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Docteur en mathématique appliquée aux sciences humaines et sociales

par

Kevin Emery

Directeur de Thèse

Prof. André Berchtold

Jury

Dr. Caroline Roberts

Prof. Matthias Studer

Dr. Brendan Halpin

LAUSANNE

2023



UNIL I Université de Lausanne

Facu lté des sciences
sociales et politiques

IMPRIMATUR

Le Décanat de la Faculté des sciences sociales et politiques de I'Université de
Lausanne, au nom du Conseil et sur proposition d'un jury formé des professeurs

r M. André BERCHTOLD, Professeur, Directeur de thèse
. Mme Caroline ROBERTS, Professeure Assistante à l'Université de Lausanne

o [vl. Matthias STUDER, Professeur à l'Institut de Démographie et

Socioéconomie (IDESO) de l'Université de Genève

o M. Brendan HALPIN, Maître de Conférences au Département de Sociologie

de l'Université de Limerick, Irlande

autorise, sans se prononcer sur les opinions du candidat, I'impression de la thèse
de Monsieur Kevin EMERY, intitulée :

<< Handling missing data in multichannel life coursè analysis. >>

Nicky LE FEUVRE

Doyenne

Lausanne, le 29 juin 2023



Abstract

This thesis addresses the challenge of dealing with missing data, which is an inevitable issue in

quantitative studies. The appropriate treatment of missing data is complex and can significantly

impact statistical results and conclusions. A particular emphasis is placed on data for life course

analysis. Life course data have characteristics that require specific treatment of missing data.

First, the longitudinal structure is crucial since life courses are often considered as a whole.

Then, due to their longitudinal nature, there are generally several missing observations in a row.

This behaviour happens in a survey when individuals miss several waves of data collection or

drop out of the survey. Next, they are generally coded as categorical data. Therefore, standard

methods, that were generally developed for numerical variables, are difficult to apply. Finally,

such data are subject to few transitions.

One of the major challenges encountered in life course methodology is the absence of a

commonly accepted solution for handling missing data (Piccarreta and Studer, 2019; Liao et

al., 2022). The main aim of this thesis is to fill this gap. Furthermore, this thesis proposes novel

methods to enhance existing approaches and address gaps in the imputation of longitudinal

categorical data.

Résumé

Cette thèse aborde le défi de la gestion des données manquantes, qui constitue un problème

inévitable dans les études quantitatives. Le traitement approprié des données manquantes est

complexe et peut avoir un impact significatif sur les résultats statistiques et les conclusions.

Un accent particulier est mis sur les données de parcours de vie. Les données de parcours

de vie présentent des caractéristiques qui nécessitent un traitement spécifique des données

manquantes. Premièrement, la structure longitudinale est cruciale, car les parcours de vie

sont souvent considérés dans leur intégralité. De plus, en raison de leur nature longitudinale,

il y a généralement plusieurs observations manquantes consécutives. Ce phénomène se pro-

duit lorsqu’il y a des vagues de collecte de données manquées par les individus ou lorsqu’ils

abandonnent l’enquête. Ensuite, ces données sont généralement codées comme des données

catégorielles. Par conséquent, les méthodes standard, généralement développées pour les vari-

ables numériques, sont difficiles à appliquer. Enfin, de telles données sont caractérisées par peu

de transitions.

L’un des principaux défis de la méthodologie du parcours de vie réside dans l’absence d’une

solution communément acceptée pour traiter les données manquantes (Piccarreta et Studer,

2019; Liao et al., 2022). L’objectif principal de cette thèse est de combler cette lacune. De

plus, cette thèse propose des méthodes novatrices pour améliorer les approches existantes et

combler les lacunes dans l’imputation des données catégorielles longitudinales.
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Chapter 1

Introduction

This thesis addresses the challenge of dealing with missing data, which is an inevitable issue

in quantitative studies. The appropriate treatment of missing data is complex and can sig-

nificantly impact statistical results and conclusions. For instance, a study conducted by Lall

(2016) examined the impact of two commonly used methods for managing missing data on

various statistical analyses. The results showed that in half of the cases, the choice of method

significantly affected the essential statistical outcomes. Although Lall’s research focused on the

field of comparative and international political economy, these findings could extend to other

fields as well. Despite the critical role of managing missing data, a review by Berchtold (2019)

on articles published in top-tier social science journals found that over half of the cases did not

acknowledge the presence of missing data, even when it was present. Moreover, when missing

data were acknowledged, inadequate treatments were applied in most cases.

In this thesis, a particular emphasis is placed on data for life course analysis. As stated

Bernardi et al. (2019):“The life course, therefore, can be defined as a multifaceted process of

individual behaviour; that is, it evolves from the steady flow of individuals’ actions and experi-

ences, which modify their biographical states”. Within the life course paradigm, life trajectories

are studied as a whole rather than as a collection of events. One of the major challenges encoun-

tered in life course methodology is the absence of a commonly accepted solution for handling

missing data (Piccarreta and Studer, 2019; Liao et al., 2022). The main aim of this thesis is to

fill this gap. Furthermore, this thesis proposes novel methods to enhance existing approaches

and address gaps in the imputation of longitudinal categorical data.

Life course data have characteristics that require specific treatment of missing data. First,

the longitudinal structure is crucial since life courses are often considered as a whole. For

example, events early in the trajectory may have an impact later on. Then, due to their

longitudinal nature, there are generally several missing observations in a row, called gap of

missing data. This behaviour happens in a survey when individuals miss several waves of

data collection or drop out of the survey. Next, they are generally coded as categorical data.

1



2 CHAPTER 1. INTRODUCTION

Therefore, standard methods, that were generally developed for numerical variables, are difficult

to apply. Finally, such data are subject to few transitions. For example, individuals do not

change their civil status or with whom they live yearly.

We end this introduction by detailing the subject of the six remaining chapters, showing

how they fit into the global objective of treating missing data in life courses and discussing

their main contributions.

Chapter 2 provides a comprehensive overview of the state-of-the-art in dealing with missing

data. The chapter introduces the concept of missing data and its impact on statistical analysis,

discusses the different patterns and mechanisms of missingness, and reviews various methods

for handling missing data in a longitudinal framework.

Furthermore, the chapter also presents ways to study life courses, since missing data can have

different impacts on the statistical analysis, and the treatment of missing data may need to be

tailored to the specific analysis. Overall, this chapter serves as a foundation for understanding

the importance of addressing missing data and highlights the need for novel approaches to

handle this issue in the context of life course studies.

Chapter 3 tackles the issue of missing data in longitudinal surveys, which shares similarities

with missing data in life course studies due to the longitudinal nature and treatment of cate-

gorical data. Moreover, it allows us to have a first grasp on the treatment of missing data in a

longitudinal setting.

This chapter introduces a multiple imputation procedure that takes into account the char-

acteristics of longitudinal datasets. Multiple imputation is a popular method of treatment of

missing data, whose idea is to replace missing data by several sensible values. We especially

focus on the challenges induced by categorical data and logical missing data, which occur when

questions are not applicable to certain individuals. For example, questions about voting habits

are not asked to individuals that do not have the right to vote. Standard multiple imputation

procedures such as fully conditional specification (Van Buuren, 2007) may create inconsistencies

in the imputed values and distort the association between the variables. Therefore, we discuss

a multiple imputation procedure that takes into account such issues. Moreover, we introduce

a sequence of questions that allow determining which values are truly missing. Therefore, this

chapter directly addresses the challenges related to categorical data and logical missing values

that have not been fully addressed in previous studies that discussed the application of mul-

tilevel imputation models for panel data (Spiess et al., 2021), mostly focused on the impact

of multiple imputation on the subsequent statistical analysis (Young and Johnson, 2015), or

discussed logical missing but without considering its interaction with the challenges inherent

to categorical data (Aßmann et al., 2017).

Chapter 4 focuses on the issue of missing data in univariate longitudinal data, which occurs

when only one life domain is considered, such as professional, family, or health trajectories.
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The aim of this chapter is twofold: to provide guidance on how to handle missing data and to

introduce extensions to the MICT algorithm (Halpin, 2012, 2013, 2016b), a method designed

for imputing categorical longitudinal data.

The typical methods used to treat missing data in longitudinal categorical data are compared

with a framework built explicitly for life course data. Several comparisons of methods to handle

missing data in a longitudinal context were done in the literature (e.g. De Silva et al., 2017;

Kalaycioglu et al., 2016). However, they are often restricted to numerical variables. Anyway,

at our knowledge, the longitudinal observations were never regarded as a whole, as it is the

case with life course data, and the MICT algorithm was never included in these comparisons.

Therefore, this chapter aims to fill this gap by reviewing the methods available for dealing with

missing data in life courses, comparing them and by giving clear guidelines on their application.

Then, we introduce two extensions to the MICT algorithm. First, we explore the use of

random forests models, rather than standard multinomial regression models, as imputation

models. Random forest models have appealing properties for the imputation of life course

data, such as a good handling of many predictors or non-linear effects. Secondly, we develop a

method to handle missing data in trajectories that are not time-homogeneous. Such behaviour

is common in life course trajectories, where transitions between ages 15-16 in terms of profession

or family status may differ from those between ages 39-40. The standard MICT algorithm may

not be optimal in such situations.

The following two chapters shift focus to multichannel trajectories. In the study of the life

course, an individual’s life domains often impact each other and are impacted by those of others

(Bernardi et al., 2019). As a result, it is common to examine multiple associated trajectories

simultaneously. For instance, in the case of women, family and professional trajectories are

often intertwined (e.g. Piccarreta and Billari, 2007; Widmer and Ritschard, 2009; Aisenbrey

and Fasang, 2017). As such, to gain a comprehensive understanding of women’s life courses,

these two domains cannot typically be examined in isolation.

In Chapter 5, we examine two methods for combining information from different trajectories,

namely multichannel sequence analysis and extended alphabet. While this chapter does not

directly address the issue of missing data, it is still relevant to the handling of missing data in life

course data. Indeed, the usefulness of a method for handling missing data is often evaluated by

its impact on statistical analyses. Clustering is the most commonly used statistical analysis with

life course data. Therefore, it is necessary to have a clear understanding of the tools available

for building clustering of multichannel trajectories before introducing the complexities related

to missing data.

This chapter aims to fill two gaps. Firstly, there has been no comparison of these two

methods on real data. Previous studies, such as Gauthier et al. (2010), have compared these

methods using simulation frameworks, and informal guidelines can be found in the literature
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(e.g. Piccarreta, 2017). However, an understanding of how these methods behave on real data

and a screening of the situations where one or the other method is most appropriate is lacking.

Then, we develop a framework based on the latest methodological advances to compare and

validate clusterings of multichannel trajectories. The validation of these clusterings differs from

the standard clustering validation methods due to a range of essential characteristics that need

to be considered.

The MICT multiple imputation algorithm appears as a promising solution to handle missing

data in life course, but can only impute one trajectory at a time in its standard formulation.

Therefore, the main objective of chapter 6 is to develop an extension of the MICT algorithm to

the imputation of several trajectories. This contribution is one of the main innovations of this

thesis. This algorithm’s parameters and global performance are discussed in different contexts

and compared with existing solutions. In particular, we make use of the findings of chapter 5

to compare the impact of different multiple imputation methods on clustering results.

A conclusion lists the main contribution of this thesis, summarises each chapter and provides

ideas for further developments.



Chapter 2

State of the art

This chapter provides an overview of the current state of research on missing data and its

treatment, with a focus on life course data. We introduce the different concepts related to

missing data that are used throughout this thesis. The goal is to lay a foundation for this

thesis and identify methodological gaps that we aim to address.

We start by defining missing data and explore the various types of errors that can arise dur-

ing data collection. Specifically, we highlight the errors that are associated with missing data.

Then, we explore the various patterns of missing data and the three mechanisms underlying

missing data. Next, we discuss the challenges that missing data pose and the different methods

available to handle them, including strategies for preventing missing data during data collection.

Finally, we explore the life course paradigm, focusing specifically on sequence analysis.

To enhance readability, statistical details related to the different concepts are included in

Appendix A.

2.1 Definition

The first question when discussing missing data is: what is missing data? The broadest def-

inition is simply all information that is lacking. To go further, Rubin (1976) differentiates

between missing data that was anticipated beforehand and missing data that was unintended.

An example of expected missing data, which we call logical missing in this thesis, is that of

an experimental design, where individuals that did not receive the treatment have no data on

outcomes related to the treatment. In the context of surveys, individuals that are not working

are not expected to answer questions related to work. In this thesis, we consider as missing

the information that was planned to be collected but that was not obtained.

Therefore, the values that were expected to be lacking beforehand are not considered as really

missing.

5



6 CHAPTER 2. STATE OF THE ART

Even a simple definition of missing data, as we have chosen, does not remove all ambiguity.

Indeed, it is not always apparent whether a value is missing. For example, we could imagine

a survey where an individual is asked to fill in her/his second nationality (without the choice

to say s/he has no second nationality). A lack of response to this question encompasses two

situations: either the individual does not have any second nationality, or s/he has one but does

not want to provide it. Another example appears in panel surveys when a question is dependent

on another. For example, if an individual does not answer the question about having a child,

there will be no information on further questions about the number of children or their age;

hence, we cannot determine with certainty if these pieces of information are missing or not.

2.2 Data collection and errors

To understand why it is important to handle missing data in longitudinal studies, we first

need to consider the various errors that can occur during data collection and the errors that

we aim to address in this thesis. Even though this thesis does not focus directly on survey

methodology, it is still useful to discuss how data collection errors can affect the accuracy and

quality of longitudinal data, and how this impacts our ability to deal with missing data.

In this section, we draw on the concept of “total survey error” developed by Groves (2005)

to explore the different sources of error that can arise during data collection. The total sur-

vey error paradigm considers four main types of error: coverage, sampling, nonresponse, and

measurement errors (Lyberg and Weisberg, 2016).

Coverage errors stem from the discrepancy between the population from which the sample is

drawn and the target population. In longitudinal surveys, these errors can manifest themselves

when individuals relocate in or out of the country or when a part of the population under study

cannot be contacted, leading to a mismatch between the population used to draw the sample

and the actual population under study.

Sampling error arises because the sample is not a perfect representation of the population.

Probability sampling methods, such as simple random sampling, stratified random sampling,

and cluster sampling, are typically used to create a sample that has similar characteristics to the

population (see e.g. Tillé and Wilhelm (2017) for details on probability sampling). However,

probability sampling can be expensive and time-consuming. Non-probability sampling methods

are sometimes used as a less expensive and less time-consuming alternative, but they often result

in larger sampling errors (see e.g. Vehovar et al. (2016) for a discussion on non-probability

sampling).

Non-response error occurs in longitudinal surveys when selected individuals either refuse to

respond, provide incomplete responses, or stop responding altogether in a longitudinal survey.

This issue is widely developed in the following sections.
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Measurement errors refer to discrepancies between the value obtained for an individual and

the “true” value. In longitudinal studies, panel conditioning (see e.g. Sturgis et al., 2009)

and changes in the data collection process (see e.g. Dillman, 2009) can introduce measurement

errors. Furthermore, the way in which data is collected can affect measurement error differently.

Retrospective data collection generally produces fewer changes in variables than prospective

data collection due to recall error (Lynn, 2009b). In this regard, life-history calendars are a

popular tool for minimising recall error when gathering retrospective information. Typically,

they take the form of a two-way grid, where one axis represents time and the other comprises

the aspects being investigated (Freedman et al., 1988). In the context of life course research,

collect information across various life domains enables individuals to connect events in different

areas, effectively reducing the likelihood of recall errors (Morselli et al.).

Although measurement errors can sometimes result in missing data, such as when post-

survey checks reveal inconsistencies or unreliable responses that have been discarded, missing

data is mostly linked to nonresponse error in Groves (2005) “total survey error” framework. In

particular, this thesis is not meant to correct for coverage, sampling and measurement errors.

More generally, we assume that data have already been collected, so we consider what is called

secondary data, and we aim to make the best use of it.

2.3 Patterns of missing data

In the two upcoming sections, we define missing data more precisely by examining their distri-

butions, referred to as patterns, and mechanisms. This section focus on missing data patterns,

while the next section delves into mechanisms. We first introduce general patterns of missing

data and we then focus on patterns specific to longitudinal data.

Little and Rubin (2019) identified several distinctions concerning these patterns. The first

distinction is between item-level and unit-level missing data. Unit-level missing data occur

when all the information about a subject is missing. This situation happens, for example,

when a person selected for the study simply refuses to participate. Item-level missing data

appear when only a part of the information is missing for a given subject. This pattern occurs,

for instance, when a subject refuses to answer sensible questions, such as questions about

income or health. Another distinction is between univariate and multivariate missing data,

which refers to missing data affecting one or more variables, respectively. Additionally, the

concept of a monotone pattern was introduced, where missing data occur in an order such that

when a value is missing for one variable, it is also missing for the following variables.

In longitudinal data, missing data have the tendency to appear under the form of gaps,

meaning several observations in a row that are missing. In prospective surveys, this is induced

by individuals missing several waves of data collection in a row. Attrition is a special type of
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such behaviour. Some individuals simply stop taking part in a survey, inducing missing data

to all subsequent waves of data collection. In retrospective surveys, gaps are typically induced

by missing spells, where a spell refers to consecutive time points in the same state.

2.4 Mechanisms

In his seminal work, Rubin (1976) introduced a classification of missing data into three cat-

egories. Understanding these categories is essential in assessing the influence of missing data

on the data and statistical outcomes. Consequently, it enables the identification of the most

suitable approach for managing missing data, considering that the validity of a method often

relies on the mechanism responsible for the missingness. In this section, we present Rubin’s

classification and provide an illustrative example that will also be used to explain the imputa-

tion methods in the following subsection. Finally, we discuss potential tests that can be used

to identify the missing mechanism.

According to Rubin (1976), missing data can be classified into three categories: missing

completely at random (MCAR), when missing data are a random sample of the entire dataset;

Missing At Random (MAR), when the probability of missing depends only on other variables

and Missing Not At Random (MNAR) when the probability of missing depends on the missing

values themselves. The mechanisms are more formally defined in Appendix A.

Another distinction that is critical for the application of some methods is between ignorable

and non-ignorable missing data. Missing data is considered ignorable if it satisfies either the

MCAR condition, or MAR along with an additional property that the parameter governing the

generation of missing data is independent of the parameter being estimated (Allison, 2001).

Nonetheless, in most applications, MAR is considered ignorable.

To illustrate these mechanisms with longitudinal categorical data, let’s imagine we measured

a specific variable at fifteen occurrences for ten individuals. This variable takes two values

(“state A” and “state B”). In addition to these 15 measurements, we know the sex of each

person. The dataset is shown in Figure 2.1. Examples of the three mechanisms could be:

• MCAR if missing data is just randomly arising.

• MAR if women are more likely to have missing data or if the probability of missing at

time t depends on the state observed at time t− 1 (e.g. every time a state A appears, a

missing value is more likely afterwards). Therefore, missing data depends on something

that is still observed (the state at time t− 1 in this case)

• MNAR if one specific state is missing more often or if a missing value is more likely when

a transition occurs. Therefore, the probability of missing depends on something that is

not observed any more.
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Figure 2.1: Trajectories of ten individuals measured at fifteen time points.

In this example, women are potentially more likely to have missing data than men. There-

fore, the missing mechanism may be MAR. However, it is not possible to eliminate the possibility

that the mechanism is MNAR.

Since these definitions depend on values that are not observed, it is generally impossible

to determine which is the true mechanism in a dataset. Only MCAR is distinguishable from

MAR, and statistical tests have been developed for this purpose. For a multivariate numerical

outcome, Dixon and Brown (1983) compared the univariate means with t-tests. Little (1988)

introduced a likelihood ratio test to assess the difference in means between missing patterns,

assuming that the data are multivariate normal. Park and Davis (1993) extended Little’s test

to longitudinal data. Jamshidian and Jalal (2010) tested the normality and homoscedasticity

assumptions simultaneously. When this joint hypothesis is rejected, they propose a nonpara-

metric test to assess the equality of the covariances. Rouzinov and Berchtold (2022) proposed

a regression-based approach applicable to numerical and categorical data. However, these tests

have low statistical power (Chassan and Concordet, 2023) and are of limited use since in most

cases MCAR is an unrealistic assumption (Van Buuren, 2018).
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2.5 Issues related to missing data

Missing data is a pervasive problem that can have a significant impact on statistical analysis

and the validity of research results. There are three main issues related to missing data: reduced

statistical power, potential for biased results, and difficulties in applying standard statistical

methods (Little and Schenker, 1995).

Firstly, missing data can reduce the amount of information available for analysis, leading to

decreased statistical power and inability to detect effects accurately. To illustrate, consider a

scenario where we have the salary information for a thousand men and women. In such a case,

it would be easier to detect statistical differences between men and women than if we had only

one data point for each sex. Therefore, each additional missing data limits the possibility of

establishing a possible difference without being wrong.

The second issue that arises due to missing data is the potential for biased results. Statistical

bias refers to the tendency of an estimator to systematically produce results that deviate from

the actual values of the population parameter being estimated (see Appendix A for a formal

definition). To illustrate, let’s consider a hypothetical scenario where we want to determine the

average income of the Swiss working population, which serves as the population parameter. In

this case, the estimator would involve computing the average income based on a sample of this

population. When missing data are MCAR, it may not be a significant issue. However, when

there are specific reasons why some individuals do not respond, as is often the case, it may be

problematic. For example, individuals in vulnerable situations such as unemployment, migra-

tion background, or poor health are more likely to leave a longitudinal study (Rothenbühler

and Voorpostel, 2016). Therefore, vulnerable situations will be under-represented in the sub-

sample compared to the target population and, hence, probably induce bias in most statistical

measures related to vulnerability. In particular, the mean income computed on the sample will

likely be underestimated, because individuals in vulnerable situations are more likely to have

low incomes.

Finally, numerous statistical methods, such as regression, are primarily designed for com-

plete data, posing challenges when attempting to apply them to datasets with missing informa-

tion. In cases where these methods are still employed, all incomplete data is typically excluded

from the analyses.

2.6 Preventing missing data

It may be commonplace but the best way to handle missing data is not to have missing data

in the first place, or at least limit missing data. While there are various techniques available to

treat missing data, these methods rely on assumptions and may introduce bias or inaccuracies.

Prevention can be seen as a form of treatment in itself. Given the critical role of prevention in
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minimising the burden of missing data, we outline several prevention strategies before delving

into the methods used to handle missing data.

McKnight et al. (2007) identified five aspects of a study that can be linked to missing data:

• Many choices are made when it comes to the overall study design, which may impact

missing data. In a survey, the design of the questionnaire itself is crucial. For example,

shorter questionnaires induce a higher participation rate (Guo et al., 2016) and forced

responses cause more interruptions during the completion of the questionnaire (Décieux

et al., 2015) and, hence, more missing data. A large body of literature does exist regarding

guidelines for researchers for the creation of good questionnaires and, hence, limit missing

data (see e.g. Lynn, 2009a).

Strategies could be developed to minimise the rate of non-response and attrition. For

example, in the Swiss household panel (SHP), which is a longitudinal panel survey whose

principal aim is to study social changes in Switzerland (Voorpostel et al., 2016), different

measures have been put in place: incentives both for the interviewers and the households,

a refusal conversion procedure and staying in contact with the respondents. Individ-

ual and collective incentives for interviewers may increase their productivity (Thurkow

et al., 2000). For participants, incentives, which take the form of money sent with the

announcement of the new wave in the SHP, have a positive impact on survey participa-

tion (see e.g. Lipps et al. (2019) for a thorough discussion of incentives in surveys). In

most surveys, a procedure, called refusal conversion, is applied to convince individuals

that either refuses to participate in the current wave or have not participated in previous

waves to participate. Dangubic and Voorpostel (2017) detail the procedure applied to

the Swiss household panel and its positive impact on participation. For example, in 2015,

the number of participating households increased by approximately 6%.

• The characteristics of the target population and the targeted sample must be considered.

For example, proposing questionnaires in the mother tongue may help reach a specific

foreign population, such as what is done with the Parchemin study, which focuses on

undocumented migrants, where questionnaires are provided on the most common lan-

guages spoken by them (Jackson et al., 2019). Moreover, a study conducted on elderly

populations differs in methodology from those conducted on adults (e.g. Oris et al., 2016).

• The mode of data collection and measurement is of importance, and for each of them,

strategies are applicable to reduce missing data. Web surveys allow reaching the largest

sample at the lowest cost but suffer from a greater nonresponse rate than other modes of

data collection (Daikeler et al., 2020). Along this line, Voorpostel et al. (2021) realised a

pilot study on the Swiss household panel to compare standard phone data collection, full
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web design, and a mixed design combining phone-based collection for household ques-

tions with web-based individual questionnaires. The study revealed that phone-based

data collection achieved the highest response rate. However, the lowest response rate of

the mixed design might be compensated by the widest population reached. Anyway, as

technology evolves, the data collection field is also evolving. Lately, the use of smart-

phones to collect data has been under study (e.g. Link et al., 2014; Roberts et al., 2022).

With smartphones, additional types of data may be collected, such as, for example, the

time spent on each application or GPS locations.

• Treatment implementation is specific to experimental design, where the sample is split

between a control and a treatment group. The burden on the individuals of the treatment

group should be minimum, for example, in terms of the number and duration of sessions.

Something similar applies to surveys, where the burden on the interviewee should be

minimised while still gathering the desired information. Some surveys, such as the Euro-

pean Union Statistics on Income and Living Conditions (see e.g. Arora et al. (2015) for

a description), apply rotating samples, which means a sample stays in the survey for a

definite number of data collection waves before being replaced by another one.

Another possibility is to induce a rotation between the topics addressed by a survey,

such as in the European Social Survey (see e.g. Jowell et al. (2006)), where a part of

the questionnaire is fixed every year and another part change every year, based on the

suggestion from researchers. With this rotative design, more subjects can be investigated

without increasing the questionnaire length.

• Data entry is all that is linked to the transformation of the data collected to make them

usable, such as, for example, recopying answers to paper questionnaires on a computer.

Since it is generally a monotone and cumbersome process, it is worth simplifying it to

the maximum. In this area, methods that do not require data to be re-entered, such as

web-based questionnaires, have a clear advantage.

Nevertheless, even with a meticulous planned study, missing data cannot be entirely avoided

(see e.g. Eekhout et al., 2012; Berchtold, 2019).

2.7 Methods for dealing with missing data

As this thesis focuses on comparing imputation methods for life course data and proposing

novel approaches, a thorough understanding of the currently available methods for handling

missing data is essential. In this section, we provide a detailed review of the main families of

methods, starting, for each of them, with a general overview and then focusing specifically on
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life course data. We will use the example introduced in the previous section to illustrate them.

In particular, we discuss their strengths and weaknesses and how the missing data mechanisms

impact their use.

Methods to deal with missing data are classifiable into four categories: deletion, weighting,

likelihood and Bayesian, and imputation methods (Molenberghs et al., 2014).

2.7.1 Deletion methods

Deletion methods are a common approach that involves removing observations with missing

data. There are two main types of deletion methods: complete case analysis and available case

analysis. When a strategy to deal with missing data is used, deletion procedures are still the

standard procedure in social science research (Berchtold, 2019), even if they are unsuitable in

most cases.

With complete case analysis, also known as listwise deletion, all observations with at least

one missing value are deleted. Therefore, in longitudinal data, a single value in any variable

and time point, lead to the deletion of an entire case. In the illustrative example, the second,

third, sixth, and tenth trajectories have at least one missing value and are, hence, deleted,

giving the completed dataset shown in Figure 2.2. It is composed of six trajectories, where men

are overrepresented.

Complete case analysis

Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

9
8

7
5

4
1

state A
state B

missing

man

man

man

woman

woman

man

sex

Figure 2.2: Complete dataset resulting from the application of complete case analysis.

Complete case analysis produces unbiased results when missing data are MCAR. However,

this approach may lead to the loss of a substantial number of observations. This can cause
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inflated standard errors and reduced statistical power since both measures depend on the sample

size (King et al., 2001). For missing data that are MAR or MNAR, complete case analysis

generally leads to bias, and in some cases, it can even result in spurious conclusions (see e.g.

Perkins et al. (2018)). However, some specific MAR and MNAR scenarios can yield unbiased

results, such as in a linear regression analysis when the probability of missingness does not

depend on the outcome (Glynn and Laird, 1986; Little, 1992), or in a logistic regression when

missingness is dependent on the outcome or the exposure but not both (see e.g. Bartlett et al.

(2015) for a thorough exploration of the scenarios that lead to unbiased results in logistic

regression).

With available case analysis, also known as pairwise deletion, only the observations with

missing values in the variable(s) under study, are deleted. Regarding our illustrative example,

the application of available case analysis depends on the analysis. For example, if we are

explicitly interested in the transition between times 3 and 4, pairwise deletion leads to a dataset

of nine trajectories (Figure 2.3), where only the second trajectory is deleted. However, only

seven trajectories remain when the focus is on the transition between times 9 and 10.

Available case analysis
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Figure 2.3: Dataset resulting from the application of available case analysis.

Available case analysis shares the same conclusion as complete case analysis regarding the

missing data mechanisms, i.e. it is unbiased when the missing mechanism is MCAR but biased



2.7. METHODS FOR DEALING WITH MISSING DATA 15

in most MAR and MNAR scenarios. Compared to complete case analysis, available case analysis

has the advantage of utilising every piece of information available, resulting in a generally

smaller reduction of the sample size. However, the method has several drawbacks. First,

analyses are difficult to compare since they are realised on different datasets. Then, it could

lead to implausible results, such as correlations outside the range -1 to 1 or variance-covariance

matrices not positive definite (Pigott, 2001). Finally, there is no clear way to compute the

standard errors, since their computation is dependent on the sample size that may vary between

each analysis (Graham, 2012).

2.7.2 Weighting methods

The idea behind weighting methods is to partly correct the issues related to complete case anal-

ysis by assigning different weights to the remaining observations. The application of weighting

methods do not differ depending on whether the data are longitudinal or not.

To compute the weights, a first body of methods rely on adjusting some characteristics of

the sample obtained from complete case analysis to the original. Adjustments can be made for

each combination of covariates, known as “cell weighting”, or for the marginal distribution of

each covariate using methods like “raking” or “linear weighting”. Alternatively, adjustments

can be made for a specific population parameter, known as “GREG weighting” (for more

details on these methods, refer to Kalton and Flores-Cervantes (2003)). For example, in the

complete dataset obtained through complete case analysis (Figure 2.2), the representation of

men and women is different from that of the original dataset. Conducting an analysis on

this dataset alone would result in a larger impact of men on the results compared to women.

Therefore, a solution is to assign a higher weight to women’s trajectories than to men’s in order

to compensate for their under-representation in the complete dataset. In this scenario, weights

of 3/2 and 3/4 are assigned to women and men, respectively.

However, with a high number of covariates, these methods are not suitable since very few,

or even no observations, could appear in some combinations of covariates. For example, with

10 binary covariates, there will be 1024 possible combinations. Therefore, the most common

approach relies on logistic regression weighting (which is also often called propensity score

weighting). The probability to be missing is predicted through a logistic regression model. The

weight of each observation is then set as the inverse of the predicted probability to be observed

for this observation. The pool of variables that can be included in the model can be quite large,

going from characteristics of the individuals, such as the age or the sex, to paradata, such as

notes of the interviewer on contact records (Buskirk and Kolenikov, 2015).

As a method of dealing with missing data, the use of weights has both advantages and

weaknesses. When missing data are MCAR, complete case analysis provides unbiased results,

and weighting does not provide any improvement. As for deletion methods, it suffers from a
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reduction of the statistical power and does not make use of partially observed cases, which

often contains substantial information (Little et al., 2022). Weighting methods can correct for

bias when the MAR hypothesis depends on variables that are used to compute the weights.

However, it is limited to variables available both for respondents and non-respondents. These

methods will generally lead to bias when the MAR mechanism depends on other variables.

Finally, when missing data are MNAR, weighting methods, like most methods, lead to bias.

2.7.3 Likelihood and Bayesian methods

The third family of methods to handle missing data are the likelihood and Bayesian approaches,

which assume that a statistical model has generated the data. We first provide an overview

of these methods and highlight the key differences between likelihood and Bayesian methods.

Then, we detail how these methods apply with longitudinal categorical data. Finally, we discuss

how the application of these methods is influenced by the missing data mechanism.

General framework

Likelihood and Bayesian methods assume that a statistical model generated the data and

seek to estimate this model. Likelihood methods adopt a frequentist perspective, treating

the parameters of the model as fixed. In contrast, Bayesian methods involve making prior

assumptions about the distribution of parameters, enabling the representation of uncertainty

regarding the missing data generation process through the specification of priors (Daniels and

Hogan, 2008).

These methods apply when the target of the analysis is either directly the parameter of

the statistical model or a parameter that is derivable from it (e.g. regression coefficients,

correlations, or global transitions between the states in a trajectory). When it is not the case,

for example, for clustering, missing data have to be imputed from the conditional distribution.

This is discussed in the next section, which concerns imputation methods.

A key point of the Bayesian framework is the specification of the prior distribution. On

the one hand, this could capture information from previous research or hypothesis about the

missing mechanism. In this case, the prior is called “informative”. On the other hand, the

impact of the prior could be minimum, called “non-informative” prior. Different strategies

exist to construct “non-informative” priors (e.g. Berger and Bernardo (1992); Jeffreys (1998)).

However, in the context of missing data, we mostly rely on informative priors that capture

assumptions about missing data (Daniels and Hogan, 2014). Using a “conjugate prior” simplifies

computations by ensuring that the prior and posterior distributions are identical. For example,

with a binomial likelihood, a prior following a beta distribution leads to a posterior distribution

that also follows a beta distribution (see e.g. Gelman et al., 1995, for a thorough introduction
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on prior distributions and more generally on Bayesian analysis).

Likelihood methods with longitudinal data

The application of a Gaussian model, which is, in most cases, the standard strategy, is generally

not suitable with longitudinal categorical data. Indeed, the goal of the statistical analysis of

a categorical longitudinal dataset is rarely a parameter that can be derived from a Gaussian

model. For example, the focus is sometimes on the probabilities of moving from one state to

another, which cannot be extracted from a Gaussian model.

Markov chains are typically used (see e.g. Brémaud (2013) for a comprehensive description

of Markov chains) with longitudinal categorical data. The most naive model is the independence

model, where each time point is generated independently of the others. A `-order Markov

chain supposes that the probability of experiencing a given state at time t depends only on the

value at time t − `, . . . , t − 1. Hidden Markov models (Baum and Petrie, 1966) have a more

complex structure. They suppose a latent Markov model which determines at each time point

the probability distribution that generates the observed value. Double Chain Markov Models

(Berchtold, 1999) combine an observed and a latent Markov chain. With high-order Markov

chains and, even more, with Double Chains Markov Models, the number of parameters to

estimate increases quickly. To overcome this issue, one can use both these models in combination

with a mixture distribution transition model (Berchtold and Raftery, 2002), where a single

transition matrix and a vector quantifying the impact of each lag are estimated. Variable-

length Markov chains (Bühlmann and Wyner, 1999) are another type of Markovian model

having the specificity that the number of past states sufficient to summarise the whole past

varies with each situation. These models assume that the process is homogeneous.

Estimating these models when missing data are involved is generally more complex. Yeh

et al. (2010) identified three methods to estimate a Markov chain when the trajectories are

subject to ignorable missing data. The first strategy, called the One-Step Method, computes

the transitions observed on the trajectories. The main drawback of this method is that it does

not consider the longitudinal structure of the trajectories. The authors have shown that it lags

behind the two other ones, which present similar performance in the setup they considered.

For the sake of illustration, we suppose we are interested in the global transition probability

between state A and state B in our example. Missing data gaps break the trajectories into

sub-trajectories (Figure 2.4). For example, the second trajectory with states 2 to 6 missing is

broken into two sub-trajectories: one consisting of one state (2.1) and one of nine (2.2).

The second strategy considers the missing values in the computation of the likelihood. For

example, let’s consider the sixth trajectory. The contribution of the transition from state B at

time 9 to state B at time 11 is added to the computation by considering the possibility of the

state at time 10 being either A or B.
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Figure 2.4: Sub-trajectories used to fit the Markov model.

Finally, the estimation could be done through the expectation-maximisation (EM) algorithm

(M’Kendrick, 1925; Hartley, 1958; Dempster et al., 1977). It alternates between two steps: one

that finds the expectation of a function of the missing data and another that estimates the

parameters of the complete data. Several extensions of this algorithm have been proposed,

mainly to cope with situations where the maximisation step has no easy computational form or

to speed up the process (Meng and Rubin, 1993; Liu and Rubin, 1994; Liu et al., 1998; Meng

and Van Dyk, 1997).

Moreover, Yeh et al. (2012) discuss the computation of the hidden Markov model with

ignorable missing data. To our knowledge, there was no adaptation of their estimation with

missing data concerning the mixture transition model, the Double-Chain Markov Model, or

Variable-length Markov Chains.

Impact of the missing mechanism

The notion of ignorability plays a central role for Likelihood and Bayesian methods. When the

missing data generation process is ignorable, only the model of the data needs to be specified,
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while when it is non-ignorable, one also needs to specify the missing data generating model (see

Appendix A for the statistical details).

There are two ways of modelling non-ignorable data (Glynn et al., 1986). Selection models

(Heckman, 1976) specify the distribution of the complete data and the conditional distribution

of the missing mechanism on the complete data, while pattern-mixture models (Rubin, 1977;

Little, 1993) specify the marginal distribution of the missing data and the conditional distribu-

tion of the complete data on the missing values (see Appendix A for more details). However,

the distributional assumptions made for these models cannot be verified. Indeed, for every

MNAR model, there exists a corresponding MAR model that yields the same fit on the data

(Molenberghs et al., 2008). Therefore, non-ignorable models are mainly used in a sensitivity

analysis, which is applied to determine the impact of a departure from the MAR assumption.

2.7.4 Imputation

The process of imputation involves replacing missing data with either one plausible value (single

imputation) or several plausible values (multiple imputation). We first introduce single imputa-

tion methods and the pitfalls linked to it. Then, we focus on multiple imputation. Specifically,

we begin by introducing its general functioning before delving into the main methods to pro-

duce multiple imputations with longitudinal categorical data, namely joint modelling, fully

conditional specification, and the MICT algorithm.

Single imputation

Numerous single imputation methods are available. Strictly speaking, every strategy that fills

the missing data with some values is a single imputation method. In the case of longitudinal

data, we can cite for example:

• Last observation carried forward, where the last observed value is imputed to the following

missing data. For example, for the second trajectory, the state B observed at time 1 is

copied to times 2 to 6. Figure 2.5 shows the resulting completed dataset. However, this

method cannot impute gaps of missing data starting the sequences and it is not suitable

for trajectories showing high transition rates. Moreover, it can lead to bias even when

the data are MCAR (Molenberghs and Kenward, 2007).

• The imputation of the mode, meaning the most observed state at a given time. For

example, at time 2, state A is observed six times, while state B appears only three times.

Therefore, the missing value arising at time 2 for the second trajectory is imputed with

a state A. This process leads to the completed dataset shown in Figure 2.6.
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Figure 2.5: Completed dataset obtained with the last observation carried forward. Red dots
localise the imputed values.

• A random draw from the distribution at a given time point. For example, the first missing

value of the second trajectory has a probability of 2/3 to be imputed with state A and 1/3

with state B. Figure 2.7 shows a completed dataset induced with this method. Contrary

to mode imputation and last observation carried forward, as the process is random, doing

it again will most likely lead to a different imputed dataset.

In addition, multiple imputation methods, that are detailed below, are generally applicable

to build a single completed dataset.

The main drawback of single imputation methods is that they do not account for the vari-

ability of the missing data, yielding an underestimation of the true variance of the parameters

(see e.g. Schafer and Olsen, 1998; Donders et al., 2006).

Multiple imputation

Multiple imputation was designed to solve the lack of variability issue arising from single im-

putation. A number M of possible imputation values is determined for each missing data,

giving M completed datasets. The statistical analysis is then realised independently on each

imputed dataset before aggregating the results. The decisive advantage of multiple imputation



2.7. METHODS FOR DEALING WITH MISSING DATA 21

Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10
9

8
7

6
5

4
3

2
1

state A
state B

man

woman

woman

man

man

woman

woman

woman

man

man

sex

.   .  .   .    .
.   .  .

.

.   .  .   .   .   .

Figure 2.6: Completed dataset obtained by imputing the mode. Red dots localise the imputed
values.

over single imputation is a better handling of the variability of the data, hence a lower risk of

producing significant artificial effects during inferential analyses. The idea of multiple imputa-

tions is illustrated in Figure 2.8. The dataset with missing data is imputed a specified number

of times (here, M). Suppose we are interested in the probability to change from one state to

another (and its variance). These probabilities are computed on each completed dataset sepa-

rately, then the results are finally aggregated. Rubin (1987) derived rules to combine the results

from several completed datasets when a normally distributed parameter is the main focus. If

this is not the case, the idea is to apply a transformation to make it normal and then apply

Rubin’s rule. Van Buuren (2018, p. 146) summarises the transformation towards normality of

often-used statistics such as correlation, hazard ratio, or the coefficient of determination R2.

The combination of the results is not always straightforward. For example, when the objective

is to perform a cluster analysis, small changes in data can lead to large differences in a grouping.

Clusterings built on different completed datasets may not even have the same number of groups.

Halpin (2012) proposed to apply cluster analysis to the pool of imputed datasets. Then, an

observation is either assigned to the cluster which contains most of the imputed replications, or

a degree of membership to each cluster is associated with each observation based on the share

of imputed data assigned to each cluster.
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Figure 2.7: Completed dataset obtained with random draws from the observed distribution.
Red dots localise the imputed values.

Early works (Rubin, 1987; Schafer and Olsen, 1998) suggested creating a low number of

datasets (between 3 and 5). The main argument was that the gain obtained from increasing

the number of imputations was not worth the computational burden. However, with the im-

provement of the calculation capacities of computers, the calculation time could be drastically

reduced, and further analysis concluded that a larger number of imputations, more than 20, is

generally better (Royston, 2004; Graham et al., 2007). Several authors suggested rules linking

the number of imputations to the theoretical proportion of missing data in the population (e.g.

Bodner, 2008; Von Hippel, 2020). Along this line, White et al. (2011) have shown that if the

number of imputations is approximately 100 times the proportion of the variation explainable

by missing data, some properties regarding the reproducibility of the results are satisfied. As a

rule of thumb, they suggest setting the number of imputations to the percentage of incomplete

cases, which approximates the fraction of missing information. Van Buuren (2018) suggested

keeping the number of imputed datasets low when determining the imputation model and

increasing it when computationally feasible for the final creation of the imputed datasets.

We discuss now the three main multiple imputation methods to deal with missing data in

longitudinal categorical data, namely joint modelling, FCS and MICT.
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Figure 2.8: Illustration of a multiple imputation process.

Joint modelling imputation is closely related to likelihood and Bayesian methods, but differs

in that it involves drawing imputations for missing values. This approach is useful when the

statistical analysis is not directly linked to the estimated model, as is often the case in clustering

analysis. First, we detail the application of the models outlined in the section on likelihood and

Bayesian methods in this context. Next, we describe the use of a multivariate normal model,

which is commonly employed, even in situations involving categorical data.

The different models detailed in the section about the likelihood and Bayesian methods are

available for modelling the data. The difference is that imputations are finally drawn. For

example, let us consider a Markov model of order 1 (i.e. the previous time point is enough to

summarise the whole past). The second time point of the second trajectory is imputed based

on the probabilities to transition from a state B to either a state A or a state B. Then, the

third time point is imputed based on the probability of transitioning from the state imputed

at time 2 to either of the two states until each gap is filled. The whole process of imputation

is repeated several times.

Now we discuss the different strategies to apply the multivariate normal distribution to

longitudinal categorical data. We first focus on the simplified case of a binary categorical
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variable, before expanding to the general case. As suggested by Schafer (1997), one can first

recode categorical binary variables as 0 and 1 (Figure 2.9). Then, it is supposed that a multi-

variate normal distribution generated the trajectories. In the example, a multivariate normal

distribution of dimension fifteen (corresponding to the fifteenth time points) is supposed. The

data-augmentation algorithm (Tanner and Wong, 1987) is typically applied. It alternates be-

tween drawing a value for the model’s parameter from the complete-data posterior distribution

and imputing the missing values. Schafer (1997) has detailed the algorithm for several statis-

tical models. The data-augmentation algorithm is close to the EM algorithm, and it is also

possible to apply the EM algorithm to obtain multiple imputation. However, it needs an extra

step, where the data are imputed based on the posterior distribution. This is what is done in

the R Amelia package (Honaker et al., 2011), which applies EMB (Honaker and King, 2010), a

variant of the EM algorithm. M bootstrap samples of the data are drawn, and the maximum

likelihood is maximised on each of these samples with the EM algorithm. Imputations are then

drawn based on the conditional distributions of the missing values on the observed ones. These

conditional distributions are easily derived from the joint distribution in the case of multivariate

normal models. For example, for the second trajectory, the conditional distribution of the time

points 2 to 7, knowing that the times 1 and 8 to 15 have value 1, is computed. Based on this

distribution, values (numerical) are drawn for the times 2 to 7. The imputed numerical values

are rescaled as probabilities, and one of the two states is drawn based on these probabilities.

For example, suppose a numerical value of 0.35 was set for the second time point of the second

trajectory. In that case, the probabilities are 0.65 and 0.35 of imputing, respectively, states A

and B. The imputation process is repeated several times to create several completed datasets.

The multivariate normal distribution is also applicable to a categorical variable with more

than two categories. In this case, a categorical variable with k categories is transformed as k−1

binary variables (Allison, 2001). For example, if we have a variable that has three categories:

“full-time employed”, “part-time employed”, and “unemployed”, it is recoded as two binary

variables. The “full-time employed” category will correspond to a 1 in the first binary variable

and 0 in the second, the “part-time employed” to a 0 in the first binary variable and 1 in the

second, and the “unemployed” state to 0 in both variables. The multivariate normal model is

usually fitted with the EM algorithm, and imputations are drawn for each of the k−1 variables.

A value of one minus the values of the k − 1 variables is set for the last category. Then, the

category can either be chosen based on the imputed variable that has the largest values, or

the k imputed variables can be first transformed into probabilities (simply by scaling their sum

to 1) before drawing a category based on these probabilities (Honaker et al., 2011). There

are two main problems with these approaches. First, it is under question whether a Gaussian

distribution, which is a continuous distribution, can effectively approximate the discrete binary

variables. Then, the number of parameters to estimate increases quickly. For example, with a
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Figure 2.9: The values are transformed from categorical to numerical. Each state “A” is recoded
as “0” and each state “B” as “1”.

single categorical variable observed at ten time points and composed of four categories, there

are 30 parameters related to the mean and a covariance matrix of size 30x30 to estimate.

Fully conditional specification (FCS), also known as chained equations, imputes miss-

ing data through the specification of a conditional distribution for each individual variable

(Van Buuren et al., 2006). It works in the following way:

1. For each variable, missing data are first imputed from their marginal distribution.

2. An imputation model is defined for each variable, generally a linear regression for continu-

ous variables, a logistic regression for dichotomous variables, and a multinomial regression

for categorical variables with more than two categories. The predictors usually include

every other variable.
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3. For each variable, the imputation model is fitted from all available data; then, this model

is used to predict a replacement value for each missing data. The algorithm goes through

the variables until it reaches a predefined number of iterations.

4. The values obtained after the last iteration are either kept or replaced by the closest

values appearing in the dataset, which is called predictive mean matching. The latter

applies only to numerical values.

5. The whole process is run several times if multiple imputation is required.

The imputations are drawn from a joint distribution (Hughes et al., 2014) under the hy-

pothesis that the conditional distributions are compatible and the margins are non-informative,

but it is generally challenging to prove that these hypotheses are satisfied. Violation of the non-

informative margins assumption could induce differences depending on the order in which the

variables are imputed. However, in a simulation study based on a general location model, where

margins are informative, order effects remain small (Hughes et al., 2014). Another simulation

study done by Van Buuren et al. (2006) shows that even substantial violations of the com-

patibility assumption do not impact the statistical properties of multiple imputation through

chained equations.

FCS applies to longitudinal data by considering repeated measurements as distinct vari-

ables. However, Kalaycioglu et al. (2016) have shown that fully conditional specification may

face convergence issues in its standard form due to collinearity. Two-folds fully conditional

specification (Nevalainen et al., 2009), which is a variation of fully conditional specification,

tries to solve these convergence issues by limiting the predictors used in an imputation model.

In addition, the algorithm imputes several times the variables at a given time point before

skipping to the next time point.

FCS is implemented in the main statistical softwares, such as in S-PLUS (Van Buuren

and Groothuis-Oudshoorn, 1999), the R package mice (Van Buuren and Groothuis-Oudshoorn,

2011), the STATA module ice (Royston, 2004), the SAS MI procedure (Yuan, 2010) and more

recently in SPSS (SPSS, 2017).

Let’s illustrate FCS with the example. Each missing data is first imputed by randomly

drawing from the distribution at each time point. Then, FCS goes iteratively several times

through all time points to improve the imputations. Since the first time point does not have

any missing values, the second time point is the first to be considered. A logistic model is fitted

with the second time point as the dependent variable and, generally, all other time points as

independent variables. Then, a value is redrawn for the missing value on the second trajectory.

The same process applies to each time point a predefined number of times. Finally, the whole

process is repeated several times.
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The MICT algorithm was created by Halpin (2012, 2013, 2016b). It considers missing

data characteristics in life course sequences. This algorithm is central to this thesis since

several extensions are developed.

The algorithm fills the internal gaps recursively from their edges, taking mainly into account

the adjacent states. The algorithm works by distinguishing six missing data patterns and

handles them sequentially. It then adopts a slightly different imputation method for each of

them. Figure 2.10 presents six sequences taken from a built-up dataset composed of two states

(states A and B) and fifteen time points, each illustrating one of these patterns. The imputation

model uses a definite number of past and future observations. For the sake of the illustration,

let us assume that we use two time points in the future (nf = 2) and the past (np = 2) for the

imputation.

Typology of gaps
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state B
missing

Figure 2.10: Typology of the different type of missing data gaps according to the MICT algo-
rithm considering two predictors from the past and the future: 1. Internal gap, 2. Initial gap,
3. End gap, 4. Left-hand side gap, 5. Right-hand side gap, 6. Both-hand side gap.

Sequence 1 illustrates an internal gap. Here, sufficient information, i.e. at least two ob-

servations before and after the gap, is available to impute the missing data. In this case, the

MICT imputation process fills gaps recursively from their edges. This strategy ensures that

imputations are coherent and based on the closest observed values. Figure 2.11 illustrates the

ordering of the imputations for two toy sequences with gaps of different lengths.

Concretely, the imputations are made using a multinomial model. In our example, this
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Figure 2.11: Imputation order for an example with two gaps of different lengths.

model uses predefined covariates (such as sex), the two previously available values in the se-

quence, either observed or previously imputed, and the two (nf = 2) subsequent values. The

first missing data of Figure 2.11 uses the two values before the gap, i.e. the states at times 2

and 3, and the two following the gap, i.e. the states at times 8 and 9. This multinomial model

is first estimated using similar fully observed patterns in the data. For example, the second

trajectory would provide six observations: predicting the state at time 3 using the states at

times 1, 2, 7, and 8 as predictors, the state at time 4 using the states at 1, 2, 8, and 9, until

the state at time 10 using the states at times 8, 9, 14 and 15 as predictors.

Once all internal gaps are imputed, the process considers initial and terminal gaps. Se-

quences 2 and 3 of Figure 2.10 illustrate this type of gap. Since initial gaps have only one

edge, imputations start here from the far right to the left and can use only predictors from the

future. Indeed, there are no observed data points in the past. Here again, the imputation model

is estimated based on similar fully observed patterns in the data, regardless of their location

within the trajectories. The same (but reverse) strategy applies to terminal gaps.

Finally, the rarest cases, namely left-, right- and both-hand side gaps, are imputed at the

end. Concerning left-hand side gaps, the imputation is split into several parts, depending on

the number of states available before the gaps. Concretely, it starts by imputing the gaps

that have one state available before (and that therefore start at the second time point), then

two until imputing the gaps that have np − 1 states available before. The imputation is then

identical to the internal gaps, the difference being that the number of past observations used

in the imputation models is reduced. The imputation of right-hand side gaps is similar to

left-hand side gaps; the process is split according to the number of observations available after

the gaps. Finally, the imputation of both-hand side gaps is split according to the information

available beforehand and afterwards.

In Stata, the module MICT (Halpin, 2015) and, in R, the package seqimpute (Berchtold

et al., 2022) implement this strategy.
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Multiple imputation, as with likelihood and Bayesian methods, induces unbiased results

when the missing data are ignorable, provided the variables involved in the MAR mechanism

are integrated in the imputation procedure and the imputation models are congenial to the

statistical analysis (Rubin, 1987; Little, 1992). The latter implies that all variables used in the

statistical analysis must be included in the imputation models. In contrast, multiple impu-

tation may induce bias when the missing data is non-ignorable. Van Buuren (2018) provided

guidelines if a non-ignorable mechanism is suspected. First, add more relevant variables in

the imputation models so that the missing mechanism is closer to MAR. If it is not sufficient,

perform a sensibility analysis, meaning testing different MNAR scenarios in order to determine

how the results are impacted. Finally, explicit the non-response, in a similar manner as what

was developed in the part about likelihood and Bayesian methods. However, one cannot gen-

erally differentiate between MAR and MNAR and unverifiable assumptions need to be made.

Therefore, the most commonly used approach when dealing with missing data is to assume

that the missing data are MAR (Van Buuren, 2015).

2.8 Sequence analysis

To study the life course, one can either focus on the transitions themselves, using Markov

models or event history analysis, or on the trajectory as a whole (Piccarreta and Studer, 2019).

The border between the two approaches is permeable, and some methods, such as Competing

Trajectory analysis (Studer et al., 2018a), Sequence Analysis Multistate Model (Studer et al.,

2018b), or Sequence History Analysis (Rossignon et al., 2018), link them together. In this

thesis, we focus on the trajectories as a whole and, hence, on sequence analysis.

The core idea of sequence analysis is to consider life courses as a whole, with the idea that

life events cannot be understood separately (Abbott, 1983, 1995). The situations experienced

at different times are coded with a pool of states, creating a succession of states called a

“sequence”.

Sequence analysis was applied in many different areas of life course studies, such as the

transition to adulthood (e.g. Schoon and Lyons-Amos, 2016), patterns of cohabitation (e.g.

Di Giulio et al., 2019), fertility (e.g. Gemmill, 2019), work pathways (e.g. Struffolino et al.,

2020), residential mobility (e.g. Coulter and Van Ham, 2013) or social isolation (e.g. Lay-Yee

et al., 2021). Even if mainly used in the study of life courses, sequence analysis was used

in other applications such as web log analysis (Gitinabard et al., 2019), building histories

(Bradley, 2019), or fish movement histories (e.g. Lowe et al., 2020). Several reviews of the

historical developments of sequence analysis and the available methodological tools have been

published (Piccarreta and Studer, 2019; Ritschard and Studer, 2018b; Liao et al., 2022).

Hereafter, we first detail the classical sequence analysis. Then, we summarise alternatives
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to the classical sequence analysis and ad hoc method to treat missing data. Finally, we develop

the joint study of multiple sequences.

Classical sequence analysis

According to Abbott and Tsay (2000), three steps compose a typical sequence analysis:

1. The data are coded as sequences.

2. A dissimilarity measure is chosen, and the pairwise sequence dissimilarities are computed.

3. The sequences are analysed based on their dissimilarities.

The coding phase could already raise some questions. For example, should the persons

working at home or unemployed be described with different categories or gathered?

Introduced to social sciences by Abbott and Forrest (1986), optimal matching is commonly

used to measure the pairwise dissimilarity between sequences. In this framework, the effort nec-

essary to change one sequence into another is determined through the insertion, deletion, and

substitution of states. Costs that can be state-dependent are defined for the operations of sub-

stitution and insertion-deletion. This offers a great flexibility for optimal matching. The range

of dissimilarity measures within this framework extends from Levenstein II distance, which

is optimal matching without substitutions, to generalised Hamming distance, which is opti-

mal matching without insertion and deletion (Lesnard, 2010). Apart from optimal matching,

many other dissimilarity measures have been provided. A large part of them are variations of

optimal matching, such as dynamic Hamming distance, which is Hamming distance with time-

dependent substitution costs (Lesnard, 2010), or optimal matching where insertion-deletion and

substitution costs depend on the spell length (Halpin, 2010). However, dissimilarity measures

are not restricted to variations of optimal matching. For example, Elzinga (2005) based the dis-

similarity measure on the number of matching subsequences and Deville and Saporta (1983) on

the distance, either Euclidean or χ2, between state distributions. Studer and Ritschard (2016)

conducted a comprehensive review of sequence dissimilarity measures, offering guidelines for

selecting an appropriate measure depending on the aspect of the sequences of interest, such as

timing, duration, and sequencing of the states.

Regarding the analysis of sequences itself, a clustering is usually applied (Ritschard and

Studer, 2018b) to identify groups in the data. The clustering can be the primary goal of the

analysis in order to determine the main patterns among sequences, which was done, for example,

by Jalovaara and Fasang (2017) to identify typical union trajectories that lead to childlessness

or by Lorentzen et al. (2019) to study the transition from school to work in Finland, Norway,

and Sweden. On the other hand, groups defined by clustering may be used in a regression

analysis; either as the dependent variable, such as in Levy et al. (2006), where typical men’s
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and women’s life course are compared, or as the independent variable, such as in Devillanova

et al. (2019), where a clustering of employment trajectories is used as an independent variable

in a regression about self-reported health in middle life. Clustering methods are typically

unsupervised, which means that the number of groups is not known beforehand.

Two clustering algorithms are generally used in this context: partitioning around medoids

(Kaufman and Rousseeuw, 1990) and hierarchical clustering. A predefined number of groups k

is specified for partitioning around medoids. It alternates between two phases; one that looks,

for each group, for the medoid, namely the observation that minimises the distance from each

group member; another that assigns each observation to its closest medoid. The process applies

until no improvement is possible. With hierarchical clustering, no predefined number of groups

is specified. It starts with each observation as a different group and recursively fuses the two

closest groups until only one remains. The optimal number of groups is chosen afterwards.

Several criteria, generally called “cluster quality index”, are at hand to determine the best

clustering among several possibilities (see e.g. Studer (2013) for a review and Arbelaitz et al.

(2013) for a comparison of their behaviour in a general setting). However, the raw value of

these cluster quality indexes is generally not informative. Studer (2019) introduced a framework

based on parametric bootstrap to overcome this limitation.

Alternatives to the standard unsupervised clustering methods exist. First, model-based

clustering even gets rid of the dissimilarity measure. The idea is that each observation belongs

to a latent class and that a different probability distribution generates each class. The mod-

els commonly used are the independence model (Han et al., 2017), first-order Markov model

(Melnykov et al., 2016), and hidden Markov model (Helske and Helske, 2017). Then, one can

quantify the degree to which a sequence belongs to each cluster instead of assigning it to a

unique cluster, called “fuzzy clustering” (Studer, 2018). Finally, to make the criteria used

to determine the clusters more explicit, Studer (2018) introduced a property-based clustering,

where properties that quantify timing, duration, and sequencing are used as separation rules

in hierarchical clustering.

Other approaches

Sequence analysis is not restricted to the classical three-step procedure, even if it is the most

applied procedure. As mentioned, a key goal of sequence analysis is to extract the most salient

characteristics of the sequences. Therefore, a large body of research develops visualisation and

descriptive tools, which will be the subject of the next paragraphs. Another axis of research

develops the statistical aspects of sequence analysis.

Concerning the visualisation of sequences, both the TraMineR package (Gabadinho et al.,

2011) for the statistical software R and the SADI package (Halpin, 2017) for STATA provide

helpful tools. Among the most common visual representations, we have:
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• The chronogram (Billari and Piccarreta, 2005), which shows the state distribution at each

time.

• The index plot (Scherer, 2001) displays the first sequences of the dataset.

• The sequence frequency plot (Müller et al., 2008) provides the most common sequences,

where the bar widths are proportional to the sequence frequencies.

• The modal states plot (Gabadinho et al., 2010) provides the most common state and its

frequency for each time.

These four visual representations are illustrated in Figure 2.12 with the completed dataset

obtained with the last observation carried forward.

Moreover, several indicators were developed to describe sequences and their complexity.

Among them, turbulence (Elzinga and Liefbroer, 2007), longitudinal entropy (Widmer and

Ritschard, 2009), and complexity index (Gabadinho et al., 2010) quantify the variability of a

sequence. These measures do not take into account the nature of the state. Therefore, several

attempts were made along this line. Manzoni and Mooi-Reci (2018) introduced a measure of

quality for binary sequences that can be coded as “success” and “failure”, while Ritschard et al.

(2018) modified the complexity index, which they called the “precarity index” to consider the

type of transition (positive or negative) with partially ordered states. Ritschard (2021) re-

viewed indicators used to characterise sequences, studied their behaviour, and provided several

extensions to overcome some limitations.

Another body of research is dedicated to expanding and strengthening the statistical aspects

of sequence analysis. The interest is often to understand if the trajectories differ according to

specific covariates, such as gender or social class. Several standard statistical tools were adapted

to this aim. First, Studer et al. (2011) adapted the analysis of variance (ANOVA) framework

for this purpose and, more particularly, the coefficient of determination R2, the F-statistic,

and the Levene statistic. In the same article, the authors developed a tree-based procedure

that sequentially splits the sample according to the covariates. Then, Liao and Fasang (2021)

adapted Bayesian information criteria and likelihood ratio tests. An ongoing area of research

is the application of sequence analysis to large samples (Liao et al., 2022), and note that with

multiple imputation, the computational issues related to large samples is multiplied by the

number of imputations considered.

Ad hoc treatment for missing data

Some treatments for missing data are specific to sequence analysis. One can consider a missing

state as an additional state and compute a dissimilarity as it was simply another state. However,
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Figure 2.12: Visual representations of the complete dataset obtained with the last observation
carried forward as a chronogram (top left), an index plot (top right), a sequence frequency plot
(bottom left) and a modal states plot (bottom right).

this state could encompass heterogeneous situations, and a typology could be partially defined

by missing data.

Halpin (2016a) proposed considering that a missing state has a maximum dissimilarity with

any other state, including another missing state. The main drawback of this method is the

more missing data a trajectory has, the more disconnected it is from other trajectories. In

the extreme cases, we may have, in a clustering analysis, several clusters composed of only

one trajectory. Anyway, this method cannot be completely discarded and further evaluation is

needed on its performance. Therefore, this method will be evaluated as part of this thesis.
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Joint sequence analysis

The focus is often on the simultaneous analysis of several trajectories. Two types of situations

occur (Studer, 2015). On the one hand, these channels can be linked to the same domain. For

example, Mattijssen and Pavlopoulos (2019) used income and labour market positions as two

indicators of career trajectories, and Raab et al. (2018) characterised health with two channels,

one related to physical health and the other to mental health. On the other hand, channels may

relate to different domains. The idea is that resources, behaviours, and goals in one domain are

linked with other domains’ resources, behaviours, and goals (Bernardi et al., 2019). One of the

most striking examples is that of work and family, where numerous studies have demonstrated,

for example, the impact of the birth of children on women’s occupational trajectories (e.g.

Piccarreta and Billari, 2007; Widmer and Ritschard, 2009; Aisenbrey and Fasang, 2017). In a

similar idea, the trajectories of individuals are influenced by those of others (and also influence

theirs), called “linked lives” (Elder et al., 2003), such as parents and children (e.g. Fasang and

Raab, 2014), couples (e.g. Möhring and Weiland, 2022) or siblings (e.g. Raab et al., 2014).

As with the standard sequence analysis, the contexts in which several sequences are consid-

ered simultaneously for each individual can be diverse. For example, Brum-Bastos et al. (2018)

investigated the weather effects on human mobility, Roux et al. (2018) studied the patterns of

care pathways, and Liu et al. (2022) studied time use and food-related geographic contexts.

The first simple idea to study these sequences is to apply the desired analysis to the domains

separately and then combine the results. Along this line, Han and Moen (1999) and Widmer

and Ritschard (2009) applied clustering separately to two domains, namely work and family

trajectories. Then they studied the link between the two groupings. However, this is applicable

only with a small number of domains. Moreover, it goes against the objective of the analysis,

that is, to take their association into account. The other solution, joint sequence analysis,

involves using a joint dissimilarity based on all domains (Piccarreta, 2017). The three main

ways to do a joint analysis are:

• To compute the dissimilarities separately by domains and to combine them, usually by

summing or averaging. The main drawback of this approach is that, like the combination

of the domain-specific results, it does not consider the interplay between the different

domains.

• To combine the pool of potential states, called the “alphabet”, of each domain, giving a

single channel with an extended alphabet.

• To extend optimal matching to multichannel sequences. This strategy is called “mul-

tichannel” or “multiple” sequence analysis (Pollock, 2007; Gauthier et al., 2010). Con-

cretely, the substitution cost needed to align two multichannel sequences at a given time
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point is defined as the mean, possibly weighted, of the substitution costs needed to align

each channel. In the same way, the insertion-deletion costs of each channel are averaged.

The extended alphabet and multichannel sequence analysis are combinable: some channels

could be first aggregated before multichannel sequence analysis. Another strategy, called

“globally interdependent multiple sequence analysis” (Robette et al., 2015), combines opti-

mal matching, multidimensional scaling, canonical partial least square, and clustering. The

authors applied their method to study the patterns of transmission between generations. Sev-

eral authors criticised this strategy. Fasang (2015) and Gauthier (2015) questioned its added

value compared to multichannel sequence analysis, and Elzinga (2015) and Studer (2015) its

use to assess the association between channels.



Chapter 3

Multiple imputation in longitudinal

datasets

3.1 Introduction

In this chapter, we focus on the issue of missing data in longitudinal surveys. Specifically, we

present a procedure, based on multiple imputation, to treat missing data in longitudinal surveys,

paying particular attention to the challenges posed by logical missing data and categorical

variables. The existing methods and guidelines are insufficient when it comes to these two

specific issues. To demonstrate the effectiveness of our procedure, we provide an illustration

using a real dataset obtained from colleagues who sought to address missing data concerns.

This not only showcases the suitability of our approach but also emphasises the challenges it

presents.

The existing approaches and guidelines fail to deliver complete satisfaction. Due to logical

missing, standard multiple imputation procedures such as fully conditional specification (FCS)

(Van Buuren, 2007) may create inconsistency in the imputed values and distort the association

between the variables. If the variable that triggers the logical missing is not missing, we can

specify beforehand the values that should be imputed. For instance, if age is not missing,

only individuals who have reached the legal voting age would have variables related to voting

imputed. On the other hand, when the variable that induces potential logical missingness is

itself missing, as is the case with unit-level missing data, the situation is more challenging to

handle. Indeed, the variable subject to potential logical missing will be imputed depending on

the answer to another variable. Standard imputation procedures, such as FCS, cannot handle

such situations. Therefore, applying these imputation algorithms could lead to impossible com-

binations of variables. The simplest way to tackle this issue would be to apply the imputation

algorithm without taking into account logical missing and correct afterwards the values corre-

sponding to a wrongly imputed logical missing. However, the imputation process uses these

36



3.1. INTRODUCTION 37

nonsensical values. For example, suppose we have a question about a potential illness, injury,

or health issue during the last year and, in the affirmative, another question asking if the indi-

vidual still suffers from it. Suppose both these variables and self-rated health are missing for

some individuals. If someone still suffers from the health issue, it will likely negatively impact

his self-rated health, while if he does not suffer from it any more, it probably will not be the

case. Therefore, still suffering or not from an illness or injury is likely a strong predictor of

self-rated health during the imputation process. Imagine that it was imputed that someone did

not have any potential illness during the last year but, on the other hand, still suffered from

an illness at the time of the interview. By correcting the nonsensical imputed value for this

variable afterwards, we change values used to predict the self-rated health and, hence, at least

distort the relationship between the two variables.

Previous studies have focused on the multiple imputation of longitudinal datasets, but did

not fully address the challenges related to categorical data and logical missing values. Among

recent studies, Spiess et al. (2021) discussed the application of multilevel imputation models for

panel data, with the idea that the individuals represent a cluster. Young and Johnson (2015)

mostly focused on the impact of multiple imputation on the subsequent statistical analysis.

Therefore, neither study focused specifically on the challenges induced by the specification

of imputation models within longitudinal studies. On the other hand, Aßmann et al. (2017)

discussed the issue of logical missing and proposed to handle it through classification and

regression trees. However, they did not consider the challenges associated with categorical

variables, particularly in relation to logical missing values.

In this study, we set ourselves in a broad scope of the imputation model, which allows

multiple projects or analyses to use the same imputed dataset (Van Buuren, 2018). This

scenario commonly arises when different researchers or groups handle the imputation and the

analysis. In such cases, the specific form of the analysis is unknown during the imputation

stage. The broad scope differs from the intermediate scope, where a single project estimates

several similar quantities using multiple imputed datasets, and the narrow scope, which involves

creating a separate imputed dataset for each analysis.

We demonstrate the process with a subset of the LIVES-FORS Cohort Survey. This sample

is especially useful in illustrating the imputation process since it exhibits two main challenges we

aim to address: categorical data and logical missing. The objective of using multiple imputation

on this dataset is twofold. Firstly, it aims to prevent a reduction in statistical power. Since the

subsample size is already small (849), retaining only individuals who did not miss any wave

would result in a sample of 506, severely limiting the ability to detect statistical differences.

Secondly, we may expect that missing data are not MCAR, and, hence, additional bias may

be induced by simply deleting missing data. As is the case in most applications, we assume

that the missing data are MAR. We discuss the implications of an MNAR mechanism in the
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discussion section.

The remainder of this chapter is organised as follows. The methodology applied in this

study is described in Section 3.2 and the sample used to illustrate the process in Section 3.3.

Section 3.4 contains the results. A discussion ends the article.

3.2 Methods

We begin by outlining our systematic approach to address missing data, which comprises two

distinct parts. In the initial part, we conduct a comprehensive analysis of the missing data

within the sample. This step serves a dual purpose: firstly, to acquire an initial understanding

of the missing data and their underlying patterns, and secondly, to identify variables that

contribute to the mechanism of missingness. This information is crucial for incorporating these

variables into the subsequent imputation process. The second part of the procedure focuses

specifically on the imputation process itself.

3.2.1 Analysis of missing data

The initial phase of the missing data handling process focuses on analysing missing data, encom-

passing both unit-level and item-level cases. For unit-level missing data, our analysis involves

comparing respondents and non-respondents to uncover characteristics linked to missingness.

For item-level missing data, we focus on screening and examining the distribution of missing

values. Additionally, we explore the interplay between item-level missing data and unit-level

missing data. In the rest of this subsection, we provide a detailed account of how we investigate

these three aspects more precisely.

Regarding unit-level missing data, respondents and non-respondents should be compared.

The main goal is to identify characteristics related to missing data. We suggest building a logis-

tic model for each pair of waves using several characteristics from the first wave as independent

variables and the participation to the second wave as the dependent variable. Previous studies

suggest that non-respondents tend to be male, younger, less educated, foreign, and unmarried

(see e.g. Loosveldt and Carton (2001); Voorpostel (2010)). Additionally, individuals in vulner-

able situations, such as those who are unemployed, have poor health, or lack social involvement,

are more likely to be non-respondents (Rothenbühler and Voorpostel, 2016). Therefore, these

variables should be considered in the logistic models. Any significant variables should be added

later to the imputation model to justify the MAR hypothesis.

Regarding item-level missing data, one should first screen which values are really missing.

First of all, logical missings are excluded. Then, special consideration is given to values such as

“does not know”. It is essential to discern whether such values should be considered as missing

data. This ambiguity arises from the possibility that a person may genuinely not know the
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answer to a question, or they may choose not to respond, which qualifies as a case of missing

data. Consequently, a thorough examination of item-level missing data should be conducted

on an individual and variable basis to identify problematic cases and variables with a high

prevalence of missing data.

Finally, the link between item-level and unit-level missing data is under question. Item-level

missing data may impact unit-level missing data and vice versa. Indeed, the number of item-

level missing data and non-responses to difficult questions, such as income or health, could result

in missing data in subsequent waves (Loosveldt and Billiet, 2002). Therefore, t-tests could be

conducted between the number of item-level missing data and participation in the next wave

for each pair of waves, and a chi-squared test could be performed between non-response to

a difficult question and participation in the next wave. Additionally, individuals who were

missing in a given wave may be more likely to have item-level missing data if they participated

to the next wave. In this case, t-tests could be done between the number of item-level missing

data and participation in the previous wave for each pair of waves.

3.2.2 Treatment of missing data

We present the multiple imputation process for addressing missing data, comprising two dis-

tinct steps: imputing item-level missing data and subsequently addressing unit-level missing

data. This two-step approach aims to reduce the complexity by minimising the number of

cases to be addressed. Indeed, combining the imputation of item-level and unit-level missing

data simultaneously would induce numerous distinct patterns, complicating the process. To

illustrate, let’s consider an imputation model based on five variables, each of which is subject to

item-level missing data. With 32 potential patterns of missing data among these five variables,

it would require fitting 32 different imputation models.

Before focusing on the imputation process, we introduce a sequence of questions that we

have developed. These questions are applied to both item-level and unit-level missing data,

serving three main goals: identifying logical missing data, avoiding unnecessary imputation

when certainty exists, and screening values that should not be imputed. We first present this

sequence of questions. Then, we delve into the imputation of item-level missing data. Finally,

we explore the imputation of unit-level missing data.

The sequence of questions, illustrated in Figure 3.1, begins by determining whether the

missing value is due to a logical skip, meaning a question not asked to an individual based on

its response to another question, or if it is indeed missing. If it is a logical skip, we differentiate

between questions not asked because they were irrelevant and those for which the answer was

already known. For the latter, we differentiate between questions that were not asked because

the question did not make sense to the individual from the ones whose answer was known. On

the other hand, when the information is truly missing, we investigate if the missing value is
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retrievable anywhere in the dataset or from another source. If the value cannot be retrieved,

we determine if the value is directly deducible from the values of other variables. If the value

is not deductible, we must ask ourselves if the value should be imputed at all.

Logical skip?

Value 
retrievable?

Impute ?

Value deducible?

A value makes
sense?

Set 
retrieved

value
Left blank

Set known
value

Set 
deduced

value

Impute Left blank

Yes

No

Yes

Yes

No

No

No

Yes

Yes No

Figure 3.1: Questioning prior to a multiple imputation.

We will now describe the imputation process itself. We first focus on the treatment of

item-level missing values before moving to unit-level missing data.

Item-level missing data We propose the following framework, which may serve as a guide-

line (each of these steps is developed below). This algorithm is designed to impute missing

values in a logical and efficient way, using a combination of statistical tests and regression

analysis to identify the most relevant predictors and impute missing values based on those

predictors. The process takes the following form:

1. The variables should be ordered.

2. The algorithm iterates through each wave of data, starting with the first wave and pro-

ceeding to the last wave.
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3. Within each wave, the algorithm goes through each variable and applies the following

steps:

(a) The sequence of questions (Figure 3.1) is applied to the variable.

(b) The pool of potential predictors is identified and, if needed, recoded.

(c) A test of association is done between the variable to impute and all sensible variables,

including already imputed variables. A Fisher’s exact test is applied when two

categorical variables are involved, a correlation test with two numerical variables

and an ANOVA with a categorical and a numerical variable. Significant variables

are included in step (d).

(d) A stepwise bidirectional regression is applied to explain the variable to be imputed,

using Akaike’s Information Criterion (AIC) as a comparison criterion. We use a lo-

gistic regression for dichotomous variables, a multinomial regression for multinomial

variables, and a linear regression for continuous variables.

(e) A bootstrap sample is drawn, the regression model is fitted using this bootstrap

sample.

(f) Missing values are imputed. For a logistic model (multinomial or not), predictions

are drawn based on the estimated probabilities; for a linear model, predictions are

drawn, and a randomly drawn error is added to them. When a numerical variable

can take only some specific values, such as integers, the obtained value is rounded

to the closest possible value.

(g) If some missing values were not imputed at the last step, variables are removed from

the model obtained at step (e) until every missing value is imputed.

(h) The imputed values are checked.

We further detail and justify each of these steps. The variables are first ordered. A variable

that may induce a logical missing in another variable must be imputed beforehand, just as a

potential predictor of the variable’s absence or presence.

The predictors are then selected. The pool of potential predictors can be considerable since

the procedure is made to handle many predictors. The number of categories of a categorical

variable should be reduced in order to avoid inflated variance. Moreover, some variable may

need some recoding. For instance, categorical variables that have an inherent order may be

recoded as numerical variables. A common example of this is a Likert scale question, where

respondents provide their opinion on a scale ranging from “strongly disagree” to “strongly

agree”. Transforming such variables into numerical ones can be justified by the presence of a

gradation among the responses. However, such a recoding is fully justified only when the gap
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between successive categories is always similar (see e.g. Wu and Leung (2017) for a discussion

on the coding of Likert scales in analysis).

The initial selection of variables in step (c) serves to decrease the number of potential

variables in the model, as models have limitations in handling a large number of parameters,

particularly when dealing with categorical variables. Additionally, including too many ex-

planatory variables can lead to overfitting the model to the training dataset, resulting in poor

imputations. Along this line, a simulation realised by Noghrehchi et al. (2021) showed that

adding too many variables can lead to bias. Moreover, with logical skips, a model with many

predictors could be fitted on only a small subsample of the observations. Since after the first

step, the number of variables is often too large to test every subsample of variables, a stepwise

procedure is applied to identify the most appropriate model (step (d)).

Distinct models are employed depending on whether the variable being imputed is numerical

or categorical. We consider a variable to be of the numerical type when it is possible to

perform computations with the different values of the variable, and the result has a numerical

meaning. Otherwise, the variable is considered as categorical. When a numerical variable is the

imputation’s target, we apply a linear model for the imputation, regardless of the distribution

of the variable. When the variable is not normally distributed, this could be under question.

However, linear models often work well also when the distribution is not normal (Demirtas

et al., 2008), and transforming a variable towards normality often leads to more biased results

(Von Hippel, 2013). Another issue is linked to discrete variables, for example obtained with a

Likert scale, or more globally to variables that only have a specific range of possible values. For

example, if we have a variable that takes integer values between 0 and 10, an imputed value

might not be an integer or even outside the range (such as negative values). Therefore, it is

under question whether the imputed value should be rounded. Wu et al. (2015) have shown

that not rounding performs well and that rounding afterwards could lead to biased results.

However, the drawback of not rounding is that it could lead to imputing an impossible value,

such as a negative percentage of work. We believe imputing values that do not make sense to

a person is worse than potentially inducing some bias.

According to simulations run by Van Buuren (2018), bootstrapping and adding a random

error (steps (e) and (f)) is a correct way to draw values since it leads to appropriate coverage.

Failing to include bootstrapping or random error would result in underestimating the variance,

which could lead to overly significant results and potentially impact the validity of statistical

inferences.

Since, generally, missing data are not MCAR, we expect the distribution of the imputed

values to be different from that of the observed values. However, as advanced by Van Buuren

(2007), for example, substantial differences may signify that something went wrong. Therefore,

it is advisable to compare the distribution of the imputed and the observed values and, if they
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are clearly different, to look at the imputation model and the distribution of the predictors

separately between imputed and observed values to explain such differences.

Unit-level missing data After treating the item-level missing data, unit-level missing data

are considered. The following algorithm applies:

1. Identify the typology of missing gaps.

2. Impute middle gaps by recursively working from gaps of maximum length to those of

length one, imputing the variables in the order determined during item-level missing data

imputation by applying steps (a) to (h).

3. Impute initial gaps of missing data by recursively working from gaps of maximum length

to those of length one, imputing the variables in the order determined during item-level

missing data imputation by applying steps (a) to (h)

4. Impute end gaps of missing data by recursively working from gaps of maximum length

to those of length one, imputing the variables in the order determined during item-level

missing data imputation by applying steps (a) to (h).

The imputation process is divided into initial, middle, and end gaps because the information

available for imputation differs depending on the gap type. For initial gaps, information from

one or several following waves is available; for end gaps, information from one or several previous

waves is available; and for middle gaps, information from both previous and following waves is

available.

The first step is to identify the typology of missing gaps. As an illustrative example, we

consider a situation with five waves. The typology depends on the number of previous and

subsequent waves used in the imputation model. We consider that only information from the

current and one previous and subsequent waves, when available, are used. Table 3.1 illustrates

the typology of missing gaps, which includes, for middle gaps, one gap of length three, two of

length two, and three of length one.

For middle gaps, the imputation process starts with the gap of length 3, where the first

missing wave (wave 2) is imputed. As with the imputation of item-level missing data, the

variables are imputed sequentially based on the chosen order. Once this wave has been imputed,

gap (i) becomes like (ii). Then, the second missing wave of gaps of length 2 is imputed to realise

a recursive imputation from the edges, ensuring longitudinal consistency. Gaps of length one

are finally imputed. We considered the case of the use of only one wave before- and after-hand

during the imputation process. By increasing the number of waves used, the typology becomes

more detailed. For example, using two previous waves instead of one, the last type of middle

gaps would be separated in two cases, depending on whether wave 2 is observed.
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Type of gap
Waves

1 2 3 4 5

Middle gap

i) o m m m o

ii) o m m o

iii) o m m o

iv) o m o

v) o m o

vi) o m o

Initial gap

i) m m m m o

ii) m m m o

iii) m m o

iv) m o

End gap

i) o m m m m

ii) o m m m

iii) o m m

iv) o m

Table 3.1: Typology of unit-level missing data. An observed wave is represented by “o”, a
missing wave is represented by “m” and a blank value means that the wave can either be
observed or missing.

In a multiple imputation context, the whole process is repeated to produce several completed

datasets.

3.3 Data

We use a subsample of the LIVES-FORS Cohort survey (LCS) that we received from colleagues

to illustrate the imputation process. LCS is a yearly longitudinal survey focusing on young

adults who grew up in Switzerland (Spini et al., 2019). The survey complements the Swiss

household panel (SHP), an annual panel study launched in 1999 to observe social changes in

Switzerland (Voorpostel et al., 2016). LCS almost shares the same questions and modules as

SHP but differs in the target population and sampling procedure.

LCS comprises young adults whose parents have grown up in Switzerland and individuals

called “secondos” whose parents arrived in Switzerland as adults. The main goal of LCS is to

compare the transition to adulthood of these two populations. In the SHP, the secondos are too
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few to perform statistical comparisons, hence the need for a specialised supplementary sample.

The reference population of LCS is individuals born between 1988 and 1997, living in Switzer-

land on the 1st of January 2013, and schooled in Switzerland before age ten. Secondos, whose

parents were born abroad and arrived in Switzerland after the age of 18, are overrepresented.

The SHP relied on the Swiss population register to create a probability-based sample. How-

ever, since the origin of parents is not available in this register, secondos were not directly

identifiable (Herzing et al., 2019). Therefore, the LCS sampling scheme is a combination of

stratified random sampling, screening and controlled network sampling. More precisely, 4000

individuals born between 1988 and 1997 were first randomly sampled. Individuals living in a

region with a high share of residents born abroad or of individuals who come from or are born

in countries from which the previous generation of workers tend to come from (e.g. Italy, Por-

tugal, Spain or Serbia) were more likely to be selected. Then, they were contacted to determine

the place of origin of their parents and whether or not they were schooled in Switzerland before

the age of 10. Individuals that were not schooled in Switzerland before the age of 10 were

discarded. Next, another sampling took place, oversampling individuals whose both parents

arrived in Switzerland after the age of 18. At this stage, the sample was of 890 individuals.

Finally, a network sampling took place. Individuals were asked to provide a list of their regular

contacts and information about the origin of their parents. Another sample of individuals was

randomly drawn from the regular contacts, with a higher probability for individuals whose

parents arrived in Switzerland after the age of 18. A total of 1961 individuals participated in

the study.

The LCS started in 2013 and has taken place yearly since then. The first wave consisted

of a household questionnaire, which covers several areas linked to the household: the accom-

modation, the standard of living, the family, and the household’s financial situation (Tillmann

et al., 2016), and a life history calendar to collect retrospective information about living ar-

rangements, family events, residence, couples relationships, professional and health trajectories.

Starting from the second wave, in addition to the household questionnaire, individuals were

asked about a variety of topics through traditional questionnaires: social origin, education, em-

ployment, health, politics and values, household and family, health and quality of life, leisure

and media, and integration and networks.

The sample we received from our colleagues is composed of 849 individuals. It included

the first five waves. Concerning the variables, in addition to sociodemographic characteristics,

variables about education and work were kept. Appendix D details the complete list of variables.

The whole imputation process was repeated 20 times in order to produce a sufficient number

of imputed datasets. The type I error was set to 5% for all analyses, and the R open source

statistical environment was used for all computations (R Core Team, 2021).
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3.4 Results

In this section, we illustrate the treatment process we have devised for handling missing data

by applying it specifically to the LCS subsample. Following the structure outlined in the

methods section, we proceeded with two steps. Firstly, we analyse the patterns of missing data

in the subsample, considering both unit-level and item-level missing data. Subsequently, we

demonstrate the sequence of questions and present the results of imputing selective variables.

This serves the purpose of illustrating the imputation process while highlighting the challenges

specific to our approach.

3.4.1 Analysis of missing data

We present the analysis of the patterns of missing data in the LCS subsample. We first focused

on unit-level missing data. The articulation of missing data was first studied. Then, differences

between respondents and non-respondents were tested. Afterwards, our investigation focused

on determining if specific question responses might result in non-response during the subsequent

wave. Finally, the impact of item-level missing data on unit-level missing data was investigated.

Regarding item-level missing data, we first studied generally the patterns of missing data.

Then, we screened the variables that displayed a higher tendency for item-level missing data

and determined the underlying reasons for this behaviour.

Unit-level missing data

Since the first wave of the survey only consists of basic information that also appears in subse-

quent waves, such as age, gender, and achieved level of education, the first wave will not appear

in the analysis of missing data or the imputation process. Waves 4 and 5 were more prone to

missingness, with approximately 25% of unit-level missing data, while waves 2 and 3 were only

missing in 7 and 10% of the cases. The patterns of unit-level missing data are displayed in

Figure 3.2. Among the 849 individuals, 506 answered all waves. Having waves 4 and 5 missing

is the most common pattern of unit-level missing data, with 100 individuals sharing it, while

only one has waves 2 and 4 missing. However, not all potential patterns are represented in the

data. Nobody has only the second wave observed, and individuals with all the missing waves

were not included in the dataset. Like in all longitudinal studies, missing data often appear

consecutively in this dataset. Indeed, chi-squared independence tests of unit-level missing data

between pairs of consecutive waves were all significant, with the strength of the link increasing

over time.

Then, we determined whether some socio-demographic groups were more prone to unit-

level missing data. We considered the sex, the age, being a secondo or not, the highest level

of education achieved and the marital status. On one hand, once the age, the sex and being



3.4. RESULTS 47

P
ro

po
rt

io
n 

of
 m

is
si

ng
s

0.
00

0.
05

0.
10

0.
15

0.
20

W
2

W
3

W
4

W
5

C
om

bi
na

tio
ns

W
2

W
3

W
4

W
5

506
100
66
39
32
31
24
13
12
9
8
5
3
1

89          61         209        207         

Figure 3.2: Patterns of unit-level missing data with their respective number. An observed wave
is displayed in blue, while a missing wave is in red. In addition, the number of unit-level missing
data per wave is displayed.

a secondo are observed, they are known for every other waves. On the other hand, when the

marital status or the highest level of education achieved is missing, there could be uncertainty

about the value. In this case, we used the value observed in another wave as a proxy. For

example, if the wave 3 was missing for an individual, the marital status information from wave

2 was used instead. If wave 2 was also missing, the marital status information from wave 1 was

used. In the event that data for waves 1 through 3 were missing, the marital status information

from wave 4 was used instead, or the information from wave 5 if wave 4 was also missing.

Table 3.2 summarises the p-values of independence tests between a socio-demographic char-

acteristic and the fact of having responded to a given wave. The age differs significantly between

respondents and non-respondents in waves 4 and 5, while the achieved education level differs

in waves 2 and 5. Concerning sex, being a secondo, and marital status, there are no significant

differences between respondents and non-respondents. Boxplots for the age, separated between

respondents and non-respondents, are displayed in Figure 3.3. The difference between the mean

age of the respondents and the non-respondents is tiny, while, for wave 5, the median age of

the non-respondents is slightly higher than the age of the respondents (25 vs. 24). Moreover,

in waves 4 and 5, the variance is smaller across the non-respondents. Regarding education,

individuals who had reached an upper secondary level of education are more prone to missing

the second wave. Moreover, it is the case for those with a compulsory school level of education

for the fourth wave.
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W2 W3 W4 W5

age 0.080 0.742 0.007 < 0.001

sex 0.487 0.388 0.482 0.478

education 0.006 0.675 0.096 0.009

secondos 0.227 0.476 0.886 0.276

marital status 0.207 0.804 0.610 0.256

Table 3.2: P-values of the tests of independence between socio-demographic variables (age, sex,
to be a secondo, and highest level of education achieved) and missingness in a wave (2 to 5).
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Figure 3.3: Boxplots of the age by response status at waves 4 and 5.

Next, we examined whether certain question responses could lead to non-response in the

following wave. Consistent with prior research, we analysed variables related to employment,

self-rated health, and social involvement, specifically “participation in clubs”, “trust in people”,

and “political interest”. Logistic models were fitted for each pair of successive waves, where

the dependent variable is unit-level missing data of the second wave of the pair, giving three

models. Although we anticipated no differences among these three models, we separated them

to satisfy the independence assumption of logistic regression (Stoltzfus, 2011). Indeed, failing

to do so would induce, for example, that individuals not missing any wave, would be included

thrice.

Table 3.3 shows the results of the three regression models. There were no variable significant

in all three models. In line with the tests realised above, age was significant in predicting miss-
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ingness in waves 4 and 5, while gender, to be married, and to be a secondo, has no significant

impact on the missing process. The effect of the highest level of education on the missingness

status of wave 5 differs significantly between the levels of compulsory school and upper sec-

ondary. Even if not significant, the tertiary education level has a coefficient almost equal to

the upper secondary level. Concerning social involvement, only the responses to the variables

“participation in a club” and “trust in people” in wave 3 significantly impact the missing status

of the subsequent wave. Higher confidence in people and participation in clubs decreased the

probability of wave 4 being missing. Interest in politics and self-rated health have no significant

relationship with the missing mechanism. These results must be carefully handled because only

a few variables are significant, and there is almost no consistency across the waves. Therefore,

significant results could be induced by randomness. Moreover, the overall performance of these

models is very low since the Nagelkerke R2 was between 0.06 and 0.08.

Finally, we considered either the number of item-level missing data at the previous wave

or whether an individual had item-level missing data to predict complete nonresponse in the

next wave, but the tests were never significant. Regarding potential sensible questions such as

income, self-rated health, or whether the interviewee has suffered from a severe health issue

during the last year, they have all very few missing data (less than two per wave). Therefore,

we could not establish a link between non-response to theoretically sensible questions and a

subsequent missing wave.

Item-level missing data

In the second step, we focused specifically on item-level missing data. Approximately two thirds

of the respondents in each wave have no item-level missing data, excluding logical missing. Only

five observations, one in the second wave and four in the third wave, have more than ten missing

values, and among them, two have a more significant number of item-level missing data (26

and 35) than all other respondents. These large numbers are difficult to explain since both

individuals’ attitudes were considered “friendly and cooperative”, according to the interviewer.

Moreover, they answered every wave, and the number of item-level missing data was limited

on the other waves. Therefore, this may be due to technical issues or a lack of time for the

participants.

Some variables are more prone to missing data than others. Table 3.4 displays the per-

centages of item-level missing data for the five most missing variables among the ones issued

from the individual questionnaire. By looking into it, the situation is different depending on

the variable. Indeed, most of the occupation missing values appear because no code from the

Swiss-specific occupation codes corresponded to the respondent’s answer. Alternatively, most

of the missing for the company’s restructuring is due to “does not know” modalities. For the

percentage of part-time work and number of employees in a company, the missing are shared
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W2–W3 W3–W4 W4–W5

OR p-value OR p-value OR p-value

age 0.99 0.936 1.17 0.001 1.18 0.008

gender (ref. male)

female 1.00 0.993 1.07 0.698 1.07 0.796

education (ref. compulsory school)

upper secondary 0.53 0.095 0.88 0.664 0.42 0.032

tertiary 0.30 0.097 0.96 0.912 0.41 0.065

married (ref. no)

yes 1.80 0.392 0.87 0.718 0.51 0.204

secondos (ref. no)

yes 0.71 0.288 0.88 0.468 0.92 0.741

participation club (ref. no)

yes 0.73 0.392 0.64 0.032 0.78 0.357

employment status (ref. active occupied)

unemployed 1.10 0.876 1.03 0.923 0.74 0.589

not in labor force 0.32 0.021 0.73 0.172 0.48 0.052

interest in politics 0.91 0.096 0.94 0.087 0.93 0.078

trust in persons 1.05 0.431 0.88 < 0.001 1.02 0.732

self-rated health 0.91 0.305 1.08 0.133 1.00 0.971

N 760 788 640

R2 0.07 0.08 0.06

Table 3.3: Logistic regressions predicting, for each pair of consecutive waves, unit-level missing
data to the second wave (with non-missing as the reference category) of the pair using variables
from the first wave of the pair. The number of observations used to estimate each model (N)
and Nagelkerke R2 are also displayed.

between “does not know” and lack of an answer.

Globally, no variable was significantly linked to the missing process.

3.4.2 Treatment of missing data

We demonstrate the application of the imputation process using the LCS subsample as an

example. First, we illustrate the use of the sequence of questions with variables taken from

the subsample. In most cases, it is not needed to apply this sequence of questions before the

item-level imputation because most surveys have specific codes for logical missing. However,
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W2 W3 W4 W5

restructuring of company 5 5.7 4.2 6.2

number of employees in company 2.5 4.6 4.4 4.2

percentage of part-time 3 3.9 2.5 2.8

occupation in main job 0.7 1.9 3.9 2.8

number of contractual hours 0.9 1.4 1.3 2.5

Table 3.4: Percentages of item-level missing data per variable per wave for the five most missing
variables on the whole dataset.

it is useful as an illustration since the sequence of questions will need to be applied during the

unit-level imputation. We then detail the treatment of several variables during the unit-level

imputation. As the imputation process for item-level missing data is similar to unit-level, we

focus solely on examples of unit-level imputation. The objectives are two folds. First, illustrate

the process of imputation. Then, highlight the difficulties linked to the application of our

process. We focus on the case of an end gap of missing data with waves 4 and 5 missings and,

more precisely, on the imputation of wave 4. Therefore, information on wave 3 is available. We

have selected three variables corresponding to the work module’s three layers:

1. The work status determines if the work module is to be imputed.

2. The type of employment represents basic information on the job.

3. The degree of interference of the work with the private life, for the different scales related

to the job.

We illustrate each tree branch of the sequence of questions (Figure 3.1) with real cases

issued from our sample. First, suppose that a value is lacking for the number of persons under

supervision. We face a logical skip if the individual is not working or has no supervisory task.

In contrast, we do not have a logical skip if the individual is working and has supervisory

tasks. No value makes sense if we face a logical skip for this variable. An example of a logical

skip for which a value makes sense would be the percentage of work, where a value of 100%

can be set for the individuals working full-time. For the number of persons under supervision,

a value not lacking due to a logical skip is neither retrievable elsewhere nor deducible from

other variables. Moreover, there is no contraindication to the imputation of these missing

values. We have spotted no cases of values that are lacking and retrievable elsewhere in the

dataset. The work status is asked both in the questionnaire submitted to the individuals and

the questionnaire answered by the household representative. Therefore, a work status lacking in
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the individual questionnaire could be retrieved in answers to the grid questionnaire. However,

in practice, this case does not happen. Concerning values that are deductible, it is the case,

for instance, with an ordinal variable such as the highest level of education achieved. If the

values at the previous and following wave are identical, then the missing value can be replaced

by this value. Finally, the exact job denomination is a salient example of a variable that should

not be imputed. Indeed, since most of the missing information of this variable appears because

there was no correspondence in the Swiss-specific occupation codes, imputing a value with our

method would lead to wrong values with certainty. Moreover, even if the value is missing due

to a non-response, imputing could lead to very unlikely jobs for a given person.

Then, we focus on the imputation of the three selected variables from the work module,

namely the work status, the type of employment and the interference of work on private life.

Imputation of the work status

This variable determines whether the other variables of the work module should be imputed.

Therefore, imputing a wrong value to this variable will impact all the other variables of the

work module. The work status is coded in three states: active occupied, not in the labour

force, and unemployed. Initially, this variable was constructed after the interview based on the

answers to a sequence of six questions (e.g. Did you get paid for working, even if only for one

hour, last week, either as an employee, self-employed or an apprentice? ). However, since the

level of detail induced by these questions is not necessary, we directly impute this constructed

variable.

We start by applying the sequence of questions before considering the imputation itself.

1. Logical skip No value is the consequence of a logical skip.

2. Value retrievable No value is retrievable with certainty elsewhere in the dataset.

3. Value deducible When an individual is outside the workforce, a variable captures the

reason why. One of the possible answers is Permanently disabled and/or unfit for work.

Even if an individual could join the workforce in a subsequent year, it should be rare.

Therefore, we impute a not in labour force value for subsequent missing waves.

4. Should it be imputed There is no contraindication to the imputation of this variable.

We split the imputation process for this variable into three parts, based on the work status

in the previous wave. This division is necessary because the available variables vary between

active individuals and the two other situations. We provide a brief description of the imputation

method for the latter two cases and present detailed results for the active occupied scenario. For

individuals who are not active occupied, all the variables of the work module are logical missing.

On the other hand, some questions are tailored to these situations (e.g. the reason not to be
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working). For each of the 20 imputation, the imputation model consists only of an intercept

for the individuals that were not in the labour force. Considering the unemployed individuals,

the imputation models contain the age, the reason for unemployment, if the individuals were

in training, and were registered as unemployed in a regional job centre.

Concerning the active occupied individuals, the pool of potential predictors consists of

sociodemographic variables and most of the variables of the work module at the previous wave.

We have discarded some variables due to their level of detail (e.g. the exact denomination of

the job) or the few individuals concerned (e.g. the duration of the limited contract, only for

individuals with such a contract).

Moreover, most categorical variables needed some pre-processing due to some relatively

rare categories. For example, the position at work is composed of four categories: production

position, supervision/training position, management position, and other, which are composed

of 355, 43, 10, and 15 individuals. Since the three rarest categories represent some specific

situations other than being employed, we merge them.

As a reminder, the entire imputation process was repeated 20 times to generate multiple

completed datasets. Therefore, we analysed the results of these 20 completed datasets col-

lectively rather than examining each imputation individually. Since the pool of predictors is

large (39 variables), we initially applied a selection step using association tests. After this step,

the number of predictors was reduced to 11 or 12, depending on the imputation number. In

some cases, the percentage of work was included, while in others it was not. The p-value of

the bivariate test between the percentage of work and work status was found to be close to

0.05. Consequently, depending on the imputed values during item-level imputation, this p-value

either slightly exceeded or fell below 0.05. Subsequently, we employed the forward-backward

stepwise procedure with AIC as the selection criterion, resulting in the selection of 8 or 9 vari-

ables. Notably, the percentage of work was included in thirteen imputations but excluded in

seven. While the item-level imputation and bootstrapping introduced some randomness among

the imputation models, all imputation models share the same characteristics except for the

percentage of work. The odds ratios and their respective p-values are presented in Table 3.5

for the first iteration. It can be observed that:

• Job limitations in time induces a higher probability of becoming unemployed or not in

the labour force, the coefficient being significant only in the not in labour force case. It

is expected that individuals without a contract limitation are more likely to stay active

occupied.

• The higher the % worked, the more likely the person is to be active occupied compared to

those not in the labour force. Since the dataset is composed of young adults, it is likely

that a low percentage encompasses individuals with temporary work in parallel to their

studies and that are more likely to drop it.
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unemployed not in labor force

OR p-value OR p-value

(intercept) 7.50e-18 < 0.001 0.31 0.447

age 1.00 0.996 0.78 0.027

level of education 0.33 0.046 0.89 0.665

% of work 0.99 0.324 0.98 0.005

intensity of work 1.35 0.051 0.89 0.102

position in firm (ref. other)

production 1.41e06 < 0.001 8.41 0.053

job limitation in time (ref. yes)

no 0.39 0.207 0.23 < 0.001

use of a computer (ref. yes)

no 0.14 0.021 1.59 0.233

security of job (ref. secure)

not secure 8.00 0.004 0.24 0.184

job with supervision task (ref. yes)

no 1.01e11 < 0.001 0.57 0.237

N 422

R2 0.36

Table 3.5: Imputation model for the work status at the first imputation. The reference category
is active occupied. The level of education is a scale from 1 to 5, the % of work goes from 0 to
100 and the intensity of work is a scale from 0 to 10. The number of observations used to fit
the model (N) and Nagelkerke R2 are also displayed.

• The older the person, the less likely to get out of the labour force. As advanced with

the coefficient related to the % worked, younger individuals may be more prone to have

temporary work in parallel to their studies, which may differ from one year to another,

while older people are really into the labour market.

• Individuals who estimated their job was not secure during the previous interview are more

likely to become unemployed.

• The more intense the work was, the more likely the individual would be unemployed

rather than active occupied.



3.4. RESULTS 55

• The more educated, the less likely to become unemployed.

This model estimates the probability of belonging to the three categories for each missing

individual. Subsequently, values are drawn based on these probabilities. The distributions

of the observed and imputed values are displayed in Figure 3.4. Generally speaking, unless

the process is MCAR, we may expect the distributions to be different. However, considerable

differences may be a sign of a poor imputation model. Notably, in 19 out of the 20 imputations,

the proportion of imputed active occupied individuals surpasses that of the observed active

occupied individuals. Conversely, the proportion of unemployed individuals is lower in 18 out

of the 20 imputations. Individuals with a missing working status were more often in “other”

positions in the firm (24% versus 16%) and “supervisory” tasks (38% versus 30%) during wave

4 than the individuals observed. Both scenarios suggest a high probability of being in an

active occupied state, thereby elucidating the dissimilarities between the observed and imputed

working status distributions.
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Figure 3.4: Distribution of the observed work status (first column) and the distributions on
each of the twenty imputations (labelled as “1” to “20”).

To summarise, differences between imputed and observed values are explainable from their

different distributions in terms of independent variables. Moreover, the imputation model
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makes sense interpretation-wise. Even if some coefficients have high values (i.e. supervising

tasks and position in the firm), they correspond to situations linked to stable work positions.

Imputation of the type of employment

We focus on the imputation of the second illustrative variable, namely the type of employ-

ment. It is split in five categories: employed by private household (houseworker, baby-sitter),

employee of own Public Limited or Limited Liability Company, self-employed, partner in his/her

relative’s firm and employee of another private firm or government organisation.

1. Logical skip Individuals not in the workforce were not concerned by the question about

the type of employment.

2. Value retrievable No value is retrievable elsewhere in the dataset.

3. Value deducible No value is deducible.

4. Should it be imputed There is no obvious contraindication to the imputation of this vari-

able.

Regarding the imputation of the work status, we divided the imputation process based on

the work status during the last wave. Specifically, we considered the unemployed and not in

labour situations together. We explored the inclusion of the work status during the current

wave as a predictor, but the results were inconclusive. Hence, the imputation model only

includes the intercept for unemployed or not in labour cases.

For the active occupied status, simply applying our procedure leads to an over-parametrised

model with some coefficients exhibiting high variance. This issue arises due to the presence

of rare types of employment within the dataset. Among the 368 individuals belonging to the

training sample, 347 were an employee of another private firm or government organisation, 10

were a partner in his/her relative’s firm, six were self-employed, 1 was an employee of its own

Public Limited or Limited Liability Company, and 4 were employed by a private household

(houseworker, baby-sitter). Therefore, due to some very rare categories, we chose to only use

the type of employment during wave 3 as a predictor in the model. Due to the rarity of certain

employment categories, we made the decision to simplify the model by solely using the type

of employment during wave 3 as a predictor. However, even with this simplified approach, a

challenge emerged. Among the individuals requiring imputation, one had been an employee

of his/her own Public Limited or Limited Liability Company during the previous wave, while

none of the individuals who participated in waves 3 and 4 held this position. Consequently,

it was not feasible to impute this missing value using the existing model. Even if it is not

impossible that this individual was not an employee of his/her own Public Limited or Limited

Liability Company any more, it is unlikely. Hence, we chose to impute the missing value as
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an employee of their own Public Limited or Limited Liability Company. Additionally, this

approach ensures that the sample’s variability is preserved by not completely disregarding this

particular employment scenario.

This example illustrates the difficulty of applying our process automatically.

Imputation of the level of interference of work on private life

The last illustrative variable is the level of interference of work on private life. It is a scale

going from 0 to 10; the higher, the more interference there is. The sequence of questions was

first applied. Since the conclusions are similar to the ones of the types of employment, we do

not show it. As for the two other illustrative variables, the process was separated according to

the work status during the last wave. We only detail the active occupied case.

Concerning the imputation itself, the pool of predictors consists of socio-demographics,

variables related to the job at the previous wave, and already imputed work variables, for a

total of 60 variables. Among them, between 28 and 30 are selected after the bivariate selection.

Two variables from the previous wave, namely the percentage of work and the satisfaction

with the workload, are sometimes included and sometimes not. Then, for each iteration, the

stepwise AIC procedure leads to an imputation model with 11 independent variables. The

linear regression model of imputation for the first iteration is displayed in Table 3.6, the models

for the other iterations being very similar.

Individuals who worked on weekends, had unchosen variable working hours, had a full-time

contract, were exhausted, or had difficulties disconnecting from work have, unsurprisingly, a

higher interference of work on private life. Moreover, a higher interference of work on private

life during the last wave induces a higher interference during the current wave. Since most

individuals have kept the same job, this relationship is not surprising. Concerning the other

variables issued from the last wave, the interpretation is not as straightforward. Indeed, both

having a stressful job and possibilities of advancement have significant coefficients: having a

job that was not stressful produces a level of interference that is, on average, 0.63 lower, and

an increase of one point in satisfaction with opportunities of advancement induces a decrease

of 0.10. On top of that, the age and satisfaction with the work conditions during the last

wave also appear in the model but are not significant. Since these variables are not clear

interpretation-wise, it could be sensible to remove them afterwards from the model.

Not all missing values were imputed with this model. Indeed, some individuals were nei-

ther concerned by opportunities for advancement or the type of employer (private vs public).

Therefore, we discarded these variables to impute these missing values and built simpler models.

Figure 3.5 shows the density of the observed values and the densities of the imputed values

for each imputation. First, the density of the observed values shows two maximums at 0 and

5, while most of the shapes of the density of the imputed values are closer to Gaussian distri-
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variable coefficient p-value

(intercept) -0.68 0.658

age 0.09 0.13

variables from the previous wave

work conditions 0.21 0.009

satisfaction with opportunities of advancement -0.08 0.079

interference of work on private life 0.33 < 0.001

stressful job (ref. yes)

no 0.55 0.058

variables from the current wave

satisfaction with workloads -0.30 < 0.001

exhausted after work 0.30 < 0.001

difficulty to disconnect from work 0.15 0.003

private or public employer (ref. private)

public -0.58 0.022

part-time or full-time (ref. part-time)

full-time 0.87 0.001

work on weekends (ref. yes)

no -0.93 < 0.001

type of working hours (ref. same each day)

variable and you do not decide 0.61 0.041

variable but you decide -0.10 0.760

N 302

R2 0.42

Table 3.6: Linear regression model to impute the level of interference of work on private life
at the wave 5, for the first of the 20 imputations. Some variables are issued from the previous
wave and some other from the current wave. Work conditions, satisfaction with opportunities of
advancement, interference of work on private life, satisfaction with workloads, exhausted after
work, and difficulty to disconnect from work are all scales going from 0 to 10. The number of
observations used to fit the model (N) and Nagelkerke R2 are also displayed.
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butions. Even if not perfect, the Gaussian distributions are a relatively good approximation of

the distribution of the observed values. Then, imputed values tend to be higher than observed

ones. This is explainable by the different characteristics of the missing individuals compared

to the observed ones. In Figure 3.6, the densities of the main numerical predictors in the im-

putation model are compared between observed and missing individuals. The interference of

work on private life at wave 4 only has one density concerning the missing individuals because

they took part in wave 3. In contrast, the three other variables concerned wave 4, and hence

were missing.

On the one hand, we do not observe any clear difference between observed and missing

individuals regarding satisfaction with workload and exhaustion after work. On the other

hand, the “difficulty in disconnecting from work” and “interference of work on private life”

present higher values for the missing individuals. These higher values explain the higher values

for the interference of work on private life compared to the observed ones.
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Figure 3.5: Comparison between the observed density of the interference of work on private life
(blue) and the densities of the twenty imputed datasets (red). The densities are represented as
continuous lines even if only integer values between 0 and 10 are possible.
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Figure 3.6: Comparison of the density of the interference between work and family at wave
3 between observed (blue) and missing (red) values, and comparison between the observed
density (blue) of, respectively the satisfaction with the workload, exhaustion after work and
difficulty to disconnect from work, and the densities of the twenty imputed datasets (red). The
densities are represented as continuous lines even if only integer values between 0 and 10 are
possible.

3.5 Discussion

In this research, we have addressed the issue of imputing missing data in a longitudinal mul-

tivariate dataset. Our main contributions include a series of questions for identifying missing

data and values to be imputed and a framework to treat missing data. The process was applied

to a sample received from colleagues. This dataset was particularly suitable for illustration

purposes, given its longitudinal nature and the presence of categorical data and logical missing
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patterns. Imputing this dataset was essential, as it consisted of 849 individuals, with only 506

individuals having participated in all waves. Excluding individuals with missing data in any

wave would significantly compromise the statistical power of subsequent analyses. Moreover,

we may expect, as it is generally the case, that missing data are MAR and additional bias may

be induced by complete case analysis.

While our proposed procedure serves as a valuable baseline, it faces several challenges that

warrant further consideration. These challenges primarily involve the effective handling of

categorical data, dealing with a relatively small dataset, and effectively addressing filtering

questions. In order to provide a more comprehensive examination of these challenges, we delve

into their implications and explore potential solutions. To illustrate these challenges, we present

examples derived from the illustrative subsample.

Imputing categorical data is often more complex than imputing numerical variables, as

rare categories can cause issues at various stages of the process. When the variable being

imputed has a limited number of categories, the number of predictive variables included in the

model should be restricted to avoid an ill-defined multinomial logistic model. Additionally,

when the imputed variable is a predictor in the imputation model, it can lead to estimated

parameters with high variance, especially when some categories are rare. In some cases, a

category may appear in observations that fit the model but not in those used to train it. For

example, one individual that had wave 4 missing was an employee of its own public limited or

limited liability company during wave 3, but none of the individuals that answered both waves

3 and 4 was in this situation in wave 3. Therefore, when the type of employment at wave 3 is

included in an imputation model, this model cannot be applied for this particular individual.

Bootstrapping the observations can also result in infrequent categories of predictive variables

being excluded from the bootstrap dataset. We considered combining categories to avoid these

issues. However, caution must be exercised when fusing the categories. While automating

the imputation process, one might be tempted to merge all the smallest categories and retain

the largest one, resulting in just two categories. However, such an approach could potentially

merge categories that are conceptually distinct. An example of that would be the highest level

of education achieved, that could take values “compulsory school”, “upper secondary” and

“tertiary”. Even if “compulsory school” and “tertiary” were the rarest categories, it does not

make much sense to fuse them, due to the grading between the three categories. Furthermore,

the decision to merge categories may depend on the subsequent analytical model employed. For

instance, in the case of illustrating the imputation of work status, we combined the categories of

“supervision/training position”, “management position”, and “other” situations. Nevertheless,

this grouping is problematic if the research aims to examine differences specifically between

management positions and non-management positions.

The number of observations limits the number of variables that can be included in a multi-
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nomial model. De Jong et al. (2019) demonstrated that both the sample size and the ratio

of observations in the smallest category to the number of predictors impact the performance

of a multinomial logistic model. Adding too many predictors can lead to overfitting and poor

results on observations being imputed. Therefore, in some cases, the model chosen by the AIC

stepwise procedure may not be optimal due to the high variance of some estimated parame-

ters. In these instances, we advise selected the most significant variables and those that are

intuitively linked to the dependent variable.

The final challenge concerns the inclusion in an imputation model of variables that may

be logically missing. For categorical variables, one approach is to consider missing values due

to filtering as an additional category. However, this can be problematic when the variable

inducing the missing values is also in the model. It leads to high variance in the regression

model estimates due to near-collinearity. In this situation, combining the variables into a single

variable with categories such as “not employed”, “employed - private employer”, and “employed

- public employer” may be a better approach. Alternatively, using a classification tree rather

than a logistic model (Burgette and Reiter, 2010) may be a suitable solution. However, it

demands that each situation is explicitly considered. For numeric variables, this is not possible.

Therefore, we fit a simpler model without certain variables to impute observations with missing

values due to filtering questions.

In this research, we have presented a process for imputing missing data in a longitudinal and

multivariate dataset, including a sequence of questions for identifying missing data and values to

be imputed and a framework for implementing multiple imputation. While our proposed process

can serve as a guide, it is not a one-size-fits-all solution due to the complexity of survey data.

The researcher’s knowledge and expertise in the data are essential for successful imputation.

Based on our analysis, we recommend the following steps when imputing a longitudinal dataset

with filter questions:

• Analyse the missing data to identify which situations are more prone to missing values.

Consider variables typically related to missing data. If any of these variables stand out,

they should be included in all imputation models to support the a priori MAR assumption.

• Apply the sequence of questions outlined in this research to each variable to determine

the “true” missing values.

• Determine how filtering affects the dataset and order the variables accordingly for the

imputation. A variable that filters another one should be imputed first.

• For the imputation process, start by addressing item-level missing data to avoid too many

cases. Going from the first to the last wave, impute variables in the determined order,

using the three-step imputation process as a base. However, the specific approach will
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depend on whether the variable being imputed is numerical or categorical. For both types

of variables, potential predictors may need pre-processing. Categorical variables should be

reduced to a small number of categories. For numerical variables, the imputation process

can generally be applied without restrictions. It is advisable to examine the resulting

imputation model for categorical variables and remove variables with inflated coefficients

or high variance.

• Identify the typology of unit-level missing data to determine what information is available

and how the imputation process should be structured. For example, in our case, we started

by imputing the middle gaps, before moving on to the end gaps and, finally, the initial

gaps.

We made the assumption, following the standard practice, that the missing mechanism

was MAR. However, it is crucial to acknowledge the possibility that the mechanism may have

been MNAR. Therefore, when there is a suspicion of a MNAR missing mechanism for one or

more variables, it is essential to exercise caution. Van Buuren (2018) suggested three steps to

be applied when such a mechanism is suspected. The first step is to add variables that are

suspected to be predictive of missingness in the imputation model. If this is suspected not to

be enough, it is advised to perform a simulation to determine the magnitude that a MNAR

mechanism must have to influence the results. If this is also not enough, it is suggested to test

non-ignorable imputation models, which is called a “sensitivity analysis” (see also Van Buuren

(2018) for an example of a sensitivity analysis).

In this study, we set ourselves in a broad scope of imputation, which typically arises when the

imputer and the analyst are different individuals. However, if the analysis model is known at the

moment of the imputation process, it is recommended to adopt a narrower scope. Specifically,

the imputation model should be compatible with the analysis model, incorporating all variables,

interactions, and non-linearity (Van Buuren, 2018) that will be used in the analysis. Our

procedure remains applicable in this scenario, but it is crucial to ensure that the variables

included in the analysis model are integrated into the corresponding imputation models.

This research has some limitations. One challenge with our proposed procedure is how

to combine the results afterwards. For example, suppose we are interested in the relationship

between the type of working hours and job satisfaction in a specific wave. In that case, we might

conduct a regression with job satisfaction as the dependent variable and type of working hours

and other control variables as independent variables. The regression parameters and variance

are typically calculated on each completed dataset and combined using Rubin’s rule. However,

if an individual has unit-level missing data for the wave of interest, some completed datasets

might include an imputed active occupied status while others do not. In the first case, it would

be included in the calculation of the parameter of interest, while in the second it would not,

since both variables of interest would be missing due to a logical skip induced by a non-active



64 CHAPTER 3. MULTIPLE IMPUTATION IN LONGITUDINAL DATASETS

occupied state. As a result, the parameter calculation would be based on different samples

depending on the iteration, which could impact the overall results. Then, our method is not

automatically applicable. The researcher still has to intervene in the imputation process. This

approach guides the researcher but does not replace it. Finally, we decided to limit the number

of predictors to add to the imputation models. This limitation was done for two reasons. First,

to avoid overfitting the data and then to cope with logical skips. Indeed, as already mentioned,

adding a variable to the imputation could reduce the sample used to fit this model. However,

there is no agreement in the literature.



Chapter 4

Comparison of imputation methods in

the case of life course data
1

4.1 Introduction

This chapter aims to review multiple imputation methods proposed so far for life course data,

and to assess their practical relevance using real data on which we simulate missing data. By

doing so, we aim to provide clear methodological guidelines and to strengthen missing data

handling in life course research. In the meantime, we also develop the MICT-timing algorithm,

which is an extension of the MICT algorithm. This innovative multiple imputation method

improves the quality of imputations in trajectories with time-varying transition rates.

The life course paradigm has gained increasing importance in the social sciences over the

last decades. It has proved its contributions in numerous disciplines ranging from sociology,

demography, gerontology, and medicine to psychology (Elder et al., 2003; Bernardi et al., 2019).

This paradigm insists on the need to study not only the situation at a given time point but

also its evolution over the life course in the medium or the long run. These trajectories are

then often described with categorical data. For instance, the school-to-work literature focuses

on professional integration trajectories following compulsory education, distinguishing between

education, employment, or unemployment (e.g. Brzinsky-Fay and Solga, 2016).

This life course perspective, therefore, implies the use of longitudinal data over the medium

to the long run. This data requirement is highly sensitive to missingness because it multiplies

missing data occasions and retrospective questions tend to be more challenging to answer. The

lack of a commonly accepted solution to handle missing data is one of the significant challenges

faced by life course methodology (Piccarreta and Studer, 2019).

1This chapter is a joint work with Matthias Studer from the University of Geneva and André Berchtold
from the University of Lausanne. The chapter appears under the form of a self-containing article, because it
has the objective to be published under this form. As a result, there is some overlap with the introduction.
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Several missing data-handling strategies have been suggested. Their relevance typically

depends on the missing data mechanism (e.g. Little and Rubin (2019)). When data are missing

completely at random (MCAR), observations with missing value(s) can be removed, a strategy

called complete case analysis or listwise deletion. This strategy leads to unbiased estimates, but

it can drastically diminish the statistical power of the analysis depending on the number of cases

with missing data. Since they tend to be frequent in longitudinal analysis, this is a wasteful

strategy. In practice, missing data are more frequently missing at random (MAR), i.e. missing

data occurrence is linked to specific profiles. For example, panel attrition, i.e. individuals

leaving a longitudinal survey, is linked to vulnerable situations such as unemployment, migration

background, or poor health (Rothenbühler and Voorpostel, 2016). When data are missing not

at random (MNAR), meaning that the probability to be missing depends on the missing value

itself, standard strategies can lead to bias, and a model for the missing data generation process

is needed.

In addition to the deletion of missing data, we can distinguish three strategies to handle

missing data: weighting methods, likelihood-based approaches, and imputations, whether sim-

ple or multiple (Molenberghs et al., 2014). First, the fully observed trajectories can be weighted

to make the sample more representative of the target population, at least in terms of socio-

demographic characteristics. These weights are often based on the characteristics used to build

the original sample, such as gender, age, or occupation. Second, likelihood-based approaches

rely on a hypothesised distribution of the complete data, often the multivariate normal distri-

bution. Provided the missing data mechanism is either MCAR or MAR, an unbiased estimate

of the distribution parameters can be obtained. Finally, imputation methods work by replacing

missing values with probable values. The simplest way to do this is to replace each missing

value with a single value, resulting in a complete dataset. However, the inherent uncertainty

of missing values is ignored. The multiple imputation framework aims to solve this issue by

randomly imputing the missing values M times, resulting in M datasets (Rubin, 1987). The

analysis is then performed separately on each dataset before aggregating the results. Generally

speaking, multiple imputation is a highly efficient and flexible strategy (see e.g. Molenberghs

et al. (2014)).

The multiple imputation framework requires an imputation method. The two most common

ones are fully conditional specification (FCS) (Van Buuren et al., 2006), also called chained

equations (Van Buuren and Groothuis-Oudshoorn, 2011), and joint modelling (JM) (Schafer,

1997). FCS uses a separate imputation model for each incomplete variable. The algorithm

then iterates over each variable to impute the missing values in a predefined order. The whole

imputation process is performed several times until a convergence in the distribution of the

imputed variables is achieved. JM is based on a multivariate model fitted to the data, which

generally assumes a normal distribution. The imputations are then randomly drawn from this
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model.

FCS and JM apply with longitudinal data by treating repeated measurements of a variable

over time as different variables. However, in their standard form, they do not directly consider

the (usually strong) relationships between successive observations of the same variable. For

this reason, several variants of these algorithms have been proposed, including two-fold FCS

(Nevalainen et al., 2009). This algorithm relies only on the previous, current, and subsequent

time points and not on all the time points. In addition, the algorithm runs several times in a

row at the same time point before moving on to the next.

Several imputation algorithms were developed specifically for categorical longitudinal data.

Gabadinho and Ritschard (2016) proposed to use a variable-length Markov model (VLMC)

to impute missing values. Halpin (2016b) proposed the “Multiple Imputation for Categorical

Time Series” (MICT) method. It works by imputing missing data gaps from their edges, which

ensures longitudinal consistency of the imputed values.

Previous studies have compared different multiple imputation methods on longitudinal data.

Kalaycioglu et al. (2016) conducted an in-depth comparison of Bayesian multiple imputation,

multivariate normal joint modelling, and different versions of FCS using real and simulated

data of a numerical outcome with different types of explanatory variables. De Silva et al.

(2017) conducted a simulation study to compare FCS, two-folds FCS, and JM in the presence

of a time-varying covariate with a non-linear association with time. Huque et al. (2018) used

12 algorithms, which were different variations of FCS and JM imputation algorithms, and

compared their impact on both a linear regression and a linear mixed-effect model. All three

studies focused on estimating regression parameters with a numerical outcome. The first study

found that two-folds FCS should be preferred when successive data points are highly correlated,

while the two others concluded that FCS and JM generally perform well. However, none of these

comparisons involved a categorical data. As a result, MICT and VLMC were not evaluated.

Furthermore, these studies have focused on regression coefficients, whereas other methods, such

as classification, are also extensively in life course research. Therefore, we lack a comparison of

imputation methods in this context.

Longitudinal categorical data generally shares several characteristics requiring a specific

missing data treatment:

• Because of their longitudinal structure, missing values usually appear as gaps, i.e. con-

secutive missing observations. This may be due, for example, to individuals momentarily

leaving a survey or periods not filled in a retrospective life history calendar.

• Their categorical coding makes it more difficult to use standard tools for handling missing

data. Categorical data are not normally distributed, making the application of likelihood-

based methods and joint modelling challenging.
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• The imputation of categorical data (except for ordinal variables) is either correct or false,

with no gradation between these two extremes.

• Although life course data tend to have few transitions, their longitudinal consistency

is crucial. Life course trajectories are often viewed as a whole, not as a time-ordered

juxtaposition of separate events (Piccarreta and Studer, 2019).

This study aims to evaluate the relative strengths and weaknesses of several imputation

algorithms for life course data. Based on these results, it aims to provide recommendations to

guide life course researchers in their choice of the imputation method and on how to set their

associated parameters. For this reason, we develop a simulation framework specifically designed

for life course research. The framework relies on six datasets, each of them highlighting common

longitudinal data characteristics. We then simulate missing data in these datasets, according

to three different missing data models. These models aim to reproduce common missing data

patterns in life course research. Finally, the imputations are evaluated according to three key

aspects when analysing longitudinal categorical data in a life course perspective, namely the

timing, the duration and the sequencing of the processes (Studer and Ritschard, 2016).

Alongside these simulations, we propose two extensions of the MICT algorithm. First, we

propose the MICT-timing extension aiming to better take the timing aspect of the trajectories

into account. The MICT algorithm implicitly assumes that the transition rates are homoge-

neous over time. However, this assumption is unrealistic in many life course research, which

might lead to poor imputations. Second, we consider the use of random forests instead of a

multinomial model. Random forest is commonly used for missing data imputation (Burgette

and Reiter, 2010; Shah et al., 2014; Doove et al., 2014). It can handle non-linear relationships,

interactions effect and it is immune to irrelevant predictors (Friedman et al., 2001). All these

features might be crucial for longitudinal data. Indeed, specific state combinations might trig-

ger long-term effects. Furthermore, random forest is generally not too sensitive to the choice

of its parameters, and works pretty well with its standard parameters (Cutler et al., 2012).

The remainder of this chapter is organised as follows. First, the various imputation methods

being compared are introduced. We then present the simulation framework, including the

datasets used, the missing data generation processes, and the evaluation criteria. Finally, we

delve into the results obtained and conclude with a discussion of the findings and by issuing

general recommendations.

4.2 Imputation methods

This section presents the algorithms that are compared, including the new MICT-timing algo-

rithm, together with their tested parameterisations. We integrate four methods in our compar-

ison: FCS, MICT, MICT-timing and VLMC. To allow for a meaningful comparison, we use,
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when possible, similar parameterisations across the different methods. The only exception is

the imputation with VLMC models that function differently from the other algorithms.

Complete case analysis, which consists in keeping only the trajectories that have no missing

data, which is still a standard strategy in social sciences (Berchtold, 2019), is used as a baseline.

Fully conditional specification (FCS)

Fully conditional specification (FCS) imputes missing data through the specification of a con-

ditional distribution for each variable (Van Buuren et al., 2006). It works in the following way

for categorical data:

1. For each variable, missing data are first imputed from their marginal distribution.

2. An imputation model is defined for each variable using a multinomial regression or a ran-

dom forest for categorical data. All the other variables are commonly used as predictors

in the imputation model.

3. The algorithm runs then through the variables. For each variable, it fits the imputation

model from all available data. Then, it uses it to predict a replacement value for each

missing data. The algorithm goes through the variables until it reaches a predefined

number of iterations.

4. The values obtained after the last iteration are kept.

5. The process is executed several times if multiple imputations are required.

The algorithm applies to longitudinal data by considering repeated measurements as distinct

variables. However, as pointed out by Kalaycioglu et al. (2016), it might face convergence issues

in its standard formulation due to collinearity issues.

Two-fold fully conditional specification aims to solve this issue by limiting the predictors

to the ones observed at the same time points and a limited number of previous and future

measurements of the variable to impute. In addition, the algorithm runs several times through

the variables at each time point before moving to the next. However, this last point does not

apply to univariate longitudinal data, as in our case, since there is only one variable at each

time point. Therefore, for simplicity, we will call FCS the algorithm even if all variables are

not used as predictors.

We test FCS both with multinomial and random forest as imputation models. The number

of predictors applied was one or five predictors in the past and one or five in the past and

future.
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Multiple Imputation for Categorical Time Series (MICT)

The algorithm “Multiple Imputation for Categorical Time Series”, i.e. MICT, was introduced

in Halpin (2012) and Halpin (2013). It is specifically designed to handle missing data in

longitudinal categorical datasets. The imputation themselves are based on a statistical model.

This model can include time-invariant covariates, such as gender, or time-variant covariates,

such as the number of children. Furthermore, a user-defined number of previous or future time

points can also be taken into account to ensure the longitudinal consistency of the imputations.

MICT relies on a multinomial model in its first formulation. We have added the possibility to

use random forest models instead.

The original algorithm works by distinguishing six missing data patterns that are handled

sequentially. It then adopts a slightly different imputation method for each of them. Figure 4.1

presents six sequences taken from a built-up dataset composed of two states (states A and B)

and fifteen time points, each illustrating one of these patterns. For the sake of the illustration,

let us assume that we use two time points in the future (nf = 2) and the past (np = 2) for the

imputation.

Typology of gaps

Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

6
5

4
3

2
1

state A
state B
missing

Figure 4.1: Typology of the different types of missing data gaps according to the MICT algo-
rithm considering two predictors from the past and the future: 1. Internal gap, 2. Initial gap,
3. End gap, 4. Left-hand side gap, 5. Right-hand side gap, 6. Both-hand side gap.

Sequence 1 illustrates an internal gap. Here, sufficient information, i.e. at least two ob-
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servations before and after the gap, is available to impute the missing data. In this case, the

MICT imputation process fills gaps recursively from their edges. This strategy ensures that

imputations are consistent and based on the closest observed values. Figure 4.2 illustrates the

ordering of the imputations for two toy sequences with gaps of different lengths. Concretely, the

imputations are made using a multinomial model. In our example, this model uses predefined

covariates (such as sex), the two previously available values in the sequence, either observed or

previously imputed, and the two (nf = 2) subsequent values. In our example, the first missing

data of Figure 4.2 uses the two values before the gap, i.e. the states at times 2 and 3, and

the two following the gap, i.e. the states at times 8 and 9. This multinomial model is first

estimated using similar fully observed patterns in the data. For example, the first trajectory

would provide one observation: predicting the state at time 10, using the states at time 8, 9,

14, and 15, while the second trajectory would provide six observations: predicting the state at

time 3 using the states at times 1, 2, 7 and 8 as predictors, the state at time 4 using the states

at 2, 3, 8 and 9, until the state at time 10 using the states at times 8, 9, 14 and 15 as predictors.

Order of imputation

Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2
1

state A
state B
missing

1      3      4     2

3     4

Figure 4.2: Imputation order for an example with two gaps of different lengths.

Once all internal gaps are imputed, the initial and terminal gaps are considered. These gaps

are illustrated using sequences 2 and 3 of Figure 4.1. Since initial gaps have only one edge,

imputations start here from the far right to the left and can use only predictors from the future.

Indeed, there are no observed data points in the past. Here again, the imputation model is

estimated based on similar fully observed patterns in the data. The same (but reverse) strategy

is used for terminal gaps.

Finally, the rarest cases, namely left-, right- and both-hand side gaps, are imputed at the

end. Left-hand side gaps (sequence 4 of Figure 4.1) have enough observations for the imputation

model after the gap but not before (only one in our example). Here, the algorithm only considers

one time point in the past instead of two. The right-hand side gaps used the reverse strategy,

considering only one time point in the future. Similarly, both hand-side gaps use only one

observation in the past and one in the future.
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We test MICT both with multinomial and random forest as imputation models. The number

of predictors applied was one or five predictors in the past and one or five in the past and future.

MICT-timing

The MICT algorithm estimates an imputation model using all fully observed patterns similar

to the missing data to impute, regardless of their position in the trajectory. However, this

assumption is not verified in many life course applications. For example, the transition rate

between education and work strongly varies over time, with individuals staying in education

during childhood and mostly transitioning from education to work between the ages of 16

and 30. In such situations, using a constant transition rate might lead to wrongly imputing

transitions to work during childhood, which is impossible.

To overcome this limitation, we developed the MICT-timing algorithm. It modifies the

original MICT imputation process in two ways. First, the imputation of the gaps of a specific

length is made separately, according to when they happen. Second, only similar fully observed

patterns in a time frame around the missing data to impute are used to estimate the imputation

model. As a result, the transition rates are specific to a given time frame. An additional pa-

rameter specifies the radius of the time frame. Using a radius of length 0, only the observations

occurring at the same time points as the missing data to impute are used. Using a radius of

one, patterns occurring one time point before or after are used in the process. Finally, using a

radius of the length of the sequence minus one is equivalent to the original MICT algorithm.

As with the original MICT algorithm, the algorithm can apply either multinomial or random

forest models.

Figure 4.3 illustrates the difference between the two algorithms. The MICT algorithm

simultaneously imputes gaps of the same length, regardless of their place. For instance, only

one imputation model was built to impute the missing values labelled “3” and “4”. With

the MICT-timing algorithm, two separate models are fitted, one to impute the missing value

labelled as “3” and another one for the missing value labelled as “4” since they do not occur

at the same time point. Furthermore, only the observations included in the time frame of

the predefined radius are used to fit the imputation models. For example, with a radius of

length 1, the second sequence only provides three observations (the times 3, 4, and 5 and their

predictors), instead of the six with the MICT algorithm, for the imputation of the first missing

data (labelled as “1”), and the first trajectory does not provide any observation.

As for FCS and MICT, we test MICT-timing both with multinomial and random forest as

imputation models. The number of predictors applied was one or five predictors in the past

and one or five in the past and future. Moreover, radius of 0 and 5 are considered for the length

of the time frame. With a time frame of radius 0, the algorithm account for the potential

time-heterogeneity since only the observations arising at the similar time-point as the missing
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Order of imputation

Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2
1

state A
state B
missing

1      3      5     2

4     6

Figure 4.3: Order of the imputation of the MICT-timing algorithm.

data to impute are used to fit the imputation model. However, the predictive performance of

the multinomial model (De Jong et al., 2019) and, to a lesser extent, the random forest (Luan

et al., 2020), depends on the sample size. Therefore, a time frame with a radius of 5 may

represent a trade-off between the desire to account for time-heterogeneity and the need to have

a sufficient sample size for accurate predictions.

VLMC

Variable-length Markov chains (VLMC) are a type of Markovian model that do not consider

a predefined constant number of time points to predict a current situation. On the contrary,

the number of past states required to summarise the whole past depends on each situation.

Two algorithms are available to fit a VLMC model: Learn-PSA (Ron et al., 1996) and the

context algorithm (Rissanen, 1983). Starting from subsequences of maximum length, both

algorithms compare the conditional distribution of a subsequence with its suffix of maximum

length, which is the subsequence without the first state. If the conditional distributions are

sufficiently close, the conditional distribution of the suffix is kept instead of the one of the whole

subsequence. The two algorithms differ in the criteria used to compare the distributions. The

criterion implemented by Learn-PSA is based on the ratios between the individual conditional

probabilities. The underlying idea is that if at least two probabilities are sufficiently different,

the conditional distribution of a given subsequence cannot be approximated by that of its suffix.

The criterion used in the context algorithm is based on the differences of deviance between the

conditional distribution induced by the subsequence and its suffix of maximum length. If the

difference exceeds a given χ2 quantile, the distribution of the current subsequence is chosen.

VLMC models can be used to impute missing data. Missing data gaps divide sequences into

subsequences. For example, the first sequence in Figure 4.1 is divided into two subsequences,

one of length six and one of eleven. A VLMC model is fitted with the dataset consisting of

these two observed subsequences. The missing data gaps are then filled from the left based
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on the probabilities induced by the subsequence preceding the missing data to be imputed. In

practice, one value is drawn based on the probabilities induced by the three-state subsequence

between the times 1 to 3. Then, the second missing value is imputed based on the subsequence

consisting of the three observed states and the imputed value at the time 4. For initial missing

data gaps, such as the one shown in sequence number 2 in Figure 4.1, the first missing data is

imputed based on the distribution of states in the dataset. The process is then similar to that

used for other types of gaps.

We have chosen VLMC models instead of the standard Markov models because they are

more flexible. With complex sequences, we may have a high-order dependency and, hence, may

need high-order Markov models, which have many parameters.

Concerning the parameterisations considered for this comparison, we built VLMC models

either with the Learn-PSA or the context algorithm. For Learn-PSA, we set the threshold

value to either 1, 1.05, 1.1, 1.2, or 1.5. We set the quantile values for the context algorithm to

either 0.1, 0.05, 0.04, 0.03, 0.02, 0.01, or 0.001. In both cases, we chose the imputation model

having the best AIC. It is worth noting that, unlike MICT and FCS, VLMC uses only past

information. Therefore, the other algorithms were fitted with past predictors only to allow for

a fair comparison.

4.3 Simulation Framework

As a recall, this chapter aims to assess the strength of each imputation method using simula-

tions. Each step of these simulations is explicitly linked to the life course theory to ensure the

relevance of the resulting recommendations. Generally speaking, the simulation framework is

designed as follows. We first randomly insert missing data into an existing dataset using three

models. The simulations are based on different datasets, each presenting different characteris-

tics encountered in life course research. The missing data-generating models are also designed

to generate patterns often encountered in longitudinal studies. Then, these datasets with miss-

ing data are imputed with the imputation methods and parameterisations, introduced before.

Finally, the quality of the imputations is evaluated with criteria based on the recovery of key

characteristics for life course research.

We organise the presentation of the simulation framework as follows. We first present the

choice of the datasets and their characteristics before the missing data generation models. We

finally discuss the evaluation of the imputations.

Data

The life course paradigm emphasises understanding how trajectories unfold over time, and the

data aims to describe these trajectories. Such data can be characterised by different aspects
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depending on the research questions and the data at hand. In this chapter, we rely on six

complete real-world datasets to encompass the different configurations of these characteristics.

First, some datasets are characterised by very strong timing aspects, which means that some

states or transitions typically occur at specific time points. For instance, most people live by

their parents at age 10, which is generally not the case at 40. In other databases, the timing

aspect is less prominent. For instance, in professional trajectories, change in working status

can occur anytime between 20 and 40 years old. This is often the case when trajectories are

described using calendar time instead of process time (typically the age).

Second, trajectories typically differ by the characteristics of their transitions. While some

processes show very few transitions, others are more volatile. In addition, some processes

are strongly ordered and seldom return to a previously visited state. This behaviour often

occurs with developmental trajectories or when some transitions, such as from dead to alive,

are impossible.

Third, the coding of the process itself might vary. While the time is sometimes measured on a

monthly scale, generally resulting in longer sequences, it is often measured yearly. Furthermore,

the level of detail used to describe the possible states occurring in trajectories can vary. We

typically expect the imputation of more complex trajectories to be more difficult since there are

more possibilities for incorrect imputations. These states can be ordered or unordered. With

unordered states, imputations are either correct or not, while an imputation might be more or

less correct with ordinal states. Finally, the number of cases typically varies between studies.

Overfitting is more likely to occur in small datasets.

In this study, we selected six datasets to illustrate the frequent configurations of the above-

mentioned aspects of life course research. These datasets and their main characteristics are

presented in Table 4.1. Aside from a short description and the data source, Table 4.1 regroups

information on the number of cases, the time unit, sequence length, the possible states, and their

overall frequencies. The table also provides information on the overall percentage of transitions

between time points and the average number of visits to visited states (ANV), which measure

the recurrence of previously visited states (Pelletier et al., 2020). It varies from 1, when return

to previously visited states never occur, to half the sequence length, when the process strictly

alternates between two states at each time point.

Figure 4.4 regroups the chronograms of trajectories in each of the six datasets. These

chronograms present the proportion of individuals in each state at each time point. Among

others, it illustrates the timing regularities in trajectories and the overall frequencies of each

state. This information is also summarised in Table 4.1.
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Trajectory Data Source Timing n Time unit Length ANV Transition (in %) States Freq. (in %)

Professional
SHP

(retrospective)
Strong/

Process time
3382 Year 26 1.33 10.1

full-time work 50.1
part-time work 10.3
non-working 12.6
education 27

Cohabitational
(4 states)

SHP
(retrospective)

Strong/
Process time

3710 Year 26 1.08 9.8

with child 34.3
with partner, no child 16.6
with parent(s) 32.2
other 16.8

Cohabitational
(8 states)

SHP
(retrospective)

Strong/
Process time

3710 Year 26 1.08 11.1

living alone 13
with both parents 27.1
with one parent 5.2
with partner, without child 16.6
with partner and child 32.7
with child, without partner 1.6
with relative(s) 1.1
other 2.7

Civil Status
SHP

(panel)
Weak/

Calendar time
2324 Year 21 1.01 1.6

married 59.1
separated 1.1
divorced 6.8
widowed 3.1
single, never married 29.9

Health
Satisfaction

SHP
(panel)

Weak/
Calendar time

1259 Year 21 3.16 36.5

low 3.7
average 11.4
high 49.3
very high 35.6

School-to-work
transition MVAD

Strong/
Process time

712 Month 72 1.27 3.6

school 8.5
further education (FE) 16.2
higher education (HE) 11.7
training 10.3
employment 44.7
joblessness 8.6

Table 4.1: Datasets and their main characteristics. For each of the six datasets, the source of the data, the timing aspect, the
number of trajectories (n), the time unit, the length of the trajectories, the average number of visits to visited states (ANV), the
percentage of transition, the detail of the states (which are mutually exclusive) with their frequencies in the dataset, are shown.
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Figure 4.4: Chronograms of the datasets.

We now provide a brief description of how these datasets were constructed, with further

details available in Appendix E.5. We constructed three datasets using a retrospective life

history survey of the Swiss household panel (SHP) (Voorpostel et al., 2016). They all code

trajectories measured in process time and are characterised by strong timing regularities as

illustrated by Figure 4.4. Professional and cohabitation trajectories in Switzerland share similar

characteristics, except that return to previously visited states is more frequent in professional

trajectories. The two coding of cohabitation trajectories, with four and eight states, were taken

to illustrate how the coding impacts imputation. These three databases regroup the largest

number of cases.

We built two datasets using the prospective survey of the yearly Swiss household panel

from 1999 to 2019. These trajectories are measured on calendar time with much weaker timing

regularities than the previous ones. The first database encodes civil status over time, while the

second focuses on health status satisfaction. These trajectories differ by their general transition

rates. While civil status trajectories are highly stable, health satisfaction is the most volatile
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(see the percentage of transition displayed in Table 4.1).

Finally, we also considered the MVAD dataset (McVicar and Anyadike-Danes, 2002) coding

trajectories measured monthly. As a result, the sequences are longer and more stable, because

transition rates to other states tend to be lower with smaller time units. This dataset is also

characterised by a strong timing, with school transitions only occurring during the summer

months.

To summarise, we selected six different datasets to represent the diversity of data character-

istics encountered in life course research. We aimed to capture differences in timing regularities,

overall transition rates, the possibility of visiting previously visited states, time measurement

(monthly or yearly data), and coding detail. Although sample size also varies between datasets,

this aspect is further investigated in the simulation as it might influence any of the above con-

figurations of data characteristics.

Missing Data Generation

In this section, we present the models used to generate missing data in the six complete datasets.

The goal of these models is to simulate realistic missing data patterns. We used three different

models, each representing a common situation in life course research. Each of these models

might also differently affect the performances of each algorithm. Concretely, these models

simulate a MAR mechanism, attrition, and a MAR mechanism in a small sample size setting.

Rubin (1987) distinguishes three missing data mechanisms. The data might be missing

completely at random (MCAR) when no systematic difference exists between observed and

missing data. This assumption is generally unrealistic. The data are said to be missing at

random (MAR) when observed characteristics explain their missingness. Finally, the data might

be missing not at random (MNAR) when missingness arises because of the value itself. While

multiple imputation might be used to improve missing data handling for the first two cases,

they cannot be used directly for MNAR, where the missing mechanism should be accounted

for. In this chapter, we, therefore, focus on the MAR case.

The rest of the presentation is organised as follows. We start by describing the overall

simulation framework before presenting each model separately. Finally, we present descriptive

statistics of the generated missing data patterns to ensure that the models are performing as

intended.

In all models, we start by randomly selecting 60% of the observations, where missing data

will be inserted. This step ensures a sufficient number of complete cases in every simulation.

Then missing data are incorporated in these selected sequences according to one of the follow-

ing three models. Finally, the sequence is checked and the missing data generation model is

restarted if the sequence has more than 75% of missing data. This procedure ensures that all

sequences have enough information. Indeed, sequences with too many missing data points are
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generally not included in the analysis in practice.

MAR model This model simulates a MAR case, where missing data depends on the previous

state and therefore on an observed characteristic.

As already discussed, missing longitudinal data tends to occur by gaps, i.e. successive

missing information. To mimic this process, we first simulate the occurrence of the start of a

gap, which depends on the previous state. Then, we generate the gap itself in the sequence.

More precisely, the probability of starting a gap equals 0.06 for the first time point (where no

previous situation is available). For the subsequent time points, the missingness probability

depends on the previous state. For some predefined states (see Table E.1 for the list of states),

the probability of starting a gap equals 0.20, while it equals 0.03 for the other states.

Once a gap is started, its length is generated by considering that the probability to continue

a gap equals 0.66 (and therefore 0.34 to end the gap).

Overall, this simulation aims to evaluate the ability of each algorithm to handle a longitu-

dinal MAR case.

Attrition model This model mimics an attrition process, i.e. when individuals stop an-

swering a prospective survey. Attrition then induces missing data to all subsequent waves, and

therefore until the end of the sequence. Sequence three of Figure 4.1 is an example of attrition.

The individual stopped answering the survey in time 14 and never participated again.

The model works as follows. Starting from the middle of the sequence, the probability of

starting attrition depends on the previous state, as with the MAR model. For the sake of

simplicity, we used the same predefined states list as before. The probability to stop answering

the survey is then set to 0.10 if the previous state is in the list and 0.015 otherwise. These

probabilities ensure an overall amount of missing data in the simulations similar to the MAR

model.

The attrition model is included in the simulation for two reasons. First, this is a highly

frequent missing data pattern in life course research. Second, it might impact each imputation

method differently. The MICT algorithm will only make use of past information. However,

FCS uses the previously imputed value of future states. Such a strategy might be hurtful if

these first imputation were bad. Finally, VLMC should not be impacted by attrition since it

only uses past information.

Small sample The last set of simulations aims to study the impact of sample size on the

performance of each method. A small sample size is expected to impact each imputation method

differently. Indeed, the predictive performance of multinomial models is directly linked to the

sample size (De Jong et al., 2019). However, random forest works well with small samples

(Biau and Scornet, 2016). Second, the MICT imputation algorithm uses comparatively more
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observations to estimate the imputation model than the FCS or the MICT-timing algorithm.

Therefore, MICT may be more robust to a reduction in sample size.

This simulation randomly selects 200 cases from a dataset before generating missing data,

according to the MAR model.2

The missing data generation models aim to simulate the MAR missing mechanism. The

models further aim to document attrition, a typical longitudinal data pattern, and the behaviour

for a small sample size. Table 4.2 provides the (average) percentages of complete sequences

and the overall (average) percentages of missing data generated with these models. The overall

percentages of missing data are relatively consistent among the datasets for the MAR and small

sample models. The percentages of complete sequences depend on the length of the sequences,

with lower percentages for longer sequences. The process of attrition creates longer gaps of

missing data than the two other mechanisms. The percentage of missing data is lower for the

professional and health satisfaction datasets because the states with a higher probability of

triggering a missing value are rare at the end of the trajectories. However, we kept it as it was

for consistency with the first process.

Evaluation Criteria

Our study aims to evaluate the relative quality of imputation methods for life course research.

To do so, we need to evaluate and quantify the quality of the resulting imputations. A first

and direct method to do so is to compute the accuracy of the imputation, i.e. the ability of

the imputation method to retrieve the original value. We compute it here as the percentage of

missing states that are correctly imputed. While this is a good indicator of imputation quality,

it also has limitations. We are not interested in predicting the correct value for a specific

sequence in a multiple imputation framework. Indeed, in this case, non-random imputation

would certainly lead to better results. We want to retrieve our data’s key dimensions without

missing data biases.

The question is, therefore, what the key dimensions we are interested in when analysing

longitudinal data from a life course perspective are. Studer and Ritschard (2016) identify three

key aspects of interest based on their review of life course literature. We describe these three

aspects and we measure them. The formulae are provided in Appendix E.3.

First, the timing of the process — i.e. when an event or a state occurs — is a central aspect,

as the impact of a situation is typically thought to depend on its timing. For instance, experi-

encing unemployment at 15 or 50 years old typically has very different later-life consequences.

2The simulations were also ran with subsamples of size 100 and 500. Since the ranking of the algorithms
was mostly the same and for sake of simplicity, we only present here the results showing the most important
differences between the algorithms, i.e. with subsample size of 200.
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Process Dataset % incomplete % missing mean length % gaps of

sequences data gap length 1

MAR

Professional 51.4 10.0 2.8 35.2

Cohabitational (4 states) 55.4 12.8 2.6 37.6

Cohabitational (8 states) 51.8 11.1 2.8 36.1

Civil status 42.1 10.6 2.6 37.3

Health Satisfaction 38.3 7.3 2.6 37.4

MVAD 58.8 11.5 2.9 34.6

Attrition

Professional 14.8 4.8 8.5 5.3

Cohabitational (4 states) 40.3 12.9 8.4 4.5

Cohabitational (8 states) 29.6 10.7 9.4 3.3

Civil status 23.6 8.4 7.5 5.2

Health satisfaction 17.6 5.7 6.9 7.1

MVAD 39.1 14.2 26.1 0.9

Small sample

Professional 51.3 10 2.8 35.5

Cohabitational (4 states) 55.4 12.9 2.7 37.2

Cohabitational (8 states) 51.8 11.1 2.8 36.2

Civil status 41.9 10.6 2.7 37.3

Health satisfaction 38.2 7.4 2.6 36.7

MVAD 58.8 11.7 2.9 34.7

Table 4.2: Average percentage of incomplete sequences, missing data by dataset, mean length
of the gaps of missing data and percentage of gaps of length 1 by dataset and missing data
generation process.

As this is a central aspect, we, therefore, would like the imputation to retrieve the original

timing dimension of the data. We evaluate this dimension by computing the mean absolute

differences of state frequencies between the imputed dataset and the original one at each time

point. We call it the timing indicator. A high value indicates that the imputation was unable

to retrieve the original data’s timing dimension. In contrast, a value close to zero is linked with

high-quality recovery.

The duration is the second aspect of interest in life course research. It refers to the time

spent in each spell, i.e. the length of the consecutive time points in the same state. Duration

also has substantial consequences as it typically captures the effect of exposure to a given
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situation, such as long unemployment spells. We use a second indicator to measure the ability

of imputation methods to recover the duration aspect. It is computed as the mean absolute

differences between the average spell length in each state computed in the imputed and original

datasets. A high value indicates that the average spell lengths are very different (i.e. shorter

or longer), while low values indicate good recovery of the duration aspect.

Finally, the sequencing — i.e. the ordering of different states — is the last key aspect

of interest in trajectories. It summarises their dynamics, which might also have long-lasting

consequences. For instance, the sequencing employed–unemployed is expected to have differ-

ent consequences than the unemployed–employed ordering. Our last indicator, therefore, aims

to measure the ability of imputation methods to recover the overall ordering of states. The

sequencing indicator is computed using the sum of the absolute differences between the tran-

sition matrix computed on the sequences of distinct states, weighted according to the state

distribution on the original dataset. A low value on this indicator indicates that the method

can reproduce the original transition matrix between states, while a high value indicates that

new ordering was inserted.

Summarising, we identified four key indicators to evaluate the quality of the imputations.

While accuracy measures the quality of predictions, the three others—namely timing, duration

and sequencing—aims to measure the ability to recover essential dimensions of the original data

in a life course perspective.

Except for the accuracy, the raw values of these indicators are not informative. Therefore,

to improve the comparability, the four indicators were standardised. Since the magnitude of the

values typically depend on the dataset and the missing data mechanism, this standardisation

is made separately for each dataset and simulation model. By using standardised values, we

adopt a comparative perspective where the results of each algorithm is compared to the other

ones. The detail of the formula is presented in Appendix E.4.

To facilitate the reading of some of the results, we also computed a so-called “Total” in-

dicator by summing the four previously presented indicators. The Cronbach’s α computed on

these four indicators equals 0.8 justifying this choice. However, we also present the value of the

indicator separately when they do not lead to the same conclusion.

All computations were made using the R statistical environment. The mice (Van Buuren

and Groothuis-Oudshoorn, 2011), seqimpute (Berchtold et al., 2022) and PST (Gabadinho

and Ritschard, 2016) packages were used to apply, respectively, the FCS, MICT and VLMC

imputation algorithms. The evaluation criteria were computed using the TraMineR package

(Gabadinho et al., 2011).
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4.4 Results

We present the results in two stages. We first discuss the parametrisation of each algorithm and

identify the best-performing ones. Then, we compare the algorithm with their best performing

parametrisations.

Algorithm parametrisation

In this subsection, we compare the result of the different parametrisation of each algorithm.

Since all indicators generally lead to the same conclusion, we present the results using their

sum, i.e. our “Total” indicator. To avoid overloading our presentation, the results are presented

in Appendix E.5.

FCS multinomial

Figure E.1 in the Appendix presents the different results of FCS multinomial using the “Total”

indicator. The best performing parametrisation depends on the missing data processes. For the

MAR process, using one predictor both in the past and future works best for the professional

and both cohabitational datasets. However, it lags behind other parametrisations in the three

other datasets, where using five predictors both in the past and future is best.

In the attrition simulation, the use of future observations diminishes the quality of the

imputation. This is an expected result. Future observations are not observed but randomly

drawn according to the marginal distribution at the beginning of the imputation process. This

information might then mislead the FCS multinomial model, which is unable to improve these

imputations in the subsequent imputations. As a result, using five predictors in the past

generally gives the best results. It lags slightly behind the use of a single predictor in the

past for MVAD and both cohabitational status datasets. However, using five past predictors is

better on the satisfaction with health status dataset.

Even if it is punctually beaten by using five predictors both in the past and future, using

only one predictor in the past feature among the best-performing parametrisation for the small

sample simulations. Again, this is expected as multinomial regressions are affected by small

sample size and even more when it includes many covariates (De Jong et al., 2019).

To summarise, the best parametrisation of FCS multinomial depends on the situation. In

presence of attrition process or small sample size, using only one predictor in the past is the

most suitable choice, while in the other situations, using one predictor both in the past and

future provides better performances.
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FCS random forest

The results for the parametrisation of FCS random forest are presented in Figure E.2 of the

Appendix.

Using a large number of predictors generally leads to better performances, which can be

found with five predictors in the past and future or all the other time points. As with FCS

multinomial and probably for the same reason, the use of future time points deteriorates the

performance, except for the civil status dataset. However, even in this case, using five predictors

in the past and future or all observations do not lag far behind. Random forest is thus less

impacted by the first random imputations than multinomial regression. As a result, we suggest

using FCS random forest with all the potential predictors.

MICT multinomial

Figure E.3 presents the results for MICT multinomial. The best results are found when using

five predictors both in the past and the future. It provides the best results on the health status

dataset, which is the most subject to transitions. However, using only one predictor both in

the past and future provide slightly better performance in the small sample simulations.

The performances of MICT multinomial with or without the use of future time points in

the attrition simulations are identical. This result was expected. Indeed, the MICT algorithm

only makes use of future time points if some of them are available. This is an interesting feature

of the algorithm, as it relieves us from the choice on including or not future time points.

Summarising, we suggest using MICT multinomial with five predictors in the past and the

future.

MICT random forest

The results of MICT random forest are generally in line with those of MICT multinomial

according to Figure E.4. The best parametrisation is found with five predictors in the past

and future, even if it lags behind on the small sample size simulations. However, it clearly

outperforms the others for the satisfaction with the health status. Here again, the use of future

time points does not change the results in the attrition process.

For all these reasons, we suggest using MICT random forest with five predictors in the past

and the future.

MICT-timing multinomial

Figure E.5 presents the results of the MICT-timing multinomial algorithm.

As a recall, the MICT-timing method extends MICT by providing an additional parameter,

the radius, controlling the time frame used to estimate the imputation model. We observe
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better performance with a smaller radius and one predictor both in the past and future for the

datasets with a strong timing structure, such as the professional or MVAD datasets, but to a

lesser extent with the cohabitation dataset. These differences are stronger in the MAR than in

the attrition simulations. Logically, a closer look at the results show that the improvement is

particularly important for the timing indicator. In these cases, using only one predictor both

in the past and future appears as the best parametrisation.

However, this does not hold true for the small sample simulations and satisfaction with

health status. In the case of small sample simulations, reducing the time frame yields poorer

results, especially when using five predictors in the past and future. This outcome can be

attributed to the imputation model’s estimation based on fewer observations with a smaller

radius, leading to poor results if the sample size is already low and the number of predictors is

high. However, it should be noted that even in the small sample simulation, the best results

for the MVAD dataset are found with a radius of zero. For the satisfaction with health status,

better results are obtained when increasing the number of predictors, while the radius of the

time frame does not have much impact. A trade-off between the sample size, the number of

predictors and the timing structure of the dataset is therefore to be made.

For all these reasons, we consider one predictor in the past and the future with a radius of

zero, or five predictors in the past and future with a radius of five.

MICT-timing random forest

Figure E.6 presents the results of the MICT-timing random forest algorithm. Generally speak-

ing, the best parametrisation is found with five predictors in the past and future and a time

frame of length five for the MAR and small sample simulations. Even if the results for a single

predictor in the past and future are slightly better for the small sample, five predictors in the

past and future lies closely behind. However, using a radius of zero slightly improve the results

of most attrition simulations.

To summarise, using five predictors both in the past and future and a time frame of length

five is the most suitable choice for MICT-timing random forest. Even if it is not the best

performing parametrisation in all cases, it is close to the best performance.

VLMC

In most situations, the results obtained with both gain functions are close (Figure E.7). Since

the first criterion is marginally better in some cases, we selected it for comparison with the

other algorithms.
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Comparison between the imputation algorithms

We now compare the imputation algorithms using the best parametrisations identified above.

The aim is to derive recommendations on the most suitable(s) algorithms in life course research.

Contrary to the previous section, we present and discuss the indicators separately (instead of

aggregating them) to highlight the differences between the algorithms as well. These results

are presented in the four plots of Figure 4.5. The plots presents for each simulation and

dataset the boxplots of the standardised value of the indicators. A high-performing algorithm

would show the highest values for all simulations, datasets and criteria. Furthermore, such an

algorithm would also provide stable performance, and therefore shows little variations among

the repetition of the same simulation. This can be identified by looking at the width of the

boxplots.

Aside from the best parametrisation of the algorithms, the results include the value of the

indicators for complete case analysis, i.e. when considering only fully observed sequences. These

results are presented for the three longitudinal criteria, but not for accuracy, as it cannot be

computed in this case.

We now turn to the discussion of the simulation results by looking successively at each

algorithm.

Complete case analysis is outperformed by any imputation algorithms in most simulations.

Unsurprisingly, the timing is the most impacted criterion (Figure 4.5d). Indeed, in all simula-

tions, some states have a higher chance to trigger a missing data gap. These states therefore

tend to be under-represented in the remaining complete sequences. The duration (Figure 4.5b)

and sequencing (Figure 4.5c) criteria are sometimes higher for complete case analysis than for

FCS or VLMC. However, it only outperforms MICT multinomial with the duration criteria

in the small sample simulation with the professional status dataset. Comparatively, complete

case analysis provides the best results in the small sample size simulations, but it generally lags

behind imputation methods such as MICT multinomial in most simulations.

MICT shows very good performance, but with different strengths depending on the impu-

tation model. MICT multinomial features among the best-performing algorithms for timing,

duration, and sequencing in every scenario. On the other hand, MICT random forest is often

better in terms of accuracy. The most prominent example can be found in the attrition simula-

tion for the satisfaction with health status. A trade-off between these two aspects is therefore

to be made.

MICT-timing multinomial improves the results of MICT multinomial on the datasets with

a timing compound for the MAR and attrition simulations. As expected, the difference is

especially marked in terms of timing. However, we observe no improvement for the small

sample simulations, except for the MVAD dataset, which has the strongest timing structure.

The results for the datasets with a weak timing structures are mixed. MICT and MICT-timing
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multinomial show similar performance for civil status, but MICT multinomial performs better

on the satisfaction with health status simulations, especially in terms of accuracy.

FCS random forest performs poorly when compared to the other in almost all criteria and

considered scenarios. Even if it is sometimes close to the best-performing algorithms, such as

in the attrition simulation based on professional status, it is way worse in the others, such as

the small sample missing mechanism applied on the civil status or the attrition of MVAD. As

with the other algorithms based on random forest, it is better to predict the individual values

accurately than to keep the longitudinal consistency.

As a recall, the best parametrisation was not homogeneous for the FCS multinomial. We

therefore kept two parametrisations: one predictor in the past and one predictor both in the past

and future. The conclusions differ according to the missing data generation process. First, both

parametrisations lag behind MICT imputation methods in the small sample size simulations.

In the attrition simulations, FCS multinomial using one predictor in the past features among

the best performing algorithms, except for the satisfaction with health status. It even beats

MICT multinomial on the MVAD dataset and the cohabitational status coded as eight states

(but not MICT-timing multinomial). As identified before, using one predictor in the past

and future is not working well in the attrition simulations. Finally, in the MAR simulations,

using one predictor both in the past and future features among the best algorithms on the

professional status and the two cohabitational status datasets. However, on the three other

datasets, MICT multinomial performs better. In summary, except for the attrition process, on

which it shows similar performance, multinomial FCS is outperformed by multinomial MICT

and MICT- timing.

Finally, VLMC features among the best algorithms in the attrition simulations. In the two

other simulations, VLMC works well for imputing satisfaction with health status but can also

be among the worst algorithms (e.g. the MAR missing data process applied to the professional

status or both cohabitational status datasets). In the case of attrition, VLMC is on par with

the other algorithms, as only the past is available. In contrast, on the other missing data

generation process, the other algorithm can use future observations, while VLMC cannot.

4.5 Discussion

In this research, we compared several imputation methods for univariate longitudinal categor-

ical data, and evaluated their best parametrisations. We further proposed two extensions of

the MICT algorithm. First, we considered the use of random forest instead of multinomial

imputation models. Second, we proposed the MICT-timing algorithm aiming to improve the

imputation in presence of heterogeneous transition rates.

First, the MICT-timing algorithm achieved his goal and is a suitable alternative to the
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MICT algorithm when the trajectories have time-varying transition rates. In the early stages

of this study, we also considered including the timing of the trajectories by including the time

elapsed since the beginning of the trajectory as a covariate in the MICT algorithm. However,

no improvement of the results was obtained. For the sake of simplicity, the results were not

included in this study. Second, in the examined scenarios, the random forest does not provide

any additional benefits compared to the multinomial imputation models. While they are better

at predicting the correct value (i.e. accuracy), it is often at the detriment of keeping the

longitudinal consistency of trajectories.

This comparison of imputation model was based on six complete real-world datasets, rep-

resentative of different situations encountered in life course research. We then defined three

different missing data simulations. The first mimic a MAR process, where missingness occurs

as gaps, i.e. consecutive time points with missing data. In addition, some states were set to

have a higher probability to trigger a missing data gaps. This is typically observed in life course

research, where some situations, such as unemployment or poor health, have a higher risk to

be linked to missingness. The second set of simulations aims to evaluate missing data due to

attrition. This is also a very common situation in prospective longitudinal survey. In presence

of attrition, only past information is available, which raise specific difficulties for some algo-

rithm. The last simulations aimed to evaluate the performance of each algorithm in presence

of (very) small sample sizes. Here again, it impacted each algorithm differently.

From each complete dataset and simulation, we generated 100 datasets with missing data.

These simulated missing data were then imputed with the different algorithms, namely FCS,

MICT, MICT-timing, both with multinomial and random forest imputation models, and VLMC.

We further included several parametrisations of each of these algorithms. The algorithms and

their parametrisation were then evaluated. We used four criteria for assessing, not only predic-

tion accuracy, but also three key characteristics of trajectories for life courses research, namely

timing, duration, and sequencing of successive events.

MICT and MICT-timing multinomial stand out as the best imputation methods in these

simulations. Even if they were not always the best in terms of accuracy, they were the best

at producing imputed datasets that had the most similar characteristics in terms of duration,

timing, and sequencing to the original datasets. There is a link between the sample size, the

degree of time heterogeneity of the dataset and the performance of the MICT-timing algo-

rithm. Indeed, when the sample size is sufficiently large, which is the case for the MAR and

attrition simulations, MICT-timing multinomial showed better performances on datasets that

have a timing structure, while having slightly lower performance on time-homogeneous datasets.

Moreover, the stronger the timing structure is, the stronger the improvement of MICT-timing

multinomial over MICT multinomial. However, by reducing the sample size, the gain provided

by MICT-timing multinomial over MICT multinomial is mitigated by the difference of the sub-
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samples used to fit the imputation models. Indeed, MICT uses all configurations similar to

the missing data to impute. However, in MICT-timing restrict those similar configurations to

those occurring within a predefined radius. The estimations of the multinomial regressions are

therefore based on a larger number of observations in MICT than in MICT-timing. Hence, it

provides a more robust estimation with a limited number of observations, even if it should be

noted that we used a very small sample size of 200. However, when the time heterogeneity is

strong, which was the case with the transition from school to work trajectories, MICT-timing

is better even on small samples.

The use of random forest had mixed results. It showed a tendency, both for MICT and

MICT-timing, to work well in terms of accuracy, but to lie behind the multinomial model for

the three other criteria related to the longitudinal characteristics of the trajectories. However,

it is worth noting that random forest, and hence MICT random forest, is more robust to a

reduction of the sample size. Therefore, on small sample sizes, the results are closer to the ones

of MICT multinomial than on the two other missing data generation process.

The FCS algorithm with a multinomial imputation model still features in some of the

simulations among the best performing algorithms (e.g. the attrition process or the imputation

of the professional status trajectories). However, it has three main drawbacks. First, it performs

poorly on datasets with only a few transitions, such as civil status. One possible explanation

for this behaviour is that the FCS algorithm starts by imputing missing values randomly. It

might then have trouble to improve these first imputations in long gaps of successive missing

data. Second, it is clearly outperformed by the MICT and MICT-timing imputation algorithms

on small datasets. Finally, the optimal parametrisation of FCS differs from simulations to

simulations. Even if it can sometimes present good performance, FCS random forest is never

the best performing one. Moreover, it sometimes shows bad performance, such as with the

imputation of the civil status dataset. Therefore, FCS appears to be a less efficient imputation

algorithm than MICT with datasets typical of the life course study.

VLMC is suitable for datasets with more transitions and to impute attrition. However, its

performances were generally poor on most datasets typical of life course research. In particular,

it showed poor performances in the presence of time-heterogeneous transition matrices, even

when compared to other algorithms using only the past.

Complete case analysis, i.e. keeping only sequences without missing data, is clearly out-

performed by the MICT and MICT-timing algorithm. Complete case analysis showed espe-

cially poor results on the timing criteria. Indeed, for the three considered sets of simulations,

some states had a higher probability to trigger a missing data gap. These states were then

under-represented in the remaining complete sequences. Situations linked with missingness are

typically also linked to vulnerability. Restricting to complete cases therefore tends to under-

represent precarious situations, which is clearly not desirable. Therefore, complete case analysis
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is a poor strategy to deal with missing data.

With respect to the criteria for comparing imputed data, we sometimes observed a trade-off

between accuracy and criteria derived from the life course analysis. This highlights the fact

that an imputation method cannot be evaluated solely on its ability to perfectly reconstruct

missing data values, at least in a longitudinal case.

The six datasets used for our comparison were carefully selected to encompass the variety

of situations arising in life course research. Before concluding, we briefly discuss the influence

of the characteristics of these situations. First, the included datasets differed according to their

timing structure, or in other words, a different degree of time heterogeneity of the transitions

between the datasets. As already underlined, the stronger the timing structure is, the better

the performances of MICT-timing are in comparison with MICT. Except with attrition, VLMC

was also impacted by time heterogeneity. Indeed, gaps of missing data break the sequences

into subsequences that are realigned, regardless of their temporal situation to fit the model.

With the attrition process, the sequences are potentially reduced in length but never broken

into subsequences, hence impacting less VLMC. There does not seem to be a clear impact of

the timing on FCS.

Second, the datasets are distinguished by the characteristics of their transitions. With

highly stable trajectories, the imputation is unsurprisingly easier and less information is re-

quired for the imputation. MICT and MICT-timing algorithms are especially better than FCS,

which has the tendency to create artificial transitions in the trajectories. The imputations were

generally more difficult in the more volatile datasets. A detailed look at the imputation also

showed that, with all algorithms, impossible transitions were sometimes created, including for

instance a transition between the divorced and single, never married civil status. For MICT

and MICT-timing this is, however, only possible if some of these impossible transitions occur

in the original dataset. This highlights the importance of checking the consistency and more

specifically the transitions occurring in the original data. Whenever appropriate, these impos-

sible transitions should be corrected prior to the imputation. Furthermore, some transitions

might be impossible at certain time points. For instance, one cannot transition from school

to university at 9 years old. MICT and VLMC could generate such impossible transitions and

situations. Indeed, MICT uses every available situation similar to the one to impute, while

VLMC realigns subsequences broken by gaps of missing data. However, the MICT-timing,

with a small radius, and FCS should not suffer from this limitation. These impossible transi-

tions could be corrected afterwards, but this is burdensome especially for multiple imputation.

Furthermore, it might impact the longitudinal consistency of the whole imputed trajectories.

The timing structure of the studied trajectories as well as (time-specific) impossible transition

are aspects to be taken into account when making a choice about the imputation algorithm.

Furthermore, this discussion illustrated the need to clean the data beforehand.
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Third, the dataset differed according to the possibility to return to previously visited states

as illustrated with difference between professional and cohabitational status trajectories. This

data characteristic does not seem to have an impact on the quality of the imputations and,

hence, of the algorithms. It should therefore not be taken into account when choosing an

algorithm.

Fourth, the detail of the coding varied between the datasets. The cohabitational status was

coded either with four or eight states. The aim was to study the impact of the level of detail

used to describe the states on the imputation. Logically, a more detailed coding of states results

in less precise imputations. Moreover, we observe that the differences between the algorithms

are magnified when using a more detailed coding of the states. However, it did not change the

ranking of the algorithms. For all these reasons, we recommend restrict to the most required

detail level when imputing such process.

Finally, our simulations showed the impact of sample size. The results showed that MICT

is more efficient on (very) small sample sizes than the other algorithms. MICT-timing was still

very efficient in the presence of a strong timing structure, and this penalty can be lowered by

increasing the radius parameter. A trade-off is therefore required here. However, it should be

noted that our simulations tested very small sample sizes and the algorithms were quite robust

with the other datasets with sample sizes ranging from 710 to 3710.

Guidelines

The aim of this chapter is to propose guidelines to impute missing data in longitudinal categor-

ical databases. Our previous discussion highlighted that these guidelines should concern data

preparation and the choice of an imputation algorithm.

The data should be carefully prepared before imputation. We highlighted two aspects

requiring a special attention. First, one should avoid too detailed categories, as it strongly

impact the quality of imputations whatever the algorithm. We therefore recommend restricting

them to the most important distinctions that are required by the research question.

Second, the longitudinal coherency of the trajectories should be carefully checked and cor-

rected. Indeed, any errors in the data, such as the occurrence of impossible transitions, might

be reproduced by the imputation algorithm. It is therefore highly important to correct these

errors prior to the imputation.

Once the data have been prepared, an imputation algorithm should be chosen. Our results

showed that complete case analysis should not be the default choice, as it is currently the case

in most studies (Berchtold, 2019).

The choice of the imputation algorithm should then be ground on the data characteristics

and its timing structure.

When the data do not have a strong timing structure, MICT multinomial provided good
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results. In our simulations, using five predictors both in the past and the future provided the

best results, but this might be lowered in a small sample.

When the dataset has a strong timing structure, MICT-timing multinomial should be used.

A radius of zero and one predicator in the past and future provided good results in most sim-

ulation, but increasing the number of predictors improved some of the results. In presence of

small sample size, one should increase the radius or even use MICT with very small samples

(fewer than 200 observations).

This study involved different several datasets, imputation algorithms and simulations, but

it also has limitations. First, we focused here on univariate data. However, as pointed out by

Bernardi et al. (2019), the different life domains must be considered as interdependent. For

instance, family and professional trajectories of women are strongly intertwined in many coun-

tries. These trajectories should therefore probably be jointly considered and imputed. We used

three separate missing data generating process in our simulation. However, in practice, they

most probably occur altogether, involving for instance attrition and MAR missing data. How-

ever, they proved sufficient to reveal some of the differences between the imputation algorithms.

Then, we only considered past or future time points in the imputation models. However, tak-

ing into account other elements, such as pertinent covariates, could improve the performance

of the imputation models. Notably, the trajectories of occupations unfold differently for men

and women, as previously mentioned. In particular, adding more information may increase

the applicability of random forest as imputation models. Indeed, it handles a large amount of

information and non-linear effects well.

In this study we reviewed algorithms for missing data handling in univariate categorical

longitudinal data. However, more work is still required. Indeed, the interrelations between

imputation algorithms and the used longitudinal method to be used should also be considered.

This includes the creation of typology of trajectories, or the estimation of multistate or hidden

Markov models for instance. Second, as already discussed, the presented algorithms should be

extended to handle multivariate longitudinal categorical data. FCS naturally extends to this

case, but MICT algorithm cannot handle it, even if it features among the best algorithms for

univariate data.
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Sequencing
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(d) Timing

Figure 4.5: Simulation results of the best parametrisations of each algorithm using the (a) accu-
racy, (b) duration, (c) sequencing and (d) timing evaluation criteria. The included parametri-
sations are complete case analysis, FCS multinomial with either only one predictor in the past
or one predictor in the past and future, FCS random forest with five predictors in the past and
future, MICT multinomial with five predictors in the past and future, MICT random forest
with five predictors in the past and future, MICT-timing multinomial with a radius of zero
and one predictor in the past and future, and radius of five and five predictors in the past and
future, MICT-timing random forest with a radius of five and five predictors in the past and
future, and VLMC with the gain function.



Chapter 5

Comparison of two approaches in

multichannel sequence analysis using

the Swiss household panel
1

5.1 Introduction

Life course analysis is concerned with the many events that punctuate the lives of individuals

from birth to death. The focus is often on several supposedly interrelated domains, the idea

being that resources, behaviours, and goals in one domain are linked with the resources, be-

haviours, and goals of other domains (Bernardi et al., 2019). Therefore, to fully understand a

given life domain, its linked domains are considered simultaneously. One of the most striking

examples is that of work and family, where numerous studies have demonstrated, for example,

the impact of the birth of children on women’s occupational trajectories (e.g. Piccarreta and

Billari, 2007; Widmer and Ritschard, 2009; Aisenbrey and Fasang, 2017). A life domain can

encompass different dimensions. For example, the family life domain may encompass a couple

dimension, a children dimension and a place dimension.

Sequence analysis, a central tool in the study of life courses, aims to determine their most

important features (Abbott, 1995; Ritschard and Studer, 2018a). Possible situations occurring

during the life course are represented by a finite set of mutually exclusive states, whose succes-

sion over time is called a sequence. These sequences are considered as a whole, with the idea that

events cannot be isolated from each other (Piccarreta and Studer, 2019). Sequence analysis has

often been applied in the life course study in such areas as transition into adulthood (Oris and

Ritschard, 2014; Lorentzen et al., 2019), work pathways (Malin and Wise, 2018; Wahrendorf

1This chapter has been published in the same form, with minor changes made only to spelling and grammar,
in Longitudinal and Life Course Studies: Emery, K., & Berchtold, A. (2022). Comparison of two approaches in
multichannel sequence analysis using the Swiss household panel. Longitudinal and Life Course Studies, 1-32.
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et al., 2018), and union trajectories (Jalovaara and Fasang, 2017). A standard sequence anal-

ysis is typically conducted by computing the pairwise dissimilarities between the sequences of

different individuals before applying clustering to identify a typology (Abbott and Tsay, 2000).

Optimal matching, which was first applied to social sciences by Abbott and Forrest (1986), is

often used to compute these pairwise dissimilarities. In this framework, the minimum effort to

transform one sequence into another through the insertion, deletion, and substitution of states

is determined. Since the introduction of optimal matching to social sciences, many variations of

optimal matching and other types of dissimilarities have been discussed (Studer and Ritschard,

2016). However, basic optimal matching remains the most often used approach.

Multiple sequences, also called channels, are sometimes considered simultaneously. This

happens in broadly two types of situations (Studer, 2015). First, these channels can be related

to the same domain. For example, income and labour market positions are two indicators

of career trajectories (Mattijssen and Pavlopoulos, 2019). Then, channels from different life

domains can be considered simultaneously, either to summarise the association between life

domains (Spallek et al., 2014), or to reduce the amount of information before further analysis

(Müller et al., 2012). With multiple channels, joint sequence analysis, which is an extension of

standard sequence analysis, can be used. Joint sequence analysis involves the computation of

dissimilarities based on all channels (Piccarreta, 2017). The two most common strategies are

the extended alphabet (EA) approach and multichannel sequence analysis (MSA) (Gauthier

et al., 2010). With the former, the states of each channel are combined to build a single set

of super-states, called an extended alphabet, each super-state being defined by combining one

state from each of the original channels. Pairwise dissimilarities are then computed as if it

was a single channel. On the contrary, MSA extends optimal matching to the multidimen-

sional case. Concretely, the substitution cost needed to align two multichannel sequences at a

given time point is defined as the mean, possibly weighted, of the substitution costs needed to

align each channel separately. Insertion/deletion costs are generally averaged over the different

channels. Moreover, these two strategies are combinable: some channels can be first aggregated

before applying MSA. Whatever the approach, after the computation of pairwise dissimilari-

ties, a clustering is often used to identify the most typical patterns in the data. However, the

application of other sequence analysis tools such as pseudo-ANOVA (Studer et al., 2011) and

regression trees (Studer, 2018) is also possible.

Then, channels from different life domains can be considered simultaneously, either to sum-

marise the association between life domains (Spallek et al., 2014), or to reduce the amount of

information before further analysis (Müller et al., 2012).

Even if MSA is more commonly used than EA, the latter can also lead to interesting results.

For example, considering the extraction of a joint typology of work and family, which is the

most common application of a joint analysis, each of the two methods was successfully applied.
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Aisenbrey and Fasang (2017) used MSA to compare the interplay of work and family between

Germany and the United States, Lacey et al. (2016) applied EA to match work-family sequences

to ideal types extracted from theory in order to study the impact of work-family patterns on

well-being, while Schwanitz (2017) chose a mixed approach: three channels relative to the family

were first combined into an extended alphabet before applying MSA to family and professional

sequences.

No in-depth comparison was made between MSA and EA. Gauthier et al. (2010) realised a

simulation involving two randomly generated channels and concluded that MSA was the most

representative technique. There are also some informal guidelines. For example, PiCCArretta

(2017) argued that EA is only sensible if the number of combined states is not too large.

However, Lacey et al. (2016) still applied EA with an extended alphabet of size 36. There is

therefore no established rule to choose between MSA and EA.

The goal of this article is to compare empirically, via cluster analysis, EA with MSA the

idea being to understand the differences in behaviour between EA and MSA, and to determine

which method is the most suited depending on the context. To the best of our knowledge,

this has never been done before using real data. Concretely, we considered four channels with

various interrelations between them in order to have a broad range of situations. Based on

the last methodological developments in multichannel analysis, we introduced a framework to

compare clusterings and, hence, MSA and EA. The remainder of this article is organised as

follows. The empirical dataset is described in Section 5.2 and the methodological tools used to

compare EA with MSA are presented in Section 5.3. The results are presented in Section 5.4,

and a discussion ends the article.

5.2 Data

We used data from the Swiss household panel (Tillmann et al., 2016), a yearly panel study

that started in 1999. People living in Switzerland are interviewed on different topics such as

family, work, and health. In 2013, an additional sample of 4093 households comprising 9945

individuals was added into the panel. In addition to the standard questionnaires, a retrospective

life history calendar was used (Morselli et al.) to investigate life domains such as residential

trajectory, living arrangements, partner relationships and changes in civil status, family events,

professional activities, and health issues from birth to 2013. Here, we considered sequences

of individuals between the ages of 20 and 45 who had answered questions in the domains of

professional activities, health issues, living arrangements, and family events for a total of 1707

respondents. Each domain was then summarised in the form of a single channel:

• Child: 0 to 4 years old, if at least one child between the age of 0 and 4 lives in the same

household, 5 to 18 years old, if there is at least one child between 5 and 18 but no child
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between 0 and 4, and No otherwise.

• Cohabitational status: living with Both parents, living with One parent, living with a

Partner, living Alone, and Other situations.

• Professional status: Education, Full-time employment, Part-time employment, and Non-

working.

• Health issues: Yes if the person has suffered an illness/accident or undergone surgery or

psychological issues during the considered year, and No otherwise.

Cohabitation and child trajectories are expected to be highly interrelated and are often consid-

ered in the literature as a single trajectory. They can be seen as two indicators of the family

trajectory. The simultaneous analysis of occupational status and family sequences is a typ-

ical application of MSA, especially for women. The definition of what a health issue might

be is so broad that we do not expect a link between health and any other channel. Even if

not linked to other channels, the health one is useful because it allows testing the behaviour

of both algorithms when channels are unrelated. Indeed, when channels are not interrelated,

algorithms are expected to not produce significant results. Although we did not intend to draw

conclusions about the Swiss population, the 1707 respondents were weighted using the sample

weights provided by the Swiss household panel, adjusted to match the size of the subsample.

This was done to better account for selection bias and allows us to work with a more realistic

sample.

5.3 Methods

A multichannel analysis consists broadly of three phases. As pointed out by Gauthier et al.

(2010), a joint analysis is suitable only if the channels are associated. Therefore, the first step is

to check whether their degree of (linear) association is sufficient to justify a joint analysis, even

when the channels are supposed to be indicators of the same domain. Then, choices should be

made about how the joint analysis is conducted. This includes the choice of the approach (EA

vs. MSA), the choice of a dissimilarity measure (i.e. a way of determining how different two

sequences are) and the clustering algorithm. Finally, the clustering is performed and a final

grouping is chosen. We detail hereafter the tools that are considered at each of the three steps

and the choices made for this article.

Association between channels Piccarreta (2017) extended the Cronbach’s α and principal

component analysis (PCA) approaches to determine the degree of associations between chan-

nels. Both measures depend on the prior choice of a dissimilarity measure on each individual
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channel. Optimal matching is a standard choice for the dissimilarity. However, it also seems

sensible to use the dissimilarity measure that will be used for the joint sequence analysis. Con-

sider p dissimilarity matrices D1, . . . , Dp containing the pairwise dissimilarities computed on

p channels. One can then consider d1, . . . , dp, the vectors of the respective upper triangular

values of the matrices D1, . . . , Dp, as p measurements of the same concept. Cronbach’s α can

then be applied to assess the similarity between the measurements. PCA can also be applied

to the set of vectors d1, . . . , dp. If the first principal component is enough to summarise the

information, then the channels are associated. When more than one component is necessary,

the loadings shed light on the relations between the channels.

Clustering tools The first choice concerns the method to perform the joint analysis. In this

article, we apply both MSA and EA in order to compare them. Then, the way to compute the

dissimilarity is under question. When MSA is applied, the standard optimal matching is the

most popular choice, either with substitution costs set to 1 (e.g. Pasteels and Mortelmans, 2015;

Aeby et al., 2019) or substitution costs determined from the transition rates (e.g. Aisenbrey

and Fasang, 2017; Arpino et al., 2018). However, other dissimilarity measures, such as dynamic

Hamming distance (McMunn et al., 2015; Sirniö et al., 2017) are punctually used. Concerning

EA, the two most common strategies are optimal matching with costs based on transition

rates (e.g. Piccarreta and Billari, 2007; Lesnard, 2008) and dynamic Hamming distance (e.g.

Eisenberg-Guyot et al., 2020; Lacey et al., 2016). All these dissimilarity measures are variations

of the optimal matching. In this context, the minimum cost to transform a sequence into another

with substitutions, insertions or deletions of states, is determined. Based on the literature, we

apply the following dissimilarity measures:

• Standard optimal matching: The substitution costs are all set at 1 and the insertion/deletion

costs are set at 0.5

• Optimal matching with substitution costs based on transition rates: For two states a and

b, the substitution cost between these two states is set at 2-p(a,b)-p(b,a), where p(a,b)

is the transition rate from a to b in the whole dataset. The insertion/deletion costs are

set at half the largest substitution cost.

• Hamming distance: The substitution costs are set at 1 and no insertion, nor deletion are

possible.

• Dynamic Hamming distance: As with the Hamming distance, no insertion nor deletion

are possible. The substitution costs are time-dependent and based on the transition

rates at a given time point. Hamming distance and its variations are more sensitive

to differences in terms of timing of the states, while standard optimal matching is less
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sensitive to timing differences but is, in return, more sensitive to differences in terms of

time spent in each state (Studer and Ritschard, 2016). To derive a typology, Ward Jr

(1963) hierarchical algorithm is commonly used with sequences. However, the original

algorithm was built for Euclidean distance and there are two different algorithms in the

literature that claim to apply Ward’s hierarchical algorithm (see Murtagh and Legendre

(2014)). In this research, we use the version named “Ward2” in Murtagh and Legendre

(2014), which actually applies Ward’s clustering criterion, unlike the other algorithm.

Determining the final clustering The average silhouette width (ASW) (Rousseeuw, 1987)

and Hubert’s C index (HC) (Hubert and Levin, 1976) are standard criteria for selecting the

number of clusters. For each element, the silhouette value is a comparison between the cohesion

of this element in its assigned cluster and its separation from other clusters. The ASW is the

mean of these values. It ranges from -1 to 1; the higher the value, the better it is. When the

data are weighted to account for selection bias, the weighted version of the ASW (ASWw) is

used (Studer, 2013). HC compares the sum of the obtained within-cluster distances with the

minimum possible value with the same distance and number of groups. Contrary to the ASW, a

smaller value is better for HC. The standard way to determine the optimal number of clusters is

to find the partition that gives the best values for the criteria or local extrema. This could lead

to several potential partitions and, anyway, with the use of both EA and MSA with different

dissimilarity measures, several clusterings are created. Therefore, we identify characteristics

that are of interest when studying and comparing clusterings of several channels. We do not

start from the idea that there is a “true” clustering of data but rather that there is a clustering

allowing extracting a maximum of useful information from data. Our whole strategy of search-

ing for the best clustering tends to identify a clustering that takes into account the association

between channels, that makes sense interpretation-wise, whose groups are sufficiently distinct

from each other, and sufficiently large so that they are not the simple reflection of extreme and

rare situations. Therefore, the criteria of comparison are:

• association between channels taken into account

• channels summarised equally

• channels summarised efficiently

• clusters’ separation and homogeneity

• size of the clusters

• shaping aspect

• interpretability and rootedness in theory
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We detail the criteria that are used to assess these characteristics.

Association between channels taken into account : On the one hand, a clustering provides

results even with fully dissociated channels. On the other hand, even with channels that are

supposedly interrelated, some clusterings could take accordingly their link into account, while

others may not. Studer (2019) extended the work of Hennig and Liao (2010) and Hennig and

Lin (2015) to study the behaviour of a clustering quality measure with similar but unstructured

sequence data using permutation tests. In the case of multichannel sequences, the clustering

quality measures computed by clustering the empirical data are compared to the ones obtained

on data generated by a null model, which keeps the structure of the individual channels, but

without the association between them. To generate data from this null model, one channel

is kept fixed and the others are randomly permuted. A clustering is then applied on this

generated dataset and a cluster quality index is computed. This process is repeated many

times, usually 1000 times. We can compare the value obtained by clustering the data with that

from clustering unstructured data. In this research, we will consider that a clustering takes

into account the interrelation between the channels if it is outside the interval containing 95%

of the values obtained by clustering the data generated by the null model. We apply the same

quality measures as for the selection of the best partitions, namely ASWw and HC.

When more than two channels are involved, this procedure can also be applied to each

individual channel in order to determine if the association between this channel and the other

ones is taken into account. In this context, the sequences of each channel are fixed, except for

those of the considered channel which are randomly permuted.

Channels summarised equally and efficiently : The channel-specific R2 (Piccarreta, 2017)

gives the share of the total pairwise dissimilarities of a channel explained by a clustering.

Therefore, this measure allows us to determine if individual channels are summarised equally

and efficiently by a clustering. If the R2 computed on an individual channel is low, this channel

is not summarised satisfactorily by the clustering, and if the R2 is unbalanced, the clustering

is more driven by some channels than others.

Clusters’ separation and homogeneity : The ASWw can also be computed independently for

each cluster to determine its homogeneity and separation from other clusters. A small value

could mean that the cluster is either heterogeneous, not well separated from the other clusters,

or both. Size of the clusters: The percentage of sequences classified into each cluster allows

spotting clusters that are too small. Shaping aspect: Studer and Ritschard (2016) identified

three central aspects structuring sequences, namely timing (i.e. the age of an individual in a

specific state), sequencing (i.e. the ordering of the states) and duration (i.e. the overall time

spent in a state). We use chronograms to determine which aspect drives the clustering.

Interpretability and rootedness in theory : It is crucial that a clustering makes sense from
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the point of view of interpretation and that it corresponds to the theory. A clustering can

have sound statistical properties but be useless in terms of sociological interpretation (see e.g.

Piccarreta and Studer (2019) for such an example). This criterion is more abstract and depends

on the analysis that is realised.

Some of these criteria are more important than others. As just stated, the interpretability

and rootedness in theory are crucial. In addition, since the goal is to realise a joint analysis,

the association between channels should be taken into account. When this is not the case and

if the goal is to realise a clustering to reduce the information for a further analysis, one could

consider doing it on each channel individually, while when the extraction of a typology is the

goal, one may have to accept that it is not possible to extract a joint typology. As for the other

criteria, their importance depends on the analysis. For example, having small clusters may not

be a problem when the goal is to reduce the information, while it could become a problem when

we want to obtain a typology capturing the most common situations in a population.

We compared MSA and EA regarding the ability to produce meaningful results in different

contexts. To do so, we first determined if the channels were linearly linked using Cronbach’s

alpha and PCA. Since we did not have any clear-cut value to decide whether a joint analysis is

sensible or not and since neither measure is meant to detect non-linear relationships, we studied

a large range of possibilities. We then looked for a clustering of these channels. To do so, we

applied both MSA and EA with several dissimilarity measures screened from the literature,

namely optimal matching both with unit substitution costs and substitution costs based on

transition rates, Hamming distance and dynamic Hamming distance. We compared the results

based on the criteria introduced before.

Since at least the professional status trajectories proved to be different between men and

women as well as, potentially, their relationship with the other domains, the analyses were run

separately by sex. All the computations were performed within the R statistical environment

(R Core Team, 2021). The TraMineR (Gabadinho et al., 2011) and WeightedCluster (Studer,

2013) packages were used for most of the analyses.

5.4 Results

As pointed out by Levy et al. (2006) and Widmer and Ritschard (2009) among others, the

professional status trajectories differ between men and women. An interrelation could exist

between the child and professional status trajectories for women since their working rate often

decreases when a child is born, whereas the same is barely observed for men. This is confirmed

by the chronograms computed separately for women and men (Figure 5.1). Indeed, the pro-

fessional status trajectories of men are mainly characterised by full-time work, while women

are more prone to nonworking and part-time work, and these states seem synchronised with
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the arrival of a child in the household. Moreover, women have children slightly earlier than

men. These findings motivated us to run all the analyses separately by sex. Detailed results

for women are provided hereafter, and results concerning men are provided in Appendix C
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Figure 5.1: Chronograms of the individual domains computed separately by gender.

We first determined the linear association between the channels using Cronbach’s α and

PCA. We considered the values obtained with each of the dissimilarity measures, but since

the conclusions did not vary between them, we only detail the results obtained with optimal
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matching with a substitution cost of 1. For women, the health issues trajectories were discon-

nected from all other channels. Each pair of channels involving health issues had a Cronbach’s

α smaller than 0.04. Therefore, the health channel is not associated, at least linearly, to the

other channels. The conclusion was different for the professional status channel. Although the

cohabitational status and child trajectories, which had a Cronbach’s α of 0.54, were still the

most (linearly) interrelated channels, the professional status channel was somehow linked to

them. Taking the three channels together, we obtained a Cronbach’s α of 0.51, while the pairs

of professional status and, respectively, child and cohabitational status channels gave values of

0.39 and 0.26. These results were confirmed by the results of the PCA.

We still applied clustering to the pair of channels involving the health channel to determine if

MSA and EA had the expected behaviour in the case of supposedly unrelated channels, but none

of the clustering of pairs of channels involving the health proved satisfactory, neither with MSA

nor EA. On the other hand, a joint typology of the cohabitational status, child and professional

status could prove suitable. Moreover, we also analysed the two pairs of channels professional

status/child and cohabitational status/child. Concerning the cohabitational and professional

status trajectories, they seemed mainly linked through the child channel, because individuals

are more likely to have a child when living with a partner and, as previously highlighted,

working rates of women tends to decrease when a child is born. It was therefore not sensible

to extract a joint typology of cohabitational and professional status without taking the child

channel into account.

Child/Cohabitational status/Professional status We first applied MSA with standard

optimal matching and EA with substitution costs based on transition rates, which are the

standard parametrisations Figure 5.2 shows that the solution in two groups built by MSA gives

the best values both in terms of ASWw and HC, while the solutions in six and eight groups

are local extrema. The two-group solution built with MSA (Figure 5.3) is characterised by a

first cluster of women having a child, mainly living with a partner, which are more prone to

part-time working or non-working, and a second cluster of women not having a child with a

variety of living statuses and working mainly full-time. The six-cluster solution is composed of

four clusters of women having a child and two clusters of women not having a child (Figure 5.4).

Among the women that have a child, the largest group is composed of women that stopped

working when they had a child and mostly remained outside the labour force while the child

was growing up. Women of the second group had a child earlier than those of the first group

and either worked part-time or stopped working when they had a child and mostly worked

part-time while the child was growing up, women of the third group mostly continued to work

full-time and women of the fourth group had a child later on and were more prone to stay in

the labour force. The two remaining clusters are mainly composed of women that did not have
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a child, and they differ according to the work status in the forties. The eight-cluster solution

splits the two largest clusters, the first one according to the timing of the child birth, and the

second mostly according to the cohabitational status (Figure 5.5).
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the solution in two groups built by MSA gives the best values both in terms of ASWw 
and HC, while the solutions in six and eight groups are local extremums. The two-
group solution built with MSA (Figure 3) is characterised by a first cluster of women 
having a child, mainly living with a partner, which are more prone to part-time working 
or nonworking, and a second cluster of women not having a child with a variety of 
living statuses and working mainly full-time. The six-cluster solution is composed of 
four clusters of women having a child and two clusters of women not having a child 
(Figure 4). Among the women that have a child, the largest group is composed of 
women that stopped working when they had a child and mostly remained outside the 
labour force while the child was growing up. Women of the second group had a child 
earlier than those of the first group and either worked part-time or stopped working 
when they had a child and mostly worked part-time while the child was growing up, 
women of the third group mostly continued to work full-time and women of the 
fourth group had a child later on and were more prone to stay in the labour force. 
The two remaining clusters are mainly composed of women that did not have a child, 
and they differ according to the work status in their 40s. The eight-clusters solution 
splits the two largest clusters, the first one according to the timing of the child birth, 
and the second mostly according to the cohabitational status (Figure 5).

We compared these three clusterings based on the criteria we introduced before. 
The three clusterings are more driven by the child channel, the difference being 
less acute for clusterings in six and eight groups though. The two-groups solution 
is composed of two groups that have a relatively good trade-off between separation 
and homogeneity (ASWw values by group of 0.36 and 0.35), while clusterings in 

Figure 2: Evolution of the ASWw and HC cluster quality indices according to the 
number of clusters when MSA is applied with standard optimal matching
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Figure 5.2: Evolution of the ASWw and HC cluster quality indices according to the number of
clusters when MSA is applied with standard optimal matching.

We compared these three clusterings based on the criteria we introduced before. The three

clusterings are more driven by the child channel, the difference being less acute for clusterings

in six and eight groups, though. The two-group solution is composed of two groups that have a

relatively good trade-off between separation and homogeneity (ASWw values by group of 0.36

and 0.35), while clusterings in both six and eight groups have some clusters that are not well

separated. Based on this analysis, the clustering in eight groups lags behind the two other

clusterings. Moreover, even if the clustering in two groups has good statistical properties, it is

not interesting from the point of view of the analysis. Therefore, the clustering in six groups

appears as the most suitable choice.

For EA with substitution costs based on transition rates, the best value, both in terms of

ASWw and HC, is obtained with the thirteen groups clustering and the four groups clustering

is a local extremum. The four groups clustering (Figure 5.6) is composed of three relatively

homogeneous and well-separated groups and one large residual group containing approximately

one third of the sequences. The cluster with the highest ASWw by group is composed of

women having a child, living with a partner and that stopped working when the child enters
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Figure 5.3: Women subset: Chronograms of the two-group typology of child, cohabitational
and professional status channels obtained with MSA with standard optimal matching.

the household and remained in this situation the child growing. Women of the second and

third clusters differ from the first one in terms of their professional status, they are respectively

mainly working full-time and part-time. The third group is slightly less homogeneous because

it also contains women that have short spells of non-working time during the child growth,

but the ASWw by group is still 0.21. The main issue with this clustering is the fourth cluster

that groups every other situation, meaning women that never had a child and women having

a child with rarest life courses (e.g. very late child birth or other cohabitational status). This

is explainable by the fact that combining the three channels produced an extended alphabet

of 60 states (with 44 of them really observed in the dataset) and most of them are rare. The

sequences that are composed of these states are dissimilar from each other sequences and are

hence isolated. The idea of defining the substitution costs based on transition rates is to induce

proximity between states that have transitions between each other. However, in practice, most

substitution costs are close to 2. Concerning the thirteen groups clustering, it kept the first two

clusters of the four-cluster solution, split the third cluster in three and the fourth one in eight.

It therefore distinguishes between many situations, inducing very small groups. Therefore, none

of the two clusterings is satisfactory. This example highlights one of the limitations of the EA

approach.

Concerning the other dissimilarity measures, a clustering in five groups emerged when MSA

was applied with substitution costs based on transition rates. However, it lagged behind, the
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clustering in six groups that was obtained with substitution costs set at 1, especially in terms

of heterogeneity and interpretability. Hamming-like dissimilarity measures applied with MSA

created some clusterings of interest, whose groups were mainly characterised by small differences

in terms of timing of the child birth. This could of interest if the researcher is really interested in

differences of timing. Results obtained from the application of the other concerned dissimilarity

measures with EA lead, as with optimal matching with substitution costs based on transition

rates, to either clusterings with a large number of groups or clusterings with a large residual

cluster that groups sociologically different situations.

Child/Professional status Regardless of the dissimilarity measure used, MSA leads to a

small number of groups. Two clusterings stand out according to the criteria. The first one

was obtained with standard optimal matching and is composed of four clusters, while the

other one is a five-group clustering that was built with Hamming distance. Sharing otherwise

similar characteristics, the clustering in five groups is preferable from the point of view of

the interpretability, since it involves differences in terms of timing of the child birth. The

first cluster was composed of women that mostly did not have a child, the second and third

one involved women that stopped working at the child birth and differ on the timing of the

child birth, women of the fourth group transitioned to part-time work at child birth and the

last group of women stayed in full-time employment (Figure 5.7). The clustering takes into

account the association between channels, summarises the individual domains efficiently, and

has clusters, that are not too small, relatively well separated and homogeneous. However, it

is more driven by the child channel, the R2 being, respectively 0.83 for the child and 0.74 the

professional channel.

The use of EA leads to more detailed typologies. According to ASWw and HC, optimal

matching with substitution costs based on transition rates leads to an eight groups clustering

and optimal matching with unit substitution costs to a seven-group typology. The two clus-

terings share five almost identical clusters. Women that mostly work full-time before having a

child late and switching to part-time work and women not having a child with unstable profes-

sional trajectories compose one cluster in the eight-group typology built with optimal matching

with substitution costs based on transition rates. As the grouping of these two situations is

clearly not desirable, the clustering in seven groups built with standard optimal matching is

preferable. This seven-group clustering has no cluster that is completely heterogeneous (the

minimum ASWw by group being 0.18), and it summarises the channels efficiently and equally.

Moreover, it is interesting since it separates women that stopped working at child birth between

the ones that stayed in this situation from the ones that started working part-time the child

growing (Figure 5.8). Concerning the two other dissimilarity measures, the results were in-

conclusive for dynamic Hamming distance and a ten-group stand out with Hamming distance.
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Even if it lags slightly behind in terms of statistical characteristics, it may be of interest, de-

pending on the analysis, to have a typology that takes into account differences in the timing

of the child birth. In the case of the joint analysis of child and professional trajectories, EA is

more suitable.

Child/Cohabitational status Applying MSA, the two groups clustering clearly gives the

best ASWw and HC values for every dissimilarity measure considered. This clustering, which

is almost identical for every dissimilarity measure, separates women according to whether they

had a child in their household at some point or not. However, as mentioned before, this

clustering is not interesting from the point of view of the analysis. Among the other potentially

selected clusterings, very few takes the association between the domains into account. The

two clusterings that are the most sensible are the four- (Figure 5.9) and seven-group (Figure

5.10) clusterings built with optimal matching with substitution costs based on transition rates.

Even if the seven-group clustering does not clearly take the association between the domains

into account since only the ASWw is outside the 95% interval, it captures more situations. In

particular, the separation between early, standard and late child birth is of interest.

Concerning EA, the application of optimal matching either with unit substitution costs or

substitution costs based on transition rates both leads to an almost identical five-group solution.

However, we observe the same behaviour as with the joint analysis of child, cohabitational and

professional channel: the fourth cluster contains all the rarest situations. For example, this

cluster merges together women that have a child after 40 years old with women that mainly lived

with one parent (Figure 5.11). Moreover, it consists of one large group, containing around 70%

of the sequences, and four small clusters. Another possibility was the seven-group clustering

built with dynamic Hamming distance. It is close to the seven-group clustering selected with

MSA, agreeing on the classification of 81% of the sequences. Therefore, both clusterings share

similar statistical characteristics. However, the clustering built with EA is less robust in terms

of interpretation. Indeed, women that have a child in their forties are grouped with women

that do not have a child.

Obtaining clusterings that were similar with two different methods, namely MSA and EA,

and two different dissimilarity measures, is a good sign towards the robustness of this clustering

in seven groups.

5.5 Discussion

In this study, we compared two approaches that allow us to take into account simultaneously

sequences from different domains. With the extended alphabet (EA), the multiple sequences

are combined in a single one, while multichannel sequence analysis (MSA) is an extension of
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optimal matching to multiple sequences. To compare these two approaches in a real context, we

used data from the Swiss household panel. Four channels, namely child, cohabitational status,

professional status, and health issues, were considered. Moreover, even if the focus was mainly

on the comparison between these two approaches, the procedure that we applied may serve as

a guide to realise a joint sequence analysis. In particular, we introduce several criteria, based

on the last methodological advances, to compare joint clusterings.

For a joint analysis to be sensible, the channels should be associated. Therefore, as a first

step, Cronbach’s alpha and PCA are applicable to determine the level of (linear) association

between the channels. Then, clustering tools should be chosen. It mainly involves three choices:

the clustering algorithm, the dissimilarity measure and the method (EA vs. MSA). Ward’s

hierarchical algorithm is a standard choice with sequences. Then, the choice of the dissimilarity

measure has a strong impact on the characteristics that will shape the clustering. Along this

line, Studer and Ritschard (2016) give guidelines, in the case of a single channel, on how

to choose the right measure for each analysis, especially in terms of sensibility to sequencing,

duration and timing. In this study, we observed that their analysis extends smoothly to the case

of multiple sequences. Hamming-like dissimilarity measures were more sensitive to differences in

terms of timing, while OM-like measures were more sensitive to differences in duration, without

being completely insensitive to differences in timing. The use of substitution costs based on

transition rates is not very convincing. Although the idea is to create proximity between states,

the substitution costs are generally each very close to each other. Moreover, this strategy is

theoretically questionable. First, the transition between states is not always synonymous with

sociological proximity. Second, the substitution costs may induce violations of metric properties,

such as the triangle inequality. Since algorithms for computing the optimal matching distance,

such as Needleman and Wunsch (1970), assume that the metric properties are satisfied by the

costs, extended alphabet with substitution costs derived from the transition rates should not

be used in this case (see also Elzinga and Studer (2015) for a thorough explanation of the

importance of the triangle inequality). This issue is more salient when the alphabet is large

and, therefore, when EA is used. Hence, we argue against the use of substitution costs based

on transition rates.

The choice of the method is the key aspect of our study. Results show that neither of

the two approaches is obviously superior. This is not surprising since there is generally no

absolute truth when examining a typology based on real data. However, we observe differences

in behaviour between these two methods and situations where one or the other method appears

more appropriate. The main difference between the two methods is that EA considers each

state to be different from the others, whereas with MSA, substitution costs are lower if there

is a state in common. For example, considering the case of professional and child channels,

the states 0 to 4 years old/Non working and 0 to 4 years old/Full time are considered as two
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completely different states by EA, but the difference is less with MSA, since the difference

is then only due to the professional channel. Therefore, EA seems useful in mainly three

situations. First, when states of the combined alphabet cover different sociological realities,

even if they share an individual state in common. Indeed, EA will have a tendency to group

them well in different clusters, while this could be less clear with MSA, since there is a proximity

between the states due to the common individual state. Then, if one is especially interested in

framing rare situations, EA could be of interest. For example, with the joint analysis of child

and cohabitational channels, the chosen clustering has two very small clusters of women that

never had a child and who, respectively, worked mostly part-time or not at all. Finally, EA is

more flexible regarding the dissimilarity measures available, when only optimal matching-like

dissimilarities are available with MSA. In all other situations, MSA seems more adapted.

This research suffers from some limitations. By selecting only complete sequences without

any missing data, we based our analyses on a relatively simple dataset, which could be consid-

ered a limitation even though our goal was only to compare MSA and EA. Then, we compared

the method on a single dataset. Even if we studied different scenarios (four channels with

various interrelations between them and separated analyses for men and women), we cannot

claim to have captured all possible situations. Moreover, other choices could have been made

regarding the clustering tools, possibly providing alternative conclusions. For instance, even

if a large range of alternative dissimilarity measures are available, we focused on dissimilarity

measures that are sensitive to differences in terms of timing and duration but not in terms of

sequencing (e.g. the order of the states). Then, we used a hierarchical clustering with Ward’s

linkage, whereas many other clustering algorithms are available. We could have opted for a

different linkage (e.g. a complete one), and partitioning around medoids would also have been

possible. Finally, there is a wide range of cluster quality indices that have the ability to capture

the additional characteristics of a clustering. In particular, the process we applied to determine

whether a clustering takes into account the association depends on the cluster quality index

chosen. Therefore, it may happen that a clustering quality index is better on the empirical data

than on unstructured data, while another is not, depending on the characteristic of a clustering

that is captured by the cluster quality indices.

Although we decided to keep only sequences without missing data to avoid an interaction

between them and the object of our research, missing data are unavoidable in practice. It

would thus be interesting to determine how missing data and the procedures to deal with them

interact with the MSA and EA approaches. The two most commonly used strategies to deal

with missing data in the case of sequences are to consider missing data as an additional state in

the alphabet, or to impute them. With the first strategy, an extended alphabet could become

even larger, especially if the missing data in each channel are replaced by a different additional

state. For instance, in the case of the child, cohabitational status, and professional status
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channels, the extended alphabet would have a size of 120 with missing data as an extra state in

each individual channel, while it is 60 without missing data. Moreover, when states are missing

in multiple channels, EA takes that into account since it is considered as a different state, while

this does not affect MSA markedly since the missing data are substituted into each channel

separately. Considering an imputation strategy such as the one proposed by Halpin (2016b),

the impact on the results provided by both approaches is less clear. Nevertheless, if multiple

imputation is used and if the typology is identified on the basis of a large dataset combining all

replications of the multiple imputation instead of working independently on each replication,

the size of the extended alphabet could increase greatly. More research is clearly necessary on

this point.

To summarise, we found that although the results are sometimes close, the MSA and EA

approaches are still two distinct methods. Although MSA is generally easier to use and applies

to more situations, EA can sometimes identify original typologies. Hence, it should also be

considered when multiple channels are analysed simultaneously. It could also be of interest to

combine the two approaches by building an extended alphabet from some channels and then

using MSA to combine it with other channels. In this way, it could be possible to control for

the risk of a too large extended alphabet.
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Figure 5.4: Women subset: Chronograms of the six-group typology of child, cohabitational and
professional status channels obtained with MSA with standard optimal matching.
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Figure 5.5: Women subset: Chronograms of the eight-group typology of child, cohabitational
and professional status channels obtained with MSA with standard optimal matching.
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Figure 5.6: Women subset: Chronograms of four-group typology of child, cohabitational and
professional status channels obtained with EA with substitution costs based on transition rates.
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Figure 5.7: Women subset: Chronograms of the five-group typology of child and professional
status channels obtained with MSA with Hamming distance.
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Figure 5.8: Women subset: Chronograms of the seven-group typology of child and professional
status channels obtained with EA with standard optimal matching.
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Figure 5.9: Women subset: Chronograms of the four-group typology of child and cohabitational
status channels obtained with MSA with substitution costs based on transition rates.
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Figure 5.10: Women subset: Chronograms of the seven-group typology of child and cohabita-
tional status channels obtained with MSA with substitution costs based on transition rates.
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Figure 5.11: Women subset: Chronograms of the five-group typology of child and cohabitational
status channels obtained with EA with substitution costs based on transition rates.



Chapter 6

Multichannel imputation

6.1 Introduction

In chapter 4, MICT and MICT-timing have emerged as the preferred multiple imputation

methods for life course data and, more broadly, for categorical longitudinal data. One of

the main limitations of both methods is that they are restricted to the imputation of single

trajectories. However, in many cases, the focus is on analysing multiple trajectories jointly,

such as when studying work and family domains. Moreover, even with a single channel, the

imputation quality may improve when other related trajectories are considered. Therefore,

the main goal of this chapter is to extend MICT and MICT-timing for the imputation of

multichannel sequences. This new algorithm, which we call MICT-multichannel, was compared

to other algorithms commonly used for dealing with missing data in a multichannel context.

Furthermore, this comparison enabled the derivation of preliminary guidelines for imputing

missing data in multichannel sequences, addressing the current lack of such guidelines.

The current approaches available for handling missing data in multichannel sequences do

not provide complete satisfaction. The deletion of the trajectories that have missing values

is generally unsuitable. First, a single missing value in one of the trajectories leads to the

deletion of all the information for an individual, which is wasteful and impact the power of the

statistical analysis. Then, when the missing data are not MCAR, which is the most common

situation, deleting missing data often induces bias. Weighting may be used to reweight the

fully observed trajectories potentially reducing bias. However, the sample size would still be

smaller, and vulnerable individuals, such as ones with frequent changes in their professional

trajectories are more likely to be missing, which cannot be fully corrected even with weighting.

Likelihood and Bayesian methods are difficult to apply with categorical data, because in most

applications, a Gaussian distribution is fitted even to categorical data (Honaker et al., 2011).

This approach is not ideal because Gaussian distributions are suitable for continuous data that

can take any value along a range. Categorical variables, on the other hand, represent distinct

120
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categories generally without a natural ordering, making Gaussian distribution ill suited for

modelling them accurately.

Regarding multiple imputation methods, fully conditional specification (FCS) can be easily

extended to impute multiple trajectories by considering the repeated measurements of each

trajectory as distinct variables. However, FCS may sometimes experience convergence issues

(Kalaycioglu et al., 2016) and does not really consider the longitudinal nature of the data.

Nevalainen et al. (2009) proposed two-fold fully conditional specification (two-fold FCS) to

address these issues. Two-fold FCS runs through the variables at a given time point several

times before moving on to the next time point. However, even if two-fold FCS better takes

the longitudinal characteristic into account, it is still based on the functioning of FCS, which

was built for cross-sectional data. As we have seen in the last chapter, FCS lies behind MICT

and MICT-timing for the treatment of missing data in life course data. However, while MICT

and MICT-timing have emerged as preferred methods for addressing missing data in longitu-

dinal categorical data, they are not well suited for imputing multichannel sequences. Imputing

multichannel sequences using these methods would involve treating each channel separately,

thereby ignoring the association between the channels.

We extend MICT for the imputation of multichannel sequences and compare its performance

with other commonly used algorithms for handling missing data in a multichannel context. We

evaluate these algorithms under different scenarios to determine whether MICT-multichannel

is always the most effective approach or if another algorithm is more suitable in some cases.

In the previous chapter, we observed that MICT-multichannel performs particularly well when

the trajectories exhibit minimal transitions. We investigate whether this observation extends

to the multichannel case and the MICT-multichannel algorithm. Additionally, we explore the

impact of the inter-channel association on the imputation process, as the importance of cross-

sectional information varies depending on the level of association between channels. Since

MICT-multichannel operates on the same principles as the MICT algorithm, which is designed

for the imputation of longitudinal data, it is of interest to study its behaviour as the inter-

channel association grows stronger and, hence, a good use of the cross-sectional information

becomes crucial.

When comparing multiple imputation methods, a critical question is how to determine which

method is superior. One approach is to ensure that the imputed datasets have similar char-

acteristics to the complete dataset since datasets with similar characteristics tend to produce

similar statistical results. However, given the impossibility of capturing all the characteristics

of the complete dataset, it is also essential to measure the impact on statistical results. In

this chapter, we take a comprehensive approach by examining both a wider perspective and

a narrower point of view. The wider perspective focuses on the similarity of characteristics

between imputed datasets and the complete dataset, while the narrower viewpoint examines
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the impact on clustering results. By considering both perspectives, we gain a more thorough

understanding of the performance of imputation methods, allowing us to make more informed

decisions.

To evaluate the performance of imputation methods, we employed two simulation frame-

works, both of which involve the simulation of missing data on complete datasets. These

simulations were designed to mimic the types of missing data that can occur in multichannel

sequences. The first framework provides a controlled environment to evaluate the performance

of the imputation methods under different rates of transition and association between channels.

Concretely, we created multichannel sequences by duplicating single channels and permuting

varying percentages of sequences from the duplicated channel. Through these permutations,

we were able to manipulate the level of association between channels. For this framework, we

chose three datasets as a basis for duplication, based on their transition rates, controlling for

the reliability of longitudinal predictors during the imputation process.

While the first simulation framework allowed us to identify the strengths and weaknesses of

the MICT-multichannel algorithm and the algorithms it is compared with, it has limitations. By

artificially creating multichannel trajectories, we approximate the relationships between chan-

nels that may be observed in reality, but this approximation may not be perfect. Specifically,

clustering these artificially constructed multichannel sequences may not accurately represent

the clustering of real-world multichannel data. To address these limitations, we employed a

second framework based on a real dataset. This framework allowed us to test the performance

of the imputation methods in a more realistic and applicable setting. In particular, we tested

the impact of the imputation methods on clustering results. Moreover, we added the stan-

dard method applied in sequence analysis, namely considering a missing state as a state itself

and considering a missing data as maximally distinct from any other state, including another

missing state.

The remainder of this article is as follows. We first describe the MICT-multichannel impu-

tation algorithm as well as the other algorithms that were compared. Then, the two simulation

frameworks are introduced. Finally, the results are presented and a discussion ends the chapter.

6.2 Algorithms

This section introduces the imputation algorithms that were compared and the parametrisa-

tions that were applied. We considered four different imputation algorithms: MICT, MICT-

multichannel, FCS and two-fold FCS. We applied the four imputation algorithms with a multi-

nomial imputation model. Indeed, as pointed out in the previous chapter, the random forest

model appears neither suitable for FCS nor MICT. Each imputation method was applied in a

multiple-imputation way. Ten completed datasets were built each time these algorithms were
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applied.

In addition to the described imputation methods, we also employed a complete case analysis

as a baseline when comparing the structure of the imputed datasets. This strategy, as previ-

ously emphasised, is still commonly used in social sciences (Berchtold, 2019). Furthermore, for

the comparison of clustering results, two ad hoc strategies tailored to sequence analysis were

included. The first strategy treats missing data as a separate state, allowing for the inclusion

of trajectories with missing data. However, this approach introduces unwanted similarities be-

tween trajectories with missing data in the same locations. The second strategy, which considers

missing data as maximally different from any other state, is less commonly used. However, as

discussed in the thesis introduction, it does not have the same drawbacks as the first strategy

and could serve as an interesting alternative.

MICT

The MICT imputation algorithm (Halpin, 2012, 2013, 2016b) was designed to specifically im-

pute missing data in a longitudinal setting. It fills gaps of missing data recursively from the

edges. The algorithm was already detailed twice in this thesis (subsection 2.7.4 and section

4.2), and therefore, we do not provide an extensive description here.

In the case of multichannel sequences, the algorithm is applied individually to each channel.

However, this strategy is not expected to effectively recreate cross-sectional consistency. The

purpose of applying the algorithm separately to each channel is primarily to investigate whether

the potential improvement in cross-sectional consistency achieved by MICT-multichannel comes

at the cost of longitudinal consistency.

Although the parametrisation with five previous and subsequent observations was shown

the best in Chapter 4, we applied MICT with only one predictor in the past and future to limit

computational burden. In most cases, both parametrisations showed similar results.

MICT-multichannel

The MICT-multichannel imputation algorithm is an extension of the MICT algorithm to handle

missing data in multichannel sequences. Its primary goal is to maintain the functionality of

the MICT algorithm by recursively filling in missing data gaps from the edges while ensuring

consistency across all channels. We first provide a general description of its idea, followed

by a detailed breakdown of its steps, and conclude by providing an example to illustrate its

implementation.

In the MICT-multichannel algorithm, to impute a missing value, in addition to previous

and subsequent observations (ensuring the longitudinal consistency), at least the corresponding

observed (or imputed) values from all the other channels, arising at the same time point to the

one to impute are used as predictors (ensuring the cross-sectional consistency). In some cases, it
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might be needed to add other time points from other channels (like the one just before or after).

For instance, when studying both professional and family domains, it is important to consider

the previous time point of the family domain when imputing the professional domain, as having

a child in the previous year may impact the individual’s professional status, particularly for

women.

• Initialisation phase

– The channels are ordered.

– Each channel is imputed with the MICT (or the MICT-timing) algorithm.

• Iteration phase

1. Going through the determined order, each channel is independently imputed with

the MICT (or the MICT-timing) algorithm using as covariates all other channels.

2. Step 1. is repeated a predefined number of iterations i.

The whole process is repeated a predefined number of times m to produce several completed

datasets.

During the initialisation phase, imputing each channel separately may lead to imputations

that do not make sense cross-sectionally, requiring several iterations to improve the imputations.

Additionally, some channels may be easier to impute due to their stability or lower rate of

missing data, resulting in fewer iterations needed when these channels are imputed first. To

account for these factors, we allow the user to modify two key parameters: the number of

iterations i and the order in which the channels are imputed.

We illustrate the algorithm with an example. It consists of three channels. Each channel

can take two states. We consider a minimal imputation model with one predictor in the past

and one in the future from the same channel and predictors from the same time point on the

other channels. We focus on one multichannel sequence:
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Each channel is first imputed separately with the MICT algorithm. This can lead to the

following imputed dataset:

Then, the first channel is imputed again. The core functioning of the MICT algorithm is kept,

which means the gaps are still filled recursively from the edges, but information from the other

channels is used to keep the cross-sectional consistency. To impute the first missing data of the

gap (pointed by a red arrow in the following figure), the previous and subsequent observations

of the same channel and the observation on the other channels at the same time point are used

(pointed by black arrows on the next Figure).

Then, the last missing value of the gap is imputed using the previously imputed value and

the observations arising at the same time point in the two other channels (pointed by black

arrows).
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Similarly, the two remaining missing values of this gap are imputed. Once the first channel

is imputed, the second channel is re-imputed, using the previous and subsequent observations

of the same channel and observations at the same time on every other channel. For example,

to impute the first missing data of the gap on the second channel (red arrow), the observations

pointed out by the black arrows are used as predictors.

Then, the third channel is imputed similarly, ending an iteration. The process of imputing

each channel again is repeated a predefined number of iterations.

As a summary, the MICT-multichannel imputation process keeps the core idea of the MICT

algorithm that fills gaps of missing data recursively from the edges. It extends to multichannel

sequences by integrating cross-sectional predictors during the imputation process.

Based on preliminary testing, it was observed that the algorithm performs well with a low

number of iterations. Hence, in this research, we conducted tests using one to three iterations.

In the second simulation setting, we tested each permutation of the channels. However, since

the individual channels are nearly identical in the first simulation framework, changing the

order does not provide significant variations.

Moreover, we base MICT-multichannel solely on MICT and not on MICT-timing. Incor-

porating MICT-timing would introduce additional complexity due to specific choices tailored
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to it, such as determining the time frame radius or deciding which channels should apply

MICT-timing versus MICT.

To strike a balance between computational burden and algorithm functionality, we employ

a minimal imputation model. This model involves using one predictor from the same channel

in both the past and future, along with the corresponding values from all other channels that

arise at the same time point.

FCS

FCS applies to longitudinal data by treating each measurement of each channel as a distinct

variable. Detailed descriptions of this algorithm can be found in two sections of this thesis,

namely subsection 2.7.4 and section 4.2. Therefore, similar to the MICT algorithm, we do not

provide a detailed explanation here.

Generally, the observations from the same time point of all the other channels and some

information from the same channels are used (Van Buuren, 2018). In Chapter 4, we observed

that using one predictor in the past and future is generally the best parametrisation with general

patterns of missing data. Therefore, one predictor in the past and future and information from

all other channels at the same time are used to impute a missing value.

Two-fold FCS

Two-fold FCS is a variation of FCS that involves iterating multiple times through the vari-

ables at a specific time point before moving on to the next one (Nevalainen et al., 2009). This

algorithm aims to effectively capture the longitudinal nature of the data while addressing con-

vergence challenges encountered by the standard FCS approach. It works as follows for the

imputation of longitudinal categorical data:

1. Missing data are first imputed using the marginal distribution of each variable.

2. A distinct imputation model is defined for each variable using a multinomial regression

or a random forest for categorical data.

3. The algorithm then runs through each time point.

(a) For each variable, it fits the imputation model. Missing values are then imputed

according to a random draw based on the probabilities predicted by the model.

(b) The previous operation is repeated a predefined number of iterations i

4. Step 3 is repeated until it reaches a predefined number of iterations j

5. The values obtained in the last iteration are kept.
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6. The process is executed several times if multiple imputations are required.

For its parametrisation, we followed the guidelines of Nevalainen et al. (2009), who suggested

using as predictors all observations arising at the same time point and a limited amount of

information from the same channel. Therefore, similarly to FCS, in addition to the states

observed simultaneously on the other channels, we used one predictor both in the past and

future. Moreover, we applied it with i = 3 and j = 10.

6.3 Simulation frameworks

We describe the two simulation frameworks. Firstly, we concentrate on the first simulation

framework, where we introduce the samples, the procedures for generating missing data, and

the criteria used for comparing the imputation algorithms. Then, we shift our attention to the

second simulation framework, which shares the same missing data generation procedures and

evaluation criteria as the first one. Therefore, we only describe the sample employed and the

clustering-related comparison framework.

6.3.1 First simulation framework

The main objective of this simulation framework is to investigate how the strength of cross-

sectional and longitudinal information affects the performance of MICT-multichannel relative

to the other algorithms. Indeed, as demonstrated in Chapter 4, MICT is particularly well

suited to impute trajectories with limited transitions.

To achieve this objective, the first simulation framework involves using a real dataset and

creating two identical channels from it. Three real samples were carefully selected based on

their transition rates. As the number of transitions in a trajectory increases, the reliability of

states within that trajectory diminishes for imputation purposes. Next, a percentage of the

sequences in one channel was permuted. The strength of association between the channels

weakens as more sequences are swapped and the imputation methods benefit less from the

information available in another channel. We explored three distinct percentages for sequence

permutations: 20%, 50%, and 80%. In the first case, the association between channels is high,

the second case represents an intermediate situation and in the last case, the association is

weak. Finally, missing data were simulated on both channels.

We first describe how the samples were built. Then, the different processes of missing

data generation are introduced. Finally, the different criteria to evaluate the quality of the

imputations are described.
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Samples

Three datasets were selected as a base for the creation of multichannel sequences, namely the

satisfaction with health status, the civil status and the professional status of women. Among

these three datasets, satisfaction with health status exhibited the highest degree of variability

(36.5% of transitions), while civil status demonstrated the lowest rate of transitions (3.6%).

The professional status of women represents an intermediate situation with 10% of transitions.

The trajectories for satisfaction with health and civil status were derived from the prospec-

tive survey conducted by the Swiss household panel, and were detailed in Chapter 4. On the

other hand, the professional status of women was constructed using the retrospective life-history

calendar from the Swiss household panel, which was also described in Chapter 4. To diminish

the computational burden, we selected professional trajectories of women instead of using the

entire dataset.

For each of the three datasets and varying percentages of permuted sequences, we con-

structed 100 multichannel datasets.

Missing data generation

The objective of the missing data generation process is to simulate patterns of missing data

that closely resemble those observed really in multichannel sequences. We have identified three

key variations in missing data patterns within multichannel sequences.

Firstly, the mechanism of missing data can vary, including Missing Completely at Random

(MCAR), Missing at Random (MAR), or Missing Not at Random (MNAR). Then, missing

data can occur at the same location across all channels or at different locations within each

channel. The former case arises when an individual misses a wave of data collection, resulting

in missing data in every variable or channel (unit-level missing data). The latter case typically

occurs when individuals fail to respond to certain items in a questionnaire, leading to item-level

missing data, or when individuals share more or less information about a variable compared

to others in a retrospective life course calendar. Moreover, multichannel sequences may have

varying degrees of missing data. This variability can be influenced by factors such as the life

domain (e.g. health data being more prone to missing data) or the data collection methodology

employed.

In the rest of this subsection, we first discuss the impact of these three parameters on the

imputation process. Subsequently, we describe how we operationalised these parameters in our

study. Finally, we analyse the characteristics of the datasets with generated missing data to

gain insights into their specific properties.

In terms of the missing data mechanism, we specifically simulated scenarios involving MAR

and MNAR missing data. We excluded MCAR as it is often considered an unrealistic assump-

tion. MAR is commonly assumed when applying multiple imputation techniques. However,
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since it is impossible to ascertain whether the missing data are MAR or MNAR, it is valuable to

explore how the methods perform when mistakenly assuming MAR while the data are MNAR.

Under the MAR mechanism, an imputation process can use observed information to make ac-

curate predictions, resulting in generally unbiased imputations. Conversely, with an MNAR

mechanism, missing data depend on unobserved information, leading to bias. Furthermore,

we considered two different scenarios for the percentage of missing data. As the proportion

of missing data increases, imputation becomes more challenging, and statistical analyses may

exhibit increased bias.

Finally, either the same pattern of missing data was applied to each channel or missing data

was applied independently to each channel. From the point of view of the treatment of missing

data, the differentiation between these two situations is interesting because, in the first case,

no information from other channels is available during the imputation process. In contrast, in

the second scenario, one or more observations from other channels may be present.

We now focus on the implementation of the three key parameters. With the MAR generation

process, a predefined percentage of sequences on which we simulate missing data is first selected.

Then, the probability of starting a missing spell depends on the previous state; some predefined

states have a higher probability of starting such a missing spell. If the previous state is missing,

the probability of missing is high (0.66) to create gaps. The MNAR generation process differs

from the MAR in that the probability of missing depends on the current state instead of the

previous one. Therefore, the probability of missing depends on information that is not observed

any more. We ensured that a given sequence has at most 75% of its time points that are missing.

Then, we considered two different scenarios for the percentage of missing data. For both

cases, the probability of missing is 0.06 if it is the first observation of the trajectory, 0.66 if the

previous observation is missing, and 0.20 for some predefined states, respectively, the previous

one for the MAR process and the current one for the MNAR process. However, it differs both

on the percentage of sequences of the dataset on which we simulated missing data, which are,

respectively, 60% for the “low” percentage scenario and 80% for the “high” percentage scenario,

and on the probability of triggering a missing spell for the other states, which are, respectively

0.03 and 0.05.

Finally, we either generated the same pattern on each channel or generated missing data for

each channel individually. For the first, we identified some combination of states between the

channels that have a larger probability of triggering missing values (for the MAR process) or

being missing (for MNAR process). Therefore, the probability of missing also depends on values

in other channels. For the latter, we applied the missing data generation process separately to

each channel.

Summarising, the characteristics considered are:

• MAR vs. MNAR missing data



6.3. SIMULATION FRAMEWORKS 131

• Percentage of missing data (low vs. high)

• Same pattern for each channel vs. Different pattern for each channel

Table 6.1 provides the average percentages of complete sequences, the overall average percent-

ages of missing data, the average mean length gap and the average percentages of gaps of length

one.

Since the probability of pursuing a gap is the same in all scenarios, the percentage of gaps of

length one and the average gap length are homogeneous. Regarding the percentage of complete

sequence and missing data, on the one hand, the results are almost identical between the MAR

and MNAR mechanisms. On the other hand, differences appear between missing data rates,

patterns and datasets. First, the percentage of missing data is higher, and the percentage of

complete sequences is lower when the scenario with a “high” rate of missing data is applied

instead of the “low” one. Then, the percentage of complete sequences is lower with different

patterns of missing data than with the same ones, but this is not necessarily the case for

the percentage of missing data. The preselection of the sequences subject to missing data

was made independently on each channel with different missing data patterns, inducing more

multichannel sequences with at least one missing value. Finally, the percentage of complete

sequences and missing data depends on the dataset and, more specifically, on the distribution

of the states with a higher probability of triggering a missing gap. For example, the Education

and Non-working states, which are the states with a higher probability of triggering a missing

gap, are widespread in the professional trajectories of women.
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dataset pattern rate of mechanism % complete % missing mean length % gaps of

missing sequences data gap length 1

Civil status

same

low
MAR 64.6 7.1 2.6 37.7

MNAR 64.4 7.2 2.6 37.6

high
MAR 41.8 12.2 2.6 37.5

MNAR 41.6 12.3 2.6 37.5

different

low
MAR 35.6 10.7 2.6 37.7

MNAR 35.6 10.6 2.7 37.1

high
MAR 14.5 16.3 2.7 37.1

MNAR 14.5 16.2 2.7 37.1

Health satisfaction

same

low
MAR 58.6 8.4 2.6 37.6

MNAR 58.3 8.5 2.6 37.6

high
MAR 36.9 13.7 2.6 37.5

MNAR 36.7 13.8 2.6 37.4

different

low
MAR 17.8 18.4 2.6 37.4

MNAR 17.9 18.3 2.6 37.3

high
MAR 5.0 24.9 2.6 37.2

MNAR 5.1 24.9 2.6 37.2

Professional

same

low
MAR 42.2 16.8 2.7 36.7

MNAR 42.2 16.9 2.7 36.6

high
MAR 22.1 23.1 2.7 36.6

MNAR 22.1 23.3 2.7 36.7

different

low
MAR 24.5 11.4 2.7 36.2

MNAR 25.3 11.2 2.7 36.1

high
MAR 8.0 17.1 2.7 36.1

MNAR 8.4 16.8 2.7 36.1

Real case

same

low
MAR 48.4 11.5 2.7 36.4

MNAR 48.5 11.7 2.7 36.4

high
MAR 27.3 17.2 2.7 36.3

MNAR 27.2 17.4 2.7 36.3

different

low
MAR 13.4 9.7 2.8 35.5

MNAR 13.6 8.8 2.8 35.5

high
MAR 2.6 14.2 2.8 35.6

MNAR 2.6 14.2 2.8 35.7

Table 6.1: Average percentage of complete sequences, missing data by dataset, mean length of
the gaps of missing data and percentage of gaps of length 1 by dataset and scenario (pattern x
rate of missing x mechanism).
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Evaluation criteria

Studying multichannel trajectories within the framework of the life course theory necessitates

a focus on three key characteristics: longitudinal characteristics, local association between

trajectories, and global association. Studer and Ritschard (2016) screened three longitudinal

characteristics of interest when studying a sociological process: the duration, the sequencing

and the timing of the process. In addition, the local association between trajectories is cru-

cial in understanding the immediate interconnectedness and dependencies between different life

domains or individuals. For instance, research has shown that couples can directly influence

each other’s health trajectories (Kiecolt-Glaser and Wilson, 2017), highlighting the importance

of considering local associations when examining multichannel trajectories. Finally, the global

association captures the broader interconnectedness and potential long-term effects between dif-

ferent life domains or individuals. An illustrative example of this is the influence of employment

trajectories on later health outcomes (see e.g. Devillanova et al., 2019).

By considering these three characteristics, we can gain a comprehensive understanding of

multichannel trajectories. Therefore, an effective imputation process should aim to create

completed datasets that preserve these characteristics. We next provide a detailed explanation

of how we measured these three characteristics in the context of this research.

Longitudinal consistency To assess the data’s consistency over time, we used three criteria

introduced in the previous chapter. These criteria relate to the states’ timing, duration, and

sequencing. A suitable imputation method should result in sequences similar to the original in

terms of these criteria. With the application of multiple imputation methods, ten completed

datasets were generated. As a result, these criteria were computed for each replication, and

the mean value was calculated. Therefore, for each criterion, a value of zero means that the

treated dataset possesses characteristic regarding this criterion identical to the original dataset.

The higher the value, the more distorted this characteristic is. Even if the raw values of these

criteria are difficult to interpret, we can compare the values obtained between the algorithms

to see the relative gains (or losses) between the imputation methods.

Local association This criterion was computed for each pair of channels. It is based on

Cramer’s V. This measure quantifies the association between two categorical variables.

At each time point, we calculated the absolute difference in terms of Cramer’s V between the

imputed and original datasets. These absolute differences were then averaged. The resulting

criterion ranges from 0 to 1, with values closer to 0 indicating better agreement between the

imputed and original datasets.

The distribution of the mean Cramer’s V in the complete duplicated datasets is illustrated

through boxplots in Figure 6.1. The values are almost identical between the different datasets.
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Figure 6.1: Boxplots, by dataset, of the mean Cramer’s V for the three percentages of permuted
sequences (20%, 50% and 80%). Each boxplot is based on 800 values, which correspond to the
100 generated datasets of the eight scenarios.

The median is around 0.2, 0.5 and 0.8 when 80%, 50% and 20% of the trajectories of the

duplicated dataset are permuted. For example, Cramer’s V ranges between 0.13 and 0.31, 0.43

and 0.59, and 0.75 and 0.88 for the civil status. Therefore, as expected, we have three different

scenarios based on different degrees of associations between the channels.

Global association As for the local association, the global association criterion was com-

puted for each pair of channels. It is based on Cronbach’s α, which measures the global

association between channels (Piccarreta, 2017). Cronbach’s α works the following way:

• A dissimilarity measure is chosen.

• For each domain, the dissimilarity is computed for each pair of sequences.

• The pairwise dissimilarities are normalised by domain.

• The Cronbach’s α is computed as

α =
C

C − 1

(
1−

∑C
i=1 var(

~di)

var(
∑C

i=1
~di)

)
, (6.1)

where ~di is the vector of the pairwise dissimilarities computed on the ith channel and C

is the number of channels.

Even though Cronbach’s α can theoretically take negative values, Cronbach’s α typically

ranges from 0 to 1. A higher value indicates a stronger association between the channels.

The computation of Cronbach’s α depends on the choice of dissimilarity measure, and in this

research, we use the standard optimal matching measure.

The criterion is defined as the difference between Cronbach’s α calculated on the imputed

dataset and the original dataset. The criterion ranges from -1 to 1, with values closer to zero
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Figure 6.2: Boxplots of the Cronbach’s α for the three percentages of permuted sequences (20%,
50% and 80%) Each boxplot is based on 800 values, which correspond to the 100 generated
datasets of the eight scenarios.

indicating better agreement. A negative value suggests an underestimation of α on the imputed

dataset, while a positive value indicates an overestimation.

Figure 6.2 shows the values computed on the complete duplicated datasets. Cronbach’s

alpha takes smaller values with the professional status trajectories than the two other datasets.

The median values are 0.12, 0.44 and 0.8 on the professional status, while they are 0.16, 0.49

and 0.81 on the civil status and 0.17, 0.50 and 0.82 on the satisfaction with health status.

6.3.2 Second simulation framework

The second simulation framework serves two purposes. Firstly, it facilitates the incorporation

of a more realistic association between channels compared to the first framework. Secondly, it

enables the examination of the effects of missing data handling methods on clustering results.

For the latter point, we compared both the imputation methods and two standard strategies

tailored to sequence analysis, namely considering a missing state as a state itself or considering

a missing state as maximally different from any other states, including another missing state.

We considered one of the most typical cases in joint analysis of multichannel trajectories,

specifically the analysis of professional and family domains. To conduct our analysis, we used

a dataset which was derived from the retrospective life history calendar employed during the

2013 wave of the Swiss household panel. The sample consists of women who provided responses

pertaining to professional activities, living arrangements, and family events, without any miss-

ing data between the ages of 20 and 45. This results in a sample size of size 1260. The dataset

comprises three channels: child, cohabitational, and professional status.

In the context of joint clustering, we focused solely on the child and professional status

domains, as the primary interest lies in exploring the association between these trajectories

rather than cohabitational status. However, the inclusion of cohabitational status during the

imputation process could be beneficial and potentially enhanced the quality of the imputations,

despite not being directly involved in the clustering analysis.
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The missing data generation processes and the criteria employed to assess the structure of

the imputed dataset obtained through multiple imputations are identical to those in the first

simulation framework. Concerning the criteria, Cronbach’s alpha is 0.53 between child and co-

habitational status, 0.33 between child and professional status and 0.22 between cohabitational

and professional status. The mean Cramer’s V is 0.36 between child and cohabitational status,

0.34 between child and cohabitational status and 0.23 between cohabitational and professional

status.

Only the framework used to study the impact of different methods for handling missing

data on the joint clustering of professional and child status remains to be described.

Impact on clustering results

With multichannel sequences, the goal is often to extract a typology through clustering. We

focus here on the clustering of the child and professional status. We applied a hierarchical

clustering with Ward’s linkage and optimal matching with unit cost to measure the pairwise

dissimilarities between sequences. This is the standard procedure in sequence analysis. More-

over, both MSA and EA were considered. We simplified the situation by assuming that the

number of groups is known beforehand.

We first describe potential clusterings obtained with the framework developed to compare

joint clusterings in Chapter 5. Then, we detail how clustering work with multiple imputation

methods. Finally, we describe the criteria applied to assess the quality of imputation methods

regarding clustering results.

To identify potential clusterings, we applied the framework developed in Chapter 5. With

the extended alphabet, we observe an extremum in terms of ASWw and HC with a clustering

in five groups. Moreover, a local extremum appears with a seven groups clustering. The

clustering into five groups takes the association between the domains into account since both

ASWw and HC values are outside the 95% interval built with unstructured data. For the

clustering in seven groups, only ASWw is outside this interval. The five-group clustering has

no completely heterogeneous group, while one group of the seven-group clustering has an ASWw

by group smaller than 0.1. The five-group clustering is more driven by the child domain, while

the R2 by group is balanced for the seven-group clustering. Even if it is worse in terms of

statistical characteristics, the seven-group clustering allows having a more detailed clustering.

For example, this clustering distinguishes between women who stay unemployed, the child

growing, and those who switch to part-time employment. Therefore, we considered these two

clusterings in this analysis.

Concerning MSA, an extremum is attained for ASWw with a four-group clustering, while

a global minimum is attained for HC with the seven-group clustering. In both cases, we do

not observe an extremum for the other cluster quality index, but we do observe an inflexion
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point. The seven-group clustering has both ASWw and HC values outside the 95% interval,

while it is the case only for ASWw in the case of the four-group clustering. Both clusterings

are more driven by the child domain. In both cases, no group has an ASWw smaller than

0.1. The smaller group of the seven-group clustering contains 8% of the weighted sequences,

which is not too small. The seven-group clustering has the advantage to distinguish between

an early, standard and late child’s arrival in the household. We considered both clusterings for

the analysis.

With multiple imputation methods, we apply the strategy of Halpin (2012) to build a clus-

tering after missing data were imputed through multiple imputation. This method involves

stacking all the completed datasets and realise the clustering on this stacked dataset. Sub-

sequently, a multichannel sequence is assigned to the group that contains the majority of its

corresponding imputations. In the event of a tie, the sequence is randomly assigned to one of

the tied groups.

To evaluate the similarity between the original dataset clusterings and those obtained after

handling missing data, we used the Adjusted Rand Index (ARI) (Rand, 1971; Hubert and Ara-

bie, 1985). This measure is widely used for comparing two clusterings (Santos and Embrechts,

2009; Warrens and van der Hoef, 2022). It is based on the Rand index, which is defined as

the fraction of object pairs that are classified in the same way in both clusterings. This in-

cludes cases where object pairs are assigned to the same group in both clusterings, as well as

cases where they are assigned to different groups. ARI corrects the Rand index for agreement

obtained by chance (Albatineh et al., 2006).

To summarise, we have identified two clusterings built with MSA and two with EA on

the original dataset, that we tried to reproduce after handling missing data with the different

methods. The quality of the clusterings was measured through ARI.

6.4 Results

We split the presentation of the results between the two simulation frameworks. In both frame-

works, we examine the characteristics of the completed datasets generated through multiple

imputation algorithms and the complete dataset obtained with complete case analysis (CCA).

To assess the performance of these methods, we used criteria related to longitudinal consistency,

local and global association. Furthermore, in the second simulation framework, we assessed the

influence on the joint clustering of professional and child domains.

In each application of the imputation algorithms, ten completed datasets were constructed.

Consequently, the criteria were computed for each replication, and the resulting values were

aggregated. Regarding CCA, the computation of the criteria was performed with the dataset

obtained by removing each multichannel trajectory that contained at least one missing value.
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The results between the MAR and MNAR mechanisms were similar. Therefore, to simplify

the discussion, we only present results obtained with the MAR mechanism.

6.4.1 First simulation framework

We first detail the MICT-multichannel imputation algorithm’s parametrisation. The algorithm

requires the user to specify two parameters: the number of iterations and the order of the

channels. Then, we present the comparative analysis, evaluating MICT-multichannel opti-

mal parametrisation against other considered methods, including CCA, separate application of

MICT on each channel, FCS, and two-fold FCS.

Parametrisation of MICT-multichannel

The results of the MICT-multichannel algorithm do not improve with an increase in the num-

ber of iterations for the civil status trajectories, either in terms of Cramer’s V (Figure F.1),

Cronbach’s α (Figure F.2), or longitudinal characteristics (Figures F.3 and F.4).

The picture is different for the satisfaction with the health and professional status dataset.

On the one hand, the number of iterations does not change the results when the same missing

data patterns were applied to each channel. On the other hand, the local association is better

when increasing the number of iterations from one to two, as shown in Figures 6.3 and 6.5.

The lower the percentage of permuted sequences, the greater the differences. These differences

are less marked for professional status than satisfaction with health status trajectories. For

the latter, these gains come at the expense of Cronbach’s α, which is slightly worse with two

iterations than with one, as shown in Figure 6.4. However, Cronbach’s alpha does not change for

the professional trajectories (Figure F.7), and the longitudinal characteristics are not impacted

for either dataset, as seen in Figures F.5, F.6, F.8 and F.9.

Therefore, two iterations is the most suitable parametrisation.

Comparison between the methods

We proceed with the comparative analysis between the recently identified optimal parametrisa-

tion for the MICT-multichannel algorithm and the other approaches for handling missing data.

The primary objective is to assess the performance of the MICT-multichannel algorithm rela-

tive to these methods, with a specific focus on the impact of the strength of both longitudinal

and cross-sectional information.

The results for the local association are displayed in Figures 6.6, 6.10 and 6.14 for civil

status, health satisfaction status and professional status, respectively. Figures 6.9, 6.13 and

6.17 show the results for Cronbach’s α. Boxplots for the three longitudinal criteria are shown

in Figures 6.7 and 6.8 for the civil status (the first one corresponds to the same patterns of
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missing data and the second one to different patterns), Figures 6.11 and 6.12 for the satisfaction

with health status and Figures 6.15 and 6.16 for the professional status.

Applying the MICT algorithm separately to each channel underestimates Cramer’s V, and

hence the local association between channels. The size of the bias depends on the magnitude

of the local and global association, the rate of transition in the dataset and the percentage of

missing data: the larger the local association, the higher the percentage of missing data and

the more subject to transitions the channels are, the larger the bias. Since MICT-multichannel

often presents a bias close to zero for Cramer’s V, the gain obtained from its application

over the standard MICT algorithm is also more prominent in these three situations. Those

behaviours are not surprising. First, if a dataset is not subject to many transitions, previous

and subsequent observations are good predictors and values from the other channels add little

information. Then, the lower the Cramer’s V, the less information is added by considering the

other channel. Finally, more missing data implies more uncertainty and, potentially, bias. As

for Cramer’s V, MICT leads to an underestimation of Cronbach’s α. Conversely, except for the

civil status, MICT-multichannel generally generates completed datasets where Cronbach’s α is

overestimated.

In terms of longitudinal characteristics, MICT and MICT-multichannel show an almost

identical performance on the civil status trajectories. MICT is better than MICT-multichannel

regarding the imputation of professional status. The differences are more marked for the se-

quencing characteristic. For satisfaction with health status, MICT-multichannel is slightly

better than MICT when missing data were generated separately on each channel. In addition,

MICT-multichannel is slightly better on the sequencing but worse on the duration when the

missing data are generated simultaneously on each channel. However, in general, the differences

between the two algorithms regarding the longitudinal criteria are marginal.

In most cases, CCA is worse than MICT-multichannel regarding Cramer’s V. The bias is

more variable when different patterns of missing data were applied to each channel due to

the significantly reduced number of complete remaining multichannel sequences in this case.

However, there are scenarios, such as the same pattern based on a low rate of missing data,

where CCA is best, showing less bias than MICT-multichannel. CCA tends to overestimate

Cronbach’s α when the same pattern of missing data was applied to each channel. In contrast,

the median bias is closer to zero when different patterns were applied. In some scenarios, the

median bias is lower for CCA than for MICT-multichannel. However, the range of values is

clearly wider with CCA. Regarding the longitudinal characteristics, CCA is, as was already

pointed out during the analysis of the last chapter, more impacted in terms of timing than

duration and sequencing. Concerning the timing criteria, the results are clearly worse than all

the imputation methods. However, for the duration and the sequencing, it shows better results

than FCS and two-fold FCS, but not MICT-multichannel, in most scenarios related to the civil
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status.

Results between FCS and two-fold FCS are very close, especially regarding the local and

global associations. Concerning the longitudinal characteristics, there is a tendency for two-fold

FCS to lag behind FCS in terms of duration. Both algorithms lead to overestimated Cronbach’s

α. Contrary to MICT-multichannel, it is also the case for the civil status trajectories.

Both FCS and two-fold FCS are outperformed by MICT-multichannel regarding the im-

putation of the civil status dataset, in every scenario and for every criterion considered. In

particular, regarding the longitudinal criteria, the differences are more pronounced for the

duration and the sequencing than the timing. On the professional status trajectories, the lon-

gitudinal criteria are, except for the duration, close between MICT-multichannel and the two

FCS algorithms, the last two being even better in some cases. However, in most cases, the

biases of Cramer’s V and Cronbach’s α are smaller with MICT-multichannel. With satisfaction

with health status, MICT-multichannel is better regarding Cronbach’s alpha, and the results

are similar for the longitudinal criteria. Concerning Cramer’s V, MICT-multichannel is better

when the same pattern is applied to each channel, while FCS and two-fold FCS are better when

different patterns are applied. Note that when different patterns were generated with a high

percentage of missing data, the variance of the bias is smaller with MICT-multichannel.
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Figure 6.3: MAR mechanism - Boxplots of the criteria relative to the local association, ,
obtained from handling missing data on the satisfaction with health status dataset with 1
to 3 iterations of the MICT-multichannel algorithm. Each subplot corresponds to a scenario
of missing data generation and is labelled as “type of pattern / rate of missing data / % of
sequences from the duplicated dataset permuted”.
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Figure 6.4: MAR mechanism - Boxplots of the Cronbach’s α bias, obtained from handling
missing data on the satisfaction with health status dataset with 1 to 3 iterations of the MICT-
multichannel algorithm. Each subplot corresponds to a scenario of missing data generation
and is labelled as “type of pattern / rate of missing data / % of sequences from the duplicated
dataset permuted”.
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Figure 6.5: MAR mechanism - Boxplots of the criteria relative to the local association, ,
obtained from handling missing data on the professional status dataset with 1 to 3 iterations
of the MICT-multichannel algorithm. Each subplot corresponds to a scenario of missing data
generation and is labelled as “type of pattern / rate of missing data / % of sequences from the
duplicated dataset permuted”.
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Figure 6.6: MAR mechanism - Boxplots of the criteria relative to the local association, , ob-
tained from handling missing data on the civil status with the five considered methods, namely
CCA, MICT applied to each channel separately (labelled as “MICT-s”), MICT-multichannel
(labelled as “MICT-m”), FCS and two-fold FCS (labelled as “2folds FCS”). Each subplot cor-
responds to a scenario of missing data generation and is labelled as “type of pattern / rate of
missing data / % of sequences from the duplicated dataset permuted”.
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Figure 6.7: MAR mechanism - Boxplots of the longitudinal characteristics bias, obtained from
handling missing data on the civil status dataset with the five considered methods, namely
CCA, MICT applied to each channel separately (labelled as “MICT-s”), MICT-multichannel
(labelled as “MICT-m”), FCS and two-fold FCS (labelled as “2folds FCS”). Each row of sub-
plots corresponds to a scenario of missing data generation with a same pattern of missing values
and is labelled as “longitudinal characteristic - type of pattern / rate of missing data / % of
sequences from the duplicated dataset permuted”.
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Figure 6.8: MAR mechanism - Boxplots of the longitudinal characteristics bias, obtained from
handling missing data on the civil status dataset with the five considered methods, namely
CCA, MICT applied to each channel separately (labelled as “MICT-s”), MICT-multichannel
(labelled as “MICT-m”), FCS and two-fold FCS (labelled as “2folds FCS”). Each row of sub-
plots corresponds to a scenario of missing data generation with a different pattern of missing
values and is labelled as “longitudinal characteristic - type of pattern / rate of missing data /
% of sequences from the duplicated dataset permuted”.
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Figure 6.9: MAR mechanism - Boxplots of the Cronbach’s α bias, obtained from handling
missing data on the civil status dataset with the five considered methods, namely CCA, MICT
applied to each channel separately (labelled as “MICT-s”), MICT-multichannel (labelled as
“MICT-m”), FCS and two-fold FCS (labelled as “2folds FCS”). Each subplot corresponds to
a scenario of missing data generation. It is labelled as “type of pattern / rate of missing data
/ % of sequences from the duplicated dataset permuted”.
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Figure 6.10: MAR mechanism - Boxplots of the criteria relative to the local association, ,
obtained from handling missing data on the satisfaction with health status with the five con-
sidered methods, namely CCA, MICT applied to each channel separately (labelled as “MICT-
s”), MICT-multichannel (labelled as “MICT-m”), FCS and two-fold FCS (labelled as “2folds
FCS”). Each subplot corresponds to a scenario of missing data generation and is labelled as
“type of pattern / rate of missing data / % of sequences from the duplicated dataset permuted”.
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Figure 6.11: MAR mechanism - Boxplots of the longitudinal characteristics bias, obtained
from handling missing data on the satisfaction with health status dataset with the five con-
sidered methods, namely CCA, MICT applied to each channel separately (labelled as “MICT-
s”), MICT-multichannel (labelled as “MICT-m”), FCS and two-fold FCS (labelled as “2folds
FCS”). Each row of subplots corresponds to a scenario of missing data generation with a same
pattern of missing values and is labelled as “longitudinal characteristic - type of pattern / rate
of missing data / % of sequences from the duplicated dataset permuted”.
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Figure 6.12: MAR mechanism - Boxplots of the longitudinal characteristics bias, obtained
from handling missing data on the satisfaction with health status dataset with the five con-
sidered methods, namely CCA, MICT applied to each channel separately (labelled as “MICT-
s”), MICT-multichannel (labelled as “MICT-m”), FCS and two-fold FCS (labelled as “2folds
FCS”). Each row of subplots corresponds to a scenario of missing data generation with a dif-
ferent pattern of missing values and is labelled as “longitudinal characteristic - type of pattern
/ rate of missing data / % of sequences from the duplicated dataset permuted”.
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Figure 6.13: MAR mechanism - Boxplots of the Cronbach’s α bias, obtained from handling miss-
ing data on the satisfaction with health status dataset with the five considered methods, namely
CCA, MICT applied to each channel separately (labelled as “MICT-s”), MICT-multichannel
(labelled as “MICT-m”), FCS and two-fold FCS (labelled as “2folds FCS”). Each subplot cor-
responds to a scenario of missing data generation. It is labelled as “type of pattern / rate of
missing data / % of sequences from the duplicated dataset permuted”.
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Figure 6.14: MAR mechanism - Boxplots of the criteria relative to the local association, ,
obtained from handling missing data on the professional status with the five considered meth-
ods, namely CCA, MICT applied to each channel separately (labelled as “MICT-s”), MICT-
multichannel (labelled as “MICT-m”), FCS and two-fold FCS (labelled as “2folds FCS”). Each
subplot corresponds to a scenario of missing data generation and is labelled as “type of pattern
/ rate of missing data / % of sequences from the duplicated dataset permuted”.
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Figure 6.15: MAR mechanism - Boxplots of the longitudinal characteristics bias, obtained
from handling missing data on the professional status dataset with the five considered meth-
ods, namely CCA, MICT applied to each channel separately (labelled as “MICT-s”), MICT-
multichannel (labelled as “MICT-m”), FCS and two-fold FCS (labelled as “2folds FCS”). Each
row of subplots corresponds to a scenario of missing data generation with a same pattern of
missing values and is labelled as “longitudinal characteristic - type of pattern / rate of missing
data / % of sequences from the duplicated dataset permuted”.
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Figure 6.16: MAR mechanism - Boxplots of the longitudinal characteristics bias, obtained
from handling missing data on the professional status dataset with the five considered meth-
ods, namely CCA, MICT applied to each channel separately (labelled as “MICT-s”), MICT-
multichannel (labelled as “MICT-m”), FCS and two-fold FCS (labelled as “2folds FCS”). Each
row of subplots corresponds to a scenario of missing data generation with a different pattern of
missing values and is labelled as “longitudinal characteristic - type of pattern / rate of missing
data / % of sequences from the duplicated dataset permuted”.
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Figure 6.17: MAR mechanism - Boxplots of the Cronbach’s α bias, obtained from handling
missing data on the professional status dataset with the five considered methods, namely CCA,
MICT applied to each channel separately (labelled as “MICT-s”), MICT-multichannel (labelled
as “MICT-m”), FCS and two-fold FCS (labelled as “2folds FCS”). Each subplot corresponds
to a scenario of missing data generation. It is labelled as “type of pattern / rate of missing
data / % of sequences from the duplicated dataset permuted”.
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6.4.2 Second simulation framework

In accordance with the structure of the first simulation framework, we first present the optimal

parametrisation of the MICT-multichannel algorithm. Subsequently, we proceed with the com-

parative analysis, contrasting the performance of MICT-multichannel with other methods used

for handling missing data. In this second simulation framework, we further expand our analy-

sis by exploring the influence of the imputation methods and two ad hoc techniques designed

specifically for sequence analysis, on the joint clustering of professional and child status.

Parametrisation of MICT-multichannel

Neither the number of iterations (Figures F.10, F.11, F.12 and F.13), nor the order of channels

(Figures F.14, F.17, F.15 and F.16) impact the MICT-multichannel algorithm’s performance.

Therefore, we chose the results obtained with two iterations, for consistency with the choice

made on the first simulation framework, and an ordering of the channels that is child, cohabi-

tational and finally professional status.

Comparison between the methods

The results are shown in Figures 6.18 regarding the bias of Cramer’s V, in Figure 6.19 for

Cronbach’s α and Figures 6.20 and 6.21 for the longitudinal criteria.

A slight negative bias was induced, both for Cramer’s V and Cronbach’s α, when MICT is

applied separately to each channel. Its magnitude is, as on the framework based on duplicated

datasets, higher with higher rates of missing data. However, it remains globally small since,

in every situation, it is smaller than 0.03. MICT-multichannel gives better results regarding

Cramer’s V and Cronbach’s α than MICT applied to each channel separately. The biases for

Cramer’s V and Cronbach’s α are close to zero in every scenario and channel. The median

is close to zero, and the variance is small. Most of the results regarding the longitudinal

characteristics are almost identical between the two algorithms. The only exception is the child

domain sequencing when the same patterns of missing data were applied to each channel, where

the results are slightly better with MICT.

CCA presents a small positive median bias for Cramer’s V and Cronbach’s α for each of

the four scenarios and generally induces higher bias results. For example, considering the same

pattern of missing data, keeping only the completely observed multichannel trajectories lead

to a bias larger than 0.05 for Cramer’s V. In contrast, with MICT-multichannel, FCS and

two-fold FCS, the worse bias is smaller than 0.02. The conclusions regarding the longitudinal

characteristics are the same as with the duplicated datasets; CCA is worse on every criterion,

and the differences are especially marked for the timing characteristic.

Comparing FCS and two-fold FCS, the results are usually similar. However, in every scenario
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except for different patterns applied with a high rate of missing data, two-fold FCS is better than

FCS for retrieving the duration characteristic of the cohabitational and professional trajectories.

On the one hand, FCS, two-fold FCS and MICT-multichannel show close results regarding

Cramer’s V, Cronbach’s α and timing, with MICT-multichannel being better, however. On the

other hand, MICT-multichannel clearly outperforms the two other algorithms regarding every

channel’s duration and sequencing characteristics. These differences are more marked when

the same missing data patterns were applied on each channel. For example, the distortion of

the sequencing characteristic of the child channel is more than five times higher when FCS

and two-fold FCS are used to impute datasets with the same patterns of missing data on each

channel.

Clustering results

Using the framework established in the previous chapter, we have identified two joint clusterings

constructed through MSA: a four-group clustering and a seven-group clustering. Additionally,

we have derived two potential clusterings through EA: a five-group clustering and another

comprising seven groups. In this subsection, we compare the quality of the joint clusterings of

professional and child status for women, either built from the imputed datasets or obtained with

the two ad hoc methods specific to sequence analysis. ARI is used as a measure of performance.

Boxplots of the ARI are shown in Figure 6.22 for MSA and in Figure 6.23 for EA.

In terms of ARI, we observe similar outcomes across the imputation methods, indicating

comparable performance. In contrast, the two ad hoc methods generally exhibit inferior perfor-

mance compared to the imputation methods. Indeed, for the strategy involving the considera-

tion of a missing state as an additional state, the results are close to the imputation methods

when distinct patterns of missing data were applied to each channel with a low rate of missing

data. However, as the rate of missing data increases, the disparity between the imputation

methods and this strategy widens. Notably, it is clearly outperformed when the same pattern

of missing data is simulated across all channels. Regarding the other ad hoc method, mean-

ing considering a missing state maximally different from any other state (including a missing

state), it performs worse than imputation methods when different patterns are applied to each

channel. When the same pattern is applied to each channel, the conclusions differ between

MSA and EA. While the performance of this ad hoc method is close to the one of imputation

methods when EA was used to combine the information, it is worse when MSA was applied.
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Figure 6.18: MAR mechanism - Boxplots of the bias of the mean Cramer’s V, for each pair
of channels, obtained with the five considered methods, namely CCA, MICT applied to each
channel separately (labelled as “MICT-s”), MICT-multichannel (labelled as “MICT-m”), FCS
and two-fold FCS (labelled as “2folds FCS”). Each subplot corresponds to a scenario of missing
data generation. It is labelled as “channels considered / type of pattern / rate of missing data”.
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Figure 6.19: MAR mechanism - Boxplots of the bias of the Cronbach’s α computed with each
pair of channels, obtained with the five considered methods, namely CCA, MICT applied to
each channel separately (labelled as “MICT-s”), MICT-multichannel (labelled as “MICT-m”),
FCS and two-fold FCS (labelled as “2folds FCS”). Each subplot corresponds to a scenario
of missing data generation. It is labelled as “channels considered / type of pattern / rate of
missing data”.
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Figure 6.20: MAR mechanism - Boxplots of the bias on the longitudinal criteria, obtained with
the five considered methods, namely CCA, MICT applied to each channel separately (labelled
as “MICT-s”), MICT-multichannel (labelled as “MICT-m”), FCS and two-fold FCS (labelled
as “2folds FCS”). Each subplot corresponds to a scenario of missing data generation with same
patterns on each channel. It is labelled as “channel considered - criterion - type of pattern /
rate of missing data”.
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Figure 6.21: MAR mechanism - Boxplots of the bias on the longitudinal criteria, obtained
with the five considered methods, namely CCA, MICT applied to each channel separately
(labelled as “MICT-s”), MICT-multichannel (labelled as “MICT-m”), FCS and two-fold FCS
(labelled as “2folds FCS”). Each subplot corresponds to a scenario of missing data generation
with different pattern on each channel. It is labelled as “channel considered - criterion - type
of pattern / rate of missing data”.
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Figure 6.22: MSA - Boxplots of the ARI. The imputation methods considered are MICT
applied to each channel separately (labelled as “MICT-s”), MICT-multichannel (labelled as
“MICT-m”), FCS and two-fold FCS (labelled as “2folds FCS”). In addition, the two ad-hoc
methods linked to sequence analysis are labelled as “miss” for the method that consider a
missing state as another state and “max” for the method that consider a missing state as
maximally different from any other state, including a missing state itself. Each subplot is
labelled as “clustering - type of pattern / percentage of missing data”. Each boxplot is built
with 100 values, corresponding to the 100 datasets with missing data.
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Figure 6.23: EA - Boxplots of the ARI. The imputation methods considered are MICT applied
to each channel separately (labelled as “MICT-s”), MICT-multichannel (labelled as “MICT-
m”), FCS and two-fold FCS (labelled as “2folds FCS”). In addition, the two ad-hoc methods
linked to sequence analysis are labelled as “miss” for the method that consider a missing
state as another state and “max” for the method that consider a missing state as maximally
different from any other state, including a missing state itself. Each subplot is labelled as
“clustering - type of pattern / percentage of missing data”. Each boxplot is built with 100
values, corresponding to the 100 datasets with missing data.
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6.5 Discussion

In this chapter, we developed an extension of the MICT imputation algorithm to the case of

multichannel sequences. The proposed algorithm, which we call MICT-multichannel, keeps the

core functioning of the MICT algorithm, which is to fill gaps of missing data recursively from

their edges, while ensuring a cross-sectional consistency by taking into account information

from the other channels. In addition, we intended to provide preliminary guidelines on the

treatment of missing data in multichannel sequences.

MICT-multichannel fulfils its goal. Indeed, it brings an added value to the MICT algorithm

by ensuring a cross-sectional consistency between the channels without sacrificing the longitu-

dinal characteristics. It is even better in terms of the timing criterion. Moreover, it emerged

as the preferred method when it comes to handling missing data in multichannel sequences.

Indeed, it is globally better than the other tested imputation methods, complete case analysis

and ad hoc methods tailored to sequence analysis.

We conducted a comparative analysis of the MICT-multichannel algorithm against other

methods for handling missing data. Our comparison was based on two distinct frameworks,

both focusing on simulating patterns of missing data that closely resemble real-world scenarios

within complete multichannel trajectories. The first framework aimed to assess the algorithm’s

performance in relation to longitudinal stability and channel association. It involved the cre-

ation of multichannel datasets by duplicating a single channel and permuting a percentage of

sequences within the duplicated channel. This framework has the advantage to offer a controlled

setting for the evaluation of the methods but has the limitation of generating multichannel tra-

jectories with either perfectly associated channels or nearly completely disassociated ones. To

address this limitation, the second simulation framework used real multichannel trajectories,

providing a more realistic representation. Moreover, this framework allows comparing the im-

pact of methods to handle missing data on clustering results. By employing both frameworks,

we ensured an evaluation that encompasses a range of scenarios, from varying association and

rates of transition to more realistic data settings.

MICT-multichannel appears as the best imputation method with multichannel sequences.

Its performance is especially better than FCS and two-fold FCS in terms of cross-sectional and

longitudinal characteristics on multichannel sequences subject to few transitions. Since we built

MICT-multichannel to keep the core functioning of MICT, which is to fill gaps of missing data

recursively from the edges, it is especially suited to recreate long spells of states, which are

typical of trajectories with few transitions. On the other hand, in this case, FCS and two-fold

FCS tend to create too many transitions. However, even if on datasets with a high transition

rate MICT-multichannel is not always the best, it is close to the best performing one. On

datasets with many transitions, the longitudinal logic is less salient, so the strength of MICT

filling the gaps from the edges is reduced. Regarding clustering, it shows similar performance
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as the other multiple imputation algorithms.

CCA is not suitable for handling missing data in multichannel sequences. In most scenarios

and on every criterion, CCA lead to worse results than MICT-multichannel. Moreover, we

randomly chose the channels on which we simulated missing data. However, specific life courses,

such as the ones with many transitions or vulnerable situations, are more prone to missing.

Therefore, the performance of CCA may be even worse in such scenarios.

Concerning FCS and two-fold FCS, their performance was often close in the scenarios we

have considered. However, in the second simulation framework, two-fold FCS was sometimes

better than FCS in terms of duration and sequencing. Since the second simulation frame-

work was based on three channels, while the duplicated dataset framework was based on only

two channels, increasing the number of channels may make two-fold FCS more suitable. Ex-

cept for channels subject to many transitions, both FCS and two-fold FCS lag behind MICT-

multichannel.

Both ad hoc methods for handling missing data in sequence analysis proved to be inade-

quate. Treating a missing state as an additional state was particularly ineffective compared

to imputation methods, especially when the same pattern of missing data was applied to each

channel. This approach unintentionally induced undesired similarity among multichannel se-

quences that have missing data in the same locations. Moreover, even when considering different

patterns, this method fell behind imputation methods. An explanation is that the substitution

cost between a missing state and any observed state is fixed at one in this method. Conse-

quently, if the value that is missing is the same as an observed state on another channel, the

method incorrectly assigns a substitution cost of one instead of the correct value of zero. If

they impute the value correctly, imputation methods solve this issue. On the other hand, the

problem would become even worse if an imputation method wrongly imputes a value. In our

analysis, each imputation method produced imputations of sufficient quality to surpass the

performance of this ad hoc method.

The other ad hoc method, namely considering a missing state as maximally different from

any other state, avoids the issue of generating unwanted similarities. However, in the case of

two missing values that “hide” the same values, it wrongly assumes that they are different. If

an imputation method correctly impute these values, it overcomes this issue. It is what appears

to happen in our analysis since this ad hoc method lag behind imputation methods in most

scenarios. The only case where it presented close performance with the imputation methods

is the case of the same patterns of missing data applied to each channel and a combination of

information between channels through an extended alphabet. The reason is that in the case of

an extended alphabet, imputation methods need to impute accurately each channel to overcome

the ad hoc method.
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Guidelines

Although further research is needed, particularly regarding the parametrisation of the MICT-

multichannel algorithm, we can derive preliminary guidelines to choose a method to handle

missing data in multichannel sequences.

• Our results demonstrated that complete case analysis and the two ad hoc methods tailored

to sequence analysis, which involve considering missing data as an additional state and

treating a missing state as maximally distinct from any other state (including a missing

state), should not be the default choices.

• In our simulations, MICT-multichannel emerged as the preferred algorithm among the

various imputation methods evaluated.

• The MICT-multichannel algorithm provides the flexibility to adjust two parameters: the

order of the channels and the number of iterations. While the order of imputation of the

channels did not yield significant differences according to the analysis, it is recommended

to prioritise channels that are easier to impute—those with greater stability or less missing

data. This approach minimises the introduction of erroneous imputed values during the

initial phase, which can be challenging to rectify later on. Regarding the number of

iterations, an application with two iterations is the recommended choice.

• As for the predictors, the minimal model should incorporate one observation from the

past and future, along with all values from the same time point as the missing value

being imputed. If there is reason to suspect that other time points or covariates influence

the imputation or missing data, it is recommended to include them in the imputation

process as well.

• When analysing single trajectories, it is crucial to consider the information from other

linked channels if available, as they can significantly improve the quality of imputations.

This chapter introduced an extension of the MICT algorithm dedicated to the imputation of

multichannel sequences. The method is dedicated to the imputation of multichannel sequences.

However, this work suffers from some limitations and opens the door for further research.

First, even if we have considered several scenarios based on duplicated individual trajectories

to control the association and a real dataset, we did not fully capture the diversity of situations

related to missing data in multichannel sequences. In particular, the framework based on

duplicated channels creates either completely associated or mostly disassociated channels. In

reality, a larger range of situations appear. This scenario already allowed us to draw interesting

conclusions regarding the algorithms, and the second simulation framework strengthens the
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idea that the results are not specific to the duplicated datasets. However, we observed that

Cronbach’s α tends to get overestimated on imputed datasets in comparison with the original

ones. Further investigation is needed to determine if imputation methods really tend to increase

the relation between channels or if this behaviour is due to the form of the simulation framework

or even Cronbach’s α. The latter is a recently developed tool and we may lack hindsight on

how it behaves and what exactly it measures. Specifically, the measurement is contingent upon

the dissimilarity measure chosen, and the interaction between the measure itself and the choice

of dissimilarity measure remains unclear. Nevertheless, Cronbach’s α emerges as the most

reliable tool presently accessible for quantifying the overall association. Moreover, regarding

the clustering framework, we have considered only one dataset, one way to compute the pairwise

dissimilarity measures and one clustering algorithm. Moreover, we applied a simplified setting

where the number of clusters is known beforehand. However, our analysis allows giving a first

insight on this issue.

Then, not all interrogations regarding the parametrisations of the algorithm have been

answered. In this study, we did not vary the number of predictors in the imputation models.

We considered only one observation from the past and future, and the observed values at the

same time point to the missing data to impute. In particular, we saw in the Chapter 4 that

MICT worked better with five predictors both in the past and future, particularly on volatile

trajectories. We can expect that it is still the case with the MICT-multichannel algorithm.

However, adding too many predictors may hurt the performance of the multinomial model

used for the imputation. Moreover, even considering the number of iterations, or the order of

the channels, further investigations are needed. For example, multichannel sequences with a

high amount of missing data may need more than two iterations, and the order may become

crucial with many channels.

Finally, we only considered information from the multichannel trajectories in the imputation

process. However, as emphasised in the previous chapter, relevant covariates should be included

in the imputation process. Along the same line, we could also add information about survey

metadata in the imputation process, such as the mode of collection in a survey. For example, the

Swiss household panel, from which we constructed our datasets, is a mixed-mode data survey

and, as mentioned in the introduction, the mode of data collection influences the presence

of missing data. Incorporating these covariates would likely enhance the imputation quality,

without altering the algorithms ranking.

To conclude, MICT-multichannel is a promising method for handling missing data in multi-

channel sequences. It outperforms in many situations other imputation algorithms. The results

are notably better regarding trajectories subject to few transitions, which is a common feature

of life course data.
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Conclusion

This thesis mainly focuses on handling missing data in life course data. The treatment of

missing data is a complex issue that can significantly impact statistical results and conclusions,

making it one of the most crucial methodological advancements in this field (Piccarreta and

Studer, 2019; Liao et al., 2022). The thesis aims to address the challenge of missing data in life

course analysis by proposing innovative methods and approaches to improve the treatment of

missing data in longitudinal categorical data. In this concluding chapter, we provide a summary

of each chapter (with the exception of the introduction and the state-of-the-art chapters),

highlighting the main contributions and the reasons behind their necessity. Furthermore, we

discuss the developments made to the seqimpute package and suggest potential directions for

further development.

7.1 Multiple imputation in longitudinal datasets

The structure of longitudinal surveys, as well as the variables derived from them, are inherently

complex. Dealing with missing data from such surveys requires special considerations. In

particular, we often encounter logical missing values that arise from questions that are irrelevant

or nonsensical to certain individuals. Additionally, the presence of categorical variables, which

are common in sociological surveys, further complicates the process of treating missing data,

especially when employing multiple imputation techniques. However, existing studies have only

provided partial guidance on addressing these challenges.

To address these gaps, we have developed in Chapter 3 a comprehensive framework for han-

dling missing data in the context of longitudinal surveys. It encompasses two steps. First, the

distribution of missing data is studied. Then, a multiple imputation process is applied, which

takes into account the main characteristics of a longitudinal dataset. In particular, our frame-

work addresses two significant challenges: logical missing and categorical data. Conventional

imputation algorithms, such as FCS, often fail to consider the issue of logical missing values,

168
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potentially leading to unrealistic imputations and distorted relationships between variables.

Although post-imputation corrections can partially mitigate these issues, they do not provide

a comprehensive solution. Furthermore, categorical data present additional complexities com-

pared to continuous variables. The performance of logistic and multinomial models is linked

to the number of variables included, and the presence of rare categories introduces challenges

at various levels. Along this process, we devised a sequence of questions to determine which

values are really missing, to set either retrievable or deducible values and, among the remaining

missing values, to determine the ones that should be imputed.

We have successfully applied this framework to a subsample of the LIVES-FORS Cohort

survey, serving two purposes. Firstly, this application provides empirical evidence to validate

and illustrate the effectiveness of our imputation process. Secondly, this application sheds

light on the broader challenges associated with managing missing data in longitudinal survey

datasets. It highlights the importance of acknowledging that while our framework serves as a

foundation for missing data treatment, each dataset possesses unique characteristics that must

be considered. The researcher’s understanding and familiarity with the dataset become crucial

in navigating these specificities and making informed decisions.

Summarising, the main contributions of this chapter are:

• A missing data treatment process specifically designed to address the key challenges

encountered in longitudinal surveys

• The treatment of missing data in a concrete case with our method

7.2 Imputation of life course data

Life course methodology lacks guidelines regarding the treatment of missing data.While pre-

vious comparisons of imputation methods in longitudinal data do exist, they did not focus on

categorical data, and hence, the methods specifically dedicated to it, such as MICT and VLMC

were never considered. Therefore, in Chapter 4, we aimed to fill this gap by making such a

comparison and providing guidelines for effectively treating missing data in life courses.

Additionally, we have introduced two extensions to the MICT algorithm, including random

forest imputation models and an algorithm called MICT-timing, which is better suited for non-

stationary processes. Random forest has theoretically appealing properties, such as the capacity

to incorporate many predictors or non-linear effects. MICT-timing only uses configurations that

are temporally close to the missing data to impute instead of all configurations, regardless of

their position in the trajectory, as with the MICT algorithm.

In order to conduct this comprehensive comparison, we have devised a simulation framework.

Six datasets representative of life course research were chosen. On these datasets, we simulated
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missing data according to three scenarios, mimicking real patterns: a MAR process that mimics

the missing data that occurs in longitudinal data, an attrition process simulating individuals

leaving a study and a MAR process on randomly drawn subsamples. We then evaluated the

imputation methods based on criteria relevant to life course research, including timing, duration

and sequencing of a process.

We demonstrated that keeping only trajectories without missing data is an unsuitable strat-

egy. Among the imputation algorithms considered, MICT applied with a multinomial imputa-

tion is the best. The random forest model, which has theoretically appealing properties, such

as the capacity to incorporate many predictors or non-linear effects, did not prove suitable for

the imputation of longitudinal categorical data. Despite its ability to impute individual values

well, it tends to compromise longitudinal consistency. On the other hand, the MICT-timing

variant was found to be a suitable alternative to MICT when facing non-stationary processes.

Although our framework focuses primarily on life course studies, its conclusions are more

broadly applicable to the analysis of longitudinal categorical data. Notably, our comparisons

included datasets that deviated from traditional life course datasets, such as those examining

civil status or satisfaction with health status. Moreover, while only the MAR mechanism was

simulated, the conclusions should extend to the MCAR case.

Summarising, the main contributions of this chapter are:

• The MICT-timing imputation algorithm

• Random forest as imputation model for MICT and MICT-timing

• Guidelines regarding the imputation of multichannel sequences

• A simulation framework to compare the performance of imputation method on single

trajectories

7.3 Comparison of MSA and EA in a real case

When focusing on the joint study of several trajectories, two methods are mainly available:

multichannel sequence analysis (MSA) and the extended alphabet (EA). MSA extends optimal

matching to the case of multichannel sequences, while with EA, the alphabets for each channel

are combined in an extended alphabet. The methods were compared through a simulation by

Gauthier et al. (2010) and informal guidelines exist (e.g. Piccarreta (2017)), but no extensive

comparison was ever made, in particular using real data. The goal of Chapter 5 was therefore

to compare empirically these methods, via cluster analysis, providing guidelines on their use.

For this aim, we have introduced a framework based on the last methodological advances to

compare joint typologies.
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To make this comparison, we used data from the Swiss household panel. We constructed four

channels - health, child, cohabitational and professional status - to examine different degrees of

association. Since at least professional and child trajectories proved different between men and

women, we realised the analysis separately by sex. We identified key characteristics of interest

when a clustering of multichannel sequences is performed. These characteristics were measured

using the last methodological advances in sequence analysis. The clusterings obtained with

both methods were compared based on this framework.

Our findings suggest that neither MSA nor EA is inherently superior. MSA is easier to use

and applicable in a broader range of situations, but there are specific situations where EA may

be more appropriate. These include cases where extended states represent different sociological

realities, when rare events are of interest and when a dissimilarity not based on OM is used.

Summarising, the main contributions of this chapter are:

• A comparison between multichannel sequence analysis and the extended alphabet on a

real case

• A framework to compare multichannel typologies

7.4 Multichannel imputations

The analysis made in Chapter 4 has shown that the MICT algorithm, or in some instances

MICT-timing, is the preferred method when treating missing values in life course data. How-

ever, both methods lack an extension specifically designed for imputing multichannel sequences.

Moreover, existing methods to treat missing data were not fully satisfying in this case. Thus,

the primary contribution of Chapter 6 is the development of such an extension, called MICT-

multichannel. Additionally, our objective was to provide preliminary guidelines for effectively

imputing multichannel sequences.

We have devised two simulation frameworks both to test the best parametrisation of the

MICT-multichannel algorithm and compare it to existing methods. Both frameworks are based

on the simulation of patterns of missing data on complete datasets as realistic as possible. The

first simulation framework, based on the duplication and permutation of single trajectories,

allows controlling for the level of longitudinal and cross-sectional information. However, the

association between channels is approximated with this framework and may not be perfect,

hence clustering these multichannel sequences may be unrealistic. Therefore, we introduced a

second simulation framework, that is based on a real multichannel dataset. With this setting,

we were able to compare the impact of the methods to treat missing data on clustering results.

The MICT-multichannel algorithm’s functioning keeps the MICT algorithm’s core func-

tioning, ensuring longitudinal consistency by recursively filling the gaps of missing data from
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the edges while inducing cross-sectional consistency between the channels. In addition to the

parameters relative to the MICT algorithm, two parameters are modifiable by the user: the

number of iterations and the order of the channels. While the order of the channels does not

impact the quality of the imputation, two iterations seem the best choice.

This chapter allowed us to provide preliminary guidelines regarding the treatment of missing

data in multichannel sequences. First, even when a single channel is the goal of the analysis,

using other associated channels, and impute them as multichannel channels increase the qual-

ity of the imputation. Then, consistently with the previous chapter, complete case analysis

should not be the default choice. Finally, our results showed that MICT-multichannel gener-

ally outperforms the other considered methods, particularly on trajectories with low transition

rates.

Summarising, the main contributions of this chapter are:

• The MICT-multichannel imputation algorithm

• Preliminary guidelines regarding the imputation of multichannel sequences

• Simulation frameworks for the comparison of imputation methods

7.5 Developments of seqimpute

Throughout this thesis, several tools were developed to address the challenges of imputing

missing data in longitudinal categorical data. A key objective was to make these tools accessible

to researchers, and to achieve this, we have integrated them into the seqimpute package within

the R statistical software.

Previously, the MICT imputation algorithm had been implemented in this package. How-

ever, within the context of this thesis, significant improvements were made to enhance the speed

of imputation using multinomial models, and the random forest algorithm was introduced as

an additional option for the imputation process. These changes have been incorporated into

version 1.8 of the package. Furthermore, in version 1.9, both the MICT-timing and MICT-

multichannel algorithms have been made available. At the time of writing, this latest version is

only available on R-Forge, a web platform for developing R packages, but it will soon be made

available on CRAN.

7.6 Further developments

This thesis addressed several issues but also opened up many doors. In the conclusion of each

of the four main chapters, potential developments were already discussed. To end this thesis,

we focus on the required developments. More particularly, we discuss what we frame as the
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four most needed developments, namely the inclusion of covariates in the imputation processes,

the study of minimum information needed to impute, the link between treatment of missing

data and the statistical analysis, and the writing of a user manual for the seqimpute package.

The inclusion of covariates was considered neither for single, nor multichannel trajectories.

However, as highlighted throughout this thesis, there are notable differences in the professional

transitions experienced by men and women. Therefore, incorporating sex as a covariate in the

imputation process would likely enhance the quality of the results. Additionally, it is generally

recommended to include all variables used in the statistical analysis within the imputation

models to mitigate potential bias (see e.g. Van Buuren, 2018). Consequently, exploring the

impact of covariate inclusion on the different imputation procedures becomes an important

consideration. By extending the information included in the imputation models through the

addition of covariates, the use of random forest as an imputation method may become more

suitable. Random forest excels in handling large pools of predictors and effectively manages

complex relationships between variables.

When considering the implementation of multiple imputation in life course data, an impor-

tant question arises regarding the minimum amount of information required for its application.

If a trajectory consists of only a few observed values, there is a risk that imputation might

do more harm than simply excluding that trajectory. To illustrate, let’s consider an extreme

scenario where we only have information about an individual’s professional situation at age 18,

with missing data between the ages of 19 and 40. In such cases, imputing values would likely

introduce substantial variability, thereby increasing the variability of estimators computed from

this sample. Moreover, if the missing data follows a MNAR mechanism, the imputation may in-

troduce additional bias. In light of this, a potential solution proposed by Seaman et al. (2012)

is to combine multiple imputation with weighting methods. Specifically, trajectories with a

percentage of missing data below a predefined threshold would be imputed, while those with a

higher proportion of missing data would be excluded. Finally, the imputed trajectories would

be reweighted to account for the excluded ones.

Further developments are directly associated with the impact of imputation on statistical

analyses. Regarding the derivation of statistical outcomes with multiple imputation, we have

seen that the strategy of Halpin (2012) that consists in stacking all imputed datasets together

before proceeding with the clustering, appears as a promising strategy. However, we lack

a comparison with other strategies, such as consensus clustering (Basagaña et al., 2013) or

the MultiCons approach, which consists in building a unique clustering from several imputed

datasets based on their common clustering patterns (Al-Najdi et al., 2016). Moreover, in life

course analysis, the built typology is often used as a dependent or independent variable in a

subsequent regression analysis. Therefore, we have an uncertainty induced by missing data

both on the typology itself and the further regression analysis. The question is how to deal
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with it. In addition, there is an inherent uncertainty when clustering and one can ask how it

interacts with the uncertainty coming from missing data. Furthermore, there is a pressing need

for additional research to thoroughly examine the influence of multiple imputation methods,

as well as other approaches to address missing data, on statistical results. In Chapter 6, we

initiated an investigation into this matter by comparing the effects of various methods on

clustering outcomes. However, further exploration is warranted. Initially, we conducted our

analysis in a simplified context where the number of groups was predetermined. However, in

most practical applications, this is not the case. Moreover, comparing different methods for

handling missing data in such analyses would contribute to extending the knowledge of the

most appropriate methods for each specific context.

Finally, a crucial aspect of introducing new methodological tools and developments is en-

suring their user-friendliness. In the context of this thesis, the methods developed were made

accessible through the seqimpute package. However, to enhance their usability, the creation of

a comprehensive user manual is of utmost importance. This user manual should include clear

examples demonstrating the application of the developed methods, thereby simplifying their

usage and promoting their wider adoption.
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Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J. M., and Perona, I. (2013). An extensive

comparative study of cluster validity indices. Pattern recognition, 46(1):243–256.

175



176 BIBLIOGRAPHY

Arora, V. S., Karanikolos, M., Clair, A., Reeves, A., Stuckler, D., and McKee, M. (2015). Data

resource profile: the European Union statistics on income and living conditions (eu-silc).

International journal of epidemiology, 44(2):451–461.
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Appendix A

Technical elements

This appendix contains statistical details related to Chapter 2 that focuses on the state of the

art. In particular, we develop the concepts of bias, mechanisms of missing data, likelihood and

Bayesian methods, and multiple imputation.

To formally define the concepts, we consider longitudinal data, which is the main focus

of this thesis. We denote by Yitj, the jth measurement of the ith individual at time t, with

i = 1, . . . , n, j = 1, . . . ,m and t = 1, . . . , T . Due to missingness, some values are potentially

not observed. Therefore, we define the missing matrix M as Mitj = 1 if Yitj is missing and

Mitj = 0 if Yitj is observed. One can split the complete data Y into observed Y obs and missing

Y mis parts. For each individual i, (Yi,Mi) is called the “full data”, with its density denoted

as f(Yi,Mi|θ, γ), where θ is the vector of parameters of the model for Yi and γ is the vector of

parameters modelling the missing matrix Mi. To simplify things, we suppose that the interest

of the statistical analysis is the parameter θ.

Bias

If we denote by θ̂ the estimator of the parameter θ, computed on the sample, the bias is defined

as

Bias[θ̂] = E[θ̂]− θ.

Concretely, the bias is the difference between the parameter of interest and the average value

of the estimator computed on all possible samples drawn from the population (Van Buuren,

2018).

Mechanisms

The missing data are

• MCAR if f(Mi|Y obs
i , Y mis

i ) = f(Mi),
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• MAR if f(Mi|Y obs
i , Y mis

i ) = f(Mi|Y obs
i ),

• MNAR if f(Mi|Y obs
i , Y mis

i ) depends at least on Y mis
i .

When the data are MCAR, or MAR with disjoint parameter spaces for θ and γ, the mech-

anism is referred to as “ignorable”. With Bayesian methods, the additional property that the

prior distribution f(θ, γ) is factorisable as f(θ)f(γ) is needed (Little and Rubin, 2019).

Likelihood and Bayesian methods

Likelihood methods are based on the observed likelihood

L(θ, γ|Y obs,M) = c
n∏

i=1

∫
f(Yi,Mi|θ, γ)dY mis

i . (A.1)

In the case of ignorable data, the observed likelihood is equal to

L(θ, γ|Y obs,M) =
n∏

i=1

f(Mi|Y obs
i , γ)f(Y obs

i |θ). (A.2)

Therefore, the estimation of θ is independent of the missing distribution, and only the distri-

bution of the complete data needs to be specified.

With Bayesian methods, distributions are assumed for the parameters. These methods are

based on Bayes’s theorem, which states that

f(θ, γ|Y obs,M) =
f(Y obs,M |θ, γ)f(θ, γ)

f(Y obs,M)
. (A.3)

When the hypothesis of ignorability for the Bayesian inference is satisfied, we have that

f(θ, γ) ∝
n∏

i=1

f(Y obs
i |θ)f(θ)f(Mi|Y obs

i , γ)f(γ). (A.4)

Therefore, as for likelihood methods, the estimation of θ is independent of the missing distri-

bution.

Selection and pattern-mixture models are the main strategies for non-ignorable missing

data. With selection models, the joint distribution of Y and M is modeled as

f(M,Y |θ, γ) =
n∏

i=1

f(Yi|θ)f(Mi|Yi, θ), (A.5)
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while with pattern-mixture models, it is set as

f(M,Y |η, ψ) =
n∏

i=1

f(Yi|Mi, η)f(Mi|ψ). (A.6)

Multiple imputation

There is a close connection between the Bayesian framework and multiple imputation. The

whole idea of multiple imputations (Rubin, 1978) derives from the equation

f(θ|Yobs) =

∫
f(θ|Ymis, Yobs)f(Ymis|Yobs)dYmis. (A.7)

By drawing several values for Ymis from the conditional distribution f(Ymis|Yobs), we can ap-

proximate this equation by

f(θ|Yobs) ≈
1

M

M∑

i=1

f(θ|Y (m)
mis , Yobs), (A.8)

where Y
(m)
mis is a draw for the missing values. From this approximation, Rubin (1987) derived

rules to combine the results from several completed datasets when a normally distributed

parameter θ is the main focus. If we denote by (θ̂i, Vi), respectively, the parameter and its

variance estimates computed on the ith completed dataset, the pooled estimate θ̂ is set as the

mean value

θ̂ =
1

M

M∑

i=1

θ̂i.

The pooled variance T is defined as

T = V̂ + (1 + 1/M)B,

where

V̂ =
1

M

M∑

i=1

V̂i

is the estimated within imputation variance and

B =
1

M − 1

M∑

i=1

(θ̂i − θ̂)2

is the estimated between imputation variance. In the pooled variance T , B is inflated by a

factor 1/M to consider that the number of imputations is finite.
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Statistical models

B.1 Multinomial model

Multinomial model

The multinomial model, which is a type of generalised linear model (McCullagh and Nelder,

2019), is a standard way to model a categorical output with more than two categories. For a

categorical random variable Y with K categories and a predictors X, the multinomial model

is expressed as:

P (Y = k|X = x) =
eβ0k+x

tβk

1 +
∑K−1

l=1 eβ0l+xtβl
, for k = 1, . . . , K − 1

P (Y = K|X = x) =
1

1 +
∑K−1

l=1 eβ0l+ztβl
.

For a sample {xi, yi}ni=1, the parameters βk, k = 1, . . . , K − 1 are estimated by maximising the

conditional log-likelihood

l(β) =
n∑

i=1

logP (Y = yi|X = xi),

where β = (β1, . . . , βk−1)
t. In the mlogit package (Croissant, 2020), the Newton-Raphson algo-

rithm is used to estimate the parameters. Starting from an initial guess β(0) for the parameter,

it estimates at each step

β(t+1) = β(t) −
{

∂2l

∂β∂β
(β(t))

}−1
∂l

∂β
(β(t))

until a convergence is reached. However, the inversion of the Hessian matrix, namely the second

derivatives, can be quite time-consuming and is even not possible in some cases.
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Neural networks

It is composed of hidden units Z1, · · · , Zm, which are defined as (Friedman et al., 2001)

Zi := σ(X) =
1

1 + e−(α0i+αiX)
. (B.1)

Then, in a similar way to the multinomial model, the output is modelled as

P (Y = k|Z = z) := gk(z) =
eβ0k+z

tβk

∑K
l=1 e

β0l+ztβl
, for k = 1, . . . , K. (B.2)

To estimate the parameters α’s and β’s, called weights, the deviance

−
n∑

i=1

K∑

k=1

yik log fk(xi),

where yik = 1 if yi = k and otherwise and fk(x) = gk(σ(x)), is minimised. An iterative

algorithm is used to solve this minimization problem.

This model is applied to fit multinomial models in the nnet package. Its application instead

of the mlogit function, allowed us to fasten the computation in the seqimpute package that

implements the MICT algorithm.

B.2 Random forest

The random forest model builds a predetermined number of trees on bootstrap samples (Breiman,

2001). A bootstrap sample is generated by randomly drawing with replacement n observations,

where n is the size of the sample. A tree is a partition of the values of the predictor space into

non-overlapping parts P1, . . . , Pl, obtained with a recursive binary splitting. The predictor space

is first split into two parts, also called regions, P1(j, t) = {x|xj ≤ t} and P2(j, t) = {x|xj > t},
which are split again into two subparts, and so on. The process usually ends when every ob-

servation that belongs to a given region has the same predicted class. Every time we must

determine a split, a random sample of predictors is drawn among all of them. This random

draw reduces the correlation between the trees (Friedman et al., 2001). The Gini index

G =
l∑

i=1

1∑

k=0

pik(1− pik),

where pik is the proportion of the observations which have predicted class k in the region

i, is used to determine the feature to split and the division point by minimizing For a new

observation, each tree is applied and estimated probabilities are obtained by the proportion of
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trees among the forest that predict each class.

B.3 Variable-length Markov chains

Variable-length Markov chains are a type of Markov chains. Markov chains are used to model

longitudinal categorical data (Gabadinho and Ritschard, 2016). We denote by x := x1x2 · · · xl,
a sequence of length l, which is the realisation of l random variables X1, . . . , Xl. Markov chains

are

Concretely, for each context c1, . . . , ck, there exist a L, 0 ≤ L ≤ k, with P (σ|c1, . . . , ck) ≈
P (σ|ck−L, . . . , ck). Therefore, going from contexts of maximum length, the algorithm determine,

for each context c = c1, . . . , ck, if P̂ (σ|c) can be approximated by P̂ (σ|suf(c)), where suf(c) =

c2, . . . , ck. The estimated probabilities P̂ (σ|c) are the share of time the state σ follows the

subsequence c any time that c is observed in the dataset. Two gain functions are mainly used

to determine if P̂ (σ|c) can be approximated by P̂ (σ|suf(c)). The first one is based on the ratio
P̂ (σ|c)

P̂ (σ|suf(c))
and a cutoff value C provided by the user

G1(c) =
∑

σ∈A

1

[
P̂ (σ|c)

P̂ (σ|suf(c))
≥ C or

P̂ (σ|c)
P̂ (σ|suf(c))

≤ 1

C

]
≥ 1 (B.3)

Therefore, if for every element σ of the alphabet, the ratio P̂ (σ|c)
P̂ (σ|suf(c))

is close to 1, P̂ (σ|c)
will be approximated by P̂ (σ|suf(c)). The second gain function is defined as

G2(c) = N(c)
∑

σ∈A

P̂ (σ|c) log

(
P̂ (σ|c)

P̂ (σ|suf(c))

)
> C, (B.4)

where N(c) is the number of times c appears in the dataset. The threshold C is defined as

Cα =
1

2
qschiq(1− α, df), (B.5)

where qschiq is the quantile function of a χ2 variable and df is set to the number of states in

the alphabet minus one.
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Men results

Concerning men, as hypothesised, there were no clear (linear) links between professional and

family channels. The cohabitational status and child channels were the most interrelated ones,

according to Cronbach’s (0.5). Unlike with women, the pair composed of the health issues and

cohabitational status channels as well as the pair of the professional status and cohabitational

status channels produced Cronbach’s values larger than 0.1 (0.17 and 0.11, respectively). Al-

though these values were still small, we chose to investigate these combinations of channels, as

interpreting raw Cronbach’s values to evaluate joint channels can be unclear. Moreover, this

provided information on how the two approaches (MSA and EA) behave when channels are

weakly linked.

For the pair of health status and cohabitational channels, no clustering under 10 groups takes

the association between channels into account since both ASWw and HC are in the 95% intervals

of the values generated by the null model. Therefore, it is not sensible to cluster together the

health status and cohabitational channels. In a similar way, for the pair of professional and

cohabitational status, no clustering built with MSA, regardless of the dissimilarity measure,

is a joint typology. On the other hand, for EA, the five groups clustering built with optimal

matching where substitution costs were based on transition costs, is significant for both cluster

quality indices according to the permutation test. However, this cluster is not satisfactory. It

consists of a large group that contains more than 70% of the sequences and four small clusters

(Figure C.1). Moreover, two clusters are heterogeneous (ASWw by groups close to 0). This

highlights two points. First, a clustering may be satisfactory for some criteria but not others.

Then, EA may be more prone to create artificial joint clusterings than MSA.

The derived typologies for the cohabitational and child channels were slightly different from

those extracted from the women sequences. The two-cluster solutions, which separated the

dataset according to whether an individual had a child or not, still gave the best ASWw

and HC values in most cases. The classification in seven groups built with standard optimal

matching was the most sensible clustering when MSA is applied (Figure C.2). One has to be
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Figure C.1: Men subset: Chronograms of the five-group typology of professional and cohabita-
tional status channels obtained with MSA with substitution costs based on transition rates.

careful because some clusters are not well separated. Concerning EA, two clusterings stand

out: the eight groups clustering built with standard OM and the seven groups clustering built

with Hamming distance. The first one is defined mainly by differences in duration (Figure C.3),

and the second one by differences in timing (Figure C.4). Both clusterings have clusters that

are not well separated and/or small. Therefore, one should not over-interpret these groups.
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Figure C.2: Men subset: Chronograms of the seven-group typology of child and cohabitational
status channels obtained with MSA with standard optimal matching.
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Figure C.3: Men subset: Chronograms of the eight-group typology of child and cohabitational
status channels obtained with MSA with standard optimal matching.
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Figure C.4: Men subset: Chronograms of the seven-group typology of child and cohabitational
status channels obtained with EA with Hamming distance.
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Appendix E

E.1 States with an higher probability

Trajectory States

Professional
education

non-working

Cohabitational (4 states)
with child

Other

Cohabitational (8 states)

living alone

with child

with one parent

with partner

Civil status
separated

divorced

single, never married

Health Satisfaction
low

average

School-to-work transition

further education (FE )

higher education (HE )

training

Table E.1: For each datasets, the states with an higher probability to trigger a missing value
for the second and third process of missing data are detailed.
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E.2 Details on the data

The objective was to create datasets for life course research that did not have any missing data

and possessed typical characteristics. We used six datasets, with five of them derived from the

Swiss household panel (SHP) (Voorpostel et al., 2016) and one from a study by McVicar and

Anyadike-Danes (2002).

Three datasets were based on the retrospective data collected through life-history calendars

in the SHP. To compensate for attrition, a second refreshment sample was added to the SHP

in 2013. During the first wave of data collection for this new sample, retrospective data were

collected, and from these data, we created three datasets, which include two datasets capturing

cohabitational status trajectories and one dataset capturing professional status trajectories.

Cohabitational status

The goal was to build two datasets of cohabitational status. The two datasets consist of the

same trajectories, but coded differently. This was done to assess the coding detail on the quality

of the imputations.

We built trajectories of cohabitational status between the ages of 15 and 40. Among the

6088 individuals in the sample, 3854 were older than 40 at the time of the data collection, and

3710 had no missing data for their cohabitational status.

Concretely, individuals were asked to mark potential cohabitational periods for a list of

people, including father, mother, sister(s) or brother(s), half-brother(s) or half-sister(s), alone,

partner or spouse, child or children, other people from kinship, friend(s) or housemate(s) and

other. We regrouped all potential combinations into eight and four groups to create the two

datasets. For the coding in eight states, individuals were put in the Both parent state if they

were living with both their parents and potentially any other siblings, One parent state if they

were living with one parent and potentially other kinship, Alone if they were living alone,

Partner if they were living with their partner, but without children, Child if they were living

with their child (but without a partner and without parent(s)), Partner and Child if they were

living with a partner at a least one child, Relatives if they were living with any relative (other

than parent(s), partner or child) and Other if they were living with other individuals other

than relatives.

To obtain the coding in 4 states of the cohabitational status from the coding in 8 states,

the states Both parents and One parent were fused into the state Parent(s), the states Child

and Partner and Child into Child and finally the states Alone, Relatives and Other into Other.
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Professional status

We built trajectories of retrospective professional status between the ages of 15 and 40. The

life-history calendar assessed the professional activities but not the educational one, which was

measured during the second wave of collection for the second refreshment sample.

Out of the 6088 individuals in the sample, 4932 completed the life-history calendar and

responded to the second wave. Among them, 3473 were older than 40 at the time of the

retrospective collection and 3382 did not have any missing data.

Information about the percentage worked was gathered with the life-history calendar. To

simplify, we considered only two categories for the professional activities: full-time or part-time.

The civil status and satisfaction with health status datasets were built using prospective

data collected through the Swiss household panel, which began in 1999 and has annual data

collection. For both civil status and satisfaction with health status, only individuals with no

missing data during the first 21 waves were selected.

Satisfaction with health status

Out of the 7,799 individuals who participated in the first wave of the Swiss household panel,

1,264 answered all 21 waves of data collection. Of these, only five individuals had missing

values for at least one wave of the satisfaction with health status variable, resulting in a final

sample of 1,259 individuals.

The satisfaction with health status variable was measured on a scale ranging from 0 (not

at all satisfied) to 10 (completely satisfied) in each wave. To create more balanced categories,

we recoded this variable into four categories: low (0 to 4), average (5 and 6), high (7 and 8),

and very high (9 and 10). This categorisation was chosen to ensure that there were enough

observations in the low category, given that most people tend to report being quite satisfied

with their health status.

Civil status

The civil status dataset includes individuals who have information about their civil status in

each of the 21 waves. This information is obtained not only from the questionnaire provided

to each individual but also from the questionnaire filled by the household reference person.

Therefore, the civil status dataset contains more observations (2324) than the satisfaction with

the health status dataset (1259).

Concerning the coding, we fused the registered partnership with the married state and the

dissolved partnership with the separated one.
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Mvad

The mvad datasets comes from a study by McVicar and Anyadike-Danes (2002) on transition

from school to work. In addition to some covariates, it contains the monthly labour market

activities of young individuals in a cohort survey, followed from July 1993 to June 1999. The

data were collected through two interviews that collected retrospective data. 712 responded to

both interviews and, hence, does not have any missing data.

The dataset is available in the TramineR (Gabadinho et al., 2011) package in R. We kept

all 712 trajectories and kept the original coding.
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E.3 Formulae for the criteria

We detail the formulae applied for the computation of the three criteria. For an imputed

dataset and the corresponding complete dataset on which missing data were simulated, the

three criteria are computed the following way.

Let A be the set of states that appear in the dataset, T the total number of time points

and N the total number of sequences in the dataset.

The timing criteria is defined as

T∑

t=1

∑

s∈A

|n̂(t)
s − n(t)

s |
NT

,

where n̂
(t)
i is the number of sequences of the imputed dataset that are in state s in time t and

n
(t)
i is the number of sequences of the original dataset that are in state s in time t.

The duration criteria is defined as

∑

s∈A

|m̂lss −mlss|
NT

,

where m̂lss is the mean length of the spells in state s in the imputed dataset and mlss is the

mean length of the spells in state s in the original dataset.

The sequencing criteria is defined as

∑

s∈A

nDSSs

nDSS

∑

q∈A

|p̂DSSsq − pDSSsq |,

where the p̂DSSsq is the probability to switch from state s to state q in the dataset of sequences

of distinct successive states built from the imputed dataset and, pDSSsq , nDSSs , nDSS are, respec-

tively, the probability to switch from state s to state q, the total number of state s and the

total number of states in the dataset of sequences of distinct successive states built from the

original dataset.

E.4 Normalisation of the criteria

For a dataset, missing data generation model and criteria, let C be the collection of all the

values obtained across all imputation methods and parametrisations applied. Each value c ∈ C
is modified as

c−min(C)

max(C)−min(C)
.
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This new set of values is standardised (mean 0 and unit variance).

E.5 Total score by algorithm
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Figure E.1: FCS multinomial - Total score for each parametrisation on each of the 18 scenarios.
The different parametrisations are: using one observation in the past (P1), five observations in
the past (P5), all past observations (Past), one observation both in past and future (PF1), five
observations both in past and future (PF5) and all observations (All)
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Figure E.2: FCS random forest - Total score for each parametrisation on each of the 18 scenarios.
The different parametrisations are: using one observation in the past (P1), five observations in
the past (P5), all past observations (Past), one observation both in past and future (PF1), five
observations both in past and future (PF5) and all observations (All).
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Figure E.3: MICT multinomial - Total score for each parametrisation on each of the 18 scenar-
ios. The different parametrisations are: using one observation in the past (P1), five observations
in the past (P5), one observation both in past and futur (PF1) and five observations both in
past and futur (PF5).
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Figure E.4: MICT random forest - Total score for each parametrisation on each of the 18
scenarios. The different parametrisations are: using one observation in the past (P1), five
observations in the past (P5), one observation both in the past and future (PF1), and five
observations both in the past and future (PF5).
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Figure E.5: MICT-timing multinomial - Total score for each parametrisation on each of the 18
scenarios. Concerning the parametrisations, time frames of width 0 and 5, denoted respectively
by T0 and T5, are combined with four different choices of predictors: one observation in the
past (P1), five observations in the past (P5), one observation in the past and future (PF1) and
five observations in the past and future (PF5).
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Figure E.6: MICT-timing random forest - Total score for each parametrisation on each of the 18
scenarios. Concerning the parametrisations, time frames of width 0 and 5, denoted respectively
by T0 and T5, are combined with four different choices of predictors: one observation in the
past (P1), five observations in the past (P5), one observation in the past and future (PF1) and
five observations in the past and future (PF5).
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Figure E.7: VLMC - Total score for the results obtained with both the gain functions (G1 and
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Figure F.1: MAR mechanism - Boxplots of the criteria relative to the local association, , ob-
tained from handling missing data on the civil status dataset with 1 to 3 iterations of the
MICT-multichannel algorithm. Each subplot corresponds to a scenario of missing data gen-
eration and is labelled as “type of pattern / rate of missing data / % of sequences from the
duplicated dataset permuted”.
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Figure F.2: MAR mechanism - Boxplots of the Cronbach’s α bias, obtained from handling miss-
ing data on the civil status dataset with 1 to 3 iterations of the MICT-multichannel algorithm.
Each subplot corresponds to a scenario of missing data generation and is labelled as “type of
pattern / rate of missing data / % of sequences from the duplicated dataset permuted”.
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Figure F.3: MAR mechanism - Boxplots of the longitudinal characteristics bias, obtained from
handling missing data on the civil status dataset with 1 to 3 iterations of the MICT-multichannel
algorithm. Each row of subplots corresponds to a scenario of missing data generation with a
same pattern of missing values and is labelled as “longitudinal characteristic - type of pattern
/ rate of missing data / % of sequences from the duplicated dataset permuted”.
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Figure F.4: MAR mechanism - Boxplots of the longitudinal characteristics bias, obtained from
handling missing data on the civil status dataset with 1 to 3 iterations of the MICT-multichannel
algorithm. Each row of subplots corresponds to a scenario of missing data generation with a
different pattern of missing values and is labelled as “longitudinal characteristic - type of pattern
/ rate of missing data / % of sequences from the duplicated dataset permuted”.
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Figure F.5: MAR mechanism - Boxplots of the longitudinal characteristics bias, obtained from
handling missing data on the satisfaction with health status dataset with 1 to 3 iterations of the
MICT-multichannel algorithm. Each row of subplots corresponds to a scenario of missing data
generation with a same pattern of missing values and is labelled as “longitudinal characteristic -
type of pattern / rate of missing data / % of sequences from the duplicated dataset permuted”.
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Figure F.6: MAR mechanism - Boxplots of the longitudinal characteristics bias, obtained from
handling missing data on the satisfaction with health status dataset with 1 to 3 iterations of
the MICT-multichannel algorithm. Each row of subplots corresponds to a scenario of missing
data generation with a different pattern of missing values and is labelled as “longitudinal
characteristic - type of pattern / rate of missing data / % of sequences from the duplicated
dataset permuted”.
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Figure F.7: MAR mechanism - Boxplots of the Cronbach’s α bias, obtained from handling
missing data on the professional status dataset with 1 to 3 iterations of the MICT-multichannel
algorithm. Each subplot corresponds to a scenario of missing data generation and is labelled as
“type of pattern / rate of missing data / % of sequences from the duplicated dataset permuted”.
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Figure F.8: MAR mechanism - Boxplots of the longitudinal characteristics bias, obtained from
handling missing data on the professional status dataset with 1 to 3 iterations of the MICT-
multichannel algorithm. Each row of subplots corresponds to a scenario of missing data gen-
eration with a same pattern of missing values and is labelled as “longitudinal characteristic -
type of pattern / rate of missing data / % of sequences from the duplicated dataset permuted”.
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Figure F.9: MAR mechanism - Boxplots of the longitudinal characteristics bias, obtained from
handling missing data on the professional status dataset with 1 to 3 iterations of the MICT-
multichannel algorithm. Each row of subplots corresponds to a scenario of missing data gener-
ation with a different pattern of missing values and is labelled as “longitudinal characteristic -
type of pattern / rate of missing data / % of sequences from the duplicated dataset permuted”.
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Figure F.10: MAR mechanism - Boxplots of the bias of the Cramer’s V , for each pair of
channels, obtained from handling missing data with 1 to 3 iterations of the MICT-multichannel
algorithm. Each subplot corresponds to a scenario of missing data generation. It is labelled as
“channels considered / type of pattern / rate of missing data”.
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Figure F.11: MAR mechanism - Boxplots of the bias of the Cronbach’s α computed, for each
pair of channels, obtained from handling missing data with 1 to 3 iterations of the MICT-
multichannel algorithm. Each subplot corresponds to a scenario of missing data generation. It
is labelled as “channels considered / type of pattern / rate of missing data”.
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Figure F.12: Case of a MAR mechanism and same patterns of missing data. Boxplots of the
bias on the criteria, obtained with the five considered methods, namely CCA, MICT applied to
each channel separately (labelled as “MICT-s”), MICT-multichannel (labelled as “MICT-m”),
FCS and two-fold FCS (labelled as “2folds FCS”). Each subplot corresponds to a scenario of
missing data generation. It is labelled as “channel considered - criterion - type of pattern /
rate of missing data”.
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Figure F.13: Case of a MAR mechanism and different patterns of missing data. Boxplots of
the bias on the longitudinal criteria, obtained with the five considered methods, namely CCA,
MICT applied to each channel separately (labelled as “MICT-s”), MICT-multichannel (labelled
as “MICT-m”), FCS and two-fold FCS (labelled as “2folds FCS”). Each subplot corresponds
to a scenario of missing data generation. It is labelled as “channel considered - criterion - type
of pattern / rate of missing data”.
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Figure F.14: MAR mechanism - Boxplots of the bias of the Cramer’s V , for each pair of
channels, obtained from handling missing data with MICT-multichannel algorithm and different
orders for the channels. Each subplot corresponds to a scenario of missing data generation. It
is labelled as “channels considered / type of pattern / rate of missing data” Each boxplot is
labelled based on the order, where “ch” correspond to child, “co” to cohabitational status and
“wo” for work status. Therefore, as an example, “ch-co-wo” means that the child channel was
imputed first, then the cohabitational one and finally the professional one.
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Figure F.15: MAR mechanism - Boxplots of the bias on the longitudinal criteria, from handling
missing data with MICT-multichannel algorithm and different order for the channels. Each
subplot corresponds to a scenario of missing data generation with same patterns of missing
data. It is labelled as “channel considered / type of pattern / rate of missing data” Each
boxplot is labelled based on the order, where “ch” correspond to child, “co” to cohabitational
status and “wo” for work status. Therefore, as an example, “ch-co-wo” means that the child
channel was imputed first, then the cohabitational one and finally the professional one.
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Figure F.16: MAR mechanism - Boxplots of the bias on the longitudinal criteria, from handling
missing data with MICT-multichannel algorithm and different order for the channels. Each
subplot corresponds to a scenario of missing data generation with different patterns of missing
data. It is labelled as “channel considered / type of pattern / rate of missing data” Each
boxplot is labelled based on the order, where “ch” correspond to child, “co” to cohabitational
status and “wo” for work status. Therefore, as an example, “ch-co-wo” means that the child
channel was imputed first, then the cohabitational one and finally the professional one.
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Figure F.17: MAR mechanism - Boxplots of the bias of the Cronbach’s α computed at time
18, for each pair of channels, obtained from handling missing data with MICT-multichannel
algorithm and different orders for the channels. Each subplot corresponds to a scenario of
missing data generation. It is labelled as “channels considered / type of pattern / rate of
missing data” Each boxplot is labelled based on the order, where “ch” correspond to child,
“co” to cohabitational status and “wo” for work status. Therefore, as an example, “ch-co-wo”
means that the child channel was imputed first, then the cohabitational one and finally the
professional one.
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