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remains elusive. Here we review and discuss considerations for cardiovascular IncRNA discovery, annotation
and functional characterization. Although we primarily focus on the heart, the proposed pipeline should foster
functional and mechanistic exploration of these transcripts in various cardiovascular pathologies. Moreover,
these insights could ultimately lead to novel therapeutic approaches targeting IncRNAs for the amelioration of
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1. Introduction infarction. Ultimately, heart failure (HF) develops, and is associated

with a high probability of death. Unfortunately, increased risk factors,
Coronary artery disease is the most frequent cardiovascular disorder, including detrimental life style choices, mean HF is evolving into a
and typically leads to acute coronary syndromes and myocardial major global epidemic with residual morbidity and mortality projected
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matin immunoprecipitation follows by high-throughput DNA sequencing; ChIRP, chromatin isolation by RNA purification; CLASH, crosslinking, ligation and sequencing of hybrids; CM,
cardiomyocyte; ES cell, embryonic stem cell; GRN, gene regulatory network; GTF, Gene Transfer Format; GWAS, genome-wide association study; HF, heart failure; IncRNAs, long noncod-
ing RNAs; LincRNAs, long intergenic (or intervening) noncoding RNAs; miRNA, microRNA; MS, mass spectrometry; RNA-Seq, RNA high-throughput sequencing; RT-PCR, reverse-
transcription polymerase chain reaction; SMC, smooth muscle cell; TF, transcription factor.
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to increase over the coming decades [1]. Existing therapeutic ap-
proaches for patients suffering with HF include for instance inhibitors
of the renin angiotensin system and beta adrenergic receptor antago-
nists, which target neurohormonal signaling pathways [2]. Although
these therapies have improved the survival of HF patients, they fail
to reverse or even halt the pathogenesis of heart failure. In light of this
unmet clinical need, the elucidation of the precise molecular mecha-
nisms controlling pathological remodeling and identification of novel
therapeutic targets are required with the promise of identifying
alternative approaches to prevent this prevalent and deadly disease.

In the adult heart, stress-dependent neurohormonal and hemody-
namic signals induce a pathological remodeling process associated
with cardiomyocyte (CM) hypertrophy and fibrosis, which leads to
further myocyte death during the chronic phase of the response [3].
These combined processes culminate to induce contractile and structural
failure, the hallmarks of HF. At the cellular and molecular levels, these
neurohormonal and hemodynamic stressors activate a network of
integrated signal transduction cascades that converge on a set of core
cardiac transcription factors (TFs) [4]. These evolutionary conserved
TFs (e.g. GATA4, NKX2.5, and MEF2) interact in a combinatorial manner
at target cis-regulatory sequences (promoters and enhancers) to elicit
specific gene expression programs [5]. However, the notion that the
gene regulatory networks (GRNs) activated by cardiac stressors are pri-
marily protein-based regulatory systems has proved to be premature.
With the advent of ultra high throughput sequencing technologies, a
number of important studies have demonstrated that these GRNs are
under the control of a myriad of interleaved networks of regulatory non-
coding RNAs (ncRNAs) [6]. These ncRNAs control numerous aspects of
pathological GRN activity via a diverse array of regulatory mechanisms.
Currently, the best characterized ncRNAs in the heart are the microRNAs
(miRNAs). These small regulatory ncRNAs contribute to fine-tune the
activity of the cardiac GRN post transcriptionally via targeting protein-
coding transcripts for degradation, thereby implicating miRNAs as
important stress-dependent modulators of the physio-pathological re-
sponse in the damaged heart. In addition to miRNAs, recent screens
have identified other regulatory classes of ncRNAs, namely long noncod-
ing RNAs (IncRNAs) [7]. In the present review, we provide the reader
with suggestion to identify and functionally characterize novel IncRNAs
in the cardiovascular system.

2. Long noncoding RNAs

The broad term IncRNA is an operational term that refers to tran-
scripts greater than 200 nucleotides in length, which, in addition, do
not apparently encode a protein sequence [8]. This size threshold is a
convenient but arbitrary one that excludes most known classes of
small regulatory and infrastructural RNAs, including tRNAs, piRNAs
and miRNAs. Importantly, although these transcripts are referred to as
noncoding, a few IncRNAs have been found to encode micropeptides
[9]. Most IncRNAs are expressed at relatively lower levels when com-
pared to messenger RNAs (mRNAs), demonstrate a more restricted
expression pattern and are typically found to be associated with ubiqui-
tously expressed chromatin modifying complexes or splice factors [8].
In contrast, those that are expressed at levels comparable to mRNAs
appear to be implicated as structural scaffolds for specialized nuclear
domains. Some IncRNAs are also enriched in the cytoplasm, suggesting
roles in regulating cellular functions in this compartment. Collectively,
these diverse IncRNA characteristics support a complex landscape of
RNA biology that remains largely unexplored in cardiovascular biology
and in particular heart failure [10].

Initially, IncRNAs have been classified according to their location
on the genome and orientation as compared to the closest coding
gene. Intergenic IncRNAs are located in between two coding genes,
not overlapping therefore with any coding sequences. They are usually
referred to as long intergenic (or intervening) noncoding RNAs
(lincRNAs). Enhancer-associated IncRNAs represent a subclass of

intergenic IncRNAs. In contrast, intragenic IncRNAs overlap with coding
genes. In this case, IncRNAs can be transcribed from the sense or anti-
sense strand. Natural antisense transcripts (NATs) have been defined
as overlapping antisense noncoding RNAs that regulate the expression
of their opposite coding gene. Finally, bidirectional noncoding RNAs
are transcribed at the close vicinity of a protein coding gene on the op-
posite strand. It is important to note that the subgroup of intergenic
IncRNAs has been studied in priority since data are easier to interpret
than those of overlapping IncRNAs. For a more detailed description of
IncRNA biogenesis, evolutionary history, structure and function, we
refer the readers to the recently published reviews [11-13].

Studies within the cardiovascular system are implicating IncRNAs as
important transcriptional regulators of cardiac gene expression at the
transcriptional and post transcriptional level. Table 1 lists a series of
recently identified cardiovascular IncRNAs. Typically, IncRNAs exhibit
distinctive roles in modulating tissue-specific epigenomic states and
nuclear organization, which are critical for the transcriptional and epi-
genetic reprogramming that underpins HF pathogenesis [ 14]. The global
reorganization of the nuclear architecture and epigenome is indeed
central for the genome-wide transcriptional reprogramming that
underpins pathological remodeling. Numerous characteristics render
IncRNAs ideal molecules to provide cardiovascular cells with a catalog
of molecular address codes to guide transcriptional and epigenetic reg-
ulatory events in the genome [15]. For instance, an important character-
istic associated with IncRNAs in the cardiovascular system is that they
exhibit richer tissue and cell specificity when compared to mRNAs and
miRNAs [16,17]. These data suggest that an important function for
IncRNAs is to dictate combinations of ubiquitously expressed chromatin
modifying protein complexes in a highly cell specific manner. This
allows the establishment of tissue-specific epigenomic states that deter-
mine cellular fate and behavior post stress. A canonical example is
Myheart (Mhrt), a IncRNA encoded within the myosin heavy gene 7
(Myh7) locus [18]. This heart-enriched IncRNA is required for maintain-
ing cardiac function in the stressed heart, and its stress-dependent re-
pression leads to cardiomyopathy. Importantly, forced expression of
Mhrtis sufficient to protect the heart from cardiac hypertrophy and sub-
sequent contractile failure. At the molecular level, Mhrt controls the
local epigenetic environment by acting as a molecular decoy and antag-
onizing the activity of Brg1, a chromatin remodeling factor known to be
important for the transcriptional reprogramming that occurs in the fail-
ing heart. Interestingly, human MHRT is also depleted in patients
suffering with cardiomyopathy, supporting a conserved role through
evolution.

Furthermore, IncRNAs can efficiently and rapidly operate both in cis,
at their site of transcription, and in trans at remote locations around the
genome. For example, a class of IncRNAs derived from developmental
and adult cardiac enhancers activates neighboring genes in cis via
DNA looping and pause release mechanisms [14,19]. A significant
group of IncRNAs, typically associated with canonical active promoter
chromatin marks, act primarily in trans as recruiters or decoys for chro-
matin remodeling complexes and transcription factors to silence or ac-
tivate specific gene expression programs [20]. These functions are as a
consequence of a particularly high affinity of IncRNAs for RNA binding
proteins such as components of the Trithorax (e.g. Fendrr) [21] and
Polycomb complexes (e.g. Bvht) [22]. Other trans-acting cardiovascular
IncRNAs have been shown to function as sponges for miRNAs, titrating
the ability of these small ncRNAs away from their sites of action [23].
Furthermore, IncRNAs can also regulate mRNA splicing, translation or
degradation through association with mRNAs or protein components
of RNP complexes. Therefore, it is becoming increasingly evident that
cardiovascular IncRNAs have functions in a diverse array of gene regula-
tory processes. However the field is still in its infancy and it is impera-
tive that we develop a logical and flexible approach for discovery and
annotation of high priority IncRNAs. This should foster their functional
and mechanistic exploration in the context of cardiovascular disease.
In this review, we summarize, discuss and propose best practices
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Table 1
Cardiovascular IncRNAs.
LncRNA Species Biotype Function; association with disease Mechanism Ref.
ALIEN Human Intergenic Cardiovascular commitment Unknown [25]
ANRIL Human Antisense Metabolism; coronary artery disease Unknown [58]
HIF1A-AS2 Human Antisense Heart failure Unknown [59]
KCNQ10T1 Human Antisense Cardiovascular development; arrhythmia Guide [60]
LIPCAR Human Unknown Heart failure Unknown [39]
MIAT Human Intergenic Myocardial infarction Decoy [61]
MYL4-AS Human Antisense Cardiac hypertrophy Unknown [62]
PUNISHER Human Antisense Endothelial cell identity Unknown [25]
SENCR Human Antisense Smooth muscle contractility Decoy [26]
TERMINATOR Human Intergenic Pluripotency; cardiovascular development Unknown [25]
Bvht Mouse Intergenic Cardiac mesoderm commitment Decoy [22]
Carl Mouse Intergenic Mitochondria; cardiomyocyte apoptosis Decoy [46]
Chrf Mouse Intergenic Cardiac hypertrophy Decoy [23]
Fendrr Mouse Intergenic Cardiac development Guide [21]
Malat1 Mouse Intergenic Endothelial cell identity Decoy [47]
Mhrt Mouse Intergenic Cardiac hypertrophy Decoy [18]
mm85 Mouse Intergenic Enhancer-associated IncRNA Cis-regulation [19]
Novinc6 Mouse Intergenic Enhancer-associated IncRNA Unknown [16]
Smad7-IncRNA Mouse Antisense Enhancer-associated IncRNA Cis-regulation [19]

involving state of the art technological and computational approaches
for the discovery and characterization of cardiovascular IncRNAs.
Exploring this uncharted territory has wide ranging implications for
our understanding of cardiovascular biology and disease, representing
a potential treasure trove of specific and efficient therapeutic targets
for the amelioration of heart disease.

3. Discovery of cardiovascular IncRNAs

Gene expression profiling within the cardiovascular system typically
utilizes the powerful approaches of massively parallel RNA sequencing
(RNA-Seq). The pervasive nature of these approaches has recently
led to an avalanche of data on cardiovascular transcriptional units,
complexity and isoforms in a number of cardiovascular contexts [7].
RNA-Seq has now been used for a number of cardiovascular cell types,
including cardiovascular precursor cells, cardiomyocytes, endothelial
cells and vascular smooth muscle cells during differentiation and matu-
ration, development and in adulthood including models such as myo-
cardial infarction and pressure overload (Table 1) [16,19,24-28]. The
first step in the analysis process is to assemble transcripts from the se-
quence reads. Classically, this step involves first mapping of the se-
quence reads to a reference genome and then assembling the
transcripts based on the genomic coordinates using tools such as
Cufflinks [29] or Scripture [30]. An alternative strategy is to perform tran-
script assembly directly from the sequence reads without the need of a
reference genome (e.g. Oases [31], Trinity [32]). The latter strategy is
necessary when no reference genome is available, or the reference ge-
nome is of poor quality. In our work, since we focus on identification
of IncRNAs in mouse and human for which the genome sequences are
well annotated, we have used a classical approach of first mapping
RNA-Seq reads to the genome and then performing ab initio transcript
reconstruction using the Cufflinks algorithm [16,19]. A workflow sum-
marizing our IncRNA discovery pipeline is shown in Fig. 1. We start
from three or more samples of polyA+ mRNA and sequence to a
depth of 200-400 million 100nt paired-end reads. At least three biolog-
ical replicates per condition are necessary to enable any meaningful
downstream statistical comparisons. It is favorable to sequence as
many replicates as possible to gain enough power to detect differences
genome-wide. The number of samples required will depend strongly on
the biological and technical variability of an experiment. In our experi-
ence, we have found that, for exploratory analyses of homogeneous
samples (e.g. cell lines, tissues from genetic mouse mutants and
controls) in a highly controlled experiment, three biological replicates
at high read depth can provide on the one hand sufficient reads to detect
novel IncRNAs, and on the other sufficient power to detect statistical

differences between conditions. Of course, in a real world setting involv-
ing the use of clinical subjects, many more samples would be required to
achieve a similar statistical power. Following transcript assembly from
mapped sequence reads, the next step in our pipeline is to merge the re-
sults of the ab initio transcript prediction with known transcripts from a
high quality database of known transcripts such as Ensembl [33]. This in-
volves a comparison of the genomic coordinates of the RNA-Seq-
generated transcripts with those of the reference transcripts, creating
a single GTF (Gene Transfer Format) file containing all known and
novel transcripts. This is performed using Cuffimerge, which is part of
the Cufflinks package [29]. Using the information gained from known
transcripts it is possible to now divide the transcripts into known and
novel. Of course, at this stage, both protein-coding and noncoding tran-
scripts are represented. It is therefore necessary to separate these tran-
scripts using appropriate computational tools. Such tools can be divided
into conservation-based (CSF and PhyloCSF [34]), which rely on evolu-
tionary conservation of coding sequences to test whether a particular
transcript is coding, and non-conservation based (CPC [35], CPAT [36],
GenelD [37]), which rely on sequence feature-based classifiers. The
former conservation-based methods are limited in that they will only
reliably detect coding regions from known protein families, and not re-
cently evolved protein coding genes. The latter non-conservation based
methods are based on training classifiers to recognize particular fea-
tures of coding sequences. These latter methods have the advantage
that they do not require a sequence to be conserved across species to
predict that it would be coding, only that the sequence shares some fea-
tures with most coding sequences. Such machine learning approaches
however often suffer from high type 1 (false positive) and type 2
(false negative) error rates, and can behave better or worse depending
on whether the dataset being tested is similar to the data used to train
the algorithm or not. In our pipeline, we filter the novel transcripts to re-
move those that contain a single exon or are below 200nt in length
(these are the current accepted standards to define a IncRNA), and
then use GenelD to score novel transcripts for their coding potential.
Novel single-exon transcripts are removed because this subgroup is
more likely to be contaminated with artifacts due to fragments pro-
duced during RNA-Seq. In order to define an appropriate score cutoff
to optimally separate coding and noncoding transcripts, we recommend
first running GenelD on all the known coding and noncoding transcripts
for a given experiment, and plotting the score distributions of known
coding versus noncoding transcripts. In our example from myocardial
IncRNAs the coding score cutoff was taken at the intersection of the
known coding and noncoding score distributions (Fig. 1).

In our experience, paired-end sequencing to a depth of at least 300
million reads is essential to detect novel tissue-specific IncRNAs [16].
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Fig. 1. Pipeline for the discovery and annotation of cardiovascular IncRNAs. See text for details. Images are reproduced with permission from Ounzain et al. EHJ. 2015 (Ref. [13]).

Using read depths of over 350 million paired-end reads, we were re-
cently able to identify 1500 novel multi-exonic polyadenylated IncRNAs
in the infarcted myocardium [16], and 2500 from mouse embryonic
stem (ES) cell differentiating towards cardiomyocytes [19]. In order to
test how important depth was in our discovery efforts, we performed
a simulation in which we counted how many novel IncRNAs would
have been discovered at increasing sequencing depths (Fig. 2; see leg-
end for details). Our results are striking: If we had sequenced to a typical

depth of 50 million paired-end reads, we would have missed 50-60% of
the novel IncRNAs. It is important to emphasize again that the novel
IncRNAs that required the greatest depth of sequencing for discovery
were those exhibiting the most interesting functional and regulatory
characteristics linked to cardiovascular cell function and biology [16].
In contrast, we have found that shallow sequencing will lead to the
identification of mainly annotated, non tissue-specific IncRNAs. Based
on this computational simulation, we suggest therefore that samples
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Fig. 2. Numbers of novel IncRNAs discovered at different read depths in adult heart and ES cells. Starting from the total reads in a dataset, 10 million reads were removed from the data
iteratively, and the raw counts per gene were adjusted to the new total number of reads, by multiplying the counts by the proportion of total reads in the sample. An average per gene was
then taken across all samples, and only those genes that passed our minimum threshold for expression were kept (mean counts > 5) and plotted against read depth. For both the adult
heart and ES cell experiments, the slope is steeper at lower read depths (up to 50 million reads), and tails off gradually at higher depths. Fifty million reads is the depth typically used
in RNA-Seq experiments. The blue-boxed area highlights the numbers of IncRNAs that would be discovered using this standard read depth and below. The green-boxed area highlights
the numbers of novel IncRNA that would be ‘missed’ when sequencing to this standard depth. Above 100 million reads, there is a steady increase in number of novel IncRNAs discovered
as read depth increases, with no plateau reached even at read depths of 400 million and over. Based on this analysis, we predict that a plateau will be reached between 500 and 600 million
reads per sample. We recommend sequencing to a depth of at least 350 million reads, which we predict will allow detection of the vast majority of novel IncRNAs in a sample.

should be sequenced at a depth of at least 350 million reads with a min-
imum of three biological replicates. In addition, the size of paired-end
reads, i.e. 100 base pairs, is essential to facilitate transcriptome assembly
and allow isoform resolution of both mRNAs and IncRNAs.

4. Functional annotation of cardiovascular IncRNAs

Once novel IncRNAs have been identified and computationally
demonstrated to lack coding potential, candidates can be prioritized
for functional characterization based on a number of criteria including,
(a) tissue- and cell type-specific expression; (b) cytoplasmic vs. nuclear
expression; (c) dynamic response to developmental or environmental
cues; (d) guilt-by-association analysis, i.e. analysis of co-expression with
coding genes of functional relevance; (e) correlated expression with car-
diovascular physiological traits and parameters; (f) association with spe-
cific chromatin states; (g) inferred functions based on developmental
chromatin state patterns and (h) the possible existence of a human
ortholog [16]. To assess cell and tissue specificity, we recommend
quantifying expression of newly identified IncRNAs in publicly available
RNA-Seq datasets (e.g. ENCODE data). It is then possible to determine
the relative expression of candidate IncRNAs in the tissue of interest, in
this case heart, versus the mean expression in all non-cardiac tissues.
This then allows heart specificity of new IncRNAs to be determined and
interpreted. Not surprisingly, using comparable approaches, a number
of studies have demonstrated that typically novel IncRNAs identified
within the heart exhibit much greater cardiac specificity than protein
coding genes and even miRNAs [16,17]. These findings do not rule out

that IncRNAs demonstrating more global expression pattern are not im-
portant for cardiac development and homeostasis. However, with regards
to their therapeutic potential, heart-enriched IncRNAs represent ideal
candidates since targeting these IncRNAs should minimize off-target
effects.

As already mentioned above, many IncRNAs can remodel their local
chromatin environment to regulate the expression of nearby develop-
mental and physiological coding genes in cis to control homeostasis.
Therefore, using a guilt-by-association approach to analyze the expres-
sion patterns of proximal coding genes represents a powerful way to
identify functionally important cis-regulatory IncRNAs. Furthermore,
IncRNAs whose expression kinetics are highly correlated with function-
ally important networks of coding genes during development or patho-
logical remodeling also suggests such IncRNAs may be functionally
involved in parallel processes. Depending on the cell type and tissue ex-
amined, this correlative approach can be expanded to identify IncRNAs
highly correlated with physiological traits and characteristics. The
unique nature of RNA-Seq approaches lend global IncRNA expression
data amenable to direct correlation profiling with continuous physio-
logical traits of choice. This is of particular relevance within the heart,
an organ that can be physiologically assessed using non invasive
methods including echocardiography to evaluate cardiac dimensions
and function. For example, we and others have correlated IncRNA ex-
pression profiles with echocardiography derived physiological traits
[16,17]. Impressively, novel IncRNAs were better correlated with cardi-
ac traits when compared to mRNAs and miRNAs. Such an approach
allows the filtering of IncRNAs predicted to be relevant in very specific
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functional and remodeling-associated biological processes. From a bio-
marker perspective, this type of approach also demonstrates that unsu-
pervised clustering of IncRNAs is able to distinguish physiological traits.
It indicates that IncRNAs could represent highly specific indicators of
physiological traits, with significant diagnostic and prognostic values
in a clinical setting. Supporting this observation, recent investigations
have supported the presence of IncRNAs in the blood. These molecules
could aid in the diagnosis and prognosis of cardiovascular disease
[38-40].

An increasingly powerful approach for the functional and regulatory
annotation of novel IncRNAs is to characterize their underlying chroma-
tin states in relevant tissue, cell types and pathological situations using
publicly available and in house-generated ChIP-Seq data sets. Chroma-
tin maps have previously been used for the initial identification of the
intergenic class of long noncoding transcripts (lincRNAs), which were
identified on the basis of their association with a canonical promoter
signature (H3K4me3) at their transcriptional start sites. These
intergenic IncRNAs typically encode trans-regulatory functions, regulat-
ing global transcriptional programs of numerous coding genes across
chromosomes. Alternatively, a large fraction of newly identified
IncRNAs, particularly in the heart, are derived from active tissue-
specific enhancers characterized by H3K4me1 and H3K27Ac occupancy
[16]. Enhancer-associated IncRNAs typically regulate their target coding
genes in cis. Importantly, a number of studies have implicated these

Stages of differentiation

enhancer-associated IncRNAs as being functionally required for enhanc-
er activity via mediating chromatin looping, promoter enhancer
communication and Pol2 pause-release at target promoters [14]. We
and others have identified hundreds of cardiac enhancer-associated
IncRNAs that are involved in the global heart-specific enhancer-
dependant cis-regulation of transcriptional programs, which underpin
cardiac development and pathological remodeling. Supporting this,
the proximal coding genes to these transcribed novel enhancer-
associated IncRNAs are in general implicated in heart development
and cardiac homeostasis. Moreover, enhancer-associated IncRNA
expression in the injured heart usually correlates with coding gene
expression [19].

Integration of chromatin state patterns and dynamics can also be
leveraged for inferring functions for novel IncRNAs. This in particular
pertains to chromatin state patterns associated with coding gene pro-
grams during cardiac differentiation. It has previously been shown
that lineage-specific coding genes in differentiating cells cannot be
assigned to a particular function based on their expression pattern
alone. However, lineage-specific coding genes that are co-expressed at
particular stages can be functionally grouped based on their distinct
chromatin state patterns at their promoters during cardiac differentia-
tion [24]. In other words, subgroups of co-expressed genes, clustered
based on unique chromatin state patterns, appeared to be involved in
highly specialized and distinct biological processes, including signaling,
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Fig. 3. Functional inference of novel cardiovascular IncRNAs based on chromatin state transition during cardiogenic differentiation. Using common patterns of chromatin state transition
derived from ChIP-Seq data sets obtained in differentiating mouse ES cells (see Ref. [24]), it is possible to infer functions for novel cardiovascular IncRNAs.
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metabolism and cardiac muscle contraction (Fig. 3). Using this informa-
tion, one can assume that novel cardiovascular IncRNAs that shared
comparable chromatin state patterns as those observed at coding
genes, are likely to be involved in parallel biological processes. This ap-
proach provides a powerful unbiased chromatin-based proxy to infer
functions and annotate novel cardiovascular IncRNAs. Using this ap-
proach, we found that heart-enriched IncRNAs identified in the infarct-
ed myocardium were preferentially assigned to chromatin pattern
clusters linked to specialized cardiac-specific processes, including
heart development and contractility [16]. In addition, the novel
IncRNAs, which, as described above, were identified using greater RNA
sequencing depth, were more associated with these cardiac functional
processes than annotated mRNAs and IncRNAs. These findings give fur-
ther support to the relevance of the low-abundance IncRNAs for cardiac
physiology. Inferring function during cardiogenic differentiation in ES
cells makes possible the identification of novel IncRNAs that are expect-
ed to play significant roles in the adult heart. Moreover, this analysis can
predict the functional processes that may be perturbed in vivo when
experimental modulation of the IncRNA of interest is performed.

Upon completion of the integrated genomic approaches, it is impor-
tant to identify human orthologs. This can be achieved directly by utiliz-
ing human heart RNA Seq data sets and mapping the IncRNA catalog to
the human genome using TransMap, a cross species transcript align-
ment tool [41]. TransMap will map murine cardiovascular IncRNAs
across the human genome using syntenic BLASTZ alignments that con-
sider gene order and synteny. Furthermore, TransMap can integrate
RNA sequencing reads from human samples to refine and complete
ortholog identification and annotation. Finally, once orthologous
human IncRNAs have been identified, it is possible to assess human
IncRNA expression in human RNA Seq datasets, including those gener-
ated by large scale consortia such as the ENCODE [42] and Gtex consor-
tiums [43]. It is also possible to map single nucleotide variants identified
in genome wide association studies (GWAS) and linked to common car-
diovascular traits and disease with orthologous IncRNA loci. This ap-
proach is likely to provide clues to the potential functions of identified
cardiovascular IncRNAs. The first evidence for a putative role of IncRNAs
in cardiovascular diseases came from a GWAS that identified a suscepti-
bility locus for coronary artery disease on the human chromosome 9p21
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[44]. This locus is in linkage disequilibrium with a IncRNA named anti-
sense noncoding RNA in the INK4 locus (ANRIL) suggesting that single
nucleotide variants within ANRIL could contribute to susceptibility for
the development of coronary artery disease. Indeed, a number of
follow-up studies have demonstrated that ANRIL expression is indica-
tive of a risk for peripheral artery disease, carotid atherosclerosis, coro-
nary atherosclerosis and other vascular diseases [45].

5. Functional assessment of cardiovascular IncRNAs

Prior to functional dissection, it is imperative that candidate IncRNA
expression profiles are validated by quantitative methods including
RT-PCR in relevant tissue samples and possibly in isolated primary
cells, to gauge expression levels and tissue and cellular specificity. More-
over, in situ hybridization can be executed on appropriate histological
tissue sections to confirm expression data. To better understand the
physiological roles of cardiovascular IncRNAs during development and
disease, and to decipher whether their regulatory functions operate
via cis or trans mechanisms generally requires experimental modula-
tion of IncRNA expression. These include in vitro and in vivo gain- and
loss-of-function approaches (Fig. 4). Initially, cardiovascular IncRNA
knockdown has been performed using RNA interference, such as small
interfering (siRNA) or small hairpin RNAs (shRNA), followed by molec-
ular and cellular analysis to determine the global effects on gene expres-
sion and cellular behavior. In a seminal study, this approach was used to
identify and characterize a IncRNA important for cardiac specification,
which was named Braveheart (Bvht) [22]. Transducing mouse ES cells
with shRNAs to deplete Bvht led to impaired cardiogenic differentiation
in vitro. Through transcriptomic analysis, it was shown that Bvht acts
upstream of the key cardiogenic TF, Mesp1, to induce its expression
and direct correct temporal and spatial activation of the subsequent
cardiac gene regulatory network. A similar approach was used for the
characterization of previously unannotated human vascular IncRNAs,
TERMINATOR, ALIEN and PUNISHER [25]. These IncRNAs were specifically
expressed in pluripotent stem cells, cardiovascular progenitors and dif-
ferentiated endothelial cells. Loss of function using shRNAs in vitro and
antisense morpholino nucleotides against zebrafish orthologs in vivo
demonstrated that all three IncRNAs are involved in vertebrate
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Fig. 4. Different approaches for the functional assessment of IncRNAs in vitro and in vivo. Gain- and loss-of-function approaches using shRNAs, modified antisense oligonucleotides and
classical genetic models can be adopted in vivo and in vitro to assess novel cardiovascular IncRNA function. Once manipulated, downstream genomic and functional consequences can

be analyzed using various techniques and physiological models.
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cardiovascular development. In addition to endothelial cells, siRNA ap-
proaches have also been successfully adopted in smooth muscle cells
(SMCs). For example, siRNA mediated knockdown of the SMC IncRNA
SENCR results in deregulation of a SMC-specific gene, namely MYOCD,
which is a critical co-factor responsible for dictating the SMC gene pro-
gram [26]. Finally, shRNA was also used to deplete the cardiomyocyte-
enriched IncRNA, Carl. This IncRNA acts as a competitive endogenous
RNA (ceRNA) for miR-534, which regulates mitochondrial fission and
cardiomyocyte apoptosis [46].

Despite the success of RNA interference strategies, concerns have
been raised about the efficacy of these techniques for depleting nuclear,
and in particular, enhancer-associated IncRNAs. Indeed, the machinery
used by the RNA interference pathway is predominantly enriched with-
in the cytoplasm. To overcome these obstacles, and allow targeting of
nuclear-enriched cardiovascular IncRNAs, many investigators are utiliz-
ing modified antisense oligonucleotides (ASOs), called LNA GapmeRs.
Importantly, GapmeRs degrade transcripts in the nuclear compartment
via a RNaseH-dependent mechanism, leading to efficient depletion of
nascent transcripts. This has proven to be particularly efficient for the
depletion of cardiac enhancer-associated IncRNAs in cardiomyocytes
(e.g. Novinc6), cardiac fibroblasts (e.g. Smad7-IncRNA) and cardiac
precursor cells (e.g. mm85) [16,19]. Therefore, LNA GapmeR-mediated
depletion of these enhancer-associated cardiovascular IncRNAs results
in perturbed expression of the target coding genes. GapmeRs also
offer a powerful approach for depleting IncRNAs in vivo. Malat1 is a
IncRNA predominantly enriched in the nucleus and highly responsive
to hypoxia in human umbilical vein endothelial cells. Inhibition of
Malat1 in vivo using LNA GapmeRs impaired vascularization of the ret-
ina and ischemic hind limb [47]. This identifies this transcript as an in-
teresting cardiovascular target to promote or block angiogenesis. More
generally, involvement of candidate IncRNAs in specific biological pro-
cesses can be evaluated in large-scale assays based on the unbiased
screening of large collections of GapmeRs in relevant cell types using
high-resolution techniques.

In addition to using RNA interference and modified antisense oligo-
nucleotide approaches, genome editing technologies can be used to
modify cardiovascular IncRNA expression in vivo. Classical approach
via generating transgenic knockouts, either germline or conditional
knockouts, can be envisaged. However, we are facing two main con-
strains. First of all, deletion of IncRNA gene overlapping a coding gene
might be largely uninformative due to possible interference with natu-
ral expression of the coding RNA. Second, deletion of any given DNA
sequence to eliminate the corresponding IncRNA might produce a phe-
notype solely because a mutation is introduced in a functional DNA ele-
ment. In a prominent study, the depletion of Fendrr was therefore
obtained by inserting a premature transcription stop signal into the
first exon [21]. This resulted in embryonic lethality as a consequence
of impaired cardiac development and body wall formation. Mechanisti-
cally, Fendrr orchestrates epigenomic states critical for cardiovascular
cell specification and differentiation. Using a different genetic approach,
the Fendrrlocus was replaced by the LacZ reporter gene, resulting also in
embryonic lethality, however much later during development [48].
Follow-up studies suggested that Fendrr loss of function led to defects
in lung maturation and vascularization. In the future, the IncRNA field
will certainly benefit from new techniques to generate targeted muta-
tions in the genome, such as the TALEN and Cas9/CRISPR systems.
Transgenic approaches for gain-of-function studies have also gained
traction and illuminated roles for newly described IncRNAs. As de-
scribed earlier, Mhrt is an antisense transcript to the Myh7 locus and
was recently shown to interfere with cardiac hypertrophy and subse-
quent development of heart failure. This was formally demonstrated
using a transgenic approach for restoring normal Mhrt levels in the
stressed heart, which blunted the switch from Myh6 to 7 expression
and protected the heart from pathological remodeling [18]. This effect
was mediated by the binding of Mhrt to the Brg1/Baf chromatin remod-
eling complex, titrating it away from its target genomic loci. Although

gain-of-function approaches reveal important trans-dependent regula-
tory roles for cardiovascular IncRNAs, loss-of-function approaches cur-
rently represent the most biologically relevant strategy to investigate
underlying molecular mechanisms. First of all, many IncRNAs act in a
dose-dependent manner when binding ubiquitously expressed chro-
matin modifying protein complexes. As such, overexpression of candi-
date cardiovascular IncRNAs could lead to spurious effects through
dominant-negative actions. Specifically, supra physiological IncRNA
expression could titrate important chromatin modifying complexes
away from their natural genomic sites of action, leading to unpredict-
able effects. Finally, a large fraction of newly discovered cardiovascular
IncRNAs act as regulators of the epigenome and nuclear architecture
in cis at their site of production. In particular, the regulatory function
of IncRNAs derived from active enhancers act primarily at their endog-
enous site of production. Therefore, modulation of the nascent tran-
script is critical and exogenous overexpression is not a viable option.

6. Mechanistic assessment of cardiovascular IncRNAs

Complete characterization of cardiovascular IncRNAs requires a de-
tailed knowledge of the molecular mechanisms associated to their func-
tion. Two recently developed techniques provide a means to assess
when and where IncRNAs are binding and acting within the genome.
These comparable techniques, namely chromatin isolation by RNA puri-
fication (ChIRP) [49] and capture hybridization analysis of RNA targets
(CHART) [50], are able to map the genomic binding sites of endogenous
IncRNAs. CHART uses cocktails of several short, complementary and af-
finity tagged oligonucleotides. These complimentary oligonucleotides
allow specific enrichment for endogenous IncRNAs, along with their ge-
nomic DNA targets from reversibly crosslinked chromatin extracts,
which can be sequenced to identify genome-wide binding sites. Similar-
ly, IncRNA-binding proteins can be identified by CHART mass spectrom-
etry. ChIRP also hybridizes biotinylated complimentary oligonucleotides
to crosslink chromatin, although in this case tiling oligonucleotides are
used, which require no previous knowledge of IncRNA structural do-
mains. ChIRP can also be combined with DNA sequencing and mass spec-
trometric approaches to identify genome wide binding sites and protein
partners.

Not all cardiovascular IncRNAs interact with chromatin but the vast
majority of functional IncRNAs bind to and recruit protein complexes.
The identification of the IncRNA interactome is thus critical for a com-
plete understanding of cardiovascular IncRNA function. A conventional
approach to address this question relies on the use of RNA chromatog-
raphy [51]. Here, one can use affinity tagged oligonucleotides spanning
the IncRNA of interest as baits on which interacting proteins can
assemble. Interacting proteins are then eluted and analyzed by mass
spectrometry (MS). Once potential interacting protein partners have
been identified, classical approaches can be used including RNA-
immunoprecipitation assays followed by qRT-PCR to validate such in-
teraction. However, this classical approach can often generate false pos-
itives due to promiscuous binding of proteins to the oligonucleotide
baits. Direct capture of endogenous IncRNAs using antisense oligonucle-
otide probes as with ChIRP and CHART MS can reinforce the relevance of
the identified proteins. For instance, purification of endogenous
interacting partners has been demonstrated for the human telomerase
RNA TERC and the miRNA let-7 [52,53]. However, a major challenge is
that proteins, unlike DNA or RNA, cannot be amplified for further valida-
tion. This places an experimental constraint on the amount of material
required for in vivo purification due to the lower copy number of
IncRNAs. Newly developed technologies, including protein arrays, can
be used to screen RNA binding proteins without the obvious constraint
in starting material. Microscale devices containing proteins printed on a
solid support, allow the binding of synthesized RNAs containing a fluo-
rescent label [54,55]. Following specific binding to proteins, the array
will illuminate their corresponding coordinates. This can be imaged in
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a similar way to nucleic acid microarrays and interacting proteins can be
identified in a high throughput manner.

In addition to proteins, IncRNAs can also interact with RNA cofactors.
RNA interactions can be assayed by hybridization techniques, including
ChIRP. Using this approach bound RNAs are eluted and subjected to RNA
sequencing or quantitative RT-PCR. Investigators have demonstrated that
a IncRNA named TINCR, known to control epidermis differentiation, inter-
acts with mRNAs implicated in skin development, impacting their expres-
sion [56]. Alternative methods use alternative crosslinking approaches, in
particular UV light, which are able to capture only hybridizing RNA mole-
cules. For example, crosslinking, ligation and sequencing of hybrids
(CLASH) has been successfully used to examine direct RNA pairing be-
tween miRNAs and their target mRNAs, and can be envisaged for IncRNAs
in the not too distant future [57].

7. Conclusion

We are entering a new era where we are beginning to understand
the complex roles of cardiovascular IncRNAs during development and
disease. This highly integrated and complex layer of regulatory noncod-
ing RNAs exhibits dynamic interplay with components of various pro-
tein complexes to dictate the activity of the cardiac gene regulatory
network. Cardiac pathological states, including heart failure, are inti-
mately linked to the dynamics of cardiovascular IncRNA expression
and regulatory functions. To increase our understanding and potentially
identify new avenues for therapeutic intervention, the full extent of the
cardiovascular IncRNA transcriptome needs to be determined and cor-
rectly annotated. This needs to be executed at different stages of cardiac
development and during disease. Genomic approaches should in the fu-
ture also interrogate the non-polyadenylated and single exon RNA frac-
tion (i.e. eRNAs). This should open up new insights into the biology of
cardiovascular cells, and hopefully will identify new players in the reg-
ulatory network governing cardiac development and homeostasis. Of
critical importance is that investigators discovering new cardiovascular
IncRNAs leverage the plethora of new approaches to decipher the lan-
guage used by IncRNAs to interact with their respective protein or
RNA partners. This should illuminate our understanding of these still
elusive but potentially exciting therapeutic targets.
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