the real requests for the content, thereby
decreasing latency for their customers. Towards this
end, we develop a simple prototype of TailGate based
on the design, and we deploy it on 4 PlanetLab nodes
at the same locations: Boston, London, LA and Tokyo.

We proceed as follows: we rely on our dataset,
where we assign the four sets of users to different
“PoPs” as given by Planetlab nodes. We extract the
set of links that correspond to YouTube videos from
our dataset, along with the times they were posted.
Note that the information related to the properties
of YouTube videos accessed from Twitter is public:
anyone can collect this information. We then provide
this set of writes as input to TailGate, assuming no
social information and that the expected reads in
various locations follow a diurnal pattern. We get a
schedule as output from TailGate, which effectively
schedules transfers between the four locations. We
take this schedule and instead directly request the
YouTube videos from various sites, at a time given
by TailGate, thus emulating transfers.

After this, we request the videos at the time of the
“read”, that is, we “emulate” users from each location
issuing read requests for each video by sampling from
the diurnal trend. Therefore each video is requested
twice: the first time for emulating the transfer using a
schedule given by TailGate, and the second time, for
emulating a legitimate request by a user to quantify
the benefit. Note that the first request would also be
emulating a PULL, as we emulate a cold-miss. Hence
any improvements we notice would be an improve-
ment over PULL. We use wget with the -no-cache
option for all our operations, to limit caching effects.

We focus on the Quality of Experience (QoE) for
the end-user. In order to measure this, we first look
at the proportion of a file that is downloaded during
the initial buffering stage, after which the playout of
the video is smooth. We say the playout is smooth

4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8

c
d

f

download time1/download time2

London

All
POP

LT
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8

c
d

f

download time1/download time2

Tokyo

All
POP

LT
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8

c
d

f

download time1/download time2

Los Angeles

All
POP

LT
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8

c
d

f

download time1/download time2

Boston

All
POP

LT

Fig. 2. Performance figures for YouTube videos, improvements for download times for buffering stage.

if the download rate3 for a file drops at 70% of the
original rate. We tested other values and had similar
results. We found that, on average, the playback is
smooth after 15% of a file is downloaded. Therefore
we noted the delay in terms of the time it takes for the
first 15% of a file to be downloaded. As we download
each video twice, once at a time given by TailGate
and the second as representing the actual read re-
quest, we measure both and plot the cdfs of ratios
(dload_time1/dload_time2) in Fig. 2. We plot for three
different cases: “all” is the entire dataset; “pop” stands
for only those videos that are popular (≥ 500K views);
and “LT” stands for long-tailed videos (≤ 1,100 views–
we observed a mod shift around this value in our
dataset). First, we note that there is an improvement
of a factor of 2 and it is higher for at least 30% of the
videos for all locations. Second, this improvement is
even more pronounced for “LT” videos, highlighting
that TailGate aids long-tailed content. Indeed, we
remark that popular content has in general a larger
probability of being present at the PoP/cache at the
moment of the first request, thus lowering de facto
the benefits of adopting TailGate. This does not hold
for long-tailed videos that show a lower probability of
being replicated at many PoPs, thus increasing the po-
tential gain of TailGate. Observe that given the bulky
nature of video content, downloading a small fraction
of a video may take some tens of seconds, so that
the gain in time achieved by TailGate is significant
for the QoE perceived by users. In Table 2, we report
the mean and standard deviations of download times
for all considered scenarios. For some videos, we see
a decrease in performance (dload_time1/dload_time2
< 1). This could be due to load-balancing. In fact for
Tokyo, we found that the closest PoP for YouTube
seems to be relatively far (Korea) in the first place.

APPENDIX

We briefly review the model we use for generat-
ing synthetic reads. Let Xi(t) denote the number
of reads produced by user i, 1 ≤ i ≤ N with N
the total number of users at a time instant t, where
X(t) =

∑
∀iXi(t). The time can vary from seconds to

weeks. The description X(t),∀t gives the time series

3. To measure the download throughput, we employed the
download rate estimator embedded in wget.

aggregated over all users. We need to account for
two different time-scales - the first time scale spans
multiple hours or days and we note the presence of
diurnal trends. The second time scale spans seconds
to a couple of hours where the mean and the variance
are fairly stable. For the first time scale, we can have
a model for the mean mt of the time series that varies
with time in a predictable way. For the second time
scale, we can have a stochastic component. The model
then is

X(t) = mt +
√
amtWt (1)

where mt is function of time and Wt is a stochastic
component which can be a zero-mean, finite variance
process and a is a parameter called ‘burstiness’ (with
the units:reads-secs) that accounts for magnitude of
fluctuations.

The main method for generating synthetic reads
is as follows: First we generate mt using a Fourier
series by first extracting the largest Fourier coefficients
of the write time-series, then we add appropriately
scaled noise, by estimating a, to the diurnal trend at
each time bin (in our case, seconds). For our day and
week datasets, we use the top 5 Fourier coefficients to
generate the diurnal pattern and used WGN with an
appropriate scale parameter to generate the reads. The
generated time series contains the number of reads in
a given time bin.

REFERENCES

[1] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a
Social Network or a News Media?” in WWW, 2010.

[2] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “I
tube, you tube, everybody tubes: analyzing the world’s largest
user generated content video system,” in IMC, 2007.

[3] N. R. Sastry, “How to tell head from tail in user-generated
content corpora,” in ICWSM, 2012.

[4] D. Liben-Nowell, J. Novak, R. Kumar, P. Raghavan, and
A. Tomkins, “Geographic Routing in Social Networks,” PNAS,
vol. 102, pp. 11 623–11 628, 2005.

[5] C. Wilson, B. Boe, A. Sala, K. P. Puttaswamy, and B. Y. Zhao,
“User interactions in social networks and their implications,”
in Eurosys, 2009.

[6] H. Chun, H. Kwak, Y.-H. Eom, Y.-Y. Ahn, S. Moon, and
H. Jeong, “Comparison of online social relations in volume
vs interaction: a case study of cyworld,” in IMC, 2008.

[7] S. A. Golder, D. M. Wilkinson, and B. A. Huberman, “Rhythms
of Social Interaction: Messaging Within a Massive Online
Network,” in C&T, 2007.

[8] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida, “Char-
acterizing User Behavior in Online Social Networks,” in IMC,
2009.

5

[9] F. Schneider, A. Feldmann, B. Krishnamurthy, and W. Will-
inger, “Understanding Online Social Network Usage from a
Network Perspective,” in IMC, 2009.

[10] V. Erramilli, X. Yang, and P. Rodriguez, “Explore what-
if scenarios with SONG: Social Network Write Generator,”
http://arxiv.org/abs/1102.0699, 2011.

[11] highscalability, “YouTube Architecture,” http://
highscalability.com/youtube-architecture, visited June 2013.

[12] R. Torres, A. Finamore, J. R. Kim, M. Mellia, M. M. Munafo,
and S. Rao, “Dissecting Video Server Selection Strategies in
the YouTube CDN,” in ICDCS, 2011.

[13] “YouTube CDN Architecture,” Private Communication, Con-
tent Delivery Platform, Google.

	paper_tpds
	appendix_tpds

