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Abstract: With motivation from Hüsler (2004) and Piterbarg (2004) in this paper we derive the joint limiting

distribution of standardised maximum of a continuous, stationary Gaussian process and the standardised maximum

of this process sampled at discrete time points. We prove that these two random sequences are asymptotically

complete dependent if the grid of the discrete time points is sufficiently dense, and asymptotically independent if

the grid is sufficiently sparse. We show that our results are relevant for computational problems related to discrete

time approximation of the continuous time maximum.
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1 Introduction and Main Result

Let {Xt, t ≥ 0} be a standard (zero-mean, unit-variance) stationary Gaussian process (GP) with correlation function

r(t) and continuous sample paths. In this paper we assume that for some α ∈ (0, 2] and C > 0

r(t) = 1− C|t|α + o(|t|α) as t→ 0, and r(t) < 1 for t > 0. (1)

If further the Berman condition

lim
T→∞

r(T ) lnT = 0 (2)

holds, then Pickands theorem (see Pickands (1969) and Piterbarg (1972) for a rigorous proof of Pickands theorem)

establishes the key limit result for the continuous time maximum MT = max{Xt,∀t ∈ [0, T ]}, namely

lim
T→∞

sup
x∈R

∣∣∣∣P{aT (MT − bT ) ≤ x} − exp(−e−x)

∣∣∣∣ = 0, (3)

where

aT =
√

2 lnT , bT = aT + a−1T ln
(

(2π)−1/2C1/αHαa
−1+2/α
T

)
.

Here Hα ∈ (0,∞) denotes Pickands constant, which is defined as

Hα = lim
λ→∞

1

λ
E
{

exp
(

max
t∈[0,λ]

√
2Bα/2(t)− tα

)}
,

where Bα is a standard fractional Brownian motion with zero drift, continuous sample paths and E
{
B2
α(t)

}
= |t|2α,

see e.g., Pickands (1969), Leadbetter et al. (1983), Lifshits (1995), Piterbarg (1996), Hashorva and Hüsler (2000),

Dȩbicki (2002), Dȩbicki and Kisowski (2009), Falk et al (2010), Albin and Choi (2010), Dȩbicki and Tabís (2011)

for the basic properties and related constants. Note in passing that condition r(t) < 1 for all t > 0 is satisfied when

Berman condition holds, see Leadbetter et. al (1983) p. 86.
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Our assumption on the r(t), which is important for the study of studentized maximum is

lim
T→∞

lnT

T

∫ T

0

|r(t)− r(T )|dt = 0. (4)

An immediate consequence of (1),(4), spectral representation theorem and ergodic theorem is

lim
T→∞

r(T ) = γ ∈ [0, 1), (5)

where γ equals the atom at zero of the spectral distribution associated with r(t), see McCormick (1980).

Set next

∆T :=
MT − X̄T

r̃T
, with r̃T := (1− r(T ))1/2, X̄T :=

1

T

∫ T

0

Xtdt (6)

and

aT :=
√

2 lnT , βT,γ := aT + a−1T ln

(
(2π)−1/2

(
C

1− γ

)1/α

Hαa
−1+2/α
T

)
. (7)

For our contribution the following deep result of McCormick (1980) is crucial.

Theorem A. If {Xt, t ≥ 0} is a standard stationary GP with continuous sample paths and correlation function r(t)

satisfying (1) and (4), then we have

lim
T→∞

sup
x∈R

∣∣∣∣P {aT (∆T − βT,γ) ≤ x} − exp(− exp(−x))

∣∣∣∣ = 0. (8)

Several articles have been motivated by McCormick (1980); important asymptotic results for the standardised

maximum ∆T are derived in Ho and McCormick (1999), McCormick and Qi (2000) and James et al. (2007). For

some earlier results see Berman (1962) and Grubbs (1964).

The interest for dealing with the problems presented above is not only theoretical; there are numerous applications

where concrete computations are needed. Since observations cannot be made in continuous time, always in applica-

tions only the maximum taken at a discrete time grid can be calculated, and similarly for its standardised version

∆T . When the grid of sampling points becomes dense, the error of using a discrete process instead of the original

continuous one decreases. Numerous theoretical results and applications can be found in the literature regarding

the approximation of random processes, see e.g., the recent papers Abramowicz and Seleznjev (2011a,b,c), Hashorva

et al. (2012) and the references therein. In the settings of this paper the situation is complicated due to the fact

that rare events are involved. A pragmatical approach to approximate the distribution of the maximum MT or its

standardised version is to run simulations. In order to run simulations, the time interval needs to be discretised,

and the maximum on a discrete grid (see below) is then simulated. It is clear, that the continuous time maximum

is not possible to simulate, and thus it remains to simulate the discretised version.

Now the question is if by simply running enough simulations it is possible to get accurate estimates of the probability

of interest. We will answer this question in Section 3 where we present some possible applications of our theoretical

results.

Piterbarg (2004) first studied the asymptotic relation between MT and the maximum of the discrete version

M δ
T = max{Xiδ, 0 ≤ iδ ≤ T}, i ∈ Z

for some δ = δ(T ) > 0. Following Hüsler (2004) and Piterbarg (2004), a uniform grid R = R(δ) = {kδ : k =

0, 1, 2, · · · } with δ = δ(T ) > 0 is called sparse if

lim
T→∞

δ(T )(2 lnT )1/α = D, (9)
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with D =∞. If D ∈ (0,∞), the grid is referred to as a Pickands grid, and if D = 0, the grid is called dense.

Under the above setting, the deep paper Piterbarg (2004) showed that the maximum Mδ
T taken over discrete time

points and the maximum MT of the continuous time points can be asymptotically independent, dependent or totally

dependent if the grid is a sparse, a Pickands or a dense grid, respectively. We refer to that result of Piterbarg (2004)

as Piterbarg max-discretisation theorem.

Based on the findings of Hüsler (1990) Piterbarg max-discretisation theorem for a large class of locally stationary

GP’s introduced in Berman (1974) is proven in Hüsler (2004). Important related results for the storage process with

fractional Brownian motion as input and the stationary non-Gaussian case can be found in Hüsler and Piterbarg

(2004) and Turkman (2012), respectively. The recent contribution Tan and Wang (2012) presents Piterbarg max-

discretisation theorem for strongly dependent stationary GP’s.

With impetus from Hüsler (2004) and Piterbarg (2004) we derive in this paper Piterbarg max-discretisation theorem

for standardised maximum of weakly dependent stationary GP’s. Specifically, for ∆T as in (6) and ∆δ
T defined by

∆δ
T :=

Mδ
T − X̄T

r̃T

we prove joint weak convergence, which is our main result presented below.

Theorem 1.1. Under the assumptions of Theorem A define for some δ = δ(T ) > 0

βδT = aT − a−1T ln((2π)1/2δ(T )aT )

and denote by R(δ) a sparse or a dense grid of points. Let further aT , βT,γ be constants as defined in (7).

i) For any sparse grid R(δ)

lim
T→∞

sup
x∈R,y∈R

∣∣∣∣P {aT (∆T − βT,γ) ≤ x, aT
(
∆δ
T − βδT

)
≤ y
}
− exp(− exp(−x)− exp(−y))

∣∣∣∣ = 0. (10)

ii) If the grid R(δ) is dense, then

lim
T→∞

sup
x∈R,y∈R

∣∣∣∣P {aT (∆T − βT,γ) ≤ x, aT
(
∆δ
T − βT,γ

)
≤ y
}
− exp(− exp(−min(x, y)))

∣∣∣∣ = 0. (11)

The importance of Theorem 1.1 and of Piterbarg max-discretisation theorem in general is that apart from theoretical

interest, it shows clearly for a given type of grid the right normalistions needed to achieve a good approximation.

Using simply the same normalisation needed when continuous time standardised maximum is investigated is for

sparse grids incorrect, see Section 3 below.

Organisation of the paper: In Section 2 we briefly discuss our findings and then present an implication of Theorem

1.1. Section 3 answers the question about validity of the simulation approach, and shows some ways how to deal

with approximation error when utilising discrete grids. Based on our results, under a global Hölder condition (see

(17) below) the mean error of the approximation tends to zero as the grid becomes dense. Additionally in that

section we show that an appropriate choice of normalisation constants can be made by using the findings of this

contribution. The proofs of our results are relegated to Section 4 which concludes this article.

2 Discussion

There is a close relation between the asymptotic behaviour of standardised maximum ∆T and the studentised

maximum

∆̃T :=
MT − X̄T

sT
,
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where s2T := V ar{TX̄T }. Indeed, in view of McCormick (1980) and Ho and McCormick (1999) the result of Theorem

A can be stated also for ∆̃T . Our calculations show that it is however much more difficult to obtain similar results

to Theorem 1.1 for the studentised maximum. Additionally, at present it seems also very difficult to obtain results

for Pickands grids, which has been the case also in Hüsler (2004). Due to those difficulties the aforementioned cases

shall be treated in a forthcoming research paper.

Our main findings in Theorem 1.1 show that the choice of the gird is very important for the asymptotic result.

A direct implication of Theorem 1.1 is that for any dense grid R(δ) we have

aT (∆T −∆δ
T )→ 0, T →∞ (12)

in probability. The result in (12) is of interest for computational problems, and also simulations, see the discussion

on the discretisation error in Section 3 below. Next, we formulate a direct consequence of Theorem 1.1, which is

primarily of theoretical interest, and will be utilised in Section 3. Denote by Φ the distribution function of a standard

Gaussian random variable.

Corollary 2.1. Under the Assumptions of Theorem A, if further (r(T ) lnT )−1 = o(1), then for any sparse grid or

any dense grid R(δ)

lim
T→∞

sup
x∈R,y∈R

∣∣∣∣P {r−1/2(T )

(
MT

r̃T
− βT,γ

)
≤ x, r−1/2(T )

(
Mδ
T

r̃T
− β∗T

)
≤ y
}
− Φ(min(x, y)

√
1− γ)

∣∣∣∣ = 0, (13)

where r̃T := (1− r(T ))1/2 and β∗T = βδT for a sparse grid, β∗T = βT,γ for a dense grid.

In the case that (5) holds with γ = 0, i.e., limT→∞ r(T ) = γ = 0, then (13) leads to an extension of the main result

of Mittal and Ylvisaker (1975) given in our final result below.

Corollary 2.2. Under the Assumptions of Theorem A, if further γ = 0 and (r(T ) lnT )−1 = o(1), then for any

sparse grid or dense grid R(δ)

lim
T→∞

sup
x∈R,y∈R

∣∣∣∣P {MT − r̃TβT,0
r1/2(T )

≤ x, M
δ
T − r̃Tβ∗T
r1/2(T )

≤ y
}
− Φ(min(x, y))

∣∣∣∣ = 0, (14)

where β∗T = βδT for a sparse grid and β∗T = βT,0 for a dense grid.

Note that if R(δ) is a dense grid, then (14) implies a similar result to (12), namely

MT −M δ
T

r1/2(T )
→ 0, T →∞ (15)

holds in probability.

To this end, we mention that for both standardised and studentised processes, it is of interest to consider maximum

of those processes as in Kabluchko (2011) and Oesting et al. (2012).

3 Discretisation Error

Our main results above can be applied to determine the correct normalisation which ensures the discretised stationary

GP’s will have the same behaviour as the continuous one if we are interested on limit theorems for maximum or its

discretised version. Clearly, discrete observations are common in applications, so our findings are directly applicable

if particular sampling points or grids are known and observations on those grids are available. Another direction

where our results, and in general Piterbarg max-discretisation theorem can be applied is in simulations; again our

application concerns the discretisation error and not the simulation error.

Indeed, it is not possible to simulate the maximum (or its standardised version) in continuous time for general GP’s,

unless the processes are degenerate. A common practice is to simulate the whole processes only on a grid of points,

and then use these for calculating the discretised versions of the continuous time maximum. By doing this, we have
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to consider the approximation error due to the calculations based on the discrete grid of points, and the second error

is the simulation error. Moreover, since in our case a rare event will be simulated, the simulation error is significant,

and can be diminished by using appropriate rare-event simulation techniques, see the recent deep paper Adler et al.

(2012).

As it can be seen below, running simulations without going through our analysis is in general not adequate, thus

the answer to the question in the Introduction is that running simulations without such analysis as in this paper is

not a valid approach.

In order to consider the discretisation error, we need to choose an appropriate grid of points together with an

appropriate scaling of the discretised version, and then the rare-event simulation issue needs to be taken care of.

Since our novel results above are concerned only with the joint limiting distribution of discrete time and continuous

time maximum and its standarised version, they are useful for choosing an appropriate grid of points, and crucial

for determining the adequate normalisation for the limit result to hold.

Next, we shall deal with the situation explained by Corollary 2.1. The other results presented above can be utilised

in a similar fashion. Consider for simplicity that γ = 0 and the assumptions of the aforementioned corollary hold.

First note that for any threshold uT = x
√
r(T ) + βT,0r̃T we can approximate the probability that MT exceeds it by

Φ(x). Let us now consider the case of a sparse grid. We have

P{MT > uT } − P{Mδ
T > uT } = P{MT > uT ,M

δ
T ≤ uT }

= P

{
MT − r̃TβT,0
r1/2(T )

> x,
Mδ
T − r̃TβδT
r1/2(T )

+
r̃T (βδT − βT,0)

r1/2(T )
≤ x

}
→ 1− Φ(x), T →∞,

hence the error of approximating P{MT > uT } by P{Mδ
T > uT } is too large, i.e., it does not diminish to 0 as

T →∞. Consequently, simulating with such grids and using the above approximation is misleading.

Another idea, which is directly motivated by our findings is to approximate P{MT > uT } by P{Mδ
T > u∗T }, with

u∗T := x
√
r(T ) + βδT r̃T . In this case we have

P{MT > uT } − P{M δ
T > u∗T } = P{MT > uT ,M

δ
T ≤ uT }+ P{M δ

T > uT } − P{M δ
T > u∗T }

→ 0, T →∞.

Consequently, this approximation is a valid one. Thus if the grid R(δ) is sparse, the right approximation by using

the discrete time points is given by our results.

Next, let us assume that the grid of points R(δ) is dense, and instead of computing the survival function of MT we

consider the simulation of the survival function of Mδ
T . We have (which follows also from (15))

P{MT > uT } − P{Mδ
T > uT } = P{MT > uT ,M

δ
T ≤ uT } → 0, T →∞.

So in the case of a dense grid, we need to use another normalisation of the discretised maximum, again this knowledge

is gained by our new result.

Finally, we obtain the constant cT such that the mean error for a dense grid R(δ) satisfies

eT = E
{MT −M δ

T

cT

}
→ 0, T →∞. (16)

In the case of dense grid, we know that the convergence

MT −Mδ
T

bT
→ 0, T →∞

holds in probability. However the convergence in (16) with cT = bT does not follow automatically. If we impose the

following global Hölder condition (see e.g., Theorem D.4 of Piterbarg (1996))

E{(Xt −Xs)
2} ≤ G|t− s|γ , ∀s, t ∈ (0,∞) (17)
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for some G > 0 and γ ∈ (0,∞), then Piterbarg inequality (see Theorem 8.1 of Piterbarg (1996)) holds, i.e.,

P

{
sup
t∈[0,T ]

|Xt| > u

}
≤ CTu2/γ−1 exp

(
− u2

2σ2
T

)
, σT := sup

t∈[0,T ]

σ(t)

is valid for any u and T positive with some constant C > 0 not depending on u and T . Piterbarg inequality together

with Corollary 2.2 implies in view of Theorem 1 in Seleznjev (2006) (see also Hüsler et al. (2003) for interesting

results in this direction) that (16) holds with cT = bT .

Summarising we conclude that in view of our findings, we are able to suggest the correct approximation of the

continuous time maximum, and similarly for the standardised maximum. The error of approximation for dense grids

converges also in the mean to 0 if further the global Hölder condition above holds. The further analysis for bounding

the error of the approximation requires a significant effort and is not in the scope of this paper. Similarly, controlling

the simulation error requires also additional efforts and cannot be covered here.

Of interest is also to analyse the trade-off between approximation error and simulation error. If the grid is sparse,

the approximation error using this discrete grid is larger than when the grid is dense. However simulating on a

sparse grid is more efficient and the error can be eventually controlled much easier. Therefore it is not clear without

a deep analysis what would be an optimal way to run the simulations, especially since rare-events are to be taken

care of, and the time horizon grows with T tending to infinity.

In the recent paper Azäıs and Genz (2012) interesting results are shown for smooth Gaussian processes. Ideas from

that paper and Azäıs and Wschbor (2009), Adler et al. (2012) will be important for future research work in the

direction of our paper.

4 Further Results and Proofs

In this section we present the proofs of our results along with some lemmas which are of some interest on their own.

Our notation for asymptotic relations are standard, for instance f(T ) ∼ b(T ) or alternatively f(T ) = g(T )(1 + o(1))

as T →∞ mean that the ratio of two real-valued functions f(T )/g(T ) tends to 1 as T →∞.

We define next the family of random processes index by T > 0

YT (t) =
1

σT (t)
(Xt − X̄T ), 0 ≤ t ≤ T,

where σ2
T (t) = E

{
(Xt − X̄T )2

}
. It can be shown as for (2.8) of McCormick (1980) that

max
1≤t≤T

∣∣σ2
T (t)− (1− r(T ))

∣∣ = o

(
1

lnT

)
(18)

as T →∞. Let ρT (s, t) = E{YT (s)YT (t)} and ρ̄T (u) = max{|ρT (s, t)| : 0 ≤ s ≤ t ≤ T, t− s ≥ u}. Again referring to

McCormick (1980), see (3.8) therein, we obtain

max
0≤s,t≤T

∣∣∣∣ρT (s, t)− r(s− t)− r(T )

1− r(T )

∣∣∣∣ = o

(
1

lnT

)
. (19)

By the assumption on r(t), namely γ ∈ [0, 1) and (1) for any ε > 0 we have supt>ε |r(t)| < 1, hence, utilising further

(18)

ρ̄T (ε) < 1 (20)

is valid for all T sufficiently large. Furthermore, we have that for any ε > 0 there exists τ = τ(ε) > 0 such that for

all T sufficiently large and |s− t| ≤ τ

1− ε
1− γ

C|s− t|α + o(|s− t|α) < 1− ρT (s, t) <
1 + ε

1− γ
C|s− t|α + o(|s− t|α). (21)
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Define next MT (Y ) = maxt∈[0,T ] YT (t) and Mδ
T (Y ) = maxt∈R(δ)∩[0,T ] YT (t) and set r̃T := (1 − r(T ))1/2. For any

x, y ∈ R, we can further write

P
{
aT (∆T − βT,γ) ≤ x, aT

(
∆δ
T − β∗T

)
≤ y
}

= P

{
aT

(
Xt − X̄T

σT (t)
− βT,γ

)
≤ x+ ϑT (t, x), aT

(
Xiδ − X̄T

σT (iδ)
− β∗T

)
≤ y + ϑ∗T (iδ, y), t ∈ [0, T ], iδ ∈ [0, T ]

}
, (22)

where

ϑT (t, x) = (βT,γaT + x)

(
r̃T
σT (t)

− 1

)
, ϑ∗T (iδ, y) = (β∗TaT + y)

(
r̃T

σT (iδ)
− 1

)
and β∗T = βδT for a sparse grid and β∗T = βT,γ for a dense grid. In view of (18)

max
0≤t≤T

|ϑT (t, x)| = o(1), max
0≤iδ≤T

|ϑδT (iδ, y)| = o(1).

Thus, in order to prove (10) and (11), it suffices to show that

lim
T→∞

P
{
aT (MT (Y )− βT,γ) ≤ x, aT (Mδ

T (Y )− βδT ) ≤ y
}

= exp (− exp(−x)− exp(−y)) (23)

and

lim
T→∞

P
{
aT (MT (Y )− βT,γ) ≤ x, aT (Mδ

T (Y )− βT,γ) ≤ y
}

= exp(− exp(−min(x, y))) (24)

hold. In order to prove (23) for τ = τ(ε) a fixed constant, we follow a classical scheme, see e.g., Piterbarg (1996).

Let therefore 0 < a < τ and divide interval [0, T ] into intervals of length τ −a alternating with shorter intervals with

length a. Denote the long intervals by Sk = [(k − 1)τ + a, (k + 1)τ ], k = 1, 2, · · · , n = [T/τ ], and the short intervals

by Rk = ((k − 1)τ, (k − 1)τ + a), k = 1, 2, · · · , n. It will be seen from our proofs below that a possible remaining

interval with length different than τ − a or a plays no role in our consideration. We call also this interval a short

interval. Denote S = ∪Sk,R = ∪Rk, so that [0, T ] = S ∪ R. The proof of (23) for the sparse grid case relies on

Lemmas 4.1-4.4. Lemma 4.5 will be utilised to prove (24).

Lemma 4.1. For any B > 0 and for all x, y ∈ [−B,B] we have∣∣∣∣P {aT (MT (Y )− βT,γ) ≤ x, aT (M δ
T (Y )− βδT ) ≤ y

}
−P

{
aT (max

t∈S
YT (t)− βT,γ) ≤ x, aT ( max

t∈R(δ)∩S
YT (t)− βδT ) ≤ y

} ∣∣∣∣→ 0

as T →∞ and a ↓ 0.

Proof: We make use of the following inequality (set uT := βT,γ + x/aT , uT,δ := βδT + y/aT )∣∣∣∣P {aT (MT (Y )− βT,γ) ≤ x, aT (Mδ
T (Y )− βδT ) ≤ y

}
−P

{
aT (max

t∈S
YT (t)− βT,γ) ≤ x, aT ( max

t∈R(δ)∩S
YT (t)− βδT ) ≤ y

} ∣∣∣∣
≤

n∑
k=1

P

{
max
t∈Rk

YT (t) > uT

}
+ P

{
max

t∈[nτ+a,T ]
YT (t) > uT

}

+

n∑
k=1

P

{
max

t∈Rk∩R(δ)
YT (t) > uT,δ

}
+ P

{
max

kδ∈[nτ+a,T ]
YT (kδ) > uT,δ

}
=: I1 + I2 + I3 + I4.

Now, let ξ1(t) be a separable standard stationary GP with correlation function r1(t) such that for |t| ≤ τ

r1(t) = 1− 1 + ε

1− γ
C|t|α + o(|t|α).
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For any x ∈ R u2T = 2 lnT − ln lnT + 2
α ln lnT +O(1) as T →∞, hence by (21), Slepian Lemma (see Theorem 7.4.2

of Leadbetter et al. (1983)) and Pickands theorem

I1 + I2 ≤ (n+ 1)P

{
max
t∈[0,a]

ξ1(t) > uT

}
∼ (n+ 1)

(
1 + ε

1− γ
C

)1/α

Hαaϕ(uT )(uT )2/α−1 ∼ (1 + ε)1/α
a

τ
, T →∞,

where ϕ is the density function of the standard Gaussian distribution on R. Note that ξ1(kδ), 0 ≤ kδ ≤ T is a

standardized stationary Gaussian random sequence. By (21) and Corollary 4.2.3 of Leadbetter et al. (1983)

I3 + I4 ≤ (n+ 1)P

{
max
kδ∈[0,a]

ξ1(kδ) > uT,δ

}
≤ (n+ 1)

([a
δ

]
+ 1
)

(1− Φ(uT,δ)) ≤
a

τ

as T →∞. Since τ is a constant the proof is established by letting a ↓ 0. �

Lemma 4.2. Let q = q0(lnT )−1/α with q0 > 0. Then∣∣∣∣P {aT (max
t∈S

YT (t)− βT,γ) ≤ x, aT ( max
t∈R(δ)∩S

YT (t)− βδT ) ≤ y
}

−P
{
aT ( max

t∈R(q)∩S
YT (t)− βT,γ) ≤ x, aT ( max

t∈R(δ)∩S
YT (t)− βδT ) ≤ y

} ∣∣∣∣→ 0

and ∣∣∣∣ n∏
k=1

P

{
aT ( max

t∈R(q)∩Sk

YT (t)− βT,γ) ≤ x, aT ( max
t∈R(δ)∩Sk

YT (t)− βδT ) ≤ y
}

−
n∏
k=1

P

{
aT (max

t∈Sk

YT (t)− βT,γ) ≤ x, aT ( max
t∈R(δ)∩Sk

YT (t)− βδT ) ≤ y
} ∣∣∣∣→ 0

as T →∞ and q0 ↓ 0.

Proof: The difference of the two probabilities are bounded above by
n∑
k=1

(
P

{
aT ( max

t∈R(q)∩Sk

YT (t)− βT,γ) ≤ x
}
− P

{
aT (max

t∈Sk

YT (t)− βT,γ) ≤ x
})

.

Let ξ2(t) be a separable standard stationary GP with correlation function r2(t) such that for |t| ≤ τ ,

r2(t) = 1− 1− ε
1− γ

C|t|α + o(|t|α)

and let ξ1(t) be defined as before. Applying again Slepian Lemma we have

n∑
k=1

(
P

{
aT ( max

t∈R(q)∩Sk

YT (t)− βT,γ) ≤ x
}
− P

{
aT (max

t∈Sk

YT (t)− βT,γ) ≤ x
})

≤
n∑
k=1

(
P

{
aT ( max

t∈R(q)∩Sk

ξ2(t)− βT,γ) ≤ x
}
− P

{
aT (max

t∈Sk

ξ1(t)− βT,γ) ≤ x
})

≤
n∑
k=1

(
P

{
aT ( max

t∈R(q)∩Sk

ξ2(t)− βT,γ) ≤ x
}
− P

{
aT (max

t∈Sk

ξ2(t)− βT,γ) ≤ x
})

+

n∑
k=1

(
P

{
aT (max

t∈Sk

ξ2(t)− βT,γ) ≤ x
}
− P

{
aT (max

t∈Sk

ξ1(t)− βT,γ) ≤ x
})

=: J1 + J2.

Since R(q) is a Pickands grid and ξ2(t) is a stationary GP, by Lemma 4 of Piterbarg (2004) we have J1 → 0 as

T →∞ and q0 ↓ 0. By the stationarity of ξ1(t) and ξ2(t) and Pickands theorem again, we obtain

J2 ∼ n(τ − a)C1/α

[
(

1 + ε

1− γ
)1/α − (

1− ε
1− γ

)1/α
]
ϕ (x/aT + βT,γ) (x/aT + βT,γ)

2/α−1

∼ τ − a
τ

[(1 + ε)1/α − (1− ε)1/α]

→ 0

8



as T →∞ and ε ↓ 0, thus the proof is complete. �

Lemma 4.3. Let q = q0(lnT )−1/α with q0 > 0. For any B > 0 and for all x, y ∈ [−B,B] we have

lim
T→∞

∣∣∣∣P {aT ( max
t∈R(q)∩S

YT (t)− βT,γ) ≤ x, aT ( max
t∈R(δ)∩S

YT (t)− βδT ) ≤ y
}

−
n∏
k=1

P

{
aT ( max

t∈R(q)∩Sk

YT (t)− βT,γ) ≤ x, aT ( max
t∈R(δ)∩Sk

YT (t)− βδT ) ≤ y
} ∣∣∣∣ = 0.

Proof: For the sake of simplicity, let uT = βT,γ + x/aT , uT,δ = βδT + y/aT . By Berman’s Normal Comparison

Lemma (see Theorem 4.2.1 of Leadbetter et al. (1983)) we have with K some constant∣∣∣∣P {aT ( max
t∈R(q)∩S

YT (t)− βT,γ) ≤ x, aT ( max
t∈R(δ)∩S

YT (t)− βδT ) ≤ y
}

−
n∏
k=1

P

{
aT ( max

t∈R(q)∩Sk

YT (t)− βT,γ) ≤ x, aT ( max
t∈R(δ)∩Sk

YT (t)− βδT ) ≤ y
} ∣∣∣∣

≤ K
∑

s,t∈R(q)∩S,|s−t|>a

|ρT (s, t)| exp

(
− u2T

1 + |ρT (s, t)|

)

+K
∑

s,t∈R(δ)∩S,|s−t|>a

|ρT (s, t)| exp

(
−

u2T,δ
1 + |ρT (s, t)|

)

+K
∑

s∈R(q)∩S,t∈R(δ)∩S,|s−t|>a

|ρT (s, t)| exp

(
−

u2T + u2T,δ
2(1 + |ρT (s, t)|)

)
. (25)

Following the procedure given on pages 487-489 of McCormick (1980) (recall also (20)), we can prove that each term

on the right-hand side of (25) tends to 0, as T →∞, and thus the claim follows. �

Lemma 4.4. For the GP {YT (t), t ∈ [0, T ]} and for any x, y ∈ R we have∣∣∣∣ n∏
k=1

P

{
aT (max

t∈Sk

YT (t)− βT,γ) ≤ x, aT ( max
t∈R(δ)∩Sk

YT (t)− βδT ) ≤ y
}
− exp(− exp(−x)− exp(−y))

∣∣∣∣→ 0

as T →∞ and ε ↓ 0.

Proof: By (21) and Slepian Lemma(
P

{
aT (max

t∈S1

ξ1(t)− βT,γ) ≤ x, aT ( max
t∈R(δ)∩S1

ξ1(t)− βδT ) ≤ y
})n

≤
n∏
k=1

P

{
aT (max

t∈Sk

YT (t)− βT,γ) ≤ x, aT ( max
t∈R(δ)∩Sk

YT (t)− βδT ) ≤ y
}

≤

(
P

{
aT (max

t∈S1

ξ2(t)− βT,γ) ≤ x, aT ( max
t∈R(δ)∩S1

ξ2(t)− βδT ) ≤ y
})n

.

Thus, we can derive an upper bound as

n∏
k=1

P

{
aT (max

t∈Sk

YT (t)− βT,γ) ≤ x, aT ( max
t∈R(δ)∩Sk

YT (t)− βδT ) ≤ y
}

≤ exp

(
n ln

(
P

{
aT (max

t∈S1

ξ2(t)− βT,γ) ≤ x, aT ( max
t∈R(δ)∩S1

ξ2(t)− βδT ) ≤ y
}))

= exp

(
−n
(

1− P
{
aT (max

t∈S1

ξ2(t)− βT,γ) ≤ x, aT ( max
t∈R(δ)∩S1

ξ2(t)− βδT ) ≤ y
})

+Rn

)
.

Since

Pn =: P

{
aT (max

t∈S1

ξ2(t)− βT,γ) ≤ x, aT ( max
t∈R(δ)∩S1

ξ2(t)− βδT ) ≤ y
}
→ 1, T →∞,
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then Rn = o(n(1− Pn)) as T →∞. Now, applying Lemma 2 of Piterbarg (2004) we obtain

n

(
1− P

{
aT (max

t∈S1

ξ2(t)− βT,γ) ≤ x, aT ( max
t∈R(δ)∩S1

ξ2(t)− βδT ) ≤ y
})

∼ n

(
P

{
aT (max

t∈S1

ξ2(t)− βT,γ) > x

}
+ P

{
aT ( max

t∈R(δ)∩S1

ξ2(t)− βδT ) > y

})
∼ n(τ − a)T−1(1− ε)1/αe−x + n(τ − a)T−1e−y

∼ (1− ε)1/αe−x + e−y, T →∞.

Consequently

n∏
k=1

P

{
aT (max

t∈Sk

YT (t)− βT,γ) ≤ x, aT ( max
t∈R(δ)∩Sk

YT (t)− βδT ) ≤ y
}
≤ exp(−((1− ε)1/αe−x + e−y)).

A similar argument leads to the lower bound

n∏
k=1

P

{
aT (max

t∈Sk

YT (t)− βT,γ) ≤ x, aT ( max
t∈R(δ)∩Sk

YT (t)− βδT ) ≤ y
}
≥ exp(−((1 + ε)1/αe−x + e−y)),

hence letting ε ↓ 0 establishes the proof. �

Lemma 4.5. For any dense grid R(δ) and any x ∈ R

lim
T→∞

∣∣∣∣P {aT ( max
t∈[0,T ]

YT (t)− βT,γ) ≤ x
}
− P

{
aT ( max

t∈R(δ)∩[0,T ]
YT (t)− βT,γ) ≤ x

} ∣∣∣∣ = 0.

Proof: For any x ∈ R∣∣∣∣P {aT ( max
t∈[0,T ]

YT (t)− βT,γ) ≤ x
}
− P

{
aT ( max

t∈R(δ)∩[0,T ]
YT (t)− βT,γ) ≤ x

} ∣∣∣∣
≤
∣∣∣∣P {aT ( max

t∈[0,T ]
YT (t)− βT,γ) ≤ x

}
− P

{
aT (max

t∈S
YT (t)− βT,γ) ≤ x

} ∣∣∣∣
+

∣∣∣∣P {aT (max
t∈S

YT (t)− βT,γ) ≤ x
}
− P

{
aT ( max

t∈R(δ)∩S
YT (t)− βT,γ) ≤ x

} ∣∣∣∣
+

∣∣∣∣P {aT ( max
t∈R(δ)∩S

YT (t)− βT,γ) ≤ x
}
− P

{
aT ( max

t∈R(δ)∩[0,T ]
YT (t)− βT,γ) ≤ x

} ∣∣∣∣ =: L1 + L2 + L3.

Utilising a similar argument as in the proof of Lemma 4.1, we get

lim
T→∞

L1 = lim
T→∞

L3 = 0.

Note that R(δ) is a dense grid. Form the proof of Lemma 4.2, we know that limT→∞ L2 = 0, hence the proof is

complete. �

Proof of Theorem 1.1. The first claim follows directly by Lemmas 4.1-4.4. We will prove the asymptotic relation

(24). In view of Lemma 4.5 we have∣∣∣∣P {aT (MT (Y )− βT,γ) ≤ x, aT (Mδ
T (Y )− βT,γ) ≤ y

}
− P {aT (MT (Y )− βT,γ) ≤ x, aT (MT (Y )− βT,γ) ≤ y}

∣∣∣∣
≤
∣∣∣∣P {aT (M δ

T (Y )− βT,γ) ≤ y
}
− P {aT (MT (Y )− βT,γ) ≤ y}

∣∣∣∣→ 0, T →∞.

Next, applying (22) and Theorem A

P {aT (MT (Y )− βT,γ) ≤ x, aT (MT (Y )− βT,γ) ≤ y} = P{aT (MT (Y )− βT,γ) ≤ min(x, y)}

∼ P{aT (∆T − βT,γ) ≤ min(x, y)}

→ exp(− exp(−min(x, y)))
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holds as T →∞, and thus the proof is complete. �

Proof of Corollary 2.1. Note first that (set r̃T = (1− r(T ))1/2)

r−1/2(T )

(
MT

r̃T
− βT,γ

)
=
(
r1/2(T )aT

)−1
aT [∆T − βT,γ ] + r−1/2(T )X̄T /r̃T

and

r−1/2(T )

(
M δ
T

r̃T
− β∗T

)
=
(
r1/2(T )aT

)−1
aT
[
∆δ
T − β∗T

]
+ r−1/2(T )X̄T /r̃T .

Both first terms in the above two sums convergence in probability to 0 by Theorem 1.1 and the assumption

(r(T ) lnT )−1 = o(1). Consequently, utilising further the fact that the variance of the second term tends to (1−γ)−1

as T →∞, we have

P

{
r−1/2(T )

(
MT

r̃T
− βT,γ

)
≤ x, r−1/2(T )

(
M δ
T

r̃T
− β∗T

)
≤ y
}

∼ P
{
r−1/2(T )X̄T /r̃T ≤ x, r−1/2(T )X̄T /r̃T ≤ y

}
= P

{
r−1/2(T )X̄T /r̃T ≤ min(x, y)

}
→
(

1− γ
2π

)1/2 ∫ min(x,y)

−∞
exp

(
−1− γ

2
z2
)
dz, T →∞,

hence the claim follows. �
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