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Abstract

Motivation: Assigning new sequences to known protein families and subfamilies is a prerequisite for many function-
al, comparative and evolutionary genomics analyses. Such assignment is commonly achieved by looking for the
closest sequence in a reference database, using a method such as BLAST. However, ignoring the gene phylogeny
can be misleading because a query sequence does not necessarily belong to the same subfamily as its closest se-
quence. For example, a hemoglobin which branched out prior to the hemoglobin alpha/beta duplication could be
closest to a hemoglobin alpha or beta sequence, whereas it is neither. To overcome this problem, phylogeny-driven
tools have emerged but rely on gene trees, whose inference is computationally expensive.

Results: Here, we first show that in multiple animal and plant datasets, 18–62% of assignments by closest sequence
are misassigned, typically to an over-specific subfamily. Then, we introduce OMAmer, a novel alignment-free pro-
tein subfamily assignment method, which limits over-specific subfamily assignments and is suited to phylogenomic
databases with thousands of genomes. OMAmer is based on an innovative method using evolutionarily informed k-
mers for alignment-free mapping to ancestral protein subfamilies. Whilst able to reject non-homologous family-level
assignments, we show that OMAmer provides better and quicker subfamily-level assignments than approaches
relying on the closest sequence, whether inferred exactly by Smith-Waterman or by the fast heuristic DIAMOND.

Availabilityand implementation: OMAmer is available from the Python Package Index (as omamer), with the source
code and a precomputed database available at https://github.com/DessimozLab/omamer.

Contact: marc.robinson-rechavi@unil.ch or christophe.dessimoz@unil.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Assigning new sequences to known protein families is a prerequisite
for many comparative and evolutionary analyses (Glover et al.,
2019). Functional knowledge can also be transferred from reference
to new sequences assigned in the same family (Gabaldón and
Koonin, 2013).

However, when gene duplication events have resulted in multiple
copies per species, multiple ‘subfamilies’ are generated, which can
make placing a protein sequence into the correct subfamily

challenging. Gene subfamilies are nested gene families defined after
duplication events and organized hierarchically into gene trees. For
example, the epsilon and gamma hemoglobin subfamilies are
defined at the placental level, and nested in the adult hemoglobin
beta subfamily at the mammal level (Opazo et al., 2008). Both be-
long to the globin family that originated in the LUCA (last universal
common ancestor of cellular life).

Gene subfamily assignment is commonly achieved by looking for
the most similar sequence (or ‘closest sequence’, Section 4) in a refer-
ence database, using a method such as BLAST or DIAMOND
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(Altschul et al., 1990; Buchfink et al., 2015), before assigning the
query to the subfamily of the closest sequence identified. For ex-
ample, EggNOG mapper uses reference subfamilies from EggNOG
to functionally annotate millions of unknown proteins of genomes
and metagenomes (Huerta-Cepas et al., 2017, 2019). Briefly, each
query is assigned to the most specific gene subfamily of its closest se-
quence, inferred using DIAMOND, with functional annotations
then transferred accordingly.

However, ignoring the protein family tree can be misleading be-
cause a query sequence does not necessarily belong to the same sub-
family as its closest sequence (Fig. 1). For instance, if the query
branched out from a fast evolving subtree, its closest sequence might
not belong to that subtree, but to a more general subfamily, or even
not be classifiable in any known subfamily (Fig. 1B). Or, in case of
asymmetric evolutionary rates between sister subfamilies, the closest
sequence might belong to a different subfamily altogether (Fig. 1C).
The prospect of observing these two scenarios is sustained by the
long-standing observation that duplicated proteins experience accel-
erated and often asymmetric evolution (Conant and Wolfe, 2008;
Sémon and Wolfe, 2007).

Moreover, the closest sequence to the query can belong to an
over-specific subfamily even without any departure from the mo-
lecular clock in the family tree (Fig. 1D). Such cases may occur
when the query branched out before the emergence of more specific
(nested) subfamilies. Indeed, all known proteins from the same clade
as the query can belong to nested subfamilies. Moreover, even when
not all proteins belong to such nested subfamilies, the closest se-
quence may still belong to an over-specific subfamily by chance.
Since duplications are common in evolution (Conant and Wolfe,
2008), finding such nested subfamilies as close relatives to the query
divergence is expected to be common.

To avoid such errors, protein subfamily assignment tools relying
on gene trees have been proposed (Schreiber et al., 2014; Tang et al.,
2019). In short, these start by assigning queries to families with pair-
wise alignments against Hidden Markov profiles of reference fami-
lies. Then, fine-grained assignments to subfamilies are performed
with tree placement tools, which typically attempt to graft the query
on every branch of the tree until maximizing a likelihood or parsi-
mony score (Barbera et al., 2018). However, gene tree inference is
computationally expensive and therefore not scalable to the expo-
nentially growing number of available sequences.

As a more scalable alternative to gene trees, the concept of hier-
archical orthologous groups (HOGs) (Altenhoff et al., 2013) pro-
vides a precise definition of the intuitive notion of protein families
and subfamilies. Each HOG is a group of proteins descending from
a single speciation event and organized hierarchically. Moreover,
they collectively provide the evolutionary history of protein families
and subfamilies, like gene trees. While the oldest HOG in the family
hierarchy (‘root-HOG’) is the family itself, the other nested HOGs
are its subfamilies. Thus, HOGs up to 100 000 members and cover-
ing thousands of species are available in large-scale phylogenomic
databases (Altenhoff et al., 2018; Huerta-Cepas et al., 2019;
Kriventseva et al., 2019).

Here, we first demonstrate on six animal and plant proteomes
(sets of proteins from a given species, Section 2) that 18–62% of
assignments by closest sequence go to incorrect, mostly over-specif-
ic, subfamilies. To overcome this problem, we introduce OMAmer,
a novel alignment-free protein subfamily assignment method, which
limits over-specific subfamily assignments and is suited to phyloge-
nomic databases with thousands of genomes. We show that
OMAmer is able to assign proteins to subfamilies more accurately
than approaches relying on the closest sequence, whether inferred
exactly by Smith-Waterman or by the fast heuristic DIAMOND.
Furthermore, we show that by adopting efficient alignment-free k-
mer based analyses pioneered by metagenomic taxonomic classifiers
such as Kraken or RAPPAS (Linard et al., 2019; Wood and
Salzberg, 2014), and adapting them to protein subfamily-level classi-
fication, OMAmer is computationally faster and more scalable than
DIAMOND.

2 Materials and methods

2.1 The OMAmer algorithm
In this section, we describe the two main algorithmic steps which
make OMAmer more precise and faster than closest sequence
approaches. First, to speed-up the protein assignment step,
OMAmer preprocesses reference HOGs into a k-mer table (Fig. 2).
For each k-mer and family (root-HOG), this table stores the subfam-
ily (sub-HOG) where the k-mer has most likely arisen (the most spe-
cific HOG containing all occurrences of the given k-mer within the
root-HOG). Then, these evolutionarily informed k-mers are used to
yield more precise subfamily assignments by reducing over-specific
assignments (Fig. 3).

2.1.1 k-mer table precomputation

To efficiently parse k-mer sets of reference HOGs, the suffix array
(Manber and Myers, 1993) of all concatenated reference proteins is
used as an intermediate data structure (Fig. 2A). There, all suffixes
starting with a given k-mer are stored consecutively, which enables
to quickly identify all HOGs containing the same k-mer using binary
search.

Then, the k-mer ancestral HOG (where the k-mer has arisen) is
approximated within each root-HOG as the last common ancestor
(LCA) among HOGs containing the given k-mer (Fig. 2B). Indeed,
we assume that occurrences of the same k-mer in different members
of a family mostly result from homology (i.e. same k-mer due to
shared ancestry) rather than homoplasy (i.e. same k-mer arising in-
dependently). In the instances where the latter is true, the LCA ap-
proximation will favor overly general assignments. Thus, compared
to the homoplasy assumption that would favor over-specific assign-
ments, this approach is more conservative. Moreover, retaining a
single ancestral HOG per k-mer and family reduces the memory
footprint of the k-mer table.

Finally, to enable fast and memory efficient subfamily assign-
ments, the resulting k-mer table is stored in the compressed sparse
row format, consisting of two related arrays (Fig. 2C). The k-mer
index stores, at offsets corresponding to each k-mer integer encoding
(e.g. 0 for AA, 1 for AC, etc.), offsets of the second array (the ances-
tral HOG buffer). There, the ancestral HOGs of each k-mer are
stored consecutively. The formulae used to encode k-mers in integers
is described in Supplementary Material.

A B

C D

Fig. 1. The closest sequence to a query does not necessarily belong to the same sub-

family. This figure conceptualizes the four possible closest sequence locations rela-

tive to the query. On each tree, the true position of the query is indicated by a

dashed branch, while its closest sequence(s) in the family is indicated by a star. The

circle represents a duplication event leading to two subfamilies depicted as color

boxes. Scenario A is the only one in which the closest sequence is in the same sub-

family as the query. Note that for scenarios B and C to happen, the rate of evolution

needs to vary across the tree (departure from a ‘molecular clock’), whereas scenario

D can even happen under a uniform rate of evolution
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2.1.2 Family and subfamily assignment

The family (root-HOG) and subfamily (sub-HOG) protein assign-
ment both rely on a common measure of similarity between the
query protein and reference HOGs (the ‘OMAmer-score’).
Essentially, this score captures the excess of similarity that is shared
between the query and a given HOG, thus excluding the similarity
with regions conserved in more ancestral HOGs. The OMAmer-
score is computed in two main steps. First, a coarse alignment-free
similarity is obtained by searching the k-mer table (Fig. 3A). Second,
this similarity is normalized to account for varying query lengths,
composition biases and sizes (number of different k-mers) of refer-
ence HOGs (Fig. 3B). More details about the OMAmer-score com-
putation are available in Supplementary Methods.

The protein is first assigned to the root-HOG with the highest
OMAmer-score (Fig. 3C). Indeed, at the family level, the OMAmer-
score is analogous to other sequence similarity measures (e.g. align-
ment score) used to evaluate a probability of homology. Note that
to speed-up the assignment, OMAmer-scores are computed only for
the top 100 root-HOGs with the highest coarse alignment-free
similarity.

Then, the assignment is refined to the most specific sub-HOG on
the highest scoring root-to-leaf path within the predicted root-HOG
(Fig. 3D). Indeed, at the subfamily level, OMAmer-scores are only
comparable when descending from the same parent since they cap-
ture an excess of similarity relative to that parent.

Finally, to reduce the risk of false positive assignments, thresh-
olds on the OMAmer-score can be applied at both steps. At the fam-
ily level, this allows to avoid placing queries which have no
homolog in the reference database. At the subfamily level, it penal-
izes more specific subfamilies to prevent over-specific assignments.
Moreover, for applications where it is important to reject partial
homologous matches (e.g. domain-level), OMAmer also outputs an
‘overlap-score’ that measures the fraction of the query sequence

overlapping with k-mers of reference root-HOGs (ignoring k-mers
with multiple occurrences in the query sequence).

2.2 Benchmarking
In this section, we describe the experiments conducted to evaluate
the accuracy of OMAmer compared to closest sequence methods:
Smith-Waterman (Smith and Waterman, 1981) and DIAMOND
(Buchfink et al., 2015). Since placement in subfamilies initially
requires accurate family-level assignments, we started by evaluating
OMAmer at the family level (i.e. identifying the correct root-HOG).
Second, to evaluate the impact of ignoring the phylogeny on subfam-
ily assignments by closest sequences, we estimated the frequency of
each closest sequence configuration [‘true subfamily’, ‘under-specif-
ic’, ‘wrong-path’ and ‘over-specific’ (Fig. 1)]. Third, we bench-
marked subfamily-level assignments against closest sequence
methods. Finally, we broke down the validation results of OMAmer
by closest sequence configuration. The datasets and software param-
eters used in these experiments are described in Supplementary
Methods.

2.2.1 Family-level validation

Positive query sets were constructed as the sets of proteins from a
given species contained in reference HOGs. We call these sets of pro-
teins ‘proteomes’ in this work. The proteins of that species were
removed from the reference database used, before the k-mer index
precomputation.

Since query proteins do not necessarily have homologous coun-
terparts in the reference families (e.g. ‘orphan’ genes, contamination,
horizontal gene transfer), validating family assignments also
required negative sets of non-homologous queries. Therefore, nega-
tive query sets were built with two approaches, while always match-
ing the size of their corresponding positive set. In the first approach,
random proteins were simply simulated with UniProtKB amino acid
frequencies (release 2020_01) (UniProt Consortium, 2019) and se-
quence lengths of positive queries. The second approach was
designed to resemble events of contamination or of horizontal gene
transfer. Each negative query was randomly selected from a unique
clade-specific family lying outside the taxonomic scope of reference
families. In practice, clade-specific families were randomly selected
among HOGs without parent (root-HOGs) at a given taxonomic
level.

The resulting family assignments were compared with the truth
set, and classified into true positives (TPs), false negatives (FNs) and
false positives (FPs) for various score thresholds. FPs included nega-
tive queries assigned to a family as well as positive queries assigned
to the wrong family (their relative proportion is shown in
Supplementary Fig. S2). The remaining positive queries were divided

A B

C D

Fig. 3. OMAmer algorithm for protein assignment to family and subfamily. (A)

Coarse alignment-free similarities are obtained by searching the k-mer table. (B)

These similarities are normalized into OMAmer-scores to account for varying query

lengths, composition biases and sizes of reference HOGs. (C) The family (root-

HOG) with the highest HOG-score is retained (shown with an asterisk). (D) The as-

signment is refined to the most specific subfamily on the highest scoring root to leaf

path (shown with an asterisk)

A B

C

Fig. 2. OMAmer algorithm for compact k-mer table precomputation. (A) To effi-

ciently preprocess the k-mer table, a suffix array is first built from concatenated pro-

tein sequences of reference HOGs, encoding families (root-HOGs) and subfamilies

(sub-HOGs). Numbers indicate suffix offsets in the concatenated protein array and

bold characters highlight k-mers at the beginning of suffixes. (B) The k-mer ances-

tral HOG (where the k-mer has arisen) is approximated within each root-HOG as

the LCA among HOGs with the given k-mer. For example, since both the orange

and purple sub-HOGs contain the ‘AC’ k-mer, the ancestral HOG for that k-mer is

the green root-HOG. (C) The compact k-mer table includes an k-mer index map-

ping to a buffer that stores each k-mer ancestral HOGs. Note that each offset of the

index corresponds to a k-mer integer encoding. As illustrated with the gray boxes,

the ‘AC’ k-mer (encoded as ‘1’) maps to the green and pink HOGs since these two

lie within the [0,2[ offset interval in the buffer
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into TPs and FNs depending on whether the score for their family of
origin passed the threshold, or not. Finally, precision, recall and ac-
curacy (F1) were computed from TPs, FNs and FPs (Supplementary
Table S1), defined according to the score threshold.

In the following experiments, to assess subfamily-level assign-
ment separately from family-level assignment, we focused on the
query sequences assigned to the correct family (i.e. the set of TPs at
the threshold where F1 is maximal [F1max] for family assignment).
Moreover, non-overlapping family-level TPs between methods being
compared were further filtered out (sets of overlapping TPs are
shown in Supplementary Fig. S1).

2.2.2 Quantification of subfamily assignment errors by closest

sequences

We used Smith-Waterman local alignments as reference to find the
closest sequence (Smith and Waterman, 1981). Indeed, being an
exact algorithm, Smith-Waterman is guaranteed to find the highest
scoring match, and it is the standard approach in the field (Wolf and
Koonin, 2012). Then, we classified each query according to the loca-
tion of its closest sequence (Fig. 1) as follows: a ‘true subfamily’ con-
figuration arises when the most specific HOG of the closest
sequence is the same as the query one. An ‘over-specific’ configur-
ation arises when the most specific HOG of the query is ancestral to
the most specific HOG of the closest sequence. Conversely, an
‘under-specific’ configuration arises when the most specific HOG of
the closest sequence is ancestral to that of the query. The last case is
the ‘wrong-path’ configuration, in which the most specific HOG of
the query and of the closest sequence are in different parts of the
family tree.

2.2.3 Subfamily-level validation

To assess TPs, FNs and FPs at this level we took the view that an as-
signment to a subfamily also implies assignment to its ‘parental’ sub-
families (if there are any). For instance, let us consider a nested gene
family of alcohol dehydrogenases. Under this view, an assignment to
the specific ‘alcohol dehydrogenase 1C’ is also implicitly an assign-
ment to ‘alcohol dehydrogenase 1’, as well as to ‘alcohol dehydro-
genase’. In this case, if a method incorrectly assigns the protein to
the subfamily ‘alcohol dehydrogenase 1B’, in addition to counting
an FP (the gene is not a true member of subfamily ‘B’) and an FN
(the gene is missing from subfamily ‘C’), we also count one TP for
correctly assigning to the parental sub-HOG ‘alcohol dehydrogenase
1’. In effect, the prediction is regarded as being only partially wrong.
Note that there is no TP counted for correctly implying an assign-
ment to the root-HOG (alcohol dehydrogenase), because the present
analysis only seeks to assess within-family placement.

In addition, we repeated the analyses using a second approach
taking the more stringent view that there are no implicit predictions
of parental subfamilies, therefore no reward is given for partial cor-
rectness. Thus, in the previous example, there would be no TP
counted—only one FP and one FN.

For both validation approaches, precision, recall and accuracy
(F1) were computed from TPs, FPs and FNs using the same formulae
as at the family-level (Supplementary Table S1).

2.3 Performance experiments
To benchmark the computational performance of OMAmer and
DIAMOND, we measured real and CPU time, as well as the max-
imum resident set size (memory) using the GNU time command. All
timing was performed on machines containing identical hardware
(dual-socket Intel Xeon E5-2680, 64 GB of RAM). Single-threaded
versions of both methods were used, with timing repeated 10 times
in order to ensure stability.

Databases of increasing size (20–200 proteomes, in steps of 20)
were generated from Metazoan proteomes, with each including all
of the previous and an extra 20 randomly selected species. The full
proteomes of the initial 20 were used to query the databases of
increasing size in order to gauge the scaling characteristics.

2.4 Software availability
OMAmer is available from the Python Package Index (as omamer),
with the source code and a precomputed database available at
https://github.com/DessimozLab/omamer.

3 Results

We first consider the problem of sequence placement at the overall
family level (i.e. identifying the correct root-HOG, defined at either

Metazoa or Viridiplantae). Then, we present our analyses of the sub-
family placement problem in four parts: First, we quantify the differ-
ent types of errors resulting from the closest sequence criterion.

Second, we show that OMAmer overcomes many of these errors,
resulting in higher accuracy than closest sequence approaches.

Third, we show that this accuracy improvement is mainly achieved
by avoiding over-specific sequence classification. And fourth, we
compare the computational cost and scaling of OMAmer and

DIAMOND.

3.1 At the overall family level, sequence placement is

highly accurate
Query sequences must first be assigned to families before being

placed within subfamilies. We evaluated this using DIAMOND and
OMAmer, assessing the ability of the methods to either place a pro-
tein in its correct family, or to avoid placing a sequence with no

homolog in the reference database (Section 2).
Both methods delivered similar and highly accurate results in

placing platypus, spotted gar and plant proteins (F1max > 0.9;
Supplementary Fig. S2). The methods did not perform as well on the
amphioxus proteome (OMAmer F1max ¼ 0.81–0.84; DIAMOND

F1max ¼ 0.86–0.88; Supplementary Fig. S2), but this is an outgroup
to all other chordates in OMA, with a divergence of 600 MY

(Peterson and Eernisse, 2016) to the closest species sampled (i.e. all
vertebrates and urochordates) and with high levels of polymorphism
which can result in alleles being misannotated as paralogs (Huang

et al., 2017; Kajitani et al., 2019; Putnam et al., 2008). Still, this first
analysis indicates that, with reference proteomes within the same

phylum, family-level protein assignments are highly accurate.

3.2 The closest sequence to a query is often not in the

same subfamily
For a large proportion of query sequences (18–62%), the closest
counterpart (inferred as the highest scoring Smith-Waterman match,

Section 2) belongs to a different subfamily (Fig. 4A). In such cases,
the closest sequence most often belongs to a more specific subfamily

(14–55% of all queries). These results highlight the need to account
for the gene tree, especially in the presence of many nested subfami-
lies. Solving this problem is the primary aim of OMAmer.

3.3 OMAmer is more precise in subfamily placement
OMAmer systematically achieved, or equaled, the highest accuracy

(F1max) across species (Fig. 5). Specifically, increases in F1max values
between OMAmer and closest sequence methods ranged from 0.00
to 0.18. Moreover, OMAmer-score thresholds at F1max were gener-

ally congruent (ranging from 0.10 to 0.16), although it was lower
for amphioxus (0.06).

Importantly, OMAmer provides a genuine precision-recall trade-
off, providing users with the possibility of obtaining very high preci-

sion, at the cost of lower recall. There is no such possibility with
closest sequence methods: varying the E-value and alignment-score
thresholds has very limited impact on precision (Fig. 5). These

results are consistent with a second and more stringent validation
procedure that does not reward assignments to correct parental sub-
families (Supplementary Fig. S3).
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3.4 OMAmer deals especially well with over-specific

closest sequences
As previously shown, over-specific placement is the most frequent
mistake when only relying on assignments by closest sequences
(Fig. 4A). Since OMAmer was specifically designed to deal with
such cases using evolutionarily informed k-mers mapping toward
ancestral subfamilies, we investigated whether this feature would ex-
plain OMAmer performance. Therefore, we reproduced the subfam-
ily-level validation procedure with queries partitioned between the
types of closest sequence configuration (‘true subfamily’, ‘under-spe-
cific’, ‘wrong path’ and ‘over-specific’) depicted in Figure 1 and
quantified in Figure 4A.

As expected, OMAmer was systematically more accurate than
DIAMOND for queries in the ‘over-specific’ configuration (Fig. 4B).
Specifically, for these queries, increases in F1max values between
OMAmer and DIAMOND ranged from 0.05 to 0.21. Moreover,
OMAmer displayed a proportion of over-specific assignments
(defined at F1max) 0.07 to 0.37 lower than Smith-Waterman and

DIAMOND (Supplementary Fig. S5). In animals, this performance
for queries in the ‘over-specific’ configuration was achieved while
sacrificing very little accuracy for queries in the ‘true subfamily’ con-
figuration (from 0.02 to 0.11, Fig. 4B). In plants, OMAmer
remained more accurate even for queries in the ‘true subfamily’ con-
figuration, with increases in F1max values between OMAmer and
DIAMOND that ranged from 0.02 to 0.06. Queries in the ‘wrong-
path’ configuration were also placed more accurately by OMAmer,
despite their small number. Finally, there were too few ‘under-spe-
cific’ configurations to draw any conclusion.

Since DIAMOND is a closest sequence approach, like Smith-
Waterman, it was expected to obtain precision values close to zero
for queries in the ‘under-specific’, ‘wrong path’ and ‘over-specific’
scenarios. However, this behavior is not observed here because the
validation procedure rewards assignments in correct parental subfa-
milies even when the predicted exact subfamily is incorrect. By con-
trast, the more stringent validation procedure that does not reward
assignments to correct parental subfamilies does yield precision

A B

Fig. 4. Frequency of closest sequence configurations defined in Figure 1 and OMAmer accuracy for each. (A) The closest sequence to a query was often found in another sub-

family. Smith-Waterman alignments were used as proxies for closest sequences. (B) ‘Over-specific’ configurations were especially well dealt with by OMAmer. Each curve dis-

plays the range of trade-offs between precision and recall when varying the threshold on the OMAmer-score and on the DIAMOND E-value. They were computed by

breaking down queries by closest sequence configurations as in A, before the validation procedure itself. Crosses indicate the location of F1max values. ‘Over-specific’ F1max val-

ues are specifically annotated
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values close to zero (Supplementary Fig. S4B). Apart from this dif-
ference, the results of this section are consistent between the two val-

idation procedures (Supplementary Figs S4B and S5).
The occasional and counterintuitive positive correlation between

precision and recall that can be observed with OMAmer at low re-
call values, seemed to appear only when a few FPs subfamilies
remained predicted at high OMAmer-score thresholds, while the

number of TPs was steadily decreasing. Taking the example of the
‘wrong-path’ Spotted gar proteins, 4 out of the 14 predicted subfa-

milies are FPs at recall of 0.02 obtained with the highest threshold
value (0.99).

3.5 OMAmer run time scales better than DIAMOND with

the number of reference proteomes
In an empirical scaling analysis, we varied the number of reference
proteomes in the database whilst querying a number of full-

proteomes (Section 2). OMAmer achieved better scaling than
DIAMOND in terms of CPU and real time when increasing the
number of reference proteomes in the database (Fig. 6, left). Both
methods, however, exhibited a similar increase in maximum mem-
ory usage (Fig. 6, center), with OMAmer initially using over 2 GB
and DIAMOND using less than 256 MB on a database of 20 refer-
ence proteomes. In order to achieve this performance, OMAmer
only stores k-mers once per root-HOG. This does require extra com-
putation, with the overhead being reflected in its memory usage and
time to build the database (Supplementary Fig. S6), taking between
15 and 20 min in comparison to 1–2 minutes for DIAMOND.

To put the timing into context, OMAmer is processing about
150 query sequences per second (Fig. 6, right). DIAMOND starts
with a similar performance, before trailing off to less than 30 with
the largest number of reference proteomes.

4 Discussion

In this study, we demonstrate that considering the phylogenetic rela-
tions between orthologous groups is essential for the problem of
subfamily assignment. Indeed, although alignment-free, OMAmer
generally outperforms closest sequence approaches, even when
inferred by the exact Smith-Waterman algorithm. In particular,
OMAmer systematically equaled or out-performed Smith-
Waterman for the best precision-recall trade-off (F1max).

However, the main advantage of OMAmer is its control over as-
signment precision through the setting of specific OMAmer-score
thresholds that refrain over-specific placements. By contrast, relying
on the closest sequence does not provide the ability for any preci-
sion-recall trade-off. Each assignment is bound to the most specific
subfamily of the closest sequence, and varying the E-value threshold
has a large impact on recall but almost none on precision. Thus,
while closest sequence approaches are useful for cases where high re-
call is the overriding priority, OMAmer is more flexible and applic-
able in a broad range of contexts.

In addition to providing robust subfamily assignments,
OMAmer scales better than DIAMOND, in terms of run time, with
the number of reference proteomes. This is achieved with alignment-
free sequence comparisons against HOGs instead of approximate
alignments against protein sequences. Indeed, in addition to remov-
ing the computational burden of sequence alignment, merging se-
quence information in HOGs drastically reduces the number of
comparisons. This is especially true since the number of reference
HOGs increases more slowly than proteins with the number of refer-
ence proteomes.

Large-scale sequencing projects of genomes or metagenomes add
difficulties such as chimeric assemblies or contaminations, thus mix-
ing gene families from different species. OMAmer was designed as a
starting point for the integration of such heterogeneous data. Thus,
instead of constraining subfamily assignments along with the known
taxonomy of query proteomes, OMAmer performs taxonomically
blind assignments. We hope that this feature will enable diverse
applications of OMAmer. For example, the detection of contamin-
ation and horizontal gene transfers could be achieved by including
all kingdoms in the OMAmer database and searching for incongru-
ent placement regarding the query taxonomy. In particular, confi-
dence measures similar to the ‘Alien index’ (Gladyshev et al., 2008)
could be computed by subtracting the OMAmer-score of the high-
est-scoring taxonomically congruent HOG from the overall highest
OMAmer-score potentially derived from a contaminant sequence.
Other promising applications are the binning of protein-level meta-
genomic assemblies (Steinegger et al., 2019), and with some algo-
rithmic adaptations, directly placing reads to skip genome assembly
and annotation.

The OMAmer algorithm builds upon some key ideas of the
metagenomic software Kraken, which classifies reads into the spe-
cies taxonomy (Wood and Salzberg, 2014). Indeed, this task is
analogous to protein subfamily assignments for two reasons. First,
some prior knowledge, shaped as labeled reference sequences, is pre-
processed before the assignment itself. Second, this prior knowledge
is organized hierarchically in a tree graph. Thus, instead of relying

Fig. 5. Comparison of subfamily assignments with OMAmer and by closest se-

quence (DIAMOND and Smith-Waterman). Each curve displays the range of trade-

offs between precision and recall when varying the threshold either on the

OMAmer-score, on the DIAMOND E-value or on the Smith-Waterman alignment

score. F1max values are indicated by crosses on each curve
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on closest sequences, such methods of taxonomic classification ex-
ploit semi-phylogenetic information to improve their predictions.
While MEGAN introduced the key idea of taking the LCA taxon
among significant BLAST hits (Huson et al., 2007), Kraken scaled
up the approach by preprocessing LCA taxa in a database of taxo-
nomically informed k-mers (Wood and Salzberg, 2014).

While inspired by Kraken, the OMAmer algorithm features three
key algorithmic innovations to fit the case of assigning proteins to
subfamilies. The first difference lies in the types of events used to de-
fine clades or subtrees. Indeed, while taxa are defined by speciation
nodes in Kraken, subfamilies are defined by duplication nodes in
OMAmer. This is an important difference because duplication pat-
terns are variable across protein families, whereas the reference tax-
onomy is the same for different genes and genomes in Kraken.
Second, the dual problem of first placing sequences within families,
followed by subfamily-level assignment is specific to OMAmer.
Third, while Kraken relies on an arbitrary cut-off of one k-mer to
avoid over-specific placements, OMAmer applies a user-defined
threshold on the more refined OMAmer-score.

Beside closest sequence approaches, alignments to Hidden
Markov Models (HMMs) have been extensively used for sequence
to family or subfamily comparisons with tools such as HMMER3
(Ebersberger et al., 2009; El-Gebali et al., 2019; Huerta-Cepas
et al., 2019; Mi et al., 2019). However, the use of HMMs is reveal-
ing a lack of scalability to phylogenomic database size. For instance,
the developers of the EggNOG database reported that DIAMOND
is considerably faster and achieves similar results to HMMER3, and
have discontinued the use of HMMs in the latest EggNOG mapper
release (Huerta-Cepas et al., 2017, 2019). Moreover, maintaining
subfamily HMM models can be problematic because it relies on ad-
hoc criteria for subfamily delineation [e.g. curated, family-specific
E-value thresholds in Pfam (El-Gebali et al., 2019)]. Finally, HMMs
are tailored to detect remote homology rather than discriminating
between specific subfamilies. Although this has benefited from hier-
archically organized HMMs (Nguyen et al., 2016), the family break-
down is used to improve family assignments rather than finding
specific subfamilies.

Due to the rapid emergence of alignment-free methods, covering
various biological problems ranging from phylogenetic inference to
metagenomic taxonomic profiling (reviewed in: Zielezinski et al.,
2017), the AFproject was launched to unite the benchmarking of
these tools (Zielezinski et al., 2019). However, the available datasets
to benchmark protein sequence classification in that project are
organized according to the SCOPE database (Fox et al., 2014).
There, each hierarchical level is either based on a degree of belief in
homology among sets of proteins (families and superfamilies) or on
structural similarities (folds and classes). By contrast, in this work,
we seek to distinguish all subfamilies resulting from gene

duplications, even recent ones yielding quite similar subfamilies. Of
note, recent subfamilies can diverge in function (Naseeb et al., 2017)
and thus be important for annotation.

In this work, we used the most similar sequence (whether
inferred exactly by Smith-Waterman or by the fast heuristic
DIAMOND) as reference to find the closest sequence. Although the
highest scoring local alignment is not always the closest sequence in
a phylogenetic sense (Koski and Golding, 2001), this is a commonly
used approximation for classifying large numbers of orthologs (Li et
al., 2003; Sonnhammer and Östlund, 2015; Huerta-Cepas et al.,
2019) and has shown to give similar results in simulation (Dalquen
et al., 2013) and empirical benchmarks (Altenhoff et al., 2016).

Although placing proteins at the overall family level appears to
be easier than at the subfamily level, we start to see some degrad-
ation with the amphioxus sequences (LCA to vertebrates 600MY
[Peterson and Eernisse, 2016]). We expect further degradation for
cases where query proteomes are even farther from the reference
proteomes, because relying on k-mer exact matches is likely to be
less sensitive than alignments such as provided by DIAMOND to de-
tect distant homologs. Some avenues to increase OMAmer sensitiv-
ity in the absence of closely related reference species could be
explored: the use of a reduced alphabet, which compresses the mu-
tual information of sequences being compared (Edgar, 2004); or
spaced seeds, i.e. non-contiguous k-mers, that have shown an
increased sensitivity in metagenomics classification (B�rinda et al.,
2015). On the other hand, adding such very distant proteomes is
expected to be much rarer than adding proteomes to an already
sampled clade. This is especially true for the increase of sequences
through projects such as i5k (insect genomes) (i5K Consortium,
2013) or the Vertebrate Genomes Project (Koepfli et al., 2015),
where duplications and thus subfamilies are common and a solid
backbone of reference proteomes are available. OMAmer is espe-
cially well positioned to help classify the genes from such projects,
which will present a challenge for slower or less precise methods.
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