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Abstract. In this paper we define a partial order on the set of all knots and
links using a special property derived from their minimal diagrams. A knot
or link K′ is called a predecessor of a knot or link K if Cr(K′) < Cr(K) and
a diagram of K′ can be obtained from a minimal diagram D of K by a single
crossing change. In such a case we say that K′ < K. We investigate the
sets of knots that can be obtained by single crossing changes over all minimal
diagrams of a given knot. We show that these sets are specific for different
knots and permit partial ordering of all the knots. Some interesting results
are presented and many questions are posed.

1. Introduction

Let K be a tame knot, that is, K is a collection of several piece-wise smooth
simple closed curves in R3. Intuitively, if one can continuously deform a tame knot
K1 to another tame knot K2, then K1 and K2 are considered the same knot in the
topological sense. The corresponding continuous deformation is called an ambient
isotopy, and K1, K2 are said to be ambient isotopic to each other. The set of all
(tame) knots that are ambient isotopic to each other is called a knot type. For a
fixed knot (type) K, a knot diagram of K is a projection of a member K ∈ K onto
a plane. Such a projection p : K ⊂ R3 → D ⊂ R2 is regular if the set of points
{x ∈ D : |p−1(x)| > 1} is finite and there is no x in D for which |p−1(x)| > 2. In
other words, in the diagram no more than two arcs of D cross at any point in the
projection and there only finitely many such crossings. The number of crossings
not only depends on the knot type K, it also depends on the geometrical shape of
the member K representing K and the projection direction chosen. The minimum
number of crossings in all regular projections of all members of K is called the
crossing number of the knot type K and is denoted by Cr(K). For any member
K of K, we also write Cr(K) = Cr(K). Of course, by this definition, if K1 and
K2 are of the same knot type, then we have Cr(K1) = Cr(K2). Furthermore, it
may be the case that for a member K of K, none of the regular projections of
K has crossing number Cr(K). A diagram D of a knot K ∈ K is minimal if the
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number of crossings in the diagram equals Cr(K). We will often call D a minimum
projection diagram. A knot is alternating if there is a knot projection in which one
encounters over-passes and under-passes alternatingly when travelling along the
knot projection. The crossing number of an alternating knot K can be determined
by the fact that any reduced alternating diagram of K is minimal, for example the
diagram of the knot K1 in Figure 1 is minimal.

A knot K is called a composite knot if a member of it can be obtained by
cutting open two non-trivial knots K1 and K2 and reconnecting the strings as
shown in Figure 1. We write K = K1#K2 and call K1 and K2 the connected sum
components. Note that a knot can have more than two connected sum components.
A knot K that is not a composite knot is called a prime knot.

K

+

K1 K2

Figure 1. A composite knot K = K1#K2.

Traditionally, knots are tabulated according to their crossing numbers. The
crossing number of a knot is a fairly reliable indicator of how complex the knot is.
That is, it is usually the case that the larger the crossing number, the more compli-
cated the knot is (in terms of other knot complexity measures). Unfortunately, it
is usually difficult to determine the crossing numbers for most large knots. In fact
only a few special knot families have known crossing numbers (such as alternating
knots, torus knots, and Montesinos knots). A treatment of these knot families can
be found in standard textbooks on knot theory such as [6, 16]. The crossing num-
bers of most knots can only be determined if one exhaustively classifies all knot
projections with smaller crossing numbers than the given one. This has only been
done for knots up to 16 crossings [10] and alternating knots up to 19 crossings [22].
The tables of small knots up to 10 crossings can be found in most knot theory text-
books. See for example [18]. In the case of alternating knots, any two minimum
projection diagrams D and D′ of the same alternating knot K are flype equivalent,
that is, D can be changed to D′ through a finite sequence of flypes [14, 15] (see
Figure 2).

T

T

Figure 2. A single flype. T denotes a part of the diagram that
is rotated by 180 degrees by the flype.

Let c be a crossing in an alternating diagram D. The flyping circuit of c is
defined as the unique decomposition of D into crossings c1, c2, . . . , cm, m ≥ 1 and
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tangle diagrams T1, T2, . . . , Tr, r ≥ 0 joined together as shown in Figure 3 such that
(i) c = ci for some i and (ii) the Ti are minimal with respect to the pattern.

T1 T2 T3 Tr

c1 c2

Figure 3. A flyping circuit. Any crossing in the flyping circuit
can be flyped to any position between tangles Ti and Ti+1.

Let D be a regular projection diagram of a knot K. It is known that D can be
made into a diagram of the trivial knot by changing the over/under assignments at
some of its crossings. The minimum number of such changes needed is called the
unknotting number of the diagram D (and is denoted by u(D)) and the unknotting
number of a knot type K is the minimum of u(D) where D ranges over all possible
regular projections of all tame knot K with type K. The unknotting number of K
(denoted by u(K)) is a widely studied concept with many known results. See for
example [4, 11, 17, 20, 24]. In this paper, we will introduce and discuss a new
concept - called predecessors of a knot - that is related to the unknotting number.
On the one hand, instead of considering all possible regular projections of a knot
(type) K, we will restrict ourselves to only the minimum regular projections of K.
This is similar to the work of Stoimenow [20], where a more restrictive unknotting
number is defined by limiting the crossing changes to minimal projections of a knot
only. On the other hand, we will consider all the cases when a crossing change
is made at each crossing in a minimal projection diagram of K. In other words,
predecessors of a given knot include all knots of Gordian distance one from K via
crossing change from a minimum projection diagram of K. In this aspect, the notion
is similar but more restrictive than the Gordian distance studied in the literature
such as [23].

2. Predecessors and Siblings of Knots.

In this paper we investigate the sets of knots that can be obtained by single
crossing changes over all minimal diagrams of a given knot. We do this by intro-
ducing the concept of predecessors and siblings of a knot. Given a knot (type) K
with a minimum diagram D. Recall that in our definition K may have multiple
components. Consider the knot K′ obtained from D by a single crossing change.
Since the diagram D′ of K′ obtained from D by this single crossing change may
or may not be minimal, the minimum crossing number of K′ may or may not be
strictly less than Cr(K) (though is is always less than or equal to Cr(K)). We will
call K′ a predecessor of K if Cr(K′) < Cr(K). In case that Cr(K′) = Cr(K), we
will say that K′ is a sibling of K. For any given knot K, it may have many dif-
ferent minimal diagrams. Consequently, it may have many (distinct) predecessors
and siblings obtained from different minimum diagrams of K. Let KP be the set
of all predecessors of K obtained using all possible minimum diagrams of K, then
apparently KP defines a (rather complicated) topological invariant of K. Similarly,
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the set of all predecessors and siblings of K (denoted by KF and called the family
of K) also defines a topological invariant of K.

Remark 2.1. A predecessor K′ of an alternating knot K may or may not be
alternating. However, it can be shown that if K is alternating and K′ is a sibling of
K, then K′ must be non-alternating. Similarly, a predecessor K′ of a prime or non
prime knot K may or may not be prime, see Figure 9.

Remark 2.2. There are arbitrarily large (in terms of crossing number) knots
with only one predecessor. For example the (n, 2) torus knots and any Montesinos
knots with Conway symbol (k, k, . . . , k) have only one predecessor. However it is
not clear whether there are knots with only one sibling (or only siblings) and no
predecessors. See Question 2.8.

We will now generalize this concept. Assume that there is a sequence of knots
K = K0, K1, K2, ..., Kj such that Ki is a predecessor of Ki−1 (i = 1, ..., j), then we
will call Kj a j-th predecessor of K = K0. In general, if j > 1, we may simply call
Kj a remote predecessor of K. Furthermore, in case that Kj is the trivial knot, or
that Kj has no predecessor, then we will call K = K0, K1, K2, ..., Kj a family trail.
We can also define a general family trail by allowing Ki to be a sibling of Ki−1 in
the above definition.

Let us look at a few examples.

Example 2.3. The only predecessor of 31 is the trivial knot. The same is true
for 41. It follows that KP is not a complete invariant. The only predecessor of 51

is 31. Hence the family trail of 51 is {31, 01}. Apparently, these three knots have
no siblings.

Example 2.4. Let us look at a slightly more complicated case. Shown on
top of Figure 4 is the knot 75. Since there are 7 crossings in a minimum diagram
of it, we will have seven possible predecessors or siblings. But some of them are
apparently identical by symmetry as shown in the second row of Figure 4 (the first
and third). Actually it is easy to see that all predecessors generated by a single row
of half-twists are identical. The knot 75 has three such row of half-twists, explaining
the fact that there are only 3 distinct predecessors. The fact that the predecessors
in the figure form the complete predecessor set for 75 is explained in the next
section (Theorem 3.1). The complete list of family trails of 75 is {75, 52, 31, 01},
{75, 51, 31, 01}, {75, 52, 01}, {75, 31, 01}.

The following theorem is an immediate consequence of the well known fact that
any knot projection with n crossings can be made into a projection of the unknot
by making at most n− 2 crossing changes.

Theorem 2.5. Any given non-trivial knot K has a general family trail that
terminates in the unknot.

We may now define a ≤ relation between two knots K1 and K2. We say that
K2 < K1 if K2 is in a family trail of K1 and K2 6= K1. We say that K2 ≤ K1 if K2

is in a family trail of K1 and possibly K2 = K1. It is easy to check that this defines
a partial ordering for the set of all knots.
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Figure 4. The predecessors of the knot 75. The place of the
crossing change is marked by c. The first and third predecessor
in the second row have an identical twin if the crossing change is
made at c′ instead. There are no siblings of 75.

Many non-trivial questions arise now at this point. We list a few in the following
and will attempt to solve some of them in the next sections.

Question 2.6. Does there exist a non-trivial knot K with at least one sibling?

A stronger version of the question is the following.

Question 2.7. Does there exist a knot K that has only siblings?

A negative answer would immediately lead to the conclusion that any non-
trivial knot K has a family trail of length at most Cr(K)− 1.

Question 2.8. Does there exist a knot K that has exactly one sibling, with or
without predecessors?

Question 2.9. Which non-trivial knot K has no siblings and has the unknot
as its only predecessor?

In the case that K has more than one component, the above question can be
rephrased as the following question:

Question 2.10. Which unsplittable link L has no siblings and has the trivial
link as its only predecessor?
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Apparently 31 and 41 are two knots which have the unknot as the only prede-
cessor. But are there any other such knots? In [21] the concept of an everywhere
n-trivial knot diagram is discussed. A knot diagram D is everywhere n-trivial if
changing any n different crossings in D generates a diagram of the unknot. Thus
in this language, the standard diagrams of 31 and 41 are 1-trivial. Furthermore
in [21] it is conjectured that the unkot, 31 and 41 are the only knots possessing
1-trivial diagrams.

Question 2.11. Is there a knot or link with unknotting number one which does
not have the unknot as a predecessor?

This question is mentioned in [1] as follows: Does every unknotting number one
knot K have only minimal diagrams in which a single crossing change can unknot
K?

Question 2.12. Which knots have no siblings? In particular, is it true that
any alternating knot has no siblings?

Question 2.13. Is it the case that for any given K, a general family trail of it
with length j would terminate in the unknot if j is large enough?

As it turns out, there are examples of knots with siblings (examples will be
given in the next section). If K1 is a sibling of K2, then of course K1 is also a
sibling of K2. So the answer to the above question would be no. However, if we
exclude this situation, then the answer to this question is no longer that clear.

Question 2.14. How many distinct predecessors and siblings can a knot K
have? What is an upper bound of this number? In particular, is this number
bounded above by Cr(K)?

We end this section with one more observation.

Remark 2.15. Let −K be the mirror image of K. Then the predecessors
(siblings) of −K are the mirror images of the predecessors (siblings) of K. It follows
that if K is achiral then either the predecessors (siblings) are achiral or they will
show up as chiral pairs. This can be seen as follows: If D is a minimal diagram
of K then the mirror image D′ of D is also a minimal diagram of −K. Hence the
predecessors (siblings) of −K are the mirror images of the predecessors (siblings)
of K.

3. Knots with or without Siblings

In this section, we will first show an example of a non-trivial (multiple com-
ponents) knot with a sibling (shown in Figure 5). This we can prove directly by
using some well known results about alternating knots and linking numbers. We
will then show an example for the case of one component knots. We show this
by using the knot determination program Knotscape developed by J. Hoste and
M. Thistlethwaite [9]. These examples give a positive answer to Question 2.6 and
validate Question 2.12 posted in the last section.
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Figure 5. A 17 crossing knot with 6 components: Changing the
under/over pass at crossing c results into a sibling.

If one changes the under/over pass at the crossing labelled c in the non-trivial
knot K shown in Figure 5, then the knot K′ obtained has the same crossing number
as K. This can be seen as follows: The knot has 6 components. A linking num-
ber argument between the components shows that there are at least 16 crossings.
Suppose K has a diagram with 16 crossings, then deleting the two dashed thick
components must reduce the diagram by at least 8 crossings (because there are at
least 8 crossings between the removed components and the remaining components
since the total linking number between among them is 4). However, the projection
of the remaining components is a reduced alternating diagram with 9 crossings.
Thus it must have at least 9 crossings. Therefore, a 16 crossing diagram does not
exist. In other word, Cr(K) = 17. Once we make a crossing change at c, a similar
argument can be applied to K′ to shows that Cr(K′) = 17 as well.

To find knots with siblings one can use the knot table compiled by J. Hoste,
M. Thistlethwaite and J. Weeks [10]. For an alternating and reduced diagram,
it is easy to see the minimum crossing number. However, once a crossing change
is made, the diagram becomes non-alternating and it is no longer easy to tell its
crossing number and the knot table becomes essential. First one writes down the
Dowker-Thistlethwaite code [8] of a knot, and then one makes a crossing change
(which means changing the sign of a single entry in the DT code obtained) and
looks the changed code up in the knot table using Knotscape [9]. It turns out
that small knots mostly have no siblings. Evidence collected in [2] suggests that
all knots with less or equal to 9 crossings have no siblings. However we find that,
as the crossing number increases, knots with siblings become more common. Such
examples involve mostly non-alternating diagrams. Below we give two examples.
On the left side of Figure 6 is the Perko knot (10161 in the Rolfsen table [18] or
10n31 in the Knotscape table) and on the right side of Figure 6 is a sibling of the
Perko knot (10145 in the Rolfsen table and 10n14 in the Knotscape table). In fact,
the other knot diagram of the Perko knot would leads to a different sibling of it,
namely the knot 10139 in the Rolfsen table (10n27 in the Knotscape table). We
will leave this to our reader to verify. On the left side of Figure 7 is a 16 crossing
alternating knot (knot number 16a267637 in the Knotscape table whose DT code is
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(6 8 20 2 16 24 22 28 26 32 4 30 18 10 14 12)), and on the right side of Figure 7 is a
sibling of it by a single crossing change (knot number 16n172116 in the Knotscape
table whose DT code is (6 8 20 2 16 24 22 28 26 − 32 4 30 18 10 14 12)).

Figure 6. A sibling of the Perko knot: on the left is a diagram
of the Perko knot and on the right is the knot 10145 (knot number
10n14 in the Knotscape table).

Figure 7. A one component 16 crossing alternating knot with
a non-alternating sibling. The crossing leading to this sibling is
visible to the reader.

We will now state and prove a few theorems. The following theorem answers
Question 2.14 affirmatively in the case of alternating knots.

Theorem 3.1. If K is an alternating knot then the family KF of K (the set
of all predecessors and siblings of K) can be computed from any minimal diagram
of K. Moreover the cardinality of KF is bounded above by the number of flyping
circuits in a minimal diagram of K. In particular, the cardinality of KF is bounded
above by Cr(K).

Proof. Any minimal diagram D of an alternating knot or link K can be
changed to any other minimal diagram D′ of K by a finite sequence of flypes
[14, 15]. To show that KF can be computed from a single minimal diagram of
K it suffices to show that if D′ is obtained from D by a single flype then the set of
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direct predecessors obtained from D′ is the same as the set of direct predecessors
obtained form D. Let L be the knot obtained from D by changing a single crossing
a. It is easy to see that L can also be obtained from D′ by changing the same
crossing a in D′. (Note, if a is the crossing in D eliminated by the flype in D then
we will simply treat the crossing created by the flype in D′ as a.) The second part
of the theorem follows from the observation that changing any one crossing ci in
the same flyping circuit results in flype equivalent predecessors or siblings (which
are identical knots). ¤

Remark 3.2. If a crossing c in an alternating minimal diagram D of K has a
flyping circuit of c with more than two crossings then changing any crossing in the
flyping circuit results into a strict predecessor with exactly 2 fewer crossings.

Theorem 3.3. If K is a rational (two bridge) knot then K has no siblings and
all predecessors of K are also rational. Moreover if K′ is a predecessor of K then
Cr(K′) ≤ Cr(K) − 2. If K has a continued fraction expansion of length k then K
has at most k predecessors. In particular the number of predecessors of K is strictly
less than Cr(K) and any j-th predecessor of K is the unknot if j ≥ Cr(K)/2.

Proof. LetK have the continued fraction expansion < c1, c2, . . . , ck >. Chang-
ing any crossing in the 4-plat given by the continued fraction gives a diagram that
is still a 4-plat. Thus any predecessor of K is also rational. Changing any crossing
within the ci crossings given by ci results in the same predecessor and thus the
number of predecessors of K is at most k. If ci > 2 for all i (or if ci = 2 and
1 < i < k) then it is obvious that the number of crossings of the predecessor is
reduced by exactly 2. In most other cases the number of crossings reduces by more
than 2. Say we change a crossing within the ci crossings given by ci then we might
as well change one of the outermost crossings in ci. Figure 8 shows that the number
of crossings goes done by at least two. Finally if there is a ci ≥ 2 then the number
of predecessors of K is strictly less than Cr(K). If all ci = 1 then changing the
crossing in c1 produces the same predecessor as changing the crossing in c2. Again
the number of predecessors of K is strictly less than Cr(K). The last statement of
the theorem is obvious. ¤

u
o
u u

o
u

u
o

oc
o
u

u

T

T

Figure 8. The crossing c is changed in the diagram on the left
to make it non-alternating. The part of the diagram labelled T is
flipped over. This eliminates one crossing. The labels u and o indi-
cated that the first crossing encountered when following the curve
of the knot into the box is encountered by an over or underpass.
Thus the diagram on the right is still non-alternating and reduces
further. Thus the crossing number decreases by at least two.

Remark 3.4. In [7, 23] a criteria is given for 4-plats that can be obtained
from each other by a single crossing change (or strand passage). However this
criteria includes crossing changes in non minimal diagrams. In fact from any 4-plat
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one can obtain infinitely many others by a strand passage. If one just looks at the
predecessors of a 4-plat then these can be obtained from re-expanding the continued
fractions of the form < c1, . . . , ci−2, . . . , ck > into standard form, where 1 ≤ i ≤ k.

Theorem 3.5. If K is an alternating Montesinos knot, then K has no siblings.
Furthermore, any predecessor of K is also a Montesinos knot or it is a connected
sum of 2-bridge knots.

Proof. An alternating Montesinos knot K has a minimal diagram that ex-
hibits the rational tangle structure of K. Changing a crossing in one of these
rational tangles, say the tangle T , leads to a diagram of the predecessor L that is
identical to the diagram of K outside of the tangle T and has a simpler rational
tangle T ′ instead of T with fewer crossings. If T ′ is not the infinity tangle than L is
a Montesinos knot. If T ′ is the infinity tangle then L is a connected sum of 2-bridge
knots, where each summand is given by one of the rational tangles. Assume that
K has c horizontal twists. If L is obtained by changing one of the c crossings in the
row of horizontal twists then if c > 1 just two of the c crossings are deleted in L.
If c = 1 then the changed crossing is absorbed into one of the rational tangles. In
this case we obtain a non-alternating knot L whose crossing number is exactly one
less than Cr(K) [13]. ¤

Remark 3.6. The condition that K is alternating in Theorem 3.5 is necessary.
If K is a non-alternating Montesinos knot then a minimal diagram may not show
the rational tangle structure. Moreover there are no readily available methods to
draw all minimal diagrams. This makes it very difficult to compute KF . Figure 9
illustrates this. The figure shows three minimal projections of the knot 821. In the
projection shown at the right side, the structure of the Montesinos knot ((21, 21, 2−)
in Conway notation) is clearly visible and not all predecessors of this diagram are
prime knots. The projection on the left is the standard diagram in the Rolfsen
table [18], here the Montesinos structure is no longer visible. The diagram in the
center shows yet another projection. In this projection one of the predecessors
obtained is the knot 51, which is not a predecessor obtained from any of the other
two diagrams. It is easy to find examples of Montesinos knots for which there is a
predecessor whose crossing number is exactly one less than the original knot. For
example the alternating 9 crossing knot 916 ( or (3, 3, 3/2) as a Montesinos knot)
has the non-alternating 8 crossing knot 819 (or (3, 3,−2) as a Montesinos knot) as
a predecessor.

The following theorem answers Question 2.10 from the last section completely.

Theorem 3.7. Let L be an unsplittable link with k ≥ 2 components. If L has
no siblings and the only predecessor of L is the trivial link (of k components), then
k = 2 and L is the Hopf link.

Proof. First let us consider the case that k ≥ 3 and let L be a realization
of L with a minimal projection diagram D. Let C1 and C2 be two components of
L that have crossings between them. Since L is unsplittable, either C1 or C2 has
intersections with other components in D. Say a component C3 also has at least one
(hence two) crossings with C1 in the projection diagram D. If the linking number
between C1 and C2 is not zero, then changing a crossing between C1 and C3 will not
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Figure 9. Three different minimal projections of the knot 821:
The predecessor obtained at a given crossing is marked at that
crossing in the diagrams. The left one is the standard diagram
in the knot table. Only the middle diagram yields a 5 crossing
predecessor. The diagram on the right is the only (among the three
shown here) one in which the three tangles forming the Montesinos
knot are visible.

affect that fact, hence the direct predecessor obtained after that crossing change
will still have a non-trivial two-component link. If the linking number between C1

and C2 is zero, then changing a crossing between C1 and C2 will result in a non-zero
linking number (1 or −1) between C1 and C2, forming a two-component non-trivial
link. So, in either case, there is at least one direct predecessor that is not the trivial
link. Thus we must have k = 2.

Now, again let C1 and C2 be the two components of L. Consider the linking
number between C1 and C2. If this linking number is zero, then changing a crossing
between C1 and C2 will again result in a non-zero linking number, forcing C1 and
C2 into a two-component non-trivial link. On the other hand, if the linking number
between C1 and C2 has absolute value at least 2, then changing a single crossing
will still result in a non-zero linking number. Thus the only case left to consider is
when the linking number between C1 and C2 is either one or negative one. If there
are only two crossings in D, then of course L is the Hopf link and we are done. If
D contains more than two crossings, then either there are 2m crossings between C1

and C2 with m ≥ 2, or there are crossings involving only C1 or C2. In the later case,
changing a crossing that does not involve C1 and C2 will not change the crossing
number between C1 and C2, yielding a non-trivial link as a direct predecessor. In
the former case, say the linking number between C1 and C2 is 1, then there exactly
m + 1 positive crossings and m − 1 ≥ 1 negative crossings between C1 and C2.
Apparently, a crossing change at a negative crossing will yield a non-trivial link
with linking number 2. The argument is similar if the linking number between C1

and C2 is −1. This finishes the proof. ¤

4. Diagrammatic Unknotting Number

In this section, we will discuss a concept that can be thought of as a generaliza-
tion of the unknotting number restricted to minimal diagrams of a knot introduced
and studied in [3] and [20].
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Definition 4.1. For a knot K, a diagrammatic unknotting sequence is a family
trail of K: K0 = K, K1, K2, ..., Kn (such that Ki is either a predecessor of Ki−1 or
a sibling of Ki−1) that terminates in the trivial knot. We call n the length of such
a diagrammatic unknotting sequence. The shortest length over all diagrammatic
unknotting sequences of K is then defined as the diagrammatic unknotting number
of K. We will denote it by uD(K).

The concept of uD was first discussed in [3], though worded differently. Recall
that a knot K has unknotting number u(K) = n if there exists a projection of the
knot such that changing n crossings in the projection turns the knot projection
into the unknot and no projection of K exists such that changing fewer than n
crossings would do this. Equivalently, a knot K has unknotting number n if n is
the least number of crossing changes necessary to change a knot into the unknot,
where we can perform the first crossing change in one projection of the knot, then
do an ambient isotopy of the resulting projection to a new projection and change
a second crossing in that projection. We can do another ambient isotopy before
changing a third crossing and so on, see [1]. It follows immediately that for any
knot K we have u(K) ≤ uD(K). It is conjectured that u(K) = uD(K) in [3].

Now, let umin(K) be the least unknotting number among all minimal projections
of K as defined in [20], then it is clear that u(K) ≤ umin(K). One wonders if there
is a clear relation between uD(K) and umin(K). It is obvious that umin(K) = 1
if and only if uD(K) = 1. In the case of two bridge knots, we have the following
theorem. But in general, this is a hard question.

Theorem 4.2. If K is a 2-bridge knot with unknotting number u(K) = 1, then
uD(K) = umin(K) = 1 as well.

This is already established in [21] however the proof below is much shorter.

Proof. In [11] a criteria for 2-bridge knots with unknotting number one is
given. In particular K is a two bridge knot with u(K) = 1 if and only if K has a 4-
plat symbol 〈a, a1, a2, . . . , ar−1, ar,±2,−ar,−ar−1, . . . ,−a2,−a1〉, where a and the
ai’s are integers. It is easy to see that this is equivalent to the alternating diagram
〈a, a1, a2, . . . , ar−1, ar, 1, 1, (ar − 1), ar−1, . . . , a2, a1〉 in the case of 2 and equivalent
to the alternating diagram 〈a, a1, a2, . . . , ar−1, (ar − 1), 1, 1, ar,ar−1, . . . , a2, a1〉 in
the case of −2. 〈a, a1, a2, . . . , ar−1, ar,−1, 1, ar−1, ar−1, . . . , a2, a1〉 is the unknot in
the first case and 〈a, a1, a2, . . . , ar−1, ar−1, 1,−1, ar, ar−1, . . . ,a2, a1〉 is the unknot
in the second case. Thus for any 2-bridge knot with unknotting number one there
is an alternating diagram with the unknot as a predecessor. ¤

Since the equality uD(K) = u(K) = 1 is an if and only if relation for two bridge
knots we have the following corollary.

Corollary 4.3. If K is a 2-bridge knot with diagrammatic unknotting number
uD(K) = 2, then u(K) = 2 as well.

In [4], it is shown that the 4-plat K = (5, 1, 4) has the property u(K) = 2 but
it cannot be obtained from any minimum diagram of it. It can be easily shown
that umin(K) = 3 and uD(K) = 2. Thus uD 6= umin in general. The following
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generalization of this example is found in [20]. Here we take the arborescent prime
knot Kn described by the following symbol in Conway notation:

(((5, 1, 4), (5, 1, 4), . . . , (5, 1, 4)), 3, 3, ),

where the rational tangle (5, 1, 4) is repeated n times, see Figure 10. It is straight
forward to see that uD(Kn) ≤ 2n + 3. In [20] it is shown that the quantity
umin(Kn)− 2n cannot be bounded by a constant independent of n. Thus we have
shown examples of knots where umin − uD is as large as we desire.

Figure 10. Shown is a diagram of on such knot given by the
symbol (((5, 1, 4), (5, 1, 4), (5, 1, 4)), 3, 3, ). In the diagram on the
left there are three disks each of which contains one of the tangles
(5, 1, 4). On the right one such tangle is shown. Since the knot is
alternating we did not indicate over- and under passes at the cross-
ings.

We end this section with the following theorem which concerns the cardinality
of the set of all knots that belong to some family trails of a given knot.

Theorem 4.4. There are knots K with n crossings such that the cardinality of
the set of all knots occur in some family trails of K grows exponentially with respect
to n.

Proof. Let K be a 4-plat with vector symbol (k, k, · · · , k), where k is an odd
positive integer. If Cr(K) = n and there are r k’s in the vector (k, k, · · · , k), then
rk = n. We can estimate the number of predecessors of K that also have a 4-plat
vector of length r in the following way. Any 4-plat with a vector (k1, k2, · · · , kr)
where ki is a positive integer of the form k − 2s for some integer s > 0 is a
predecessor of K. Each ki can take on (k − 1)/2 different nonzero values giving
rise to ((k − 1)/2)r different vectors. Since for a 4-plat, the reversal of the vector
does not change the knot type, this results in 1/2((k−1)/2)r different predecessors.
If we choose k = 5 and r = n/5 then K has at least 1/2 × 2

√
n/5 ≈ 1/2 × 1.487n

different predecessors. ¤

5. Ending Remarks

In this paper, we have introduced the concept of predecessors and siblings of
a knot and the concept of diagrammatic unknotting number of a knot. We raised
many questions along the way. Although we were able to answer a few of these
questions, most questions are hard and remain open. We end this paper with a few
more remarks.



14 YUANAN DIAO, CLAUS ERNST, AND ANDRZEJ STASIAK

Remark 5.1. Computing the family of a non-alternating knot in general is a
hard problem since it is hard to find all minimal diagrams of such a knot.

Remark 5.2. It would be interesting to see if there are knots for which the
cardinality of the set of predecessors equals or exceeds the crossing number of the
knot.

Remark 5.3. One may attempt to prove the conjecture uD = u for the rational
knots first. Notice that this is true for the simple case of the (n, 2) torus knot, since
in this case we already know that uD = (n− 1)/2 and u = (n− 1)/2. (In general,
it is known that the unknotting number for a (p, q) torus knot is (p − 1)(q − 1)/2
[12, 19].)
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