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Abstract—Personalized longitudinal disease assessment
is central to quickly diagnosing, appropriately managing,
and optimally adapting the therapeutic strategy of multiple
sclerosis (MS). It is also important for identifying idiosyn-
cratic subject-specific disease profiles. Here, we design
a novel longitudinal model to map individual disease tra-
jectories in an automated way using smartphone sensor
data that may contain missing values. First, we collect dig-
ital measurements related to gait and balance, and upper
extremity functions using sensor-based assessments ad-
ministered on a smartphone. Next, we treat missing data
via imputation. We then discover potential markers of MS
by employing a generalized estimation equation. Subse-
quently, parameters learned from multiple training datasets
are ensembled to form a simple, unified longitudinal pre-
dictive model to forecast MS over time in previously un-
seen people with MS. To mitigate potential underestimation
for individuals with severe disease scores, the final model
incorporates additional subject-specific fine-tuning using
data from the first day. The results show that the proposed
model is promising to achieve personalized longitudinal MS
assessment; they also suggest that features related to gait
and balance as well as upper extremity function, remotely
collected from sensor-based assessments, may be useful
digital markers for predicting MS over time.

Index Terms—Ensemble learning, digital health technol-
ogy, generalized estimation equation, longitudinal predict-
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[. INTRODUCTION

ULTIPLE sclerosis (MS) is a chronic autoimmune, in-

flammatory, and demyelinating disease of the central
nervous system [1]. It affects approximately 2.3 million people
worldwide [2], [3]. The disease has a pooled incidence rate of
2.1 per 100,000 persons/year across 75 reporting countries, with
the mean age of diagnosis being 32 years [4].

Progression of MS commonly leads to accumulation of im-
pairment in one or several functional domains, including upper
extremity function, gait and balance, cognition, and vision [5].
Impairment to gait and balance as well as to upper extremity
function can affect the quality of life and the ability to perform
activities of daily living [6], [7], [8], [9], [10]. Previous reports
suggest that up to 75-90% of people with MS (PwMS) experi-
ence impaired gait, and up to 60-76% of PwWMS show signs of
impaired upper extremity function [5], [11], [12], [13].

Regular assessment of functional ability can help to guide
early treatment decisions and improve treatment outcomes. At
present, individuals at risk of developing MS are examined based
on a combination of in-clinic assessments, including checking
for MS-related signs and symptoms, neuroimaging studies, and
laboratory testing [14]. The Expanded Disability Status Scale
(EDSS), rated by clinicians, measures overall disease impair-
ment (i.e., disability in functional systems and ambulation) [15].
The Multiple Sclerosis Impact Scale (MSIS-29), self-assessed
by patients, captures the physical and psychological impact of
the disease [16], [17], [18]. The EDSS score ranges from 0 to 10
(representing normal to death due to MS). The MSIS-29 total
score (physical score plus psychological score) ranges from 25
to 145 (representing best to worse physical and psychological
functions).

To frequently assess, appropriately manage, and optimally
adapt the therapeutic strategy of MS, itis critical to build suitable
longitudinal models. To do so, however, one must confront a few
challenges.

First, while regular assessment of functional ability is recom-
mended to support optimal adaptation of the therapeutic strat-
egy [19], clinical measures of functional ability are at present,
unfortunately, only infrequently administered. This makes it
difficult to align disease measurements timely or accurately with
therapeutic strategy recommendations. This difficulty is further
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complicated by the fluctuating nature of MS symptoms [19],
[20], [21]. Finally, the data collected from such (infrequent)
evaluations are not suitable for longitudinal model development.
Recently, smartphone sensor-based assessments are beginning
to allow remote and frequent assessment at home without su-
pervision. Research has shown that the remote, frequent (daily),
and objective assessment of MS-related functional impairment
is feasible with smartphone sensor-based assessments [22], [23].
One can typically take these assessments at home without su-
pervision and with minimal burden on the patient [24]. The
relatively low cost and high penetration rate of smartphone
devices, as compared to the availability of hospital devices and
physicians, make such assessments available to a large popu-
lation [25], [26]. Taken together, more frequent assessments
of functional ability using sensor-based smartphone technol-
ogy are likely to provide notable value in tracking MS-related
impairment.

Although recent advancements in sensor technology enable
more frequent sensor-based disease assessments, developing a
suitable longitudinal model still faces two major challenges.
First, longitudinal sensor data often contain missing values.
If not treated, one cannot make full use of the data during
model development, as any missing values would make other
data from that day unusable, discarding potentially useful in-
formation. Second, although PWMS exhibit common patterns
at the population level, personal disease prediction on new
PwMS using results discovered from others may not capture
the subject-specific information of a new PwMS.

A beginning to address these challenges can perhaps be made
by considering a longitudinal method that balances extrapo-
lation and personalization. Here, we propose a personalized
longitudinal framework to automatically assess MS over time.
Using smartphone sensor data from a feasibility study [22], we
demonstrate that the framework has the potential to (1) extract
MS-specific digital clinical markers and (2) assess individual
MS trajectories longitudinally.

Il. METHODS

The structure of this section is organized as follows. In
Section II-A, we introduce the data used in this paper. In
Section II-B, we discuss how we deal with missing data in
longitudinal studies. In Sections II-C and II-D, we introduce
the model and how to make inferences about the parameters.
Section II-E presents model ensembling to make out-of-sample
predictions. In Section II-F, we introduce personalized fine-
tuning to improve longitudinal disease assessment. Finally, in
Section II-G, we investigate the optimal number of imputed
datasets. The data organization, imputation, model development,
and parameter ensemble are summarized in Fig. 1.

A. Patient Data Collected Remotely at Home by
Smartphones

We used data from a 24-week, prospective study (clini-
caltrials.gov identifier: NCT02952911) aimed to assess the
feasibility of remotely monitoring PwMS with sensor-based
assessments [22], [24]. Smartphone data were collected using a

preconfigured smartphone (Samsung Galaxy S7) that prompted
the participants to perform daily assessments of upper extremity
function, gait and balance, and cognition [22], [24]. The local
ethics committees approved the study. Written informed consent
was obtained from all participants; see [22] for the exclusion
criteria for PwWMS and other study details.

Walking ability and upper extremity function are indispens-
able to support independence in activities of daily living, and
their functions are often impaired in PwWMS [27], [28]. Previous
studies have shown that digital features related to walking ability
and upper extremity functions are useful to assess PwMS [29],
[30], [31]. Identifying and isolating the subset(s) of features that
capture impairment in these functional domains and that are po-
tentially predictive of MS disease severity, therefore, may help to
improve one’s understanding of the pathological aspects of MS
that are related to gait and balance as well as to upper extremity
function. Additionally, the selected features may inform clinical
decisions that aim at preserving the functional abilities in these
two domains. In parallel, the magnitude of impairment in these
features may be associated with the severity of MS. For example,
worsening walking ability is associated with MS disease pro-
gression and/or one or more relapses [32]. Similarly, worsening
upper extremity function is frequently reported in PwWMS and
is increasingly present as the disease progresses [33]. Together,
these lines of evidence suggest that gait and upper extremity
function features may be useful markers to longitudinally assess
the severity and progression of the disease.

The data in this study are objective measurements from a Two-
Minute Walk Test (2MWT), assessing gait and dynamic balance,
and a Draw a Shape (DaS) Test, appraising upper extremity
function. Specifically, the 2MWT data were recorded using
smartphones’ accelerometers and the DaS data were recorded
using smartphones’ touchscreen sensors [22]. The DaS Test
assesses fine finger or manual dexterity while the participants
are instructed to hold the smartphone in the untested hand and
draw on the smartphone touchscreen six pre-written alternating
shapes of increasing complexity (linear, rectangular, circular,
sinusoidal, and spiral) with the second finger of the tested hand
as fast and as accurately as possible within a maximum time
(30 seconds for each of the two attempts per shape) [24]. The
2MWT can be performed on even ground where participants
could walk straight for as far as > 200 meters without U-turns.
The participants are instructed to walk as fast and as long as they
can, but safely, for two minutes; they are allowed to wear regular
footwear and, as needed, an assistive device and/or orthotic
[24].

We consider two gait features from the 2MWT and 51 hand
function features from the DaS test. The smartphone data were
collected for 24 weeks. During this period, most participants
performed five to seven active tests per week; even in the
last week of the study, participants completed all active tests
four days per week on average [24]. The study also included
the clinician-rated Expanded Disability Status Scale (EDSS)
scores and the self-reported MS Impact Scale (29-item scale)
(MSIS-29) scores. The longitudinal MSIS-29 study was con-
ducted on 80 PwMS and the longitudinal EDSS predictions were
conducted on 65 PwMS.
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Top: Data organization. The smartphone data are organized in an orange cubic, where multi-dimensional feature data are
collected from each participant over time. Specifically, the orange bar indicates one feature measured over time for one
subject. Disease outcomes are similarly prepared, where the blue bar shows the disease scores measured over time. The
black boxes refer to missing data. Lower left: Data imputation. Missing data are imputed via multiple imputation (MI). To
accommodate the uncertainties in the imputed data, we compute multiple (M) sets of complete data. Lower right: Model
development. A generalized estimation equation is fit on each of the fully imputed datasets to obtain parameter estimation.
The M sets of estimated parameters are then pooled to generate a unified model, which will be used for the model test.
The (pooled) parameters are applied to features from the test sample to estimate outcomes. To prevent data imputation
from influencing the test results, only complete observations will be used during the test (namely, MI will not be used
during the test). The estimated results are then compared with the observed outcomes to verify the performance as well as

reproducibility of the model.

Fig. 1. A schematic representation of the longitudinal model.

The number of self-reported MSIS-29 scores ranges from 1
(two PwMS) to 23 for each individual with a mean of 8.5. The
frequency of the MSIS-29 scores is every two weeks [22], [24].
The number of EDSS scores is 1 (24 PwMS), 2 (30 PwMS), or 3
(11 PwMS) for each individual, with a mean of 1.8. For PwMS

with three EDSS scores, they were measured by clinicians at
scheduled clinic visits (baseline, Week 12, and Week 24) [22],
[24]. The testing frequency for both 2MWT and DaS tests is
daily [22]. To better match the smartphone data with the disease
scores, we sampled the smartphone data every fortnight; the
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resulting smartphone features matched the frequency of the
MSIS-29 scores, and it of the EDSS scores at baseline, Week
12, and/or Week 24.

Although the EDSS scores are clinically more useful than the
self-reported MSIS-29 scores, for the present study, we mainly
focused on demonstrating the model’s longitudinal perspective
using MSIS-29 scores. This is because MSIS-29 scores were col-
lected every two weeks, and, as such, there were more MSIS-29
scores available for longitudinal model development. In parallel,
by painting a finer longitudinal disease curve every fortnight
using the predicted MSIS-29 scores, one can better evaluate
the proposed longitudinal model. To complement this, we also
evaluated the model for predicting EDSS scores. Although there
were only a small number of EDSS scores per subject for training
and test, our analyses suggested that the proposed model seems
promising in predicting - despite sparse - EDSS scores.

B. Treating Missing Data in Longitudinal Studies

Missing data are common in data collection and pose chal-
lenges for longitudinal disease prediction [34], [35]. When there
are missing inputs or outcomes in the training data, model
development becomes difficult (if including missing values) or
inefficient (if excluding days with missing values). A practical
longitudinal disease predictive model, therefore, needs to first
treat the problem of missing data.

In this paper, we used the multiple imputation (MI) [36] to
handle missing data. We adopted it primarily because it was
relatively easy to control for model efficiency (see (4)) by
adjusting the number of imputations performed [37], [38] (see
below). Additionally, it provided a principled way to estimate
the uncertainty associated with the imputation [39], [40]. Finally,
for practitioners, MI may be easier to implement as it is available
in standard software. One can refer to [41], [42], [43], [44] for
additional treatments of missing data. Note that while the use of
MI for randomized clinical trials warrants some caution [45],
the design of this study did not include any randomization
into treatment groups, and hence the application of MI was
straightforward; we, however, do assume that data are missing
at random (MAR).

Here, we briefly outline the steps of MI. First, a column
that contains missing values is regarded as a target column
(and treated as a response variable), and the remaining columns
of the data set are used as predictors. The missing values in
the targeted column are then filled using the predicted mean
matching (PMM) [44], [46]. For predictors that are incomplete
in themselves, the most recently generated values are used so
that the predictors are complete before making imputations for
the target column. Second, the first step is repeated for every
column that contains missing data. Finally, the first two steps
are repeated multiple (M) times to obtain M sets of complete
data. These steps can be done using the R package mice [47].

C. Model Development Using the GEE

The longitudinal predictive model ensembles multiple gen-
eralized estimation equations (GEEs) followed by a subjective-
specific fine-tuning (see Fig. 1). The choice of choosing the GEE

is twofold. First, it can take both correlated and uncorrelated
repeated longitudinal measurements (both within and between
PwMS). Second, even if one mis-specified the correlation struc-
ture, the parameter estimates would still be consistent [48]. The
subject-specific fine-tuning is added to treat potential overfitting
during training and underestimating for new PwMS with severe
scores during the test.

Before introducing the subject-specific aspect of the model
(see Section II-F), let’s first outline the general longitudinal pre-
dictive model. Consider N PwMS, where the i subject has p,
gait features and p; hand function features, measured at time t =
(1,2,...,T;) (the subscripts w and d indicate walking (gait) and
dexterity (hand) functions, respectively). The feature matrix for
the i subjectis thus ] = (@], 2],). ¢); = (®ij1,..., Tijp,),
for j € {w,d}, and x;;; contains longitudinal measurements
Tijk = (I’Uk(l), ey Iijk(Ti))T, for 1 S k S Djs where T de-
notes the transpose operation. Let y; = (i1, . .. ,yiTi)T be the
longitudinal outcome for the i" subject and 7;; be the outcome
for the i subject at time ¢.

Consider p,, = 2 gait features from a Two-Minute Walk
(TMW) test, and p; = 51 hand function features from a Draw
a Shape (DaS) test. The model also includes covariates such as
sex, age, race, and site (from where data were collected). In the
following, unless explicitly stated, features from 57 randomly
selected PwWMS were used for developing the MSIS-29 model,
which was then evaluated on 23 new PwMS. Features from 45
randomly selected PwWMS were used for developing the EDSS
model, which was then evaluated on 20 new PwMS. To avoid
a chance split during training and testing, we will perform
bootstrap experiments in Section III-A.

We considered feature analysis in two steps. The first step
selected features significantly associated with the outcome
(see [49]). The second step performed parameter estimation
using the GEE for selected features (see Fig. 4).

During feature selection, we control the total number of
selected features to discover a small number of top digital
features.! For demonstration purposes, six features (the best
four smartphone features plus age and gender) were selected.
As a complementary analysis, we explored different numbers of
features in the final model (see Fig. 2). Our results suggested that,
overall, the model performance was consistent across different
numbers of features.

More specifically, given a fixed number of test subjects, the
model performance without fine-tuning (i.e., GEE plus multiple
imputation) seemed to improve as more features were selected.
Further added features saw stagnated improvement. The model

1Practically, one could select features based on the p-values (e.g., after a
pair-wise correlation test, the features with p-values less than 0.05 are retained),
the distance metric between the features and the outcome (e.g., the features
whose correlations with the outcome that are greater than 0.7 are retained), or,
relatedly, constrain the number of selected features (e.g., by retaining several
top features most correlated with the outcome). Specifically, consider a feature
@. Denote p(4 ) as the result of a statistical test between the feature & and the
outcome y. For disease severity outcomes, the value of p can be the correlation
between the feature and the outcome; it can also be the corresponding p-values.
Let € be a pre-specified threshold for p. One can set € to control for the p-values
(from a correlation test), a distance metric (if p is the correlation coefficient), or
the total number of selected features.
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Top: Model performance using different numbers of im-
putations. Model performance improved with imputations
compared to without. Bottom: Model performances for
the mean approach, raw generalized estimation equations
(GEE) approach, and adjusted GEE approach across dif-
ferent numbers of selected features. Due to missing values
in features, the size of the available independent test
sample (indicated by the height of the blue dots) decreased
when more features were used. This is because we only
considered observed features for testing (namely we did
not perform MI for the test sample to prevent it from
potentially biasing prediction performance). In general, the
prediction accuracy using MI and GEE (indicated by the
yellow line) was relatively high and stable across various
numbers of features selected. The fine-tuning further im-
proved prediction performance (see the orange line).

Fig. 2. Longitudinal MSIS-29 prediction using different sets of imputa-
tions and various numbers of features.

performance with fine-tuning was relatively stable using small
numbers of top features; the performance slightly worsened
when the number of features further increased - this is likely
because the longitudinal association between the further added
features and the disease outcome was not strong. Although we
treat missing data in the training set via imputation, to avoid
bringing bias into the test data by imputation, we did not perform
MI on the test set and evaluated the model performance only
on available observations. Naturally, if one included a larger
number of features, there would be fewer numbers of PwMS left
with complete features. Formally, the (general) marginal model

that studies the relationship between the features and outcomes
is:

E (yit|xit, 24) =g‘1(u+wiTtSa+ziT7) (1)

where g¢(-) is a link function, p is the intercept,
al, = ], 2] and al, = (241 (1), 2ij2(t), - ijp, (1),
for j € {w,d}. Here, S = blockdiag{I,, I}, and I; =
diag{i;1, 42, .., 1p, }, Wherein ijp =1 if p(g,, 4 n-2) <€
and O otherwise, where x;, = (:cL-k,scgjk, .. .,:c]T\,jk)T
denotes a particular feature across all PWMS over time; z; is a
vector containing all covariates for the i subject, and - is its
coefficient. Finally, write 8 = (a, 7).

Denote the selected features as X = XS and the outcome
disease scores as Y. Via MI, we obtained M sets of complete
data (Y1), X(l), Z), ... (YD, X(M), Z), where the super-
script (m) denotes the m™ set of imputed data.

The problem in (1) can be solved using the GEE. Specifically,
the estimation of 3 can be done by solving the following score

function:
Dvafl(yi - Mi) =0

o, . . .
where D; = L;, 1, is the expectation of y;, and V; is the

estimate of the variance-covariance matrix of y,. Specifically,

where A; = diag{var(y;1), var(y;2), ..., var(y;1,) }, Ri(a) isa
T; x T; “working” correlation matrix [48], and « represents a
vector of parameters associated with a specific model for the
correlation of y;. When R,(«) is the true correlation matrix
for y;, V; = cov(y;). When the variance-covariance structure
is mis-specified, the parameter estimates would still be consis-
tent [48].

D. Inference

A GEE model was fit on selected features from each imputed
data set. Let Bm = (B{”, Bé", el B;") denote the estimated
parameter corresponding to the m™ set of imputed data, where
p (e.g., p = 6) is the number of selected smartphone features
(e.g., ¢ =4) plus the number of covariates (p — ¢ = 2), and
1 <m < M. Then, the (1 — «) x 100% confidence interval
(CD) for the estimated Bj corresponding to the j™ feature, where
1<j<p,is:

(VI B ) Vi
2 2

where 63— = Z%Zl B;”/]W ands; = \/Z%:I(Bjm — éj)Q/N[.

E. Model Ensemble and Out-of-Sample Prediction
We obtained the ensemble parameter 3 from A/ GEE models:

- 1 M
ﬂ:M 1ﬁ-

m=
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TABLE |
MODEL COMPARISON
Mean prediction Longitudinal prediction
EDSS MSIS-29 EDSS MSIS-29
Mixed Mixed Mixed Mixed

effect GLM GEE effect GLM GEE effect GLM GEE effect GLM GEE

] 0.353 0.293 0.319 0.500 0.644 0.682 0.232 0.412 0.482 0.627 0.655 0.691

! (0.352) | (0.308) | (0.336) | (0.502) (0.643) | (0.676) (0.234) | (0.426) | (0.497) | (0.627) | (0.656) | (0.692)

. 0.837 0.878 0.880 0.792 0.800 0.805
7 (dljsied), * * * 0.819) | (0.878) | (0.879) * ¥ * 0.772) | (0.799) | (0.805)
MSE 1.070 1.203 1.194 25.670 22.610 22.334 1.167 1.155 1.102 21.550 19.740 19.503
(1.296) | (1.196) | (1.188) | (27.888) | (22.755) | (22.609) | (1.439) | (1.147) | (1.098) | (23.466) | (19.841) | (19.677)

. 15.610 13.221 13.048 14.847 14.888 14.694
WBIE (@i * * - (16.692) | (13.283) | (13.177) * - * (15.633) | (14.858) | (14.638)

*Many people with MS (PwMS) only have one to two EDSS scores. It is, therefore, impractical to make further adjustments using data from day one.

Left: Mean outcome prediction. The GEE model is compared with two baseline models, a mixed-effect model and a GLM, to predict both averaged EDSS
and MSIS-29 scores. The prediction accuracy is evaluated using the correlation (r) and the mean squared errors (MSE). Right: Longitudinal outcome
prediction. The same analysis is performed for longitudinal disease prediction, where the longitudinal disease outcomes are individual EDSS and MSIS-
29 scores. Here, black-coloured values and grey-coloured values (within the parentheses) were results from ensemble GEE models using two averaging
approaches (averaging sets of parameters vs. averaging sets of predictions). More specifically, the former obtained M imputed data sets, each (via a GEE)
produced M sets of parameters; it then averaged the M sets of parameters to produce one unified set of parameters before verifying them on the test set to
produce one set of predicted outcomes. The latter first fitted M sets of parameters on the test data, obtain M sets of predictions, and then average the M
sets of predictions to obtain one set of final predictions. Our analyses suggest that these two averaging approaches yielded very similar prediction results.

Afterwards, longitudinal prediction on disease outcomes for

a new subject k at time ¢ in the test set is made using:

e=g" (ﬂ + Xpra+ Zk’_)’) (2)
where X = X ktS’ represents the selected features from sub-
ject k at time ¢ and the selection depends only on the training
set (as S is estimated from the training data); & is of the same
dimension with the original number of smartphone features with
q non-zero entries in locations corresponding to the g selected
features in ,B and zeros in the remaining entries; similarly, - is
of the same dimension of total covariates with p — ¢ non-zero
entries corresponding to the p — ¢ selected covariates in 3 and
zeros in the remaining entries.

Besides averaging M sets of parameters to yield a unified
predictive model, one could alternatively average multiple sets
of predictions from each of the M models. These two types of
averaging techniques, however, yielded very similar outcomes
in this study (see Table I), and we proceed with the predictive
model described in (2).

The data organization, imputation, model development, and
parameter ensemble are summarized in Fig. 1. As a remark,
we did not perform MI for the test data to ensure that (1)
the evaluation of model performance was only done on the
observed (test) data; and (2) the ability of the model to conduct
personalized disease assessment on new PwMS was independent
of the imputation mechanism.

F. Personalized Longitudinal Disease Assessment and
Its Improvement

Longitudinal disease assessment needs to address two impor-
tant problems: extrapolation and personalization. For extrapo-
lation, it needs to identify markers present in a broad patient
population so that they can be extended to new samples. For
personalization, it needs to account for idiosyncratic information
that is unique to each patient and is, therefore, potentially not
encoded in the population-level parameters.

In methods development, these two sets of problems translate
to the following tasks.

Task I: Can we discover features whose patterns are associated
with disease outcomes longitudinally whereby such association
is generally present in all PWMS in the training sample? If so,
they may be useful to make forecasts for new individuals (see
Fig. 3).

Task 2: Can we further adjust the longitudinal predictions
to reflect individual differences? Said differently, the trained
parameters from the GEE model reflect the relationship between
the features and the outcomes specific to the training sample.
If we were to use these parameters to make forecasts about
outcomes in new PwMS, they may not fully account for the
relationship between the features and outcomes in new individ-
uals. For example, a population-level model in practice may
underestimate disease severity in new PwMS during out-of-
sample testing (see Figs. 3 and 5). On the other hand, if one
considers subject-specific parameters (such as that in the mixed
effect models) or incorporates prior information about a subject
(such as that in Bayesian learning) for the training model, such
parameters or priors still only reflected individual information
with regards to the training sample. Naturally, one would want to
make an individualized adjustment to the population-level model
(whose parameters were developed on the training sample) to
incorporate subject-specific information that is contained in the
test sample. But constructing an (independent) subject-specific
model for the test sample to include idiosyncratic information
may over-fit the test data.

To balance extrapolation and personalization, we added the
following subject-level fine-tuning into the longitudinal model:

{

where 7+ is the estimated outcome for a new subject & at time ¢
using (2), yy1 is the earliest (¢ = 1) observed outcome for subject
k and g, is its estimation; 372? is the fine-tuned estimate.

The above correction means, after making disease estimations
using the population-level parameters from the ensemble GEE

t=1
t>2

Tkt
it + (Yk1 — Uk1)

~adj
Yt =

3
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Two individuals, one with severe MSIS-29 scores (top
panel) and another with minor scores (bottom panel), are
shown. The grey circles represent observed longitudinal
scores. The yellow circles are estimated scores using the
ensemble generalized estimation equations (GEE) param-
eters. The orange circles are estimated scores further fine-
tuned using data from the first day (see text for details).

Fig. 3.
phones.

Personalized longitudinal disease assessment using smart-

on new PwMS (dashed lines in Fig. 3), we make a subject-level
correction (by adjusting a constant (yx1 — §x1) on estimates
made from day two and beyond using disease information from
day one (solid orange lines in Fig. 3).

There are a few reasons for using one day’s data for fine-tuning
(instead of using multiple days) in this study. First, when there
are only a small number of data points recorded, using data
from multiple days for tuning would result in fewer days of
data left for testing (and could potentially artificially boost test
results). Second, our analyses demonstrated that fine-tuning
using data from one day indeed led to improved personalized
disease monitoring while avoiding over-fitting the test data. The
reason that the fine-tuning avoided over-fitting was twofold.
(a) It did not use any information from the outcomes obtained
after day one. (b) It only adjusted a constant (yx; — 1) on the
prediction. Had the estimated longitudinal trend been inaccurate
using (2) (see the yellow line in Fig. 3), a constant adjustment in
(3) would not improve the trend prediction. Finally, when longer
test data become available for each individual in the future, one
can potentially further improve the personalization by using a
fine(r)-tuning based on more data or by extracting a subject-level
prior for each new subject using data obtained during an initial

Frequently selected smartphone gait and hand features

predictive of longitudinal multiple sclerosis outcomes (MSIS-29 scores)

The distribution of selected gait and hand features. One
thousand bootstrap experiments were performed to dis-
cover gait and hand features consistently selected for lon-
gitudinal MSIS-29 prediction. The selected gait and hand
features were plotted on a pie chart: from inner circle to
outer circle were feature category (gait vs. hand features),
feature name, and the frequency each feature was selected
from one thousand bootstrap experiments. Gait and hand
features were coded in blue and red, respectively (see
text for details on individual features). Note that, as six
features were allowed during each bootstrap, the selected
(six) features may vary across different bootstraps. But
noticeably some features were more frequently selected.

Fig. 4. Key features in smartphone-based remote longitudinal out-
come prediction for multiple sclerosis patients.

period. But our message of considering and balancing extrapo-
lation and fine-tuning from the current proof-of-concept study
remains.

G. Optimal Number of Imputed Datasets

When employing MI, an interesting question arises. How
many sets of imputed data are needed? Although the percent-
age of missing data in our MS data set is relatively small
(v = 1.42%), missing just one entry of an important feature
on a particular day would make other features collected on that
day not used during model development.> More concretely, this
question needs to be addressed in two aspects. First, how many
sets of imputations would yield high prediction accuracy — this
needs to be evaluated empirically. Second, theoretically, how
can we determine that the so-called “high prediction accuracy”
is sufficiently high?

To empirically examine the optimal number of sets of imputa-
tions, we considered different choices of M and calculated their

2Once the model has been developed (i.e., after the parameters have been
trained), having missing data during an out-of-sample test is less concerning.
As smartphone data are relatively easy to collect, if there were missing data on
one day, one can repeat the tests (e.g., DaS and 2MWT) the next day (or next
week) as the disease is not likely to advance in a few days.
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Left: The estimated against observed MSIS-29 scores for previously unseen people with MS (PwMS). The grey dots
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Fig. 5.

out-of-sample prediction accuracies (the correlation between
true and estimated disease severity scores) (see Fig. 2). Our
results showed that the prediction accuracy with MI was gener-
ally higher than it with missing values. Additionally, once more
than 15 imputations were made, the accuracy became relatively
stable. Next, the number of imputations and efficiency have the
following approximate relationship [39]:

Efficiency = (1 + %) o @

where - refers to the percentage of missing data, and M denotes
the number of imputations. When setting M/ = 15, the efficiency
was 99.9% by (4). As adding more imputations had not signif-
icantly improved prediction accuracy or efficiency and would
incur unnecessary computing time, we chose M = 15 for the
remaining of the paper.

Ill. RESULTS

In this section, we present longitudinal MS prediction results
using smartphone data. Throughout, to deal with uncertainty
resulting from imputation, we generated 15 imputed values for
each missing value. That is, for each experiment, 15 sets of
complete data containing imputed values were used to train the
model. Fifteen GEE models were subsequently fit for each of the
imputed, and now full, training data sets. The resulting 15 sets of
estimated parameters were pooled to form a unified, ensemble
GEE predictive model. The final predictive model was then
used to forecast disease outcomes in independent test PwMS.
To ensure that the out-of-sample prediction was not affected by
imputation mechanisms, we only considered imputation for the
training data and evaluated the model performance on indepen-
dent PWMS only on days where disease scores were available.

Estimating multiple sclerosis (MS) severity over time in new individuals.

To demonstrate the efficacy of the proposed framework, we
compared it with mixed-effect and GLM models in the same
modelling and test strategy. For each model, we applied it to
predict both the averaged outcomes and longitudinal outcomes,
and for both EDSS and MSIS-29 scores. We recorded the ac-
curacy statistics (correlation and MSE) from each model (see
Table I). Our results showed that for both disease scores, GEE
outperformed the mixed-effect model and was slightly better
than GLM in mean assessment and longitudinal assessment.
Since there were far fewer longitudinal measurements of EDSS
score per individual compared to those of MSIS-29 score and the
main theme herein is on longitudinal disease severity prediction,
in the following we will focus on examining the performance of
the proposed model with regards to longitudinal MSIS-29 score
prediction.

Our results suggest features related to gait and upper extremity
functions are useful to assess MS longitudinally (see Fig. 4).
Specifically, the following DaS features [29] are consistently
selected. “Figure-of-8 GOF” is the root-mean-squared error
obtained from a linear regression between the reference trace
of the figure-of-8 and the drawn trace (i.e., the goodness of
fit [GOF]). “Figure-of-8 AV” is the angular drawing velocity
(AV). “Figure-of-8 trace celerity” is the ratio of trace accuracy
over drawing time. “Figure-of-8 drawing error”, “Circle drawing
error”, and “Square drawing error” quantify the error made
when drawing a figure-of-8, circle, and square, respectively.
“Figure-of-8 aDS” and “Line top to bottom aDS” quantify the
absolute drawing speed (aDS) when drawing the figure-of-8
and line top to bottom, respectively. “Overall completion rate”
describes the proportion of successfully drawn shapes. From the
2MWT [30], “Step power” is consistently selected. It quantifies
the power, or energy, invested per step during a 2MWT.
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Overall, the estimated longitudinal MSIS-29 scores in the
new test sample were significantly correlated with their ob-
served counterparts (r = 0.81, p < 0.001) (see left of Fig. 5).
It, however, remained possible that the significant association
was boosted by having repeated measurements in the test set.
To check for this possibility, we took the means of the predicted
and observed outcomes for each individual (thus there was only
one estimated mean score and one predicted mean score for
each participant) and calculated the association again; the result
remained significant (» = 0.88,p < 0.001).

A. Bootstrap Experiments on Evaluating Predictions At
the Group Level

Since training and test samples were obtained from a random
split of the data, predictions made on some splits may perform
better than those made on others. To evaluate the general perfor-
mance of our model, we performed 1,000 bootstrap experiments.
Specifically, each bootstrap began with a random draw of the
data. The PWMS in the sampled data were subsequently splitinto
70% (training) and 30% (test), where repeated measurements of
a subject were either in the training set or the test set. Next, for
each bootstrap sample, multiple imputation (M = 15) was made
on its training set, followed by model development using the
GEE on each of the imputed full set. Subsequently, parameters
from the M models were pooled to form an ensemble GEE
model that was specific to each bootstrap training sample, with
model performance evaluated on the test data. Each bootstrap ex-
periment ended with one correlation value between the estimated
and observed outcomes regarding the test set. Together, we ob-
tained 1,000 correlation values from all bootstrap experiments.
In parallel, we performed another 1,000 bootstrap experiments
but with the personalized fine-tuning included as outlined in (3).

The bootstrap results showed that the proposed method was
reproducible across all bootstrap samples with reasonable over-
all disease assessment results (with an average correlation of
0.34), and additionally, the adjusted personalized disease as-
sessment further improved estimation accuracy (with an average
correlation of » = (0.81) (see Fig. 6).

Yet, one may still question: how can one be certain that the
above analyses justify the efficacy of the model for longitudinal
prediction? It remained possible that, if the dataset contained
many individuals without much longitudinal variability in their
(within-subject) scores, then the above analyses only showed
that the model was useful in estimating the average scores. To
further examine the model performance in longitudinal disease
prediction, we performed two additional analyses detailed in the
next sub-section.

B. Evaluating the Longitudinal Model Performance
Regarding Predicting the MSIS-29 Scores

We considered an additional analysis using leave-one-subject-
out cross-validation (LOOCV) to determine whether the pre-
dicted disease scores captured longitudinal trends. We begin by
denoting 7 (7 > 0) as the grouping threshold. First, we group
the PwMS into three categories: (1) Improved, (2) Stable, and
(3) Worsened. The categories were determined by whether the
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During each bootstrap test, data from people with MS
(PwMS) were randomly drawn from the sample. Each
selected sample was then randomly split into a training
set and a test set (containing 70% and 30% of the
total samples, respectively). Next, multiple imputation was
performed and an ensemble GEE was learned from the
training data. The trained model was then evaluated on
the test data. Subsequently, the (longitudinal) correla-
tion between the estimated and observed disease scores
was calculated. This was repeated 1,000 times, yield-
ing 1,000 correlations. The light orange and light blue
shaded histograms represent the distributions of Pearson
and Spearman correlations from 1, 000 bootstrap tests; the
dark orange and dark blue shaded histograms represent
the distributions of the fine-tuned personalized prediction
outcomes. Two null distributions (grey-shaded) were gen-
erated from a normal distribution with zero mean and the
same standard deviations as the bootstrap Pearson and
Spearman correlations.

Fig. 6. Bootstrap results of out-of-sample testing performance for
MSIS-29 score prediction.

change in MSIS-29 scores at the end of the study from baseline
was smaller than —7 units (denoted as A < —r, indicating im-
provement), within plus/minus 7 units (denoted as A € [—7, 7],
indicating stable), or greater than +7 units (denoted as A > 4+,
indicating worsening). We set the threshold 7 = 1/2 for demon-
stration purposes. If the directions of the estimated score change
agreed with the observed categories, it suggests that the model
was able to pick up the longitudinal disease trend. Although the
means of the three groups were not pairwise significant (this is,
in part, due to the small sample size, and, in part, due to the
small longitudinal changes during a period of six months), the
LOOCYV results suggested that the predicted score changes were
generally in line with the observed categories (see Fig. 7). Note
that a larger 7 would yield more observations to be classified
into the stable group; but across different sets of thresholds (i.e.,
7 =1, 2, and 3), we observed similar results.

We then performed an additional 1,000 bootstrap experiments
(with the same setting in Section III-A). First, individuals were
classified into improved, stable, or worsened groups based on
whether the disease scores at the end of the study were at least
a half unit smaller than, similar to (within plus/minus a half
unit), or at least a half unit larger than, the score at the baseline.
The longitudinal prediction was carried out and the difference
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Left: We performed a leave-one-subject-out cross-

validation (LOOCYV) analysis and plotted the predicted
disease score changes against patients’ disease categories.
Right: We performed a bootstrap analysis and presented
the number of patients falling into each predicted vs.
observed group (see text for details).

Fig. 7. Results of predicted score change against observed groups in
out-of-sample people with MS (PwMS).

between the predicted scores at baseline and the end of the study
for each individual was calculated. We then counted the number
of individuals belonging to each predicted category against it
falling in each observed category (see Fig. 7). Note that some
patients showed improved scores due to therapeutic effects or
recovery from relapse events.

We next sought to quantify the longitudinal prediction perfor-
mance. To that end, we calculated the repeated measures corre-
lation (rmcorr) [50] for the out-of-sample PwWMS prediction to
estimate the within-individual association between longitudinal
observations and their estimates for multiple individuals. The
rmcorr was calculated using the R package rmcorr [50].
Specifically, we considered the rmcorr for estimated and ob-
served MSIS-29 scores at baseline and their counterparts at the
end of the study: a positive rmcorr suggested there was evi-
dence that the model was able to detect the longitudinal within-
individual disease score change between the baseline and the
end of the study. To account for variability due to random splits
between training and test samples, we performed 1,000 bootstrap
experiments and obtained 1,000 out-of-sample rmcorr values
(mean rmcorr = 0.14, st.d. = 0.19) and Pearson correlations
(mean r = 0.42, st.d. = 0.16), respectively. We note that the
variability in the rmcorr estimates does not allow us to rule
out the possibility of there being no positive longitudinal cor-
relation; the estimate of P(rmcorr < 0) from the bootstrap
samples, however, was only 0.22. These explorations suggested
that the model was overall promising to capture the longitudi-
nal within-individual disease trend, with limitations discussed
below.

IV. DISCUSSION

The results from Sections III-A and III-B suggest that the
utility of the proposed model is twofold. First, it balances group-
and subject-level information. The parameters were learned
from the training sample and contained information that may
be manifested at the group level and can be extrapolated to

previously unseen PwMS (see the light orange histogram in
Fig. 6). The new PwMS, however, may contain information
that may not be captured by the population parameters. The
subject-specific fine-tuning using data from day one may narrow
the gap (see the dark orange histogram in Fig. 6). Nevertheless,
if the PWMS have scores that do not vary much over time, the
model may underperform the one using the data from day one
alone. Said differently, if the scores of PwMS do not vary much
longitudinally, one may as well use a participant’s score from
day one, say, 50, to predict the future scores; that is, a string of
constant scores. Yet, the analyses in Section III-B suggest that
even when the individual scores had not progressed consider-
ably, the model seemed to be able to pick up the longitudinal
trend. Previous findings suggested that it is possible to obtain
longitudinal trend approximate to EDSS scores using gait data
(2MWT) collected by smartphones [35]. Our work confirms this,
and further expands to the longitudinal proxies of both EDSS
and MSIS-29 scores using gait (2MWT) and upper extremity
function (DaS) features. Such converging evidence suggests an
additional attractive (longitudinal) property of our model; it also
suggests that when there are even minor disease dynamics, one
should consider a longitudinal model and should refrain from
making extrapolations that, since the disease (for an individual)
is relatively stable, one can rely on the first disease score to infer
(a string of constant) future scores. Finally, when dealing with
longitudinal predictions with different levels of missing data,
(4) provides a helpful reference to which one can choose the
number of imputations based on the amount of missing data to
achieve a desirable efficiency.

There are a few limitations of our study. First, the observed
disease outcomes were sparse. Particularly limited were the
sparsely observed EDSS scores, clinically more relevant than the
MSIS-29 scores. Their scarcity obstructs model development
(as there were no more than three outcomes per PwMS to train)
and hinders model testing (as there were no more than three
outcomes per PWMS to evaluate). Even though the proposed
model trained on sparse EDSS scores hinted at longitudinal
validity (see Table I), we expect the model performance would
improve if more EDSS scores were available. Further studies
should verify this expectation by training (and testing) the model
using more outcomes (as the smartphone data were available
at least weekly). By “more outcomes”, we mean EDSS
scores collected more frequently (e.g., every fortnight),
EDSS scores sparsely recorded but over a longer pe-
riod, or EDSS scores frequently recorded over a long
period. Once the model has been (better) trained, it can be ap-
plied to new subjects - either sparsely or frequently - to estimate
their disease over time. Second, the data were acquired during
a relatively short period (24 weeks) wherein the longitudinal
scores might not substantially change. Future studies can verify
the proposed method in data collected over a much longer period,
during which there are likely more disease activity changes.
Additionally, this study consists of subjects with relatively mild
levels of MS-related functional impairment. Future studies
may consider a broader population including healthy controls,
patients with mild MS symptoms, and patients with severe,
potentially fluctuating disease profiles. Beginnings are already
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being made; see, for example, [51], [52]. Third, based on neu-
rological insights and past findings, we were mainly interested
in examining the efficacy of gait and upper extremity functions
in predicting longitudinal MS progress. Although our findings
have suggested the utility of these features in longitudinal MS
prediction, we have naturally left out a large territory where other
modalities, such as dexterity tests (e.g., pinching test), cognitive
tests (e.g., the Symbol Digit Modalities Test (SDMT)), U-turn
test, and passively collected digital data, may also be useful to
assess MS over time. Further research may, on the one hand, ex-
plore the longitudinal prediction performance bestowed by each
modality, and, on the other hand, investigate whether, and if so,
to what extent, one may improve longitudinal MS prediction by
integrating multivariate multi-modal features. Fourth, we used
imputation to make use of all recorded features - some of which
otherwise not utilized on days with missing values - during
model development. During the test, we avoided imputation to
prevent it from affecting the test results. This, however, made dis-
ease prediction on days with missing data impossible. Although
one can, in practice, run a re-test by recording complete data on
another day - as the disease is not likely to progress in a few days -
future studies should explore advanced imputation methods that
can yield complete test data not spuriously boosting predicting
performance. Explorations can possibly be made by replacing
missing values with data generated from a posterior learned
from available test data (hence no leakage from the training
data) and a flat prior (also no leakage from the training data) or a
weak prior learned from the training data (the weak prior helps
data generation, not prediction). Finally, although our model
was able to significantly predict subject-specific mean scores
and modestly identify the subject-specific longitudinal disease
trend, the results of the latter were not statistically significant.
This may be due, in part, to the short study period and small
sample size and, in part, to the limitation of the model. Future
studies should verify the proposed approach on larger datasets
and explore additional techniques to improve our method.

V. CONCLUSION

Personalized longitudinal assessment of MS disease has the
potential to inform clinical decisions, and thereby improve treat-
ment outcomes. Smartphone sensor-based assessments offer a
new cost-efficient approach to remotely and frequently assessing
MS-related functional ability that can complement standard clin-
ical assessments [22]. Smartphone devices are widely available
and generate, through their embedded sensors, highly granular
and meaningful data suitable for longitudinal modelling of MS.
Before such sensor-based assessments can be routinely deployed
in clinical practice, it is important to evaluate whether, and
if so, to what extent, they can distinguish between-individual
differences in disease profiles and uncover within-individual
disease courses longitudinally.

In this study, we developed an automated personalized longi-
tudinal framework to assess MS over time. The framework com-
bines MI, GEE, ensemble learning, and subject-specific fine-
tuning. MI was used to impute missing data entries; the ensemble
GEE was employed for model development and longitudinal

prediction of MS disease scores; fine-tuning was introduced to
adjust for idiosyncratic disease trajectory.

Using smartphone and clinical data, the framework showed
promise to estimate individual longitudinal MS disease profiles
in previously unseen PwMS. Particularly, the detected disease
changes between baseline and the end of the study agreed in
general with the observed changes in MSIS-29 scores.

Taken together, our analyses proved the concept of
smartphone-based, personalized MS assessment and demon-
strated the potential of the proposed model in longitudinal MS
evaluation. Future research needs to test the model using inde-
pendent datasets and verify if the framework can be extended
to evaluate other MS-related clinical outcomes. Future studies
may also examine the utility of the method in MS prognosis
(namely, predicting the disease before its onset) and explore
whether this approach is useful to investigate and forecast other
neurodegenerative diseases longitudinally.

ACKNOWLEDGMENT

The authors thank Sven Holm and Guy Nagels for helpful
comments.

REFERENCES

[1] D. S. Reich, C. F. Lucchinetti, and P. A. Calabresi, “Multiple sclerosis,”
New England J. Med., vol. 378, no. 2, pp. 169-180, 2018.

[2] R. Milo and E. Kahana, “Multiple sclerosis: Geoepidemiology, genetics
and the environment,” Autoimmunity Rev., vol. 9, no. 5, pp. A387-A394,
2010.

[3] P.Browne et al., “Atlas of multiple sclerosis 2013: A growing global prob-
lem with widespread inequity,” Neurology, vol. 83, no. 11, pp. 1022-1024,
2014.

[4] C. Walton et al., “Rising prevalence of multiple sclerosis worldwide: In-
sights from the Atlas of MS,” Mult. Scler. J.,vol.26,no. 14, pp. 1816-1821,
2020.

[5] I Kister et al., “Natural history of multiple sclerosis symptoms,” Int. J.
MS Care, vol. 15, no. 3, pp. 146-156, 2013.

[6] N. Yozbatiran, F. Baskurt, Z. Baskurt, S. Ozakbas, and E. Idiman, “Motor
assessment of upper extremity function and its relation with fatigue,
cognitive function and quality of life in multiple sclerosis patients,” J.
Neurological Sci., vol. 246, no. 1/2, pp. 117-122, 2006.

[71 J.L.Pooleetal., “Dexterity, visual perception, and activities of daily living
in persons with multiple sclerosis,” Occup. Ther. Health Care, vol. 24,
no. 2, pp. 159-170, 2010.

[8] K. Lam et al., “Real-world keystroke dynamics are a potentially valid
biomarker for clinical disability in multiple sclerosis,” Mult. Scler. J.,
vol. 27, no. 9, pp. 1421-1431, 2021.

[9] A.Bisio, L. Pedulld, L. Bonzano, A. Tacchino, G. Brichetto, and M. Bove,
“The kinematics of handwriting movements as expression of cognitive and
sensorimotor impairments in people with multiple sclerosis,” Sci. Rep.,
vol. 7, no. 1, pp. 1-10, 2017.

[10] H. L. Zwibel, “Contribution of impaired mobility and general symp-
toms to the burden of multiple sclerosis,” Adv. Ther., vol. 26, no. 12,
pp. 1043-1057, 2009.

[11] L. Hemmett, J. Holmes, M. Barnes, and N. Russell, “What drives quality
of life in multiple sclerosis?,” Int. J. Med., vol. 97, no. 10, pp. 671-676,
2004.

[12] S. Johansson et al., “High concurrent presence of disability in multiple
sclerosis,” J. Neurol., vol. 254, no. 6, pp. 767-773, 2007.

[13] R. Bertoni, I. Lamers, C. C. Chen, P. Feys, and D. Cattaneo, “Unilateral
and bilateral upper limb dysfunction at body functions, activity and par-
ticipation levels in people with multiple sclerosis,” Mult. Scler. J., vol. 21,
no. 12, pp. 1566-1574, 2015.

[14] B. K. Tsang and R. Macdonell, “Multiple sclerosis: Diagnosis, man-
agement and prognosis,” Australian Fam. Physician, vol. 40, no. 12,
pp. 948-955, 2011.



3644 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 27, NO. 7, JULY 2023

[15] J. E. Kurtzke, “Rating neurologic impairment in multiple sclerosis: An  [32] A. Scalfari et al., “The natural history of multiple sclerosis, a geographi-
expanded disability status scale (EDSS),” Neurology, vol. 33, no. 11, cally based study 10: Relapses and long-term disability,” Brain, vol. 133,
pp. 1444-1452, 1983. no. 7, pp. 1914-1929, 2010.

[16] A. Riazi, J. Hobart, D. Lamping, R. Fitzpatrick, and A. Thompson, [33] P.Feysetal., “The Nine-Hole Peg Test as a manual dexterity performance
“Multiple sclerosis impact scale (MSIS-29): Reliability and validity in measure for multiple sclerosis,” Mult. Scler. J., vol. 23, no. 5, pp. 711-720,
hospital based samples,” J. Neurol., Neurosurgery Psychiatry, vol. 73, 2017.
no. 6, pp. 701-704, 2002. [34] J.Prince, F. Andreotti, and M. D. Vos, “Multi-source ensemble learning for

[17] J. Hobart, D. Lamping, R. Fitzpatrick, A. Riazi, and A. Thompson, “The the remote prediction of Parkinson’s disease in the presence of source-wise
multiple sclerosis impact scale (MSIS-29): A new patient-based outcome missing data,” IEEE Trans. Biomed. Eng., vol. 66, no. 5, pp. 1402-1411,
measure,” Brain, vol. 124, no. 5, pp. 962-973, 2001. 2019.

[18] C. McGuigan and M. Hutchinson, “The multiple sclerosis impact scale  [35] A.P.Creagh, F. Dondelinger, F. Lipsmeier, M. Lindemann, and M. D. Vos,
(MSIS-29) is a reliable and sensitive measure,” J. Neurol., Neurosurgery “Longitudinal trend monitoring of multiple sclerosis ambulation using
Psychiatry, vol. 75, no. 2, pp. 266-269, 2004. smartphones,” IEEE Open J. Eng. Med. Biol., vol. 3, pp. 202-210, 2022,

[19] A. Rae-Grant, A. Bennett, A. E. Sanders, M. Phipps, E. Cheng, doi: 10.1109/0JEMB.2022.3221306.
and C. Bever, “Quality improvement in neurology: Multiple sclero-  [36] J. W. Graham, “Missing data analysis: Making it work in the real world,”
sis quality measures: Executive summary,” Neurology, vol. 85, no. 21, Annu. Rev. Psychol., vol. 60, no. 1, pp. 549-576, 2009.
pp. 1904-1908, 2015. [37] J. A. Sterne et al., “Multiple imputation for missing data in epidemio-

[20] A.J. Steelman, “Infection as an environmental trigger of multiple sclerosis logical and clinical research: Potential and pitfalls,” BMJ, vol. 338, 2009,
disease exacerbation,” Front. Immunol., vol. 6, 2015, Art. no. 520. Art. no. b2393.

[21] E. A. Mills, A. Mirza, and Y. Mao-Draayer, “Emerging approaches for ~ [38] P. T. von Hippel, “New confidence intervals and bias comparisons show
validating and managing multiple sclerosis relapse,” Front. Neurol., vol. 8, that maximum likelihood can beat multiple imputation in small sam-
2017, Art. no. 116. ples,” Struct. Equation Model.: A Multidisciplinary J., vol. 23, no. 3,

[22] X. Montalban et al., “A smartphone sensor-based digital outcome assess- pp. 422437, 2016.
ment of multiple sclerosis,” Mult. Scler. J., vol. 28, no. 4, pp. 654-664,  [39] D. B. Rubin, Multiple Imputation for Nonresponse in Surveys. Hoboken,
2021. NJ, USA: Wiley, 2004.

[23] O.Y. Chén and B. Roberts, “Personalized health care and public healthin ~ [40] D. B. Rubin, “Multiple imputation after 18 years,” J. Amer. Stat. Assoc.,
the digital age,” Front. Digit. Health, vol. 3, 2021, Art. no. 595704. vol. 91, no. 434, pp. 473-489, 1996.

[24] L. Midaglia et al., “Adherence and satisfaction of smartphone-and [41] D. B. Rubin, “Inference and missing data,” Biometrika, vol. 63, no. 3,
smartwatch-based remote active testing and passive monitoring in people pp. 581-592, 1976.
with multiple sclerosis: Nonrandomized interventional feasibility study,”  [42] P.D. Allison, Missing Data. Thousand Oaks, CA, USA: Sage Publications,
J. Med. Internet Res., vol. 21, no. 8, 2019, Art. no. e14863. 2001.

[25] J. Poushter, “Smartphone ownership and internet usage continues to  [43] C. K. Enders, Applied Missing Data Analysis. New York, NY, USA:
climb in emerging economies,” 2016. Accessed: Sep. 15, 2022. [Online]. Guilford Press, 2010.

Available: https://policycommons.net/artifacts/618628/smartphone-  [44] R. J. Little and D. B. Rubin, Statistical Analysis with Missing Data.
ownership-and-internet-usage-continues- to-climb- in-emerging- Hoboken, NJ, USA: Wiley, 2019.
economies/ 1599614/ [45] J. C. Jakobsen, C. Gluud, J. Wetterslev, and P. Winkel, “When and

[26] S.P. Bhavnani, J. Narula, and P. P. Sengupta, “Mobile technology and the how should multiple imputation be used for handling missing data in
digitization of healthcare,” Eur. Heart J., vol. 37, no. 18, pp. 1428-1438, randomised clinical trials—a practical guide with flowcharts,” BMC Med.
2016. Res. Methodol., vol. 17, no. 1, pp. 1-10, 2017.

[27] B. C. Kieseier and C. Pozzilli, “Assessing walking disability in multiple ~ [46] R. R. Andridge and R. J. Little, “A review of hot deck imputation for
sclerosis,” Mult. Scler. J., vol. 18, no. 7, pp. 914-924, 2012. survey non-response,” Int. Stat. Rev., vol. 78, no. 1, pp. 40-64, 2010.

[28] M. Kierkegaard, U. Einarsson, K. Gottberg, L. von Koch, and L. W. [47] S. van Buuren and K. Groothuis-Oudshoorn, “mice: Multivariate imputa-
Holmgqvist, “The relationship between walking, manual dexterity, cog- tion by chained equations in R,” J. Stat. Softw., vol. 45, pp. 1-67, 2011.
nition and activity/participation in persons with multiple sclerosis,” Mult. ~ [48] K.-Y.LiangandS. L. Zeger, “Longitudinal data analysis using generalized
Scler. J., vol. 18, no. 5, pp. 639-646, 2012. linear models,” Biometrika, vol. 73, no. 1, pp. 13-22, 1986.

[29] A.Creaghetal., “Smartphone-based remote assessment of upper extremity ~ [49] O. Y. Chén et al., “Building a machine-learning framework to remotely
function for multiple sclerosis using the draw a shape test,” Physiol. Meas., assess Parkinson’s disease using smartphones,” IEEE Trans. Biomed. Eng.,
vol. 41, no. 5, 2020, Art. no. 054002. vol. 67, no. 12, pp. 3491-3500, 2020.

[30] A.P.Creagh et al., “Smartphone-and smartwatch-based remote character- ~ [50] J.Z. Bakdash and L. R. Marusich, “Repeated measures correlation,” Front.
isation of ambulation in multiple sclerosis during the two-minute walk Psychol., vol. 8, 2017, Art. no. 456.
test,” IEEE J. Biomed. Health Informat., vol. 25, no. 3, pp. 838-849,  [51] J. van Beek et al., “Floodlight open-a global, prospective, open-access
2021. study to better understand multiple sclerosis using smartphone technol-

[31] A. K. Bourke, A. Scotland, F. Lipsmeier, C. Gossens, and M. Linde- ogy,” in Proc. Annu. Meeting Consortium Mult. Scler. Centers, 2019, Poster
mann, “Gait characteristics harvested during a smartphone-based self- QOL10.
administered 2-minute walk test in people with multiple sclerosis: Test-  [52] S. Roy et al., “Disability prediction in multiple sclerosis using perfor-

retest reliability and minimum detectable change,” Sensors, vol. 20, no. 20,
2020, Art. no. 5906.

mance outcome measures and demographic data,” in Proc. Conf. Health,
Inference, Learn., 2022, pp. 375-396.


https://policycommons.net/artifacts/618628/smartphone-ownership-and-internet-usage-continues-to-climb-in-emerging-economies/1599614/
https://policycommons.net/artifacts/618628/smartphone-ownership-and-internet-usage-continues-to-climb-in-emerging-economies/1599614/
https://policycommons.net/artifacts/618628/smartphone-ownership-and-internet-usage-continues-to-climb-in-emerging-economies/1599614/
https://dx.doi.org/10.1109/OJEMB.2022.3221306


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


