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Abstract

The basic assumption of a structural vector autoregressive moving-average (SVARMA) model
is that it is driven by a white noise whose components are uncorrelated or independent and can
be interpreted as economic shocks, called “structural” shocks. When the errors are Gaussian,
independence is equivalent to non-correlation and these models face two identification issues.
The first identification problem is “static” and is due to the fact that there is an infinite number
of linear transformations of a given random vector making its components uncorrelated. The
second identification problem is “dynamic” and is a consequence of the fact that, even if a
SVARMA admits a non invertible moving average (MA) matrix polynomial, it may feature
the same second-order dynamic properties as a VARMA process in which the MA matrix
polynomials are invertible (the fundamental representation). The aim of this paper is to explain
that these difficulties are mainly due to the Gaussian assumption, and that both identification
challenges are solved in a non-Gaussian framework if the structural shocks are assumed to
be instantaneously and serially independent. We develop new parametric and semi-parametric
estimation methods that accommodate non-fundamentalness in the moving average dynamics.
The functioning and performances of these methods are illustrated by applications conducted
on both simulated and real data.
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Keywords: Structural VARMA, Fundamental Representation, Identification, Structural Shocks,
Impulse Response Function.
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Introduction

1 Introduction

The basic assumption of a structural VARMA model (SVARMA) is that it is driven by a white noise
whose components are uncorrelated or independent and are interpreted as economic shocks, called
“structural” shocks. When the errors are Gaussian, independence is equivalent to non-correlation
and these models have to face two kinds of identification problems.

First the components of the white noise appearing in the reduced-form VARMA are instanta-
neously correlated and the shock vector must be derived from this white noise by a linear transfor-
mation eliminating these instantaneous correlations. The snag is that this can be done in an infinite
number of ways and, in the Gaussian case, all the resulting standardized shock vectors have the
same (standard Gaussian) distribution. There is a huge literature trying to solve this “static” iden-
tification issue by adding restrictions on the short-run impact of a shock (see e.g. Bernanke, 1986;
Sims, 1980, 1986, 1989; Rubio-Ramirez, Waggoner, and Zha, 2010), or on its long-run impact
(see e.g. Blanchard and Quah, 1989; Faust and Leeper, 1997; Erceg and Gust, 2005; Christiano,
Eichenbaum, and Vigfusson, 2006), as well as on the sign of some impulse response functions (see
e.g. Uhlig, 2005; Chari, Kehoe, and McGrattan, 2008; Mountford and Uhlig, 2009).

A second identification issue comes from the fact that a stationary SVARMA process may
feature a non-invertible moving average (MA) matrix lag polynomial, in the sense that it cannot be
inverted into a matrix lag series. This is the case when the determinant of the matrix lag polynomial
has some roots inside the unit circle. The latter situation, called non-fundamentalness, may occur
for many reasons, in particular when the SVARMA is deduced from business cycle models (see
e.g. Kydland and Prescott, 1982; Francis and Ramey, 2005; Gali and Rabanal, 2005), or from
log-linear approximations of Dynamic Stochastic General Equilibrium (DSGE) models involving
rational expectations or news shocks (see e.g. Hansen and Sargent, 1991; Smets and Wouters,
2003; Christiano, Eichenbaum, and Vigfusson, 2007; Fève, Matheron, and Sahuc, 2009; Sims,
2012; Leeper, Walker, and Yang, 2013; Blanchard, L’Huillier, and Lorenzoni, 2013). A non-
fundamental SVARMA process has exactly the same second-order dynamic properties as another
VARMA process with an invertible MA part (the fundamental representation) and, in the Gaussian
case, both processes are observationally equivalent. This creates a dynamic identification problem,
which is exacerbated by the fact that the standard Box-Jenkins approach –the Gaussian Pseudo
Maximum Likelihood method based on a VAR approximation of the VARMA (Box and Jenkins,
1970)– automatically provides a consistent estimation of the fundamental representation. Even
though they can feature the exact same second-order dynamic properties, a fundamental and a
non-fundamental SVARMA entail different Impulse Response Functions (IRFs). Using the Box-
Jenkins approach may therefore lead to misspecified IRFs (see Lippi and Reichlin, 1993, 1994).
As in the static identification literature, some papers propose dynamic identification by imposing
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recursivity conditions (Mertens and Ravn, 2010), or by using the fact that some roots of the MA
part are known (see e.g. Forni, Gambetti, Lippi, and Sala, 2017b, where zero is a root).

The aim of this paper is to explain that these difficulties are due to the Gaussian assumption
underlying the Box-Jenkins type approaches, and that these identification problems disappear in a
non-Gaussian framework when the structural shocks are assumed to be instantaneously and serially
independent. We also introduce novel parametric and semi-parametric estimation approaches that
accommodate non-fundamentalness in the multivariate moving-average dynamics.

In Section 2, we consider a vector autoregressive moving average process, with roots of the
moving average polynomial that are not necessarily outside the unit circle. We stress that the eco-
nomic shocks are not necessarily interpretable in terms of causal innovations. We review different
examples of non-fundamental representations in the moving average dynamics given in the litera-
ture. Next we discuss the identification issues in the Gaussian case and point out that the standard
Box-Jenkins approach based on Gaussian pseudo-likelihood and the Kalman filter algorithm suffer
from these issues.

Section 3 is the core of the paper. We consider linear non-Gaussian SVARMA processes based
on serially and instantaneously independent shocks (see e.g. Brockwell and Davis, 1991; Rosen-
blatt, 2000, for an introduction to linear processes). In the context of these models –called Strong
Structural VARMA (or SSVARMA) models hereinafter– we explain that the standard static and dy-
namic identification problems encountered in the Gaussian SVARMA analysis disappear; we also
discuss the identification of the structural shocks and of the Impulse Response Functions (IRFs).
In Section 4 we present new parametric and semi-parametric estimation methods to improve upon
the standard SVAR methodology. A key element is a novel filtering algorithm aimed at estimating
the structural shocks from samples of endogenous variables; this procedure is shown to provide
consistent estimates of the structural shocks, irrespective of the moving-average fundamentalness
regime. The algorithm further makes it possible to compute truncated log-likelihood functions,
opening the way to Maximum Likelihood (ML) estimation. We also propose a consistent 2-step
semi-parametric approach which is less subject to the curse of dimensionality than the ML ap-
proach and which does not require particular assumptions about the distribution of the shocks.

Applications are provided in Section 5. First, we conduct Monte-Carlo analyses to illustrate
the performances of our estimation approaches in the contexts of a univariate MA(1) process and
of a bivariate VMA(1) process. These exercises suggest that, even for relatively small samples,
our estimation approaches can recover the right fundamentalness regime when the shocks feature
asymmetry or fat tails. Identification however weakens when the shocks’ distributions get closer
to the normal distribution (in particular when increasing the number of degrees of freedom of a
Student distribution). Second, following Blanchard and Quah (1989), Lippi and Reichlin (1993,
1994), we study the joint dynamics of U.S. GNP growth and unemployment rates; our results
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suggest that the data call for non-fundamental bivariate VARMA models. Section 6 concludes.
Proofs are gathered in the appendix. The special case of a one-dimensional MA(1) process is

completely analysed in an online appendix, which also contains additional proofs and examples,
as well as details on the numerical optimization procedure implemented in the codes.

2 Dynamic Linear Model and Non-Fundamentalness

2.1 The dynamic SSVARMA model

Despite the standard Vector Autoregressive (VAR) terminology, the linear dynamic reduced-form
structural models may have both autoregressive and moving average parts. The VARMA model is
the following:

Φ(L)Yt = Θ(L)εt , (2.1)

where Yt is a n-dimensional vector of observations at date t, εt is a n-dimensional vector of errors,
L the lag operator,

Φ(L) = I−Φ1L− . . .−ΦpLp, Θ(L) = I−Θ1L− . . .−ΘqLq, (2.2)

I is the identity matrix, and the matrix autoregressive and moving average lag-polynomials are of
degrees p and q, respectively.

Let us now introduce the following assumptions on model (2.1):

Assumption A.1. Assumption on errors.

The errors can be written as εt = Cηt , where C is invertible, the ηt’s are independently and

identically distributed, and the components η j,t of ηt =C−1εt are mutually independent with mean

zero and unit variance, i.e. E(η j,t) = 0 and V (η j,t) = 1, j = 1, . . . ,n.

The independent random variables η j,t , j = 1, . . . ,n, are called “structural shocks” and the
following representation is called a strong structural VARMA, or SSVARMA, representation:

Φ(L)Yt = Θ(L)Cηt . (2.3)

Note that we assume not only the serial and instantaneous non-correlation of the η j,t’s — as in
the standard SVARMA – but also their independence.
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Assumption A.2. Assumption of left coprimeness on the lag-polynomials.

If Φ(L) and Θ(L) have a left common factor C(L), say, such that: Φ(L) =C(L)Φ̃(L),Θ(L) =

C(L)Θ̃(L), then det(C(L)) is independent of L.

This condition ensures that the VARMA representation is minimal in the sense that all possible
simplifications have been already done (see Hannan and Deistler, 1996, Chap 2 for more details).
This condition greatly simplifies the discussions in the next sections. It is often forgotten in struc-
tural settings and it might be necessary to test for the minimality of the representation. This is out
of the scope of this paper.1

The next assumption, on the roots of det Φ(z), is also made to simplify our analysis.2

Assumption A.3. Assumption on the autoregressive polynomial.

All the roots of det Φ(z) have a modulus strictly larger than 1.

Under Assumptions A.1–A.3, the linear dynamic system (2.1) has a unique strongly stationary
solution, such that E(‖Yt‖2)< ∞ (see e.g. the discussion in Gouriéroux and Zakoian, 2015). Also
note that, if the right-hand side of (2.1) is µ +Θ(L)εt , the process Yt −m ≡ Yt − [Φ(1)]−1µ satis-
fies (2.1) without intercept; we can therefore assume µ = 0, or m = 0, without loss of generality.

Assumption A.4. Assumption on the observable process.

The observable process is the (strong) stationary solution of model (2.1) associated with the

true values of Φ, Θ, C and with the true distribution of ε .

Since all the roots of det(Φ(z)) lie outside the unit circle, it is easy to derive the inverse of the

1See Deistler and Schrader (1979) for a study of identifiability without coprimeness, and Gouriéroux, Monfort, and
Renault (1989) for the test of coprimeness –i.e. common roots– for one-dimensional ARMA processes.

2This assumption excludes cointegrated variables. When Yt is I(1) and, assuming that β is a n× r matrix whose
columns span the cointegrating space (of dimension r), one can come back to the present (stationary) case by consid-
ering the following stationary vector of variables: Wt = [Ỹ ′t ,Y

′
t β ]′, where Ỹt = [∆Y1,t , . . . ,∆Yn−r,t ]

′. Note that we can
assume that the ∆ operator applies to the n− r first components of Yt since we can always reorder and rename the
components. Engle and Granger (1987)’s least square methodology provides a consistent estimate of the cointegration
directions β (at rate 1/T ). Let’s denote this estimate by β̂ . The estimation approaches that are presented in Section 4
can then be applied to the stationarized process Ŵt = [Ỹ ′t ,Y

′
t β̂ ]′; the effect of estimating the matrix of cointegrating

directions β can be neglected due to the high convergence speed of β̂ .
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autoregressive polynomial operator Φ(L) as a convergent one-sided series in the lag operator L:

Φ(L)Yt = Θ(L)εt

⇐⇒ Yt = Φ(L)−1
Θ(L)εt ≡Ψ(L)εt =

∞

∑
k=0

ΨkLk
εt =

∞

∑
k=0

Ψkεt−k (2.4)

=
∞

∑
k=0

ΨkCηt−k =
∞

∑
k=0

Akηt−k,

with Ak = ΨkC. Hence, the Ak’s are combinations of the Ψk’s, which determine the dynamics of
the system, and of C, which defines the instantaneous impact of the structural shocks.

Moreover, when all the roots of det(Θ(z)) lie outside the unit circle, Yt has a one-sided autore-
gressive representation:

Θ
−1(L)Φ(L)Yt ≡

∞

∑
k=0

BkLkYt =
∞

∑
k=0

BkYt−k = εt ,

and
ηt =C−1

Θ
−1(L)Φ(L)Yt ,

where Θ−1(L) is the one-sided series operator involving positive powers of L and that satisfies
Θ−1(L)Θ(L) = I. In this case, we say that the operator Θ(L) is invertible and that the SSVARMA
model (2.3) is fundamental.

However, from the macroeconomic literature we know that VARMA models do not always
have roots of the moving average located outside the unit circle (see Section 2.2). We also make
the following assumption:

Assumption A.5. Assumption on the moving average polynomial

The roots of det(Θ(z)) are not on the unit circle.

In the MA(1) case Yt = (I−ΘL)Cηt , this excludes eigenvalues of Θ on the unit circle, and
also the differencing of a cointegrated VARMA process. Under Assumption A.5, the roots of
det(Θ(L)) can be inside or outside the unit circle; Θ(L) is then invertible in a general sense, since
there exists a two-sided series B(L) = ∑

∞
k=−∞

BkLk such that B(L)Θ(L) = I, and Yt then has a two-
sided autoregressive representation. The structural shocks can then be recovered from all lagged,
current, and future values of the observed variables.

Let us now study the consequences of “ill-located” roots of det(Θ(z)), that are roots located in-
side the unit circle. For expository purpose, let us consider a one-dimensional ARMA(1,1) process:
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(1−ϕL)yt = (1−θL)εt , (2.5)

where |ϕ|< 1 and |θ |> 1.We have:

yt = (1−ϕL)−1(1−θL)εt , (2.6)

and, therefore, yt is a function of the present and past values of εt .
To get the (infinite) pure autoregressive representation of process (yt), we have to invert 1−θL.

This leads to:

(1−ϕL)yt =

(
1− 1

θ
L−1
)
(−θLεt)

⇔
(

1− 1
θ

L−1
)−1

(1−ϕL)yt =−θLεt . (2.7)

Formula (2.7) implies that εt is a function of the future values of yt . Therefore, εt is not the
causal innovation of yt , defined by yt −E(yt |yt−1,yt−2, . . .), the latter being a function of present
and past values of yt only. Formula (2.6) shows that the knowledge of {εt ,εt−1, . . .} implies the
knowledge of {yt ,yt−1, . . .}, but since (2.7) shows that εt is not a function of {yt ,yt−1, . . .}, it comes
that the information set {yt ,yt−1, . . .} is strictly included in the information set {εt ,εt−1, . . .}.

To summarize, under Assumptions A.1–A.4, the error term in the VARMA representation is
equal to the causal innovation of the process if the roots of det(Θ(z)) are all outside the unit circle.
Under this condition, the process (Yt) has a fundamental VARMA representation.3,4 In this case,
at any date t, the information contained in the current and past values of Yt coincides with the
information contained in the current and past values of εt . Otherwise, if some roots of det(Θ(z))

are inside the unit circle, the VARMA representation is non-fundamental. In the latter case, εt is
not equal to the causal innovation, that is, it is not function of present and past observations of Yt

only.
Consider a non-fundamental SSVARMA process (Yt) defined by (2.3). (Yt) admits a funda-

mental representation of the form: Φ(L)Yt = Θ∗(L)ε∗t ,5 where process (ε∗t ) is a weak white noise,

3See e.g. Hansen and Sargent (1980), p18, (1991), p79, and Lippi and Reichlin (1994) for the introduction of this
terminology in the macroeconometric literature. The term “fundamental” is likely due to Kolmogorov and appears in
Rozanov (1960), p367, and Rozanov (1967), p56, to define the “fundamental process”, that is, the second-order white
noise process involved in the Wold decomposition of a weak stationary process.

4The terminology “fundamental” can be misleading, in particular since fundamental shock and structural shock
are often considered as equivalent notions (see e.g. the description of the scientific works of Nobel prizes Sargent and
Sims in Economic Sciences Prize Committee, 2011, or Evans and Marshall, 2011). Moreover in some papers (see
Grassi, Ferroni, and Leon-Ledesma, 2015) a shock is called fundamental if its standard deviation is non-zero.

5 This representation can be obtained from the non-fundamental SVARMA representation by making use of
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i.e. ε∗t and ε∗s , t 6= s, are uncorrelated but not independent, except in the Gaussian case. This pro-
cess is the linear causal innovation of (Yt) appearing in the Wold representation, but is in general
different from the nonlinear causal innovation, except in special cases, such as the Gaussian case.
In any case, it does not coincide with process (Cηt). Now, consider the new (fundamental) pro-
cess (Y ∗t ) defined through Φ(L)Y ∗t = Θ∗(L)C∗ηt , where C∗ satisfies V (ε∗t ) =C∗C∗′. Processes (Yt)

and (Y ∗t ) have the same (dynamic) second-order properties. As a result, the estimation methods
focussing on second-order properties cannot distinguish between Θ∗(L) and Θ(L). However, the
dynamic responses of Yt and Y ∗t to changes in ηt resulting from one or the other MA specification
are different.6

2.2 Examples of non-fundamentalness

There exist different sources of non-fundamentalness in SVARMA models, that is, of “ill-located”
roots of the moving average polynomial (see also the discussion in Alessi, Barigozzi, and Capasso,
2011). Let us consider some examples and highlight, in each case, the errors with a structural
interpretation.

i) Lagged impact. A first example of non-fundamentalness is the one provided by Lippi and
Reichlin (1993) in their comment of the model estimated by Blanchard and Quah (1989).
Suppose that the productivity process, denoted by yt , is given by:

yt = εt +θεt−1,

where εt denotes the productivity shock, reflecting for instance the introduction of a techno-
logical innovation. It may be realistic to assume that the maximal impact of the productivity
shock is not instantaneous and is maximal with a lag, i.e. θ > 1. The MA(1) process is then
non-fundamental (or non-invertible).

ii) Advanced indicator (noise / news shocks). The non-invertibility of the process may also arise
from some modelling of the information structure. Consider a process (xt) that summarizes

Blaschke matrices. Consider a square matrix of the lag operator denoted by B(L). B(L) is a Blaschke matrix if
and only if [B(L)]−1 = B∗(L−1), where B∗(.) is obtained from B(.) by transposing and taking conjugate coefficients.
See Leeper, Walker, and Yang (2013), p1123-1124 for a practical use of Blaschke matrices.

6This is easily illustrated in the context of a univariate MA(1) process. Consider for instance the MA(1) processes
(yt) and (y∗t ) respectively defined by yt = σηt − θσηt−1 and y∗t = σθηt −σηt−1. Although (yt) and (y∗t ) have the
same second-order properties, they react differently to shocks to ηt . Consider a one-unit increase in ηt . Whereas this
shock implies increases in yt , yt+1 and yt+h, h > 1, by σ , −θσ and 0, respectively, it implies increases in y∗t , y∗t+1
and y∗t+h by σθ , −σ and 0. In particular, if one of these two IRFs is decreasing (in absolute values), the other is
hump-shaped.
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“fundamentals”, which themselves capture changes in technology, preferences, endowments,
or government policy (Chahrour and Jurado, 2018). The dynamics of (xt) is described by:

xt = a(L)ut , (2.8)

where process (ut) is a strong white noise. On date t, the consumer observes xt as well as a
“noisy” signal about the future value of fundamentals:

st = xt+1 + vt , (2.9)

where (vt) is also a strong white noise, independent of (ut). This second equation describes
the incremental information about future fundamentals (Barsky and Sims, 2012). If the
econometrician also observes the signal, the model leads to the following bivariate moving
average representation: [

xt

st

]
=

[
La(L) 0
a(L) 1

][
ua

t

vt

]
, (2.10)

where ua
t = ut+1.

The determinant of the moving average polynomial has a root equal to zero, which is within
the unit circle. The moving average representation is therefore non-fundamental. The noise
shock vt has the nature of a demand shock: although it has no effect on fundamentals, it
may affect the macroeconomy because it affects beliefs about future fundamentals through
the signal st .7 Hence, the existence of this noise may be used to account for belief-driven
business cycles (see e.g. Forni, Gambetti, Lippi, and Sala, 2017b).

This type of analysis is also employed in models disentangling the permanent and transi-
tory shocks affecting fundamentals (Lorenzoni, 2009; Blanchard, L’Huillier, and Lorenzoni,
2013), or own agent productivity and noisy signal on the aggregate productivity (Lorenzoni,
2009, Section 3). Chahrour and Jurado (2018) have recently shown that the previous kind of
“noise representation” closely relates to the so-called “news representation”, where people
perfectly observe part of an exogenous fundamental in advance.8

iii) Rational expectations. Other sources of non-fundamentalness are the rational expectations
introduced in the models. In the simple example of Hansen and Sargent (1991) the economic

7The “noise” terminology can be misleading: although “noise” mainly refers to vt in this literature, both types of
disturbances (ut and vt ) are strong white noises, i.e. sequences of i.i.d. variables.

8Basic references on the impacts of “news/noise” shocks include (Blanchard, L’Huillier, and Lorenzoni, 2013;
Forni, Gambetti, Lippi, and Sala, 2017a,b; Chahrour and Jurado, 2018).
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variable yt is defined as:

yt = Et

(
∞

∑
h=0

β
hwt+h

)
, with wt = εt−θεt−1, 0 < β < 1, |θ |< 1.

If the information set available to the economic agent at date t is It = (εt ,εt−1, . . .), we get:

yt = (1−βθ)εt−θεt−1.

The root of the moving average polynomial is (1−βθ)/θ . Depending on the values of β and
θ , the absolute value of this root is larger or smaller than 1. When the root is strictly smaller
than 1, the model is non-fundamental. In such rational expectation models, the information
sets of the economic agent and of the econometrician are assumed to be aligned.

v) Prediction error. When the variable of interest is interpreted as a prediction error, non-
fundamentalness may also appear (see Hansen and Hodrick, 1980). For instance if yt is
the price of an asset at t, Et−2yt can be interpreted as the futures price at t−2 (if the agents
are risk-neutral). The spread between the spot price and the futures price is: st = yt−Et−2yt

and, if yt is a fundamental (invertible) MA(2) process: yt = εt +θ1εt−1 +θ2εt−2 = Θ(L)εt ,
then st = εt +θ1εt−1 (= Θ1(L)εt) and the spread process is not necessarily fundamental. For
example if Θ(L) = (1−θL)2 with |θ |< 1, we have Θ1(L) = 1−2θL, which is not invertible
as soon as |θ |> 1/2.

vi) Non-observability. Non-fundamentalness can arise from a lack of observability. Fernandez-
Villaverde, Rubio-Ramirez, Sargent, and Watson (2007) give the example of a state-space
representation of the surplus in a permanent income consumption model (see Lof, 2013,
Section 3, for another example). The state-space model is of the following type:{

ct = act−1 +(1−1/R)εt , 0 < a < 1,
yt = −act−1 +1/Rεt ,

where yt − ct is the surplus, the consumption ct is latent, R > 1 is a constant gross interest
rate on financial assets, and εt is an i.i.d. labor income process. From the first equation, we
deduce:

ct =
(1−1/R)

1−aL
εt ,
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and, by substituting in the second equation, the dynamics of yt reads:

yt =

[
1/R−a

L(1−1/R)
1−aL

]
εt =

1/R−aL
1−aL

εt .

Thus the root of the moving-average lag-polynomial is equal to 1/aR, and it is smaller than
one when aR > 1.9

2.3 The limits of the Gaussian approach

2.3.1 Static identification issue

Let us first consider the popular case of a structural VAR process (SVAR), where Θ(L) = I. The
Gaussian SVAR process is defined by:

Φ(L)yt =Cηt ,

where Φ(0) = I, the roots of det(Φ(z)) are outside the unit circle and where the process (ηt) is a
Gaussian white noise, with E(ηt) = 0 and V (ηt) = I. The model involves two types of parameters:
whereas the sequence Φk, k = 1, . . . , p, characterizes the dynamic features of the model, matrix C

defines (static) instantaneous effects.
In this case, the dynamic parameters Φ1, . . . ,Φp are characterized by the Yule-Walker equa-

tions; they are therefore identifiable, but the static parameter C is not, since replacing C by CQ,
where Q is an orthogonal matrix, leaves the distribution of process (Yt) unchanged. It is the static

identification problem.
In order to solve this identification issue, additional short-run, long-run, or sign restrictions

have been imposed in the literature [see e.g. the references in the introduction].10 It turns out that,
if at most one of the components of ηt is Gaussian, the identification problem disappears since C is
then identifiable, up to sign change and permutation of its columns. This result, shown by Comon
(1994) (Theorem 11) is a consequence of the Darmois-Skitovich characterization of the multivari-
ate Gaussian distribution (see Darmois, 1953; Skitovich, 1953; Ghurye and Olkin, 1961). In this
case, C can be estimated using Independent Component Analysis (ICA) algorithms (see Hyvärinen,
Karhunen, and Oja, 2001), or Pseudo Maximum Likelihood techniques (see Gouriéroux, Monfort,

9This reasoning does not hold for a = 1, which is precisely the case considered in Fernandez-Villaverde, Rubio-
Ramirez, Sargent, and Watson (2007), where ct and yt are nonstationary co-integrated processes. Indeed their equa-
tion (5) assumes the stationarity of the y process and is not compatible with the assumption of a cointegrated model.

10An alternative consists in leaving the linear dynamic framework by considering Markov Switching SVAR [see
Lanne, Lütkepohl, and Maciejowska (2010), Lütkepohl (2013), Herwartz and Lütkepohl (2017), Velinov and Chen
(2014)]. In this paper we will stay in a pure SVARMA framework.
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and Renne, 2017 or Lanne, Meitz, and Saikkonen, 2017). The identifiability of the static parameter
C in the non-Gaussian case implies that the recursive approach proposed by Sims, imposing that
C is lower-triangular, cannot be used in general to find independent shocks, but only uncorrelated
shocks.

2.3.2 Dynamic identification issue

Let us now consider the general case of a SVARMA process:

Φ(L)Yt = Θ(L)Cηt ,

where Φ(0) = Θ(0) = I, the roots of det(Φ(z)) lie outside the unit circle, the roots of det(Θ(z))

can be inside or outside the unit circle, and (ηt) is a Gaussian white noise with E(ηt) = 0 and
V (ηt) = I.

Let us focus here on the identification of the dynamic parameters Φ and Θ. In the Gaussian
case, the distribution of the stationary process (Yt) depends on the dynamic and static parameters
through the second-order moments of the process or, equivalently, through the spectral density
matrix:

f (ω) =
1

2π
Φ
−1(exp iω)Θ(exp iω)CC′Θ(exp−iω)′Φ−1(exp−iω)′. (2.11)

Using the equalities Γh−Φ1Γh−1− ·· ·−ΦpΓh−p = 0, ∀h ≥ q+ 1, with Γh = cov(Yt ,Yt−h), it is
readily seen that the coefficient matrices Φ1, ..., Φp are identifiable from the distribution of pro-
cess (Yt) (Gaussian or not), but several sets of coefficients (Θ1, . . . ,Θq,C) yield the same spectral
density and the same distribution for the process (Yt) in the Gaussian case; the different polynomi-
als Θ(L) are obtained from the fundamental one –the one with the roots of det(Θ(z)) outside the
unit circle– by use of Blaschke matrices.11 The lack of identification of the dynamic parameters
Θ is called the dynamic identification problem. We see in Section 3 that this second identification
problem also disappears in the non-Gaussian case.

The dynamic identification problem is simply illustrated in the univariate MA(1) model: yt =

σηt−θσηt−1, where (ηt) is a Gaussian white noise with E(ηt) = 0, V (ηt) = 1 and, for instance,
0 < θ < 1. If we replace θ by θ ∗ = 1/θ and σ by σ∗ = σθ , we get another process:

y∗t = σ
∗
ηt−θ

∗
σ
∗
ηt−1

= σθηt−σηt−1,

11See Footnote 5 for the definition of Blaschke matrices.
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which is also Gaussian and with the same covariance function as (yt), namely:

Γ0 = σ
2(1+θ

2), Γ1 =−θσ
2 and Γh = 0, for h≥ 2,

and, therefore, with the same distribution. In other words, the pairs (θ ,σ) and (1/θ ,σθ) give the
same distributions for processes (yt) and (y∗t ). By contrast, we will see that, if ηt is non-Gaussian,
the distributions of processes (yt) and (y∗t ) are different, although their spectral density matrices
are the same (see e.g. Weiss, 1975; Breidt and Davis, 1992; Lii and Rosenblatt, 1992).

Alternatively, the process (η∗t ) defined by yt = σθη∗t −ση∗t−1 ≡ σ∗(η∗t − 1
θ

η∗t−1), with σ∗ =

σθ is another Gaussian white noise with zero mean and unit variance. More generally in the MA(q)
case, yt = θ(L)σηt , with θ(0) = 1, we get other representations (i) by replacing θ(L) by θ ∗(L),
where the latter is obtained from θ(L) by inverting some roots (the complex roots being inverted
by pairs), and (ii) by replacing σ by σ∗, where the value of σ∗ is determined to give the same
marginal variance to yt . Then the processes (η∗t ) defined through yt = θ ∗(L)σ∗η∗t are Gaussian
white noises with zero mean and unit variance. Among all these equivalent representations, a single
one is fundamental. In the non-Gaussian case, if one of these (η∗t ) processes is a strong white
noise, i.e. a serially independent process, the others will be only weak white noises, i.e. serially
uncorrelated (see Proposition 1 below). If the strong white noise process does not correspond to
the fundamental representation, the weak white noise corresponding to the invertible polynomial
θ ∗(L) is the linear innovation process associated with the Wold representation.

In the usual Box-Jenkins approach, the estimation of the parameters Φ1, ..., Φp, Θ1, ..., Θq, Σ =

CC′ is based on a truncated VAR approximation relying on the assumption that Θ(L) is invertible
(i.e. the roots of det(Θ(z)) are outside the unit circle), namely a truncation of Θ(L)−1Φ(L)Yt = εt ,
with V (εt) = Σ = CC′ (see e.g. Galbraith, Ullah, and Zinde-Walsh, 2002). In other words, a fun-
damental representation is a priori imposed without being tested. The introduction of multivariate
non-fundamentalness tests is actually very recent (see e.g. Forni and Gambetti, 2014; Chen, Choi,
and Escanciano, 2017).12

12The test developed by Chen, Choi, and Escanciano (2017) exploits the non-normality of the shocks; Forni and
Gambetti (2014) use information not included in the VAR specification.
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3 Identification and Impulse Response Functions (IRFs) in the
Non-Gaussian SSVARMA

3.1 Identification of the parameters

Consider again the SSVARMA process:

Φ(L)Yt = Θ(L)Cηt ,

and assume that Assumptions A.1 to A.5 hold. Since Φ(L) is invertible, we have:

Yt = Φ
−1(L)Θ(L)Cηt = A(L)ηt , (3.1)

with A(L) = Φ−1(L)Θ(L)C.

In Subsection 2.3.1, we have seen that Φ1, . . . ,Φp are characterized by the Yule-Walker equa-
tions; they are therefore identified. What about Θ(L) and C? The next proposition is deduced from
Theorem 1 in Chan, Ho, and Tong (2006) (based on Theorem 4 in Chan and Ho, 2004), and solves
the dynamic identification issue in the non-Gaussian case.13,14 Let us first introduce the following
assumption:

Assumption A.6. Each component of ηt has a non-zero rth cumulant, with r ≥ 3, and a finite

moment of order s, where s is an even integer greater than or equal to r.

Assumption A.6 is introduced to eliminate the Gaussian framework in which all cumulants of
order r ≥ 3 are zero. More precisely, if the true distribution of η j,t has moments of any order, the
only distribution that does not satisfy Assumption A.6 is the Gaussian distribution. Assumption A.6
is also satisfied for asymmetric distributions, that is, if the true distribution of η j,t has a non-zero
skewness (and has a finite moment of order 4), or if it is symmetric, but has a non-zero (finite) ex-
cess kurtosis. This includes the Student distributions with degrees of freedom strictly larger than 4.

Proposition 1. Under Assumptions A.1 to A.6, if we consider another stationary process (Y ∗t )

defined by:

Φ(L)Y ∗t = Θ
∗(L)C∗η∗t ,

13See Findley (1986), Cheng (1992) for the one-dimensional case.
14A similar identification result has been recently derived when the components of ηt have fat tails (see Gouriéroux

and Zakoian, 2015).
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then the processes (Yt) defined in (2.3) and (Y ∗t ) are observationally equivalent if and only if:

Θ(L) = Θ
∗(L) and C =C∗,

where the last equality holds up to a permutation and sign change of the columns and η∗t = ηt in

distribution up to the same permutation and sign change of their components.

Proof: See Appendix A.

In order to transform the local identifiability of C under Assumptions A.1 to A.6 into a global
identifiability, we add the following normalization:15

Assumption A.7. The components of the first row of C are nonnegative and in increasing order.

Proposition 1 provides conditions under which the SSVARMA parameterization is identified.
This identification result is however not constructive and does not explain how to estimate the
correct –possibly non-fundamental– SSVARMA representation.16 This task is the objective of the
methods presented in Section 4 below.

3.2 Identification of the structural shocks and of the IRFs

What precedes implies that, under Assumptions A.1 to A.7, the structural shocks ηt are identified.
Indeed, we have ηt = C−1Θ−1(L)Φ(L)Yt where, under these assumptions, Φ(L), Θ(L) and C are
identified. The only remaining problem is the labelling of these shocks, since these shocks are
ordered by Assumption A.7, but not yet interpreted. The labelling will depend on the dynamic
impact of these shocks on the different endogenous variables considered in the model, that is on
the Impulse Response Functions (IRFs). This is completely different from standard structural ap-
proaches where the identification of the shocks themselves necessitates additional theory-based
restrictions. Proposition 1 states that, under Assumptions A.1 to A.7, such restrictions are over-
identifying restrictions.

The IRFs are also identified under Assumptions A.1 to A.7 since, in our linear setting, the IRFs
correspond to the coefficients of the MA representation (2.4), which are deduced from Θ(L), Φ(L)

15This normalization is an alternative to the one proposed by Lanne, Meitz, and Saikkonen (2017) in the context of
non-Gaussian SSVAR (see their Subsection 3.3).

16Theorem 1 of Chen, Choi, and Escanciano (2017) is closely related to Proposition 1. Chen, Choi, and Escanciano
(2017) exploit their Theorem 1 to define a test aimed at checking if the fundamental representation is the right one.
They do not explain how to estimate the SSVARMA representation under non-fundamentalness.
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and C. Specifically, let us denote by IRFj,h the differential impact of a unit shock on η j,t on Yt,h,
that is:17

IRFj,h = E
(

Yt+h|η j,t = 1,ηt−1

)
−E

(
Yt+h|ηt−1

)
, (3.2)

where ηt−1 = {ηt−1,ηt−2, . . .}. Then, from (2.4), we have:18

IRFj,h = ΨhC j, (3.3)

where C j denotes the jth column of matrix C.
Equation (3.3) highlights that the IRFs hinge on the fundamentalness regime of the SVARMA

model. It shows indeed that the IRF depends on the (possibly non-invertible) MA coefficients
through the Ψh’s.19

Besides, note that IRFj,h can be written ΨhCE(ηt |η j,t = 1) using the serial independence of the
ηt’s only. Consequently, although the assumption of instantaneous zero correlation is not sufficient,
we also get IRFj,h = ΨhC j under the weaker assumption of mean independence (E(ηi,t |η j,t) = 0,
∀i 6= j). However, the result of Proposition 1 on the identification of C – and therefore of the IRFs
– is based on the assumption of instantaneous independence of the η j,t’s; it has not been shown
under the assumption of mean independence.

4 Estimation of Models with Non-Fundamentalness

In this section, we present parametric and semi-parametric estimation approaches to estimate (pos-
sibly) non-fundamental SSVARMA models. For a parametric SSVARMA model, we show that the
parameters can be estimated by Maximum Likelihood (ML). More precisely, we explain how to
compute a truncated log-likelihood function. Under regularity assumptions, the estimator resulting
from the maximization of the latter function achieves asymptotic efficiency. When the distribution
of the errors is left unspecified, we propose a two-step approach whose second step is based on
moment restrictions. These restrictions pertain to moments of order higher than three. This semi-
parametric approach, which also gives consistent and asymptotically normal estimators, is robust
to a misspecification of the error distribution.

17Other IRF definitions can be found in the literature. In particular, Koop, Pesaran, and Potter (1996) discuss the fol-
lowing “traditional” definition: E

(
Yt+h|ηt+h = 0, . . . ,ηt+1 = 0,ηt = e j,ηt−1

)
− E

(
Yt+h|ηt+h = 0, . . . ,ηt = 0,ηt−1

)
.

In the linear case, these “traditional” IRFs are equivalent to those resulting from (3.2), called Generalized IRF (Koop,
Pesaran, and Potter, 1996; Pesaran and Shin, 1998).

18If the SSVARMA is non-fundamental, then ηt−1 is not a function of Yt−1, and, therefore, is not observable (even if
the parameters were known). This is however not a problem for the computation of IRFj,h since, thanks to the linearity
of the model and the serial independence assumptions, ηt−1 does not appear in IRFj,h.

19Footnote 6 shows for instance that, in the MA(1) case, if the IRF associated with the fundamental representation
is monotonously decreasing, then the one associated with the non-fundamental representation is hump-shaped.
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When the dimension of the vector of endogenous variables Yt increases, the number of param-
eters specifying the SSVARMA representation (2.3) increases at a much faster rate, giving rise to a
curse of dimensionality problem. As a result, in practice, there is a tradeoff between the dimension
n and the degrees p and q in VARMA modelling. Contrary to our ML approach, the numerical
complexity of the semi-parametric approach does not depend on the autoregressive order p (be-
cause the estimate of Φ(L) results from linear regressions). Nevertheless, both methods are subject
to the curse of dimensionality when augmenting the moving-average order q. In most applications,
q is equal to 0, 1 or 2. In the following, we focus on VARMA(p,1) models. Subsection 4.1.4 details
how to extend the ML approach to the estimation of VARMA(p,q) models with q > 1.

4.1 Maximum Likelihood estimation of parametric SSVARMA models

For illustrative purpose, we will first discuss the case of a one-dimensional MA(1) process be-
fore considering the general framework of a SSVARMA process. Derivations of truncated log-
likelihood functions and associated asymptotic results of ML estimators in the context of possibly
noninvertible univariate MA(q) and ARMA(p,q) processes can notably be found in Lii and Rosen-
blatt (1992, 1996), or Wu and Davis (2010). The approach exposed below extends the previous
studies to the multivariate case.

4.1.1 The Maximum Likelihood approach in the MA(1) context

We consider the MA(1) process:
yt = εt−θεt−1, (4.1)

where the εt’s are independent and identically distributed.
Suppose that we observe {y1, . . . ,yT}. If the common distribution of the εt’s is N(0,σ2), the

model is not identifiable (see Section 2.3). If εt satisfies Assumptions A.1 to A.6, i.e. in particular
if it is not Gaussian, then Proposition 1 states that the model is identifiable.20 Let us denote by
g(ε;γ) the common p.d.f. of the εt’s, where γ is an unknown parameter, and let us consider three
cases, depending on the position of |θ | with respect to 1:

i) When |θ |< 1, we can invert equation (4.1) in the standard way in order to get εt as a function
of parameter θ and of current and lagged values of process Y as:

εt(θ) =
∞

∑
h=0

θ
hyt−h = θ

t
ε0(θ)+

t−1

∑
h=0

θ
hyt−h. (4.2)

20See Section 1 of the online appendix for a more detailed discussion of non-identifiability of a MA(1) process and
the links with invertibility.
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The truncated log-likelihood function is defined as the log-likelihood based on the truncated
observable approximation of εt(θ), that is:

L1(yT
1 ;θ ,γ) =

T

∑
t=1

logg

(
t−1

∑
h=0

θ
hyt−h;γ

)
(4.3)

=
T

∑
t=1

logg
(
εt(θ)−θ

t
ε0(θ);γ

)
,

where we use the notation yT
1 = {y1, . . . ,yT}.

ii) When |θ |> 1, equation (4.1) can still be inverted, but in reverse time. We get:

yt = εt−θεt−1 ⇔ −yt+1

θ
= εt−

1
θ

εt+1

⇔ εt(θ) =
1

θ T−t εT (θ)−
T−t

∑
h=1

1
θ h yt+h. (4.4)

The truncated log-likelihood function is then defined as:

L2(yT
1 ;θ ,γ) =

T−1

∑
t=0

log

{
1
|θ |g

(
−

T−t

∑
h=1

1
θ h yt+h;γ

)}
(4.5)

=
T−1

∑
t=0

log
{

1
|θ |g

(
εt(θ)−

1
θ T−t εT (θ);γ

)}
where the factor 1/|θ | comes from the Jacobian formula.

iii) Let us now discuss the case |θ |= 1. Though this case is not consistent with Assumption A.5,
it has to be considered for analyzing the continuity of the likelihood function on the unit circle.

Focusing on the regimes when truncating the log-likelihood function gives the misleading im-
pression of a lack of continuity of the exact log-likelihood function w.r.t. θ at |θ | = 1, since
εt(θ) is not continuous (and not even defined) for |θ | = 1. This exact log-likelihood is however
continuous.21 Indeed, using equation (4.2), the joint p.d.f. of yT

1 given ε0 can be written:

Π
T
t=1g

(
t−1

∑
h=0

θ
hyt−h +θ

t
ε0;γ

)
.

21An exact log-likelihood is for instance used in the Gaussian case, with |θ |< 1, by Chen, Davis, and Song (2011)
to analyze the properties of the ML estimator of a moving-average parameter close to non-invertibility.
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Since the distribution of ε0 is g(ε0;γ), the exact log-likelihood is:

L (yT
1 ;θ ,γ) = log

{∫
Π

T
t=1g

(
t−1

∑
h=0

θ
hyt−h +θ

t
ε;γ

)
g(ε;γ)dε

}
. (4.6)

Hence, the exact log-likelihood is generally a differentiable function of θ . By contrast, the trun-
cated log-likelihood function, given by:

L(yT
1 ;θ ,γ) = L1(yT

1 ;θ ,γ)1|θ |<1 +L2(yT
1 ;θ ,γ)1|θ |≥1, (4.7)

is only right-differentiable at θ = 1 (and left-differentiable at θ =−1).

In the simple MA(1) case, the maximum likelihood estimation is conducted by directly max-
imizing the truncated log-likelihood function (4.7). If |θ | 6= 1, the standard asymptotic theory
applies (see Proposition 2 below).

4.1.2 The SSVARMA(p,1) case

Let us consider the SSVARMA(p,1) model:

Φ(L)Yt = εt−Θεt−1, (4.8)

where the errors εt are given by:
εt =Cηt , say,

where the ηt are independently, identically distributed, have independent components, and are
such that E(ηt) = 0 and V (ηt) = I. The distribution of the ηt’s is parameterized with γ , say, where
parameter γ is identifiable from the distribution of η . The p.d.f. of the errors εt is therefore of the
form g(ε,Γ), with Γ = (C,γ). We assume that this model satisfies Assumptions A.1 to A.7.

Our objective here is to solve system (4.8) in order to get εt’s as linear combinations of Y T
−p+1 =

{Y−p+1, . . . ,YT} and of “state variables” – similar to ε0 in (4.2) and to εT in (4.4) – that are such that
small changes in these “state variables” only have a small influence on these linear combinations
for t sufficiently far from the sample bounds (1 and T ). For expository purpose, we denote these
solutions by εt , without explicitly mentioning their dependence on parameters Φ1, . . . , Φp, Θ, and
on observable variables.
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Our approach makes use of the real Schur decomposition of matrix Θ:22

Θ = AΘUΘA′Θ = AΘ



UΘ
1 UΘ

1,2 . . . UΘ
1,K

0 UΘ
2 UΘ

2,3 . . . UΘ
2,K

... . . . . . . ...
0 UΘ

K−1 UΘ
K−1,K

0 . . . 0 UΘ
K


A′Θ, (4.9)

where AΘ is orthogonal, UΘ is upper block-triangular, and the diagonal blocks (UΘ

k , k ∈ {1, . . . ,K})
are either 1× 1, or 2× 2 blocks, the 2× 2 blocks corresponding to complex conjugate complex
eigenvalues of Θ. Under Assumption A.5, the eigenvalues of UΘ are not on the unit circle. We
denote by nk the dimension of UΘ

k (with nk ∈ {1,2}). We assume, without loss of generality,
that UΘ

1 , . . .UΘ
s have eigenvalues with modulus strictly larger than 1, whereas UΘ

s+1, . . .U
Θ
K have

eigenvalues with modulus strictly lower than 1.
Left-multiplying Φ(L)Yt = εt−Θεt−1 by A−1

Θ
= A′

Θ
, we get:

Wt = ε
∗
t −UΘε

∗
t−1, (4.10)

where Wt = A′
Θ

Φ(L)Yt and ε∗t = A′
Θ

εt . Note that both Wt and ε∗t depend on parameters and on
observable variables.

Let us denote by ε∗t
(1) and ε∗t

(2) the two vectors that are such that ε∗t = [ε∗t
(1)′,ε∗t

(2)′]′. The
dimension of ε∗t

(1), that is the non-fundamentalness order, is equal to m = n1 + · · ·+ ns. The
fundamentalness order is equal to n−m. In the same way, we define Wt

(1) and Wt
(2) that are such

that Wt = [Wt
(1)′,Wt

(2)′]′, Wt
(1) being of dimension m.

With a clear block decomposition of UΘ, equation (4.10) writes:[
ε∗t

(1)

ε∗t
(2)

]
=

[
Wt

(1)

Wt
(2)

]
+

[
U (1)

Θ
U (12)

Θ

0 U (2)
Θ

][
ε∗t−1

(1)

ε∗t−1
(2)

]
,

22One could also use the real Jordan decomposition for this purpose. Formulas would then actually be slightly
simpler. However, the real Jordan decomposition is less commonly available in programming softwares (typically
in R). The relative numerical instability of the real Jordan decomposition may account for its absence from usual
packages (see e.g. Söderlind, 1999).
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which leads to:

ε
∗
t
(2) = W (2)

t +U (2)
Θ

W (2)
t−1 + · · ·+U (2)

Θ

t−1
W (2)

1 +U (2)
Θ

t
ε
∗
0
(2) (4.11)

ε
∗
t
(1) =

{
(U (1)

Θ
)−1
}T−t

ε
∗
T
(1)− (U (1)

Θ
)−1W (1)

t+1−·· ·−
{
(U (1)

Θ
)−1
}T−t

W (1)
T

−(U (1)
Θ

)−1U (12)
Θ

ε
∗
t
(2)−·· ·−

{
(U (1)

Θ
)−1
}T−t

U (12)
Θ

ε
∗
T−1

(2). (4.12)

Equation (4.11) shows that, once ε∗0
(2) is known, the ε∗t

(2)’s can be computed by forward re-
cursions. Since the eigenvalues of U (2)

Θ
are strictly smaller than one, the effect of the “initial state

variable” ε∗0
(2) tends to zero when t tends to infinity. The truncated version of ε∗t

(2) is

ε
∗
t
(2)−U (2)

Θ

t
ε
∗
0
(2) =W (2)

t +U (2)
Θ

W (2)
t−1 + · · ·+U (2)

Θ

t−1
W (2)

1 . (4.13)

The right-hand side of the previous equation demonstrates that this truncated version of ε∗t
(2) de-

pends on model parameters and on observed variables only.
Equation (4.12) shows that ε∗t

(1) linearly depends on {W (1)
t+1, . . . ,W

(1)
T }, on {ε∗t (2), . . . ,ε∗T−1

(2)}
and on ε∗T

(1). Since the eigenvalues of (U (1)
Θ

)−1 are strictly smaller than one, the effect of the “end
state variable” ε∗T

(1) tends to zero when T − t tends to infinity. The truncated version of ε∗t
(1) is

obtained by omitting the term in ε∗T
(1) and by replacing the ε∗t+k

(2)’s, k = 0, . . . ,T −1− t, by their
truncated versions. This truncated version of ε∗T

(1), which depends on model parameters and on
observed variables only, is equal to:

ε
∗
t
(1)−

{
(U (1)

Θ
)−1
}T−t

ε
∗
T
(1)+

(U (1)
Θ

)−1
[
U (12)

Θ
+ · · ·+

{
(U (1)

Θ
)−1
}T−t−1

U (12)
Θ

U (2)
Θ

T−t−1
]

︸ ︷︷ ︸
≡BΘ,T−t

U (2)
Θ

t
ε
∗
0
(2). (4.14)

Hence, while εt is given by:
εt = AΘε

∗
t ,

its truncated version is:

AΘ

ε
∗
t −

 {(U (1)
Θ

)−1
}T−t

ε∗T
(1)+BΘ,T−tU

(2)
Θ

t
ε∗0

(2)

U (2)
Θ

t
ε∗0

(2)


= AΘε

∗
t −AΘ

 {(U (1)
Θ

)−1
}T−t

BΘ,T−tU
(2)
Θ

t

0 U (2)
Θ

t

[ ε∗T
(1)

ε∗0
(2)

]
. (4.15)
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Note that for any value of Θ such that there is no eigenvalue of UΘ on the unit circle, processes
εt and ε∗t –seen as functions of the observed variables and of model parameters– are strictly sta-
tionary.

The online appendix develops (4.11) and (4.12) in the bivariate VMA(1) case; in this simple
case, one can notably investigates the conditions under which a (structural) shock of interest can
be approximated by means of a VAR model (see Sims, 2012; Forni and Gambetti, 2014; Beaudry,
Fève, Guay, and Portier, 2015).

4.1.3 Truncated Maximum Likelihood estimator in the SSVARMA(p,1) case

As in the univariate case (Subsection 4.1.1), we base the definition of the truncated log-likelihood
on the truncated version of εt . For convenience, we denote by Λ = {Φ1, . . . ,Φp,Θ,Γ} the param-
eter to be estimated, with Λ ∈L , where L is the parameter set. The truncated log-likelihood is
obtained by applying the Jacobian formula. The form of the Jacobian is derived in Appendix B.2.
We get the following truncated log-likelihood expression:

LT (Λ) = −T
n

∑
i=1

log |λi(Θ)|1|λi(Θ)|>1

+
T

∑
t=1

logg

AΘε
∗
t −AΘ

 {(U (1)
Θ

)−1
}T−t

BΘ,T−tU
(2)
Θ

t

0 U (2)
Θ

t

[ ε∗T
(1)

ε∗0
(2)

]
;Γ

 ,(4.16)

where λi(Θ) is the ith eigenvalue of Θ and where the ε∗t are functions of parameter Λ and of
observations.

The truncated maximum likelihood estimator is defined as the parameter Λ̂T = {Φ̂1, . . . ,Φ̂p,Θ̂, Γ̂}
that maximizes LT (Λ).

We can also introduce the untruncated log-likelihood defined by:

Lu
T (Λ) = −T

n

∑
i=1

log |λi(Θ)|1|λi(Θ)|>1 +
T

∑
t=1

logg(AΘε
∗
t ;Γ) . (4.17)

The untruncated log-likelihood depends on values of Y that are not observed. Nevertheless, in
order to derive the asymptotic properties of the truncated maximum likelihood estimator Λ̂T , it
will prove useful to consider the solution Λ̂u

T that maximizes the untruncated log-likelihood Lu
T (Λ).

This solution is called the abstract estimator by Bates and White (1985).

Lemma 1. Under Assumptions A.1 to A.5 and under

(a.1) The parameter set L is compact.
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(a.2) For any given non-fundamentalness regime, a Schur decomposition continuous in Θ is se-

lected.

(a.3) The density functions of the error terms ηi,t are strictly positive, differentiable, and such that

the derivative of the log-density is Lipschitz with a Lipschitz coefficient that is a continuous

function of Γ.

(a.4) There exists δ > 2 such that E(|η j,t |δ )< ∞, for i = 1, . . . ,n,

then the difference
∣∣∣∣ 1
T

LT (Λ)−
1
T

Lu
T (Λ)

∣∣∣∣ tends almost surely (a.s.) to zero uniformly on the pa-

rameter set L .

Proof: See Appendix B.3.

Assumption (a.1) allows for decomposing L as ∪
s
Ls, where Ls is the restriction of L to the

parameters with a given (non)fundamentalness regime.23 Each Ls is itself compact. The number
of nonfundamentalness regimes depends on the dimension of Y . For instance, for n = 2, we have
5 regimes: one is purely fundamental, two are purely nonfundamental and the last two are mixed
(see Appendix B.1). In each regime s, the nonfundamentalness order m(s) is constant.

Assumptions (a.3) and (a.4) are compatible with a variety of tail magnitudes, in particular (mix-
tures of) Gaussian, exponential, Student –with a degree of freedom strictly larger than 3 to satisfy
(a.4)– or Pareto tails –with a shape parameter strictly larger than 2 to satisfy (a.4).

The advantage of considering the untruncated log-Likelihood is the possibility to write it with
the notations used by Bates and White (1985), that is:

1
T

Lu
T (Λ)≡

1
T

T

∑
t=1

qt(Y ;Λ),

where Y denotes the complete trajectory of Yt , from−∞ to +∞, and qt(Y ;Λ) = q0(L−tY ;Λ), where
L denotes the lag operator.24 In particular, the process (qt(Y ;Λ)) is strictly stationary and the mean
of qt , if it exists, is independent of time. Then we can directly apply (Bates and White, 1985,
Theorem 2.5):

23The partition of the parameter space into regimes is the smallest partition of the parameter space –excluding those
parameterizations entailing one or several Θ’s eigenvalues of modulus equal to one– with connected components. In
the bivariate case, this partition can be obtained by taking the preimage of an R2 partition based on the trace and
determinant of Θ (see Appendix B.1).

24The lag operator is denoted by T in Bates and White (1985), who call it measure-preserving one-to-one operator.
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Lemma 2. (Bates and White, 1985, Theorem 2.5)

Under Assumptions A.1 to A.5, (a.1), (a.2) and

(a.5) There exists an integrable function q̄t(Y ) such that q̄t(Y ) = q̄0(L−tY ) and

sup
Λ∈L

qt(Y,Λ)≤ q̄t(Y ),

then 1
T Lu

T (Λ)−E0(qt(Y ;Λ)) tends almost surely to zero when T tends to infinity, uniformly on L .

Taken together, Lemmas 1 and 2 prove the uniform a.s. convergence of 1
T LT (Λ)−E0(qt(Y ;Λ)).

We can then deduce the consistency of both the estimator Λ̂T and its untruncated version Λ̂u
T by

applying the standard Wald-Jennrich argument (Wald, 1949; Jennrich, 1969), which leads to the
following proposition:

Proposition 2. Under Assumptions A.1 to A.7, (a.1) to (a.5) and

(a.6) The true parameter value Λ0 ∈L ,

then Λ̂T (resp. Λ̂u
T ) converges a.s. to Λ0.

Proof: Indeed Λ̂T (resp. Λ̂u
T ) converges a.s. to the solution of the limiting optimization problem:

Λ
∗
0 = argmax

Λ∈L
E0 [qt(Y ;Λ)] ,

which, by the identification Assumptions A.5 and A.7, is equal to Λ0.

In the above, we have focused on the proof of the strong consistency of the truncated ML
estimator. When the true value Λ0 is in interior of L , it is in the interior of one of the Ls, and the
asymptotic normality of the estimator is deduced by standard expansion of the first-order condition
within Ls.

4.1.4 Extension to the SSVARMA(p,q) case

If Θ(L) is of order q > 1, one can go back to the previous case. For this, define ε̃t = [ε ′t , . . . ,ε
′
t−q+1]

′

and Ỹt = [Y ′t ,01×(n−1)q]
′. With these notations, the model reads:

Ỹt = Φ̃1Ỹt−1 + · · ·+ Φ̃pỸt−p +(I− Θ̃L)ε̃t , with Θ̃ =



Θ1 Θ2 . . . Θq

I 0 . . .

0 I 0 . . .
... . . .

0 . . . 0 I 0


, (4.18)
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and with Φ̃k = [uu′]⊗Φk, where u is a q-dimensional vector equal to [1,0, . . . ,0]′. The eigenvalues
of Θ̃ are the roots of detΘ(z).

Although the representation (4.18) makes it possible to get approximations of the εt’s, it does
not imply that (Ỹt) is a VARMA(p,1) process because the process (ε̃t) is not a white noise.

4.2 Semi-parametric estimation of a non-fundamental SSVARMA model

Let us consider a SSVARMA(p,1) model:

Yt = µ +Φ1Yt−1 + · · ·+ΦpYt−p +C0ηt +C1ηt−1, (4.19)

satisfying Assumptions A.1–A.7. For the sake of notational simplicity, we have replaced C by C0

and −Θ1C by C1. We assume that the roots of the determinant of the autoregressive polynomial
are outside the unit circle, but the roots of the determinant of the moving average polynomial may
be inside or outside the unit circle. We denote by f j the common probability density function
of the independent η j,t’s, t = 1, . . . ,T . We have to consistently estimate the (true values of the)
parameters µ , Φ1, . . . , Φp, C0, C1 as well as the (true) functional parameters f j, j = 1, . . . ,n. We
consider below a 2-step moment method.

The first step consists in 2-Stage Least Squares (2SLS) regressions using Yt−2, . . . ,Yt−1−k as
instruments (k ≥ p), exploiting the fact that the latter are independent of Zt =C0ηt +C1ηt−1. We
denote by µ̂,Φ̂1, . . . ,Φ̂p the corresponding 2SLS parameter estimates (see Appendix C.1 for more
details about this 2SLS estimator).

Once µ and Φ are estimated, the associated residuals

Ẑt ≡ Yt− µ̂− Φ̂1Yt−1−·· ·− Φ̂pYt−p, (4.20)

are consistent approximations of Zt =C0ηt +C1ηt−1. Then, in a second step, we proceed with the
estimation of C0 and C1 in a pure moving average framework.25

4.2.1 Moment restrictions for C0, C1

Let us first consider the estimation of the moving average parameters as if the true Zt’s were
observed (this assumption is relaxed in the next subsection). To address the lack of second-order
identifiability of C0, C1, the econometric literature has proposed to exploit moments of order 3
and/or 4 (see e.g. Bonhomme and Robin, 2009, in the special case C1 = 0, Gospodinov and Ng,

25If C1 = 0, C0 can be directly estimated by ICA (see e.g. Chen, Choi, and Escanciano, 2017; Gouriéroux, Monfort,
and Renne, 2017; Lanne, Meitz, and Saikkonen, 2017).
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2015, in the one-dimensional case, Lobato and Velasco, 2018, in the one-dimensional case through
bi-spectral and tri-spectral density functions).

Loosely speaking, it is appropriate to consider (cross) moments of order 3 if some components
η j,t of ηt are skewed (i.e. with non-zero third-order cumulants κ3 j) and it is appropriate to use
(cross) moments of order 4 if ηt features kurtotic components (with non-zero fourth-order cumu-
lants κ4 j). The description of the moment conditions associated with cumulants is provided in
Appendix C.2.26

This approach leads to a set of moment restrictions:

E [h(Zt ,Zt−1;β )] = 0, (4.21)

where
β = [vecC0

′,vecC1
′,κ31, . . . ,κ3n,κ41, . . . ,κ4n]

′. (4.22)

The calibrated moments concern linear combinations of Zt and Zt−1 such as:

E
(
[u′Zt + v′Zt−1]

2) , E
(
[u′Zt + v′Zt−1]

3) , or E
(
[u′Zt + v′Zt−1]

4) , (4.23)

for different pairs (u,v). We get an infinite set of moment restrictions but, in practice, a finite set
of pairs has to be selected (see Section 5). Denoting by r the dimension of h(Zt ,Zt−1;β ), the order
condition is r ≥ 2n2 +2n. The rank condition is challenging to analyse in the multivariate case.27

In practice, difficulties in inverting the asymptotic covariance matrix of the estimator – derived in
Appendix C.3 – constitute a signal of non-identification.

In the spirit of the approach proposed by Lobato and Velasco (2018) who work in the frequency
domain, additional types of moment restrictions might be introduced:28

i) We might consider similar moment restrictions based on a different lag order, i.e. E([u′Zt +

v′Zt−k]
2), E([u′Zt + v′Zt−k]

3) or E([u′Zt + v′Zt−k]
4) for some k > 1.

ii) We might also consider quantities such as: E([u′Zt + v′Zt−1 +w′Zt−2]
2), E([u′Zt + v′Zt−1 +

w′Zt−2]
3) or E([u′Zt + v′Zt−1 +w′Zt−2]

4).

These additional moment restrictions are likely to bring additional information when q > 1.

26See Boudt, Cornilly, and Verdonck (2018) or Guay and Normandin (2018) for a counting of up-to-order-4 como-
ments in the multivariate static case.

27Existing results are only for ARMA(p,q) processes (Gospodinov and Ng, 2015, Lemma 3, and Lobato and Ve-
lasco, 2018, Theorem 1). In Gospodinov and Ng (2015), the conditions pertain to specific cumulants of order p+ q;
in Lobato and Velasco (2018), the conditions are on multi-dimensional integrals of spectral densities. Guay and Nor-
mandin (2018) have recently derived rank conditions in the context of moment-based estimations of SVAR models.

28The approach of Lobato and Velasco (2018) based on bi-spectral and tri-spectral densities seems difficult to extend
in the multivariate framework.
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4.2.2 2-step moment method

The first step of our approach, namely the 2SLS estimation, provides us with an estimator of
α = [µ ′,vec(Φ)′]′. The second step of the approach involves the sample counterparts of (4.21),
after replacement of Zt by Ẑt = Yt − µ̂ − Φ̂1Yt−1− ·· · − Φ̂pYt−p. In others words, the moment
restrictions (4.21) become:

E [h(zt(α),zt−1(α);β )] = 0, (4.24)

with zt(α) = yt − µ −Φ1yt−1−·· ·−Φpyt−p. In the first step, α̂T is estimated by IV (see 4.2.1);
then β̂T is estimated by mimimization of a moment-based criterion made precise in Appendix C.3.
This minimization implies that

1
T

T

∑
t=1

h(zt(α̂T ),zt−1(α̂T ); β̂T )≈ 0.

Appendix C.3 derives the asymptotic accuracy of this 2-step moment estimator.

4.2.3 Nonparametric estimation of the error distribution

Once µ , Φ1, . . . , Φp, C0 and C1 have been estimated, consistent approximations of the errors ηt

are based on the truncated estimates of the ε∗t ’s, obtained by recursively applying equations (4.11)
and (4.12) of Subsection 4.1.2 (replacing ε∗0

(2) and ε∗T
(1) by zero vectors). The p.d.f. f j can then

be estimated by a kernel density estimator applied to the residuals η̂ j,t , t = 1, . . . ,T .

5 Applications

5.1 Monte Carlo exercises

This subsection illustrates the finite-sample performances of the estimation approaches by means
of Monte-Carlo experiments. Subsections 5.1.1 and 5.1.2 respectively deal with MA(1) and VMA(1)
processes.

5.1.1 Univariate case

In this subsection, we focus on MA(1) processes:

yt = εt−θεt−1, (4.25)

where the εt’s are serially independent, E(εt) = 0 and V (εt) = 1.
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We consider different sample sizes (T = 100, 200 and 500) and different true distributions
of the errors εt . Four distributions are used: the Gaussian distribution, a mixture of Gaussian
distributions and two Student distributions with respective degrees of freedom of 5 and 10. In all
simulations, we use θ =−2. Hence, data generating processes are non-fundamental.

In order to get the intuition behind our approach, it is instructive to look at the joint distribution
of yt and yt−1. Figure 1 displays contour plots associated with these distributions in the context
of the four different distributions used for εt . While the black solid lines correspond to the non-
fundamental case, the grey lines represent the (pseudo) distribution that would prevail under the
fundamental case, i.e. with θ =−1/2 and V (εt) = 4. In the purely Gaussian case (Panel (a)), the
two distributions coincide, since the two processes are observationally equivalent. By contrast, in
the other three cases –Panels (b), (c) and (d)– the two distributions are different. The case of the
mixture of Gaussian distributions is particularly illustrative. For this distribution, and in the non-
fundamental case, the shock εt is drawn from N (µ1,σ

2
1 ) with probability p and from N (µ2,σ

2
2 )

with probability 1− p. We set: µ1 = −0.7, µ2 = 0.7, σ1 = 0.32, σ2 = 0.95, p = 0.5, which
results in a zero-mean unit-variance distribution with order-3 and order-4 cumulants of 0.85 and 0,
respectively.29

For the ML approach (Subsections 4.1), and for each of the four distributions, we estimate five
parameters: θ , the variance of εt and three parameters specifying a mixture of Gaussian distri-
butions with zero mean and unit variance. As far as the Student distributions are concerned, we
proceed under the assumption that we do not know the true distribution, which is generally the
case in practice. Hence, when the true distributions are Student, the ML approach is, more pre-
cisely, a Pseudo Maximum Likelihood (PML) approach.30 This exercise is in the spirit of Lii and
Rosenblatt (1996) and Wu and Davis (2010), who study the performances of their ML estimators
when using a misspecified distribution in the computation of the log-likelihood function.

In the context of our variant of the GMM approach (Subsection 4.2), we consider the order-2,
order-3 and order-4 moments given in (4.23), with (u,v) ∈ {(1,0),(1,2),(2,1)}.31 Hence, we use
9 restrictions to estimate, for each model, the four following parameters: θ , the variance of εt , κ3

and κ4.
In our discussion of the results, we focus on the estimates of θ . Figure 2 shows the distributions

of the estimators of θ resulting from both approaches. Each of the four rows of plots corresponds to
one of the four considered distributions for εt , that are those distributions represented on Figure 1.

29In their Monte-Carlo experiment, Gospodinov and Ng (2015) also consider a distribution characterized by κ3 =
0.85 and κ4 = 0.

30When the true distribution is Gaussian or a Gaussian mixture, the approach is not a PML, but a standard ML
approach. Note that the Gaussian distribution is a special case of Gaussian mixture.

31We do not use (u,v) = (1,1) because, for these values of u and v, the moments of uyt + vyt−1 are the same
as those of vyt + uyt−1, thereby preventing theas identification of the parameters. Indeed, if yt = εt − θεt−1 and
y∗t =−θεt + εt−1, then yt + yt−1 and y∗t + y∗t−1 have the same distribution, and therefore the same moments.
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On each panel, the three curves correspond to the three considered sample sizes (T = 100, 200 and
500). The (finite sample) distributions are often bimodal; one mode being close to the true value
of θ –indicated by a vertical bar on each panel– and the other being close to 1/θ .

The results illustrate the fact that, the closer the distribution of the generated shocks is to a
normal one, the weaker the identification. Let us focus for instance on the fraction of estimated
fundamental processes, i.e. with θ estimates that are lower than 1 in absolute value (whereas the
data generating process is non-fundamental since |θ | > 1). In the Gaussian case (Panels a.1 and
a.2 of Figure 2), about half of the estimated processes are fundamental, irrespective of the sample
size or of the estimation approach. Among the three remaining distributions, the one leading to the
largest fractions of estimated fundamental processes is the Student t(10). For the latter distribution
and in the ML case, even for a relatively large sample size (T = 200), about a third of the estimated
θ ’s have a modulus lower than 1, whereas this proportion is of about 12% in the Student-t(5) case
and close to 0% in the Gaussian mixture case. Identification is easier in the Student t(5) and in the
Gaussian mixture cases (Panels b.1, b.2, c.1 and c.2) since, in these cases, the differences between
the distributions of (yt−1,yt) in the fundamental versus non-fundamental regimes are more marked
than for the other two distributions, as illustrated by Figure 1.

Table 1 reports summary statistics associated with the different estimators. The results show
that our GMM approach is less efficient than the (P)ML one. Indeed, Root Mean Squared Er-
rors (RMSEs) are lower with the (P)ML approach. This is the case even when the (P)ML uses
a misspecified distribution, i.e. when the true distributions are Student-t. These lower RMSEs
are accounted for by far smaller standard deviations of the estimator distributions for the (P)ML
approach, which more than compensates the fact that (P)ML-estimator biases are often larger than
in the GMM case.

To the best of our knowledge, this study is the first one to compare GMM and ML estimates
in the context of non-fundamental univariate MA processes. As regards the GMM approach, our
results are comparable to the results in the literature, such as the ones reported by Gospodinov and
Ng (2015) for T = 500, or by Lobato and Velasco (2018) with spectral-density-based estimator for
T = 100, 200 and Student t(5) distribution.32

The last two columns of Table 1 aim at assessing the validity of the asymptotic distribution
of the θ estimators. These columns indicate the fractions of times (among the N simulations)
where the true value of θ lies within the interval [θ̂ − φασasy, θ̂ + φασasy], where σasy denotes
the estimate of the asymptotic standard deviation of the estimator θ̂ and where φα is such that

32Our GMM estimator however appears to be less efficient than the spectral-density-based estimator of Lobato and
Velasco (2018): For T = 200 and when the true distribution is t(5), Lobato and Velasco (2018) report that the absolute
value of their θ estimator is on the right side of 1 in 93% of the cases (last column in their Table 1), while we get an
equivalent percentage of 71% with our GMM estimator. This percentage is of 88% for our PML estimator. Our PML
RMSEs are close to those reported by Lobato and Velasco (2018) in this case (T = 200, t(5) distribution, θ =−2).
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P(−φα < X < φα) = α , if X ∼ N (0,1). The closer to α the reported fractions, the better the
asymptotic approximation of the estimator distribution. For each of the two considered values of
α , two ratios are reported: while the first one is based on all simulated sample paths, the second
one (in italics) excludes those paths where the wrong fundamentalness regime is estimated. Indeed,
when the wrong fundamentalness regime is estimated, it is extremely likely that the true value of
θ is not in the estimated confidence interval; this is because σasy does not integrate the fact that
the wrong fundamentalness regime may have been estimated. As expected, the results indicate
that the adequacy between the ratios and the α’s is better in the second case, that is when the
right fundamentalness regime is estimated (the proportion of the latter cases is reported in the sixth
column of Table 1). Let us stress that while this second case points to the validity of the asymptotic
approximation of the estimator distribution, it is not consistent with practical situations, where the
right fundamentalness regime is usually unknown.

5.1.2 Bivariate case

Let us now consider the following bivariate VMA(1) process:

Yt =Cηt−ΘCηt−1, (4.26)

with

C =

[
0 1
1 0.5

]
and Θ =

[
−0.5 0

1 −2

]
. (4.27)

Both components of ηt are independently drawn. The first structural shock, η1,t , is drawn from a
mixture of Gaussian distributions featuring a skewness of 2 and an excess kurtosis of 6.33 The sec-
ond structural shock, that is η2,t , is drawn from a Student’s distribution with 6 degrees of freedom,
i.e. with a skewness of 0 and an excess kurtosis of 3.

For each simulated path of Yt , we implement both the GMM and the ML approaches. As
regards the ML approach, we proceed as if we did not know that the true distribution of η2,t was a
Student’s distribution and we use mixtures of Gaussian distributions for both η1,t and η2,t . Strictly
speaking, this approach is therefore a PML one. Whereas twelve parameters are estimated in
the GMM case, fourteen are involved in the ML case: both cases involve the estimation of the
components of C and Θ (8 parameters); the remaining parameters to be estimated are κ3,i and κ4,i,
i∈ {1,2} in the GMM case (where i = 1 for the first structural shock and i = 2 for the second one),
and pi, µ1,i and σ1,i, i ∈ {1,2} in the PML case (constrained by the zero mean and unit variance
conditions). For the GMM approach, we consider the order-2, order-3 and order-4 moments given

33 Specifically, thus first shock is drawn from N (µ1,σ
2
1 ) with probability p and from N (µ2,σ

2
2 ) with probability

1− p, where µ1 = 2.12, µ2 =−0.24, σ1 = 1.41, σ2 = 0.58, p = 0.1.

30



Applications

in (4.23) with:

(u1,u2,v1,v2) ∈ {(2,0,0,0),(0,2,0,0),(1,0,2,0),(2,0,1,0),(1,0,0,2),(2,0,0,1),
(0,1,0,2),(0,2,0,1),(0,1,2,0),(0,2,1,0)} , (4.28)

which results in 30 restrictions.34

Figure 3 shows the densities of the estimators of the Θi, j’s. As in the univariate case, some
distributions are bi-modal, in particular for the shorter samples and for Θ1,1 and Θ2,2. These
densities also show that the PML estimates are on average more precise than the GMM ones.
Table 2 documents the latter point: its third column indicates in particular that the RMSEs are
lower in the PML case. The sixth column reports the fraction of replications for which the “right
fundamentalness regime” is estimated. Here, we consider that an estimated model features the
“right fundamentalness regime” if the estimate of Θ has one eigenvalue on each side of the unit
circle and if the absolute values of the estimates of Θ1,1 and Θ2,2 are respectively below and above
one, as the true values.35 It appears that the PML estimations result in the right fundamentalness
regime in more than 90% of the cases as soon as T is larger than 200. The GMM approach is less
successful, with 67% of correct regime identification for T = 500.

5.2 Bivariate real-data example: GNP growth and unemployment

For comparison with the literature, we consider the two-variable model of Blanchard and Quah
(1989), referred to as BQ hereafter. The two stationarized endogenous variables are the U.S. real
GNP growth and the (detrended) unemployment rate. BQ fit an 8-lag VAR model to these data
for the period from 1948Q2 to 1987Q4 (159 dates) and impose long-run restrictions to identify
demand and supply shocks. Specifically, they impose that the demand shock has no long-run
impact on real GNP. That is, in their model, the contribution of supply disturbances to the variance
of output tends to unity as the horizon increases.

Using the same dataset and analyzing the location of the (complex roots) of the 8-lag VAR
of BQ, Lippi and Reichlin (1994)’s results suggest that this VAR approximates a VARMA(1,1)
model. Further, Lippi and Reichlin (1994) explore the influence of inverting the roots of the mov-
ing average polynomial of this VARMA(1,1) model on the IRFs. They illustrate that fundamental
and non-fundamental versions of the model have different implications, notably in terms of first
impacts of the shocks and of variance decompositions. However, their analysis does not allow
them to statistically pinpoint the most suitable model among the different versions they obtain (the

34See Footnote 31 for the reason why the ui’s and vi’s are not in {0,1} only.
35Because (the true value of) Θ is triangular, its eigenvalues coincide with its diagonal elements. It is not the case

for its estimate.
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non-fundamental ones and the fundamental one). As explained in Section 3.1, if the underlying
structural shocks are non-Gaussian and independent, the data-generating SSVARMA process, be
it fundamental or not, is identifiable. Preliminary indications regarding the non-normality of the
system can be obtained by applying normality tests on the endogenous variable themselves: the
Lütkepohl and Theilen (1991)’s multivariate tests, based on standardized third and fourth moments
of possibly correlated variables, point to the non-Gaussianity of the vectors of endogenous vari-
ables.36

We employ both the ML and the 2SLS-GMM approaches described in Subsections 4.1 and
4.2 to fit VARMA(p,1) models to BQ’s dataset. As in Blanchard and Quah (1989) and Lippi
and Reichlin (1993, 1994), the two endogenous variables follow a stationary process and are not
cointegrated.37 Given the relative shortness of the sample, we expect the 2SLS-GMM estimates
to be quite imprecise (see Subsection 5.1.2). However, an advantage of this method is that its
numerical complexity does not depend on the order p of Φ(L) (because the estimate of Φ(L)

results from linear least-square regressions). We therefore proceed as follows: for p ∈ {1, . . . ,6},
we apply the 2SLS-GMM approach and we then use the resulting estimates as starting values for
the numerical optimization of the truncated log-likelihood function.38

In the context of the ML approach, the distributions of the independent shocks η j,t , for j ∈
{1,2}, are assumed to be Gaussian mixtures.39 Specifically, we assume that η j,t is drawn from
N (µ j,1,σ

2
j,1) with a probability p j and from N (µ j,2,σ

2
j,2) with a probability 1− p j. Therefore,

if we have E(η j,t) = 0 and V (η j,t) = 1, the distribution of the two-dimensional vector ηt is com-
pletely defined by γ = [µ1,1,µ2,1,σ1,1,σ2,1, p1, p2]

′.40

Our preferred model features fours lags (p = 4).41 Parameter estimates resulting from both
the 2SLS-GMM and the ML approach are reported in Table 3. For both approaches, the roots of

36The p-value of this test, whose null hypothesis is that the considered variables are Gaussian, is of 3.5%.
37As noted by Lippi and Reichlin (1994), Footnote 1 p. 310, assuming that the dynamics of the two endogenous

variables is described by a stationary VAR model (as done in Blanchard and Quah, 1989; Lippi and Reichlin, 1993,
1994) amounts to precluding cointegration.

38In the 2SLS step of the 2SLS-GMM approach, we use k = p+ 3 (i.e. we regress Yt−1 on Yt−2, . . . ,Yt−p−4), see
Appendix C.1. Then, in the second (GMM) step, we consider the order-2, order-3 and order-4 moments given in (4.23)
for the (u,v) pairs given in (4.28).

39Because the true distribution of the shocks is not known in practice, the choice of a flexible parametric type of dis-
tributions is important. Though relatively parsimonious, Gaussian mixtures accommodate various interesting features.
In particular, they can attain any possible (skewness, kurtosis) pair in the whole domain (kurtosis ≥ skewness2 + 1)
and can feature bi-modality.

40For the numerical optimization of the truncated log-likelihood function, starting values for the elements of γ are
obtained as follows: after the 2SLS-GMM estimation, we apply the backward/forward filtering algorithm underlying
function at (see Subsection 4.1.2) to obtain estimates of the structural shocks η j,t . Then, for j ∈ {1,2}, we estimate
parameters (µ1,i,σ1,i, pi) by MLE, which is very fast.

41The Schwarz (1978), Hannan and Quinn (1979) and Akaike (1974) and criteria respectively call for p = 2, p = 3
and p = 5. However, contrary to the p = 4 case, the Box and Pierce (1970)’s and Ljung and Box (1978)’s tests reject
the null hypothesis of no auto-correlation in the estimated series of η j,t when p is equal to 2, 3 or 5.
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det(Φ(z)) are outside the unit circle; the estimated processes are therefore stationary. Besides,
for both estimation methods, the two roots of det(I−Θz) are on each side of the unit circle (1.77
and 0.41 for the ML approach, 2.34 and −0.03 for the GMM approach). Hence, the estimated
processes are non-fundamental. Figure 4 shows the ML estimated parametric distributions of the
structural shocks (Gaussian mixtures, represented by dotted lines). These estimated distributions
are fairly close to kernel-based densities associated with the η j,t’s estimates derived from the back-
ward/forward filtering algorithm underlying function at , introduced in Subsection 4.1.2.

It is difficult to check ex-ante the relevance of the assumptions on the structural shocks, in par-
ticular regarding the independence assumption A.1. Tests can however be applied to the estimated
structural shocks. In the present case, the application of Box and Pierce (1970)’s and Ljung and
Box (1978)’s tests on the estimated series of structural shocks do not detect auto-correlation in the
estimated series of η j,t , |η j,t |, nor in the η2

j,t , which is a necessary condition for independence. The
normality hypothesis of the η j,t’s is rejected by the Shapiro and Wilk (1965)’s test, with p-values
below 2%.42 A limitation of these residual tests is however that they do not take into account the
uncertainty regarding the estimation of the η j,t’s; this is left for future research.

Figure 5 displays the impulse response functions resulting from the ML approach and compares
them with those obtained with long-run restrictions à la Blanchard and Quah (1989). Because
the ML approach does not rely on restrictions based on economic theory, the resulting structural
shocks have no a priori economic interpretation. However, for comparing the different approaches,
we bring the BQ supply shock closer to the ML-estimated shocks that accounts for the largest part
of the GNP long-run variance. We call this shock the “long-run shock”.

Figure 5 shows that the BQ and ML response functions present similarities. Nevertheless, in
the ML approach, both structural shocks –Shock 1 (first column of charts) and Shock 2 (second
column of charts)– have a long-run impact on GNP. This is not the case with the BQ approach
where, by construction, the effect of Shock 1 on GNP converges to zero. The fact that none of the
two structural shocks identified within a bivariate VAR has a zero impact on output in the long-run
was also obtained by Cochrane (1994) for instance.43 The responses of unemployment to Shock
1 (bottom-left plot) and of GNP to Shock 2 (upper-right plot) broadly feature the same shapes for
both approaches, but do not agree on the delay before maximal impact. The bottom-right plot
shows that, according to the ML approach, the instantaneous response of unemployment to the
second (long-run) shock is close to zero, reflecting the fact that the estimated coefficient C2,2 is
small and not statistically different from zero (see Table 3). Obtaining a C coefficient equal to zero

42Because no auto-correlation is detected in the residual, there is no need for using autocorrelation-robust normality
tests such as those of Bai and Ng (2005) and of Lobato and Velasco (2004).

43The bivariate model of Cochrane (1994) describes the joint dynamics of GNP and consumption growth. The
structural shocks are identified by means of a short-run restriction (consumption does not respond contemporaneously
to a GNP shock).
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is reminiscent of what could be obtained in the context of an identification strategy à la Sims –
imposing that one structural shock has no contemporaneous impact on the unemployment rate.
However, the results presented here could not have been obtained in this context since the standard
short-run restriction methodology (à la Sims) is based on VAR models and therefore necessarily
leads to fundamental models. By contrast, our approach remains a priori agnostic with respect to
the fundamentalness regime.

6 Concluding remarks

We have shown in this paper that the static and dynamic identification problems associated with
Gaussian structural VARMA processes disappear if (i) the structural shocks are non-Gaussian and
if (ii) these shocks are serially and instantaneously independent. In other words, non-Gaussian
strong structural VARMA (SSVARMA) models are identified. We further propose parametric and
semi-parametric estimation methods able to consistently estimate possibly non-fundamental repre-
sentation in the moving average dynamics. Our analysis also highlights the fact that, in the context
of non-Gaussian SSVARMA, the impulse response functions are defined in a non-ambiguous way.

Conventional econometric toolboxes available to macroeconomists have often been conceived
for linear forecasting purposes and for SVARMA models with shocks that are uncorrelated, but not
independent. Because it focuses on second-order properties only, the standard SVARMA literature
and associated toolboxes often introduce potentially over-identifying assumptions that may entail
misspecification and misleading interpretation of SVARMA residuals. As shown in the parametric
and semi-parametric analysis developed in Section 4 and in the applications presented in Section 5,
such potential pitfalls can be addressed in the non-Gaussian case, provided that the independence
assumptions are valid and that the appropriate estimation methods are used.

The methods developed in this paper might be extended in several directions, which are left for
future research. First testing procedures, in particular tests of fundamentalness, may be obtained.
Second the properties of estimation methods can be analyzed in a neighbourhood of the Gaussian
assumption (see e.g. Gouriéroux and Jasiak, 2016), or in a neighbourhood of unit roots (see e.g.
Chen, Davis, and Song, 2011, for non-invertible MA process). Third, the asymptotic properties
of our ML estimate in the presence of cointegration may be derived. Fourth, the identification
and estimation results might be extended to the case of more errors than observables. Indeed,
while identification results exist when the errors are not Gaussian (see e.g. Th 3.1. in Eriksson
and Koivunen, 2004, for the static case, Gouriéroux and Zakoian, 2015, for stable multivariate
processes, or Gagliardini and Gouriéroux, 2018, for a non-Gaussian factor model), the possibility
to identify the dynamics when the number of shocks is larger than the number of endogenous
variables and the errors are not Gaussian would be important in the discussion of the effect of
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omitted variables (see e.g. Giannone and Reichlin, 2006; Lütkepohl, 2014).
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Proof of Proposition 1

A Proof of Proposition 1

Let us first recall Theorem 1 in Chan, Ho, and Tong (2006).

Theorem. Let Yt and Y ∗t be two non-Gaussian processes defined by:

Yt =
∞

∑
k=−∞

Akεt−k,

Y ∗t =
∞

∑
k=−∞

A∗kε
∗
t−k,

where the processes εt and ε∗t are strong white noises with independent components.

Then, Yt and Y ∗t are observationally equivalent if and only if

ε
∗
j,t−m( j) = σ jεπ( j),t (equality in distribution), (a.1)

A∗k, j =
1
σ j

Ak−m( j),π( j), (a.2)

where π is a permutation and Ak, j (respectively A∗k, j) is the jth column of Ak (respectively A∗k)

provided the following condition holds:

the components of εt (resp. ε∗t ) have non-zero rth cumulant, with r ≥ 3 and a finite even

moment of order s greater than, or equal to, r.

If the moving averages are one-sided (Ak = A∗k = 0, ∀k < 0, A0 6= 0,A∗0 6= 0) and εt (resp. ε∗t ) is
replaced by ηt (resp. η∗t ), where the components of ηt (resp. η∗t ) have a unit variance, this implies
that m( j) = 0 and σ j =±1 for all j.

In our case, we have:

Yt = Ψ(L)Cηt ,

Y ∗t = Ψ
∗(L)C∗η∗t ,

with

Ψ(L) = Φ
−1(L)Θ(L) = I +Ψ1L+Ψ2L2 + . . . ,

Ψ
∗(L) = Φ

−1(L)Θ∗(L) = I +Ψ
∗
1L+Ψ

∗
2L2 + . . .
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Therefore, we have:

Ak = ΨkC with Ψ0 = I,

A∗k = Ψ
∗
kC∗ with Ψ

∗
0 = I.

The previous theorem implies that the moving average matrix coefficients Ak are identified up to a
permutation and a sign change of the columns. That is, there exists a permutation matrix P and a
diagonal matrix D, whose diagonal elements are either −1 or 1, that are such that:

ΨkC = Ψ
∗
kC∗PD, ∀ k.

For k = 0, this gives C =C∗PD, which further implies that Ψk = Ψ∗k for all k. The Ψk are therefore
identified and C is identified up to a permutation and a sign change of its columns. Since Φ(L) and
Ψ(L) are identified, Θ(L) = Φ(L)Ψ(L) is also identified.

B Truncated Maximum Likelihood Approach

B.1 The nonfundamentalness regimes for n = 2

When n = 2, the eigenvalues of Θ are the solutions of the second-order polynomial equation:

λ
2−Tr(Θ)λ +det(Θ) = 0.

Consider the case of roots with modulus equal to one. Three limiting cases have to be considered:

i) One eigenvalue is equal to 1. This arises if 1−Tr(Θ)+det(Θ) = 0.

ii) One eigenvalue is equal to −1. This arises if 1+Tr(Θ)+det(Θ) = 0.

iii) Two complex eigenvalues have a modulus equal to 1. This arises if the second-order poly-
nomial equation is of the form: λ 2− 2cos(a)λ + 1 = 0. This implies |Tr(Θ)| < 2 and
det(Θ) = 1.

The three frontiers above define 5 regions, as illustrated on Figure 6: Region I is purely fundamen-
tal; Regions III and V are purely nonfundamental; Regions II and IV are mixed. The dashed line
represents the pairs (Tr(Θ),det(Θ)) for which the discriminant Tr(Θ)2−4det(Θ) is zero; the area
that is below (respectively above) this parabola corresponds to real (resp. complex) eigenvalues
for Θ.
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B.2 Derivation of the Jacobian

Replacing the ε∗t
(2)’s appearing in equation (4.12) by their expressions given in (4.11), one obtains:



ε∗0
(1)

...
ε∗T−1

(1)

ε∗1
(2)

...
ε∗T

(2)


︸ ︷︷ ︸

=ε∗

=

[
J1 J12

0 J2

]
︸ ︷︷ ︸

=J



W1
(1)

...
WT

(1)

W1
(2)

...
WT

(2)


︸ ︷︷ ︸

=W

+



{
(U (1)

Θ
)−1
}T

M0
...

...

(U (1)
Θ

)−1 MT−1

0 U (2)
Θ

...
...

0 (U (2)
Θ

)T


︸ ︷︷ ︸

=M

[
ε∗T

(1)

ε∗0
(2)

]
, (a.3)

where J1 is an upper block triangular matrix with
{
−(U (1)

Θ
)−1
}

matrices on its diagonal, where J2

is lower block triangular with identity matrices on its diagonal, and where:

Mt =−(U (1)
Θ

)−1U (12)
Θ

(U (2)
Θ

)
t
−·· ·−

{
(U (1)

Θ
)−1
}T−t

U (12)
Θ

(U (2)
Θ

)
T−1

.

Let’s consider the vector V = [V ′1, . . . ,V
′
T ]
′ where Vt = Φ(L)Yt . If Y = [Y ′1, . . . ,Y

′
T ]
′, we have V =

DY +D0Y 0 where D is a lower triangular matrix whose diagonal is filled with ones (and therefore
detD = 1), where D0 is matrix of dimension (nT )× (np), and where Y 0 = [Y ′0, . . . ,Y

′
−p+1]

′.
By definition of Wt , we have AΘWt = Φ(L)Yt and, therefore, A′

Θ
Vt = Wt . Hence, with W̃ =

[W ′1,W
′
2, . . . ,W

′
T ]
′, we obtain:

W̃ = (I⊗A′Θ)V = (I⊗A′Θ)(DY +D0Y 0).

Let’s denote by P the permutation that is such that W = PW̃ , where W is defined in equation (a.3).
Consider the case where ε∗0

(2) and ε∗T
(1), thought of as state variables, are equal to zero. We obtain,

using the notations of equation (a.3):

ε
∗ = JW = JPW̃ = JP(I⊗A′Θ)(DY +D0Y 0). (a.4)

Matrices AΘ and P being orthogonal, we have |detAΘ|= |detP|= 1. Since we also have detD = 1,
we get:

|det(JP[I⊗A′Θ]D)|= |det(J)|= 1

|det(U (1)
Θ

)|T
.

Denoting by λi(Θ) the ith eigenvalue of Θ, the effect of the Jacobian on the truncated log-
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likelihood is:

log(|det(U (1)
Θ

)|) =
n

∑
i=1

log |λi(Θ)|1|λi(Θ)|≥1. (a.5)

B.3 Proof of Lemma 1

Since L = ∪
s
Ls, and, since the number of nonfundamentalness regimes is finite, we just have

to prove the result uniformly on Ls, for any given s. That is, we can consider s and m (the
nonfundamentalness order) fixed. The eigenvalues of Θ are continuous functions of its components
since they are continuous functions of the coefficients of the polynomial equation detΘ(L) = 0.

We use the following notations:

ρ1 = sup
Λ

max
i=1,...,m

1
|λi(Θ)| , ρ2 = sup

Λ

max
i=m+1,...,n

|λi(Θ)|,

where the sup
Λ

is taken from a given Ls.

Both ρ1 and ρ2 are nonnegative and strictly smaller than 1.
We have:∣∣∣∣ 1

T
LT (Λ)−

1
T

Lu
T (Λ)

∣∣∣∣≤
1
T

T

∑
t=1

∣∣∣∣∣∣logg

Aε
∗
t −A

 {(U (1))−1
}T−t

BT−tU (2)t

0 U (2)t

[ ε∗T
(1)

ε∗0
(2)

]
;Γ

− logg(Aε
∗
t ;Γ)

∣∣∣∣∣∣ ,
where, for expository purpose, we omit the dependence of A, U (1), U (2) and BT−t on Θ. We
deduce:

∣∣∣∣ 1
T

LT (Λ)−
1
T

Lu
T (Λ)

∣∣∣∣≤ 1
T

T

∑
t=1

∣∣∣∣∣∣∂ logg
∂ε ′

(xt ;Γ)A

 {(U (1))−1
}T−t

BT−tU (2)t

0 U (2)t

[ ε∗T
(1)

ε∗0
(2)

]∣∣∣∣∣∣ ,
where xt is a linear convex combination of εt and of its truncated version, and is therefore a function
of model parameters and of observed variables.

Under Assumptions A.1, (a.1) and (a.3), it is easily checked that all partial derivatives
∂ logg

∂ε j
(·;Γ)

are Lipschitz uniformly on L . Since all the norms on a finite dimensional space are equivalent,
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we get:

sup
Λ

∣∣∣∣ 1
T

LT (Λ)−
1
T

Lu
T (Λ)

∣∣∣∣≤
K0

T

T

∑
t=1

n

∑
j=1

sup
Λ

∣∣x j,t
∣∣sup

Λ

∣∣∣∣∣∣A j

 {(U (1))−1
}T−t

BT−tU (2)t

0 U (2)t

[ ε∗T
(1)

ε∗0
(2)

]∣∣∣∣∣∣
 , (a.6)

where A j denotes the jth row of A and K0 is the uniform Lipschitz coefficient.
Given that xt is a linear convex combination of εt and of its truncated version, which themselves

depend on ε∗t , ε∗T , and ε∗0 (see equation 4.15), and exploiting the compactness of L , we deduce the
existence of nonnegative ak, j,l’s, for k = 1, . . . ,6 and j, l = 1, . . . ,n, that are such that:44,45

sup
Λ

|x j,t | ≤
n

∑
l=1

{
a1, j,l

∣∣∣∣sup
Λ

ε
∗
t,l

∣∣∣∣+a2, j,l

∣∣∣∣sup
Λ

ε
∗
T,l

(1)
∣∣∣∣+a3, j,l

∣∣∣∣sup
Λ

ε
∗
0,l

(2)
∣∣∣∣} ,

and

sup
Λ

∣∣∣∣∣∣A j

 {(U (1))−1
}T−t

BT−tU (2)t

0 U (2)t f
t

[ ε∗T
(1)

ε∗0
(2)

]∣∣∣∣∣∣
≤ ρ

T−t
1

n

∑
l=1

a4, j,l

∣∣∣∣sup
Λ

ε
∗
T,l

(1)
∣∣∣∣+ρ

t
2

n

∑
l=1

{
a5, j,l

∣∣∣∣sup
Λ

ε
∗
T,l

(1)
∣∣∣∣+a6, j,l

∣∣∣∣sup
Λ

ε
∗
0,l

(2)
∣∣∣∣} .

Hence, inequality (a.6) leads to:

sup
Λ

∣∣∣∣ 1
T

LT (Λ)−
1
T

Lu
T (Λ)

∣∣∣∣≤ K0

T

T

∑
t=1

Zt,T , (a.7)

44The existence of the ak, j,l’s (k = 1, . . . ,6 and j, l = 1, . . . ,n) notably hinges on the fact that ‖BT−t‖, that denotes
the Hilbert-Schmidt norm of BT−t (where BT−t is defined in equation 4.14), is lower than∥∥∥U (1)

Θ
)−1
∥∥∥[∥∥∥U (12)

Θ

∥∥∥+∥∥∥{(U (1)
Θ

)−1
}∥∥∥∥∥∥U (12)

Θ

∥∥∥∥∥∥U (2)
Θ

∥∥∥ · · ·+∥∥∥∥{(U (1)
Θ

)−1
}k
∥∥∥∥∥∥∥U (12)

Θ

∥∥∥∥∥∥∥U (2)
Θ

k
∥∥∥∥+ . . .

]
,

which is finite given that the eigenvalues of (U (1)
Θ

)−1 and of U (2)
Θ

are lower than max{ρ1,ρ2}< 1.
45By convention, ε∗t,l

(1) = 0 if l > m, and ε∗t,l
(2) = 0 if l ≤ m.
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where

0≤ Zt,T ≡
n

∑
j=1

{
n

∑
l=1

a1, j,l

∣∣∣∣sup
Λ

ε
∗
t,l

∣∣∣∣+a2, j,l

∣∣∣∣sup
Λ

ε
∗
T,l

(1)
∣∣∣∣+a3, j,l

∣∣∣∣sup
Λ

ε
∗
0,l

(2)
∣∣∣∣
}
×{

n

∑
r=1

ρ
T−t
1 a4, j,r

∣∣∣∣sup
Λ

ε
∗
T,r

(1)
∣∣∣∣+ρ

t
2

(
a5, j,r

∣∣∣∣sup
Λ

ε
∗
T,r

(1)
∣∣∣∣+a6, j,r

∣∣∣∣sup
Λ

ε
∗
0,r

(2)
∣∣∣∣)
}
.

Let us show that the different products involved in Zt,T are such that 1
T

T

∑
t=1

Zt,T converges a.s.

to zero. This demonstration will make use of the following lemma:

Lemma 3. If (Yt) is a process such that, for a δ > 1, E(|YT |δ ) is finite and independent of T , then
YT

T
a.s.→

T→∞
0.

Proof: For δ > 0 and for any ε > 0, the Markov/Chebyshev’s inequality gives P(|XT | ≥ ε) ≤
E(|XT |δ )/εδ . Using XT = YT/T , we get P(|YT/T | ≥ ε) ≤ E(|YT |δ )/(T δ εδ ). If δ > 1 and if
E(|YT |δ ) = K < ∞, we therefore have ∑

∞
T=1 P(|YT/T | ≥ ε)< K/εδ

∑
∞
T=1 1/T δ < ∞. That is, YT/T

converges completely to zero, and therefore almost surely to zero.

Let us consider the different types of sums involved in 1
T

T

∑
t=1

Zt,T :

i) A first type of sum is of the form:

1
T

T

∑
t=1

ρ
t
2sup

Λ

|ε∗0,l(2)|sup
Λ

|ε∗0,r(2)|=
1
T

sup
Λ

|ε∗0,l(2)|sup
Λ

|ε∗0,r(2)|
ρ2(1−ρT

2 )

1−ρ2

a.s.→
T→∞

0.

ii) A second type of sum is of the form:

1
T

T

∑
t=1

ρ
t
2sup

Λ

|ε∗t,l|sup
Λ

|ε∗0,r(2)|=
supΛ |ε∗0,r(2)|

T︸ ︷︷ ︸
a.s.→

T→∞
0

T

∑
t=1

ρ
t
2sup

Λ

|ε∗t,l|,

where the sum appearing on the right-hand side of the previous equation converges normally
in L1 if E(supΛ |ε∗t,l|)< ∞, and therefore converges a.s. under our assumptions.

iii) A third type of sum is of the form:

1
T

T

∑
t=1

sup
Λ

|ε∗T,l(1)|sup
Λ

|ε∗T,r(1)|(a1ρ
T−t
1 +a2ρ

t
2)≤

supΛ |ε∗T,l(1)|supΛ |ε∗T,r(1)|
T

(
a1

1−ρ1
+

a2ρ2

1−ρ2

)
.
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According to Lemma 3, the term on the right-hand side of the previous inequality converges
a.s. to zero if there exists δ ∗ > 1 s.t. E(supΛ |ε∗T,l(1)|δ

∗
supΛ |ε∗T,r(1)|δ

∗
)< ∞. (The fact that, if

it is finite, E(supΛ |ε∗T,l(1)|δ
∗
supΛ |ε∗T,r(1)|δ

∗
) does not depend on T results from the fact that

supΛ |ε∗T,l(1)|supΛ |ε∗T,r(1)| is a strictly stationary process.)

This is the case under Assumption (a.4) of Lemma 1. Indeed, under this assumption, there
exists δ > 2 such that E(supΛ |ε∗T,l(1)|δ )<∞ for l = 1, . . . ,n. Hence, taking δ ∗= δ/2> 1, we
have E(supΛ |ε∗T,l(1)|2δ ∗)< ∞. Using the Cauchy-Schwarz inequality applied to the product
of supΛ |ε∗T,l(1)|δ

∗
and supΛ |ε∗T,r(1)|δ

∗
, it then comes that

E
(

sup
Λ

|ε∗T,l(1)|δ
∗
sup

Λ

|ε∗T,r(1)|δ
∗
)
<
√

E(sup
Λ

|ε∗T,l(1)|2δ ∗)
√

E(sup
Λ

|ε∗T,r(1)|2δ ∗)< ∞.

iv) A fourth type of sum is of the form:

1
T

T

∑
t=1

ρ
t
2sup

Λ

|ε∗t,l|sup
Λ

|ε∗T,r(1)| =
supΛ |ε∗T,r(1)|

T

T

∑
t=1

ρ
t
2sup

Λ

|ε∗t,l|.

According to Lemma 3, the first term of the right-hand side of the previous equation con-
verges a.s. to zero if there exists δ > 1 s.t. E(supΛ |ε∗T,r(1)|δ ) < ∞, which is the case under
Assumption (a.4) of Lemma 1. The sum appearing on the right-hand side of the previous
equation converges normally in L1 if E(supΛ |ε∗t,l|)< ∞; it therefore converges a.s. under our
assumptions.

v) A fifth type of sum is of the form:

1
T

T

∑
t=1

ρ
T−t
1 sup

Λ

|ε∗t,l|sup
Λ

|ε∗T,r(1)| =
supΛ |ε∗T,r(1)|√

T

T−1

∑
τ=0

ρ
τ
1 sup

Λ

|ε∗T−τ,l|
√

T

≤
supΛ |ε∗T,r(1)|√

T

∞

∑
τ=0

ρ
τ
1 sup

Λ

|ε∗T−τ,l|
√

T
.

The last two ratios converge a.s. to zero if Assumption (a.4) of Lemma 1 is satisfied. In-
deed, under this assumption, there exists δ > 2 such that E(supΛ |ε∗T,r(1)|δ ) < ∞ and there-
fore there exists δ ∗ > 1 (take δ ∗ = δ/2) such that E([supΛ |ε∗T,r(1)|2]δ

∗
) < ∞. As a result,

according to Lemma 3, supΛ |ε∗T,r(1)|2/T converges a.s. to zero, and the same follows for
supΛ |ε∗T,r(1)|/

√
T . The a.s. convergence to zero of the second ratio results from the same

type of reasoning, after having noticed that ∑
∞
τ=0 ρτ

1 supΛ |ε∗T−τ,l| is a stationary process.
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vi) The last type of sum is of the form:

1
T

T

∑
t=1

ρ
t
2sup

Λ

|ε∗T,l(1)|sup
Λ

|ε∗0,r(2)|=
supΛ |ε∗T,l(1)|

T︸ ︷︷ ︸
a.s.→

T→∞
0 (see iv)

sup
Λ

|ε∗0,r(2)|
T

∑
t=1

ρ
t
2.

The fact that
T

∑
t=1

ρ
t
2 ≤

ρ2

1−ρ2
implies that this last type of sum also converges a.s. to zero.

Taken together, under our assumptions, points i) to vi) prove the a.s. convergence of
1
T

T

∑
t=1

Zt,T

to zero and, further, leads to the uniform a.s. convergence of Lemma 1.

C 2SLS-GMM: Estimation and asymptotic properties

C.1 Estimation of µ,Φ1, . . . ,Φp by 2SLS

Consider the model:
Yt = µ +Φ1Yt−1 + · · ·+Φ1Yt−p +Zt ,

where Zt = C0ηt + · · ·+Cqηt−q and where the components of ηt , that are the ηi,t’s, are zero-
mean, unit-variance, serially and mutually independent shocks. Assuming that (Yt) is covariance-
stationary, we denote by m the unconditional expectation of Yt , i.e. m = E(Yt) = (I−Φ1−·· ·−
Φp)

−1µ , and by Γi its auto-covariance matrix of order i, i.e. Γi = E(YtY ′t−i)−E(Yt)E(Yt−i)
′.

Consistent estimates of Π= [µ,Φ1, . . . ,Φp] can be obtained by applying two-stage least squares
(2SLS). For j > 0, Yt−q− j is independent of Zt . As a result, the Yt−q− j’s, j > 0 can be used as in-
struments to estimate Π.

Take k≥ p and let us introduce the notations Wt = [1,Y ′t−q−1, . . . ,Y
′

t−q−k]
′, Xt = [1,Y ′t−1, . . . ,Y

′
t−p]

′,
W = [W1, . . . ,WT ]

′, X = [X1, . . . ,XT ]
′, Y = [Y1, . . . ,YT ]

′ and Z = [Z1, . . . ,ZT ]
′. The first step of the

2SLS approach provides the following fitted value of X:

X̂ = W(W′W)−1W′X.
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2SLS-GMM: Estimation and asymptotic properties

We then regress the Yt’s on the X̂t’s by OLS and get the 2SLS estimate of Π:

Π̂
′ = (X̂′X̂)−1X̂′Y = [X′W(W′W)−1W′X]−1X′W(W′W)−1W′Y

= Π
′+
[
X′W

(
W′W

)−1 W′X
]−1

X′W(W′W)−1W′Z

= Π
′+

1√
T

[
X′W

T

(
W′W

T

)−1 W′X
T

]−1
X′W

T

(
W′W

T

)−1(√
T

W′Z
T

)
. (a.8)

We have
X′W

T
p→ QXW and

W′W
T

p→ QW , where QXW and QW are given by:

QXW =



1 m′ m′ · · · m′

m Γ̃q Γ̃q+1 · · · Γ̃q+k−1

m Γ̃q−1 Γ̃q · · · Γ̃q+k−2
...

...
m Γ̃q−p+1 · · · Γ̃q+k−p


and QW =



1 m′ m′ · · · m′

m Γ̃0 Γ̃1 · · · Γ̃k−1

m Γ̃−1 Γ̃0 · · · Γ̃k−2
...

...
m Γ̃−k+1 Γ̃−k+2 · · · Γ̃0


,

with Γ̃i = E(YtY ′t−i) = Γi +mm′.
Using the notations α̂T = vec(Π̂) and α = vec(Π), the expansion (a.8) leads to:

√
T (α̂T −α)≈ Qπ

(√
T vec

(
Z′W

T

))
, (a.9)

where
Qπ =

{
[QXW Q−1

W Q′XW ]−1QXW Q−1
W
}
⊗ In×n.

C.2 Cumulant-based identification

The first step provides consistent estimates of µ , Φ1, . . . ,Φp (see C.1). Therefore we can focus on
the identification and the derivation of moments on the pure VMA process: Zt =C0ηt +C1ηt−1.

The pairwise log-Laplace transform of (Zt ,Zt−1) is:

logE[exp(u′Zt + v′Zt−1)] (a.10)

= logE[exp(u′(C0ηt +C1ηt−1)+ v′(C0ηt−1 +C1ηt−2))]

= log
(
E[exp(u′C0ηt)]×E{exp[(u′C1 + v′C0)ηt−1]}×E[exp(v′C1)ηt−2]

)
=

n

∑
j=1

logE[exp(u′C0 jη j,t)]+
n

∑
j=1

logE{exp[(u′C1 j + v′C0 j)η j,t−1}+
n

∑
j=1

logE[exp(v′C1 jη j,t−2)],

using that the η j,t’s are mutually and serially independent.
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Let us denote by Ψξ the log-Laplace transform of a given random variable ξ defined by:

Ψξ (u) = logE[exp(wξ )].

If the moments of ξ exist up to order 4, and if E(ξ )= 0, the log-Laplace transform can be expanded
as:

Ψξ (w)≈
w2

2
E(ξ 2)+

w3

6
E(ξ 3)+

w4

24
[
E(ξ 4)−3E(ξ 2)

]
. (a.11)

In particular, for the η j’s, for which E(η j) = 0 and E(η2
j ) = 1, we have:

Ψη j(w)≈
w2

2
+

w3

6
κ3 j +

w4

24
κ4 j, (a.12)

with κ3 j = E(η3
j,t) and κ4 j = E(η4

j,t)−3.
Using (a.11) with ξ = u′Zt +v′Zt−1 and (a.12), and taking the expansions of both sides of (a.10)

up to order 4, we get the following restrictions, holding for any pair (u,v):

E[(u′Zt + v′Zt−1)
2] = ∑

n
j=1[(u

′C0 j)
2 +(u′C1 j + v′C0 j)

2 +(v′C1 j)
2] (order 2)

E[(u′Zt + v′Zt−1)
3] = ∑

n
j=1 κ3 j[(u′C0 j)

3 +(u′C1 j + v′C0 j)
3 +(v′C1 j)

3] (order 3)
E[(u′Zt + v′Zt−1)

4] = ∑
n
j=1 κ4 j[(u′C0 j)

4 +(u′C1 j + v′C0 j)
4 +(v′C1 j)

4]

+3
(

∑
n
j=1[(u

′C0 j)
2 +(u′C1 j + v′C0 j)

2 +(v′C1 j)
2]
)2

. (order 4)

At order 2, the system concerns the information contained in E(ZtZ′t), E(ZtZ′t−1), which is
not sufficient to identify C0 and C1. The other equations provide additional information whenever
appropriate higher-order cumulants, of order 3 and/or 4, are not zero.

C.3 Asymptotic accuracy of the 2SLS-GMM approach

In the first step of the 2SLS-GMM approach, α = vec(Π) = vec([µ,Φ1, . . . ,Φp]) is estimated by
implementing the 2SLS approach described in Appendix C.1. The remaining parameters, gathered
in vector β , are then estimated by employing the GMM approach presented in Subsection 4.2.2. In
the context of this second step, the moment restrictions write:

E0
[
hY (yt ,yt−1, . . . ,yt−p−1;α0,β0)

]
= 0, (a.13)

where
hY (yt ,yt−1, . . .yt−p−1;α,β ) = h(zt(α),zt−1(α);β ), (a.14)
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2SLS-GMM: Estimation and asymptotic properties

with zt(α) = yt−µ−Φ1yt−1−·· ·−Φpyt−p. These moment restrictions overidentify β for a given
α if the size of h is larger than that of β .

For a given first-step 2SLS estimator α̂T of α , the estimator of β is defined as the solution of
the minimization problem:

β̂T = argmin
β

(
1
T

T

∑
t=1

hY (yt ,yt−1, . . .yt−p−1; α̂T ,β )

)′
Ω

(
1
T

T

∑
t=1

hY (yt ,yt−1, . . .yt−p−1; α̂T ,β )

)
,

(a.15)
where Ω is a given (dimh×dimh) positive symmetric matrix.

Under standard regularity conditions, this 2-step estimator is consistent and asymptotically
normal. Its asymptotic covariance matrix has to account for the first-step estimation error. The
derivation of this asymptotic covariance matrix is based on the first-order conditions (FOCs) asso-
ciated with the second step of the approach. These FOCs are:(

1
T

T

∑
t=1

hY (yt ,yt−1, . . .yt−p−1; α̂T , β̂T )

)′
Ω

(
1
T

T

∑
t=1

∂hY

∂β ′
(yt ,yt−1, . . .yt−p−1; α̂T , β̂T )

)
= 0.

The expansion of the FOCs leads to:

√
T (β̂T −β0) ≈ −

[
E0

(
∂h′Y
∂β

)
ΩE0

(
∂hY

∂β ′

)]−1

E0

(
∂h′Y
∂β

)
Ω

{
1√
T

T

∑
t=1

ht +E0

(
∂hY

∂α ′

)√
T (α̂T −α0)

}
, (a.16)

where

ht = hY (yt ;α0,β0), E0

(
∂h′Y
∂β

)
=E0

(
∂h′Y
∂β

(Yt ;α0,β0)

)
, E0

(
∂hY

∂α ′

)
=E0

(
∂hY

∂α
(Yt ;α0,β0)

)
.

We deduce from (a.9) and (a.16) that:

√
T

[
α̂T −α0

β̂T −β0

]
≈−

 Qπ 0

I−1
ββ

IβαQπ I−1
ββ

E0

(
∂h′Y
∂β

)
Ω

 1√
T

T

∑
t=1

[
gt

ht

]
, (a.17)

where gt = vec(ZtW ′t ) (see Subsection C.1 for the notations Zt and Wt) and where

Iββ = E0

(
∂h′Y
∂β

)
ΩE0

(
∂hY

∂β ′

)
, Iβα = E0

(
∂h′Y
∂β

)
ΩE0

(
∂hY

∂α ′

)
.

The expression of the variance-covariance matrix of the 2-step estimator follows by noting
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that, under the strict stationarity of Zt , process (g′t ,h
′
t)
′ is also stationary, and by applying the

central limit theorem:
1√
T

T

∑
t=1

[
gt

ht

]
d→N (0,Q),

where

Q =
+∞

∑
k=−∞

Cov0

[(
gt

ht

)
,

(
gt−k

ht−k

)]
.

With these notations, we have:

√
T (β̂T −β0)

d→N (0,Σ(Ω)),

with

Σ(Ω) = I−1
ββ

E0

(
∂h′Y
∂β

)[
ΩE0

(
∂hY

∂α ′

)
Qπ Ω

]
Q
[

ΩE0

(
∂hY
∂α ′

)
Qπ Ω

]′
E0

(
∂hY

∂β ′

)
I−1
ββ

=

[
E0

(
∂h′Y
∂β

)
ΩE0

(
∂hY

∂β ′

)]−1

E0

(
∂h′Y
∂β

)
ΩQ0Ω

′E0

(
∂hY

∂β ′

)[
E0

(
∂h′Y
∂β

)
ΩE0

(
∂hY

∂β ′

)]−1

,

with

Q0 =

[
E0

(
∂hY

∂α ′

)
Qπ Id

]
Q
[

E0

(
∂hY

∂α ′

)
Qπ Id

]′
.

If Q0 is invertible, the optimal value for Ω is Ω∗=Q−1
0 (otherwise Q−1

0 is replaced by a generalized
inverse). In this case, we have

Σ(Ω∗) =
[

E0

(
∂h′Y
∂β

)
Q−1

0 E0

(
∂hY

∂β ′

)]−1

.
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Figure 1: Joint distributions of yt and yt−1 in the fundamental and non-fundamental cases, for
different distributions of the errors εt
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Panel (b) Gaussian Mixture
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Panel (c) Student (df: 5)
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Panel (d) Student (df: 10)
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Note: Each of the four panels displays contour plots associated with the joint distributions of yt and yt−1, where
yt follows an MA(1) process: yt = εt −θεt−1, where the εt are i.i.d.. Whereas the black lines correspond to the case
θ =−2 and V (εt) = 1 (non-fundamental process), the grey lines correspond to θ =−1/2 and V (εt) = θ 2 (fundamental
process with same spectral density). The titles of the panels indicate the distribution types of the εt ’s. For Panel b
(mixture of Gaussian distributions), εt is drawn from the Gaussian distribution N (0,σ2

1 ) with probability p and from
N (0,σ2

2 ) with probability 1− p; specifically, we set: µ1 = −0.7, µ2 = 0.7, σ1 = 0.32, σ2 = 0.95, p = 0.5, which
results in a zero-mean unit-variance distribution with order-3 and order-4 cumulants of 0.85 and 0, respectively.
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Figure 2: Distribution of θ estimators (univariate case)
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Panel (a.2) − Approach = GMM; True distri. = Gaussian
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Panel (c.1) − Approach = ML; True distri. = Student (df: 5)
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Panel (c.2) − Approach = GMM; True distri. = Student (df: 5)
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−4 −3 −2 −1 0 1

0.
0

0.
2

0.
4

0.
6

Panel (d.2) − Approach = GMM; True distri. = Student (df: 10)

Note: The plots display the distributions of the estimates of θ obtained by applying the Maximum Likelihood approach
(Subsection 4.1) and the GMM approach (Subsection 4.2). The model is yt = εt −θεt−1, with θ =−2 and V (εt) = 1.
On each panel, the three distributions correspond to three sample sizes: T = 100, 200 and 500. For each distribution
of the shocks (see Figure 1) and each sample size, we simulate a large number N = 1000 of yt samples of size T . For
each simulated sample, we employ the two approaches to estimate (θ ,V (εt),γ), where γ characterizes the distribution
of εt . For the (P)ML approach, γ is a vector of three parameters specifying a Gaussian mixture distribution of mean
zero and unit variance. When the true distribution is Student, the true and pseudo distributions are different, hence the
ML approach is, more precisely, a Pseudo Maximum Likelihood (PML) approach. For the GMM approach, γ contains
the order-3 and order-4 cumulants of εt . The displayed distributions are obtained by applying Gaussian kernel on the
N estimates of θ . The vertical dotted bar indicates the true value of θ .
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Table 1: Results of the Monte-Carlo experiment, univariate case

εt’s distribution: Bias RMSE MAE S.D. right reg. α =75% α =95%
Panel (a) Maximum Likelihood approach

Sample size: T=100
Gaussian 0.72 1.14 0.95 0.88 49% 24% / 49% 35% / 72%
Mixture of Gaussian −0.02 0.22 0.16 0.22 100% 72% / 72% 92% / 92%
Student (df: 5) 0.31 0.88 0.63 0.83 74% 48% / 66% 62% / 84%
Student (df: 10) 0.53 1.04 0.82 0.90 60% 36% / 60% 47% / 78%

Sample size: T=200
Gaussian 0.71 1.07 0.84 0.79 51% 31% / 60% 43% / 83%
Mixture of Gaussian 0.00 0.13 0.10 0.13 100% 74% / 74% 94% / 94%
Student (df: 5) 0.15 0.57 0.35 0.55 88% 64% / 73% 79% / 90%
Student (df: 10) 0.48 0.90 0.64 0.76 66% 44% / 66% 57% / 87%

Sample size: T=500
Gaussian 0.72 1.05 0.79 0.76 52% 34% / 65% 44% / 86%
Mixture of Gaussian 0.00 0.08 0.06 0.08 100% 73% / 73% 94% / 94%
Student (df: 5) 0.01 0.23 0.13 0.23 98% 73% / 74% 92% / 94%
Student (df: 10) 0.23 0.61 0.33 0.56 84% 63% / 75% 78% / 92%

Panel (b) Generalized Method of Moments approach
Sample size: T=100

Gaussian 0.29 1.55 1.17 1.52 60% 40% / 65% 58% / 95%
Mixture of Gaussian −0.12 1.31 0.94 1.30 81% 51% / 63% 74% / 91%
Student (df: 5) 0.31 1.47 1.13 1.44 61% 40% / 65% 59% / 94%
Student (df: 10) 0.40 1.93 1.20 1.89 58% 39% / 67% 57% / 96%

Sample size: T=200
Gaussian 0.47 1.11 0.91 1.00 61% 40% / 65% 57% / 94%
Mixture of Gaussian −0.01 0.82 0.61 0.82 88% 56% / 64% 80% / 90%
Student (df: 5) 0.28 0.99 0.78 0.95 71% 45% / 63% 66% / 92%
Student (df: 10) 0.49 1.10 0.91 0.98 60% 39% / 64% 57% / 93%

Sample size: T=500
Gaussian 0.53 0.97 0.74 0.81 62% 43% / 69% 58% / 94%
Mixture of Gaussian −0.03 0.38 0.27 0.38 98% 70% / 72% 92% / 94%
Student (df: 5) 0.15 0.67 0.46 0.65 84% 55% / 66% 78% / 93%
Student (df: 10) 0.42 0.90 0.67 0.79 68% 46% / 68% 65% / 95%

Note: The model is yt = εt − θεt−1, with θ = −2 and V (εt) = 1. Results are based on the simulation of N = 1000
samples for each of the four distributions considered for the errors εt (see first column) and each of the three considered
sample sizes (T = 100, 200 or 500). We estimate (θ ,V (εt),γ), where γ characterizes the distribution of the shocks.
In the ML approach, γ contains three parameters defining a Gaussian mixture of mean zero and unit variance. When
the true distribution is Student, the true and pseudo distributions are different, hence the ML approach is, strictly
speaking, a Pseudo ML (PML) approach. In the GMM approach, γ contains the order-3 and order-4 cumulants of
the shock distribution. Columns 2 to 5 give, respectively: the bias, the root mean-squared error, the mean absolute
error and the standard deviation of the estimator of θ . Columns 6 (“right reg.”) reports the fraction of cases (among
the N replications) where the right fundamental regime is estimated. The last two columns indicate the fractions of
times where the true value of θ lies within the interval [θ̂ −φα σasy, θ̂ +φα σasy] where σasy denotes the estimate of the
asymptotic standard deviation of the estimator θ̂ (based on the Hessian matrix of the log-likelihood function in the ML
case and on the formula given in Appendix C.3 in the GMM case) and where φα is such that P(−φα < X < φα) = α

if X ∼N (0,1). Two ratios are shown: contrary to the first one, the second ratio excludes those estimations that lead
to the wrong fundamental regime. We discard the replications leading to estimates of θ that are larger than 50; the
largest number of occurrences is 2 (out of N = 1000 replications), obtained for T = 100 and the GMM approach.
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Figure 3: Distribution of the estimators of Θ’s components (bivariate case)
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Panel (a.2) − Estimation of Θ11 by the GMM approach
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Panel (b.1) − Estimation of Θ21 by the ML approach
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Panel (b.2) − Estimation of Θ21 by the GMM approach
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Panel (c.1) − Estimation of Θ12 by the ML approach
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Panel (c.2) − Estimation of Θ12 by the GMM approach
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Panel (d.1) − Estimation of Θ22 by the ML approach
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Panel (d.2) − Estimation of Θ22 by the GMM approach

Note: The plots display the distributions of the estimators of the Θi, j’s, i, j∈{1,2}, obtained by applying the Maximum
Likelihood approach (Subsection 4.1) and the GMM approach (Subsection 4.2). The model is Yt = Cηt −ΘCηt−1,
where the parameterizations of C and Θ are given in (4.27). The true distribution of η1,t is a mixture of Gaussian (see
Footnote 33 for parameter values) and the true distribution of η2,t is a Student’s distribution with 6 degrees of freedom.
On each panel, the three distributions correspond to three sample sizes: T = 100, 200 and 500. For each sample
size T , we simulate a large number (N = 500) of Yt samples of size T and employ the ML and GMM approaches to
estimate the model parameters. As regards the ML approach, it is assumed that the distribution of both η1,t and η2,t
are mixtures of Gaussian distributions (although the true distribution of η2,t is Student); accordingly our ML approach
is, strictly speaking, a Pseudo Maximum Likelihood (PML) approach. The displayed distributions are obtained by
applying Gaussian kernel on the N estimates of the Θi, j’s. The vertical dotted bar indicates the true value of Θi, j.
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Table 2: Results of the Monte-Carlo experiment, bivariate case

Bias RMSE MAE S.D. right side α =75% α =95%
Panel (a) Maximum Likelihood approach

Sample size: T=100
Θ1,1 −0.27 0.64 0.33 0.58 80% 49% / 61% 68% / 83%
Θ2,1 −0.07 1.47 0.46 1.47 80% 60% / 68% 83% / 91%
Θ1,2 −0.02 0.42 0.14 0.42 80% 50% / 55% 76% / 80%
Θ2,2 −0.02 0.41 0.25 0.41 80% 72% / 73% 90% / 90%

Sample size: T=200
Θ1,1 −0.09 0.35 0.13 0.34 94% 67% / 71% 86% / 92%
Θ2,1 −0.04 0.31 0.21 0.31 94% 67% / 71% 91% / 94%
Θ1,2 −0.01 0.09 0.06 0.09 94% 68% / 71% 87% / 88%
Θ2,2 −0.01 0.18 0.14 0.18 94% 73% / 74% 94% / 94%

Sample size: T=500
Θ1,1 0.00 0.07 0.03 0.07 100% 76% / 76% 94% / 94%
Θ2,1 0.00 0.13 0.10 0.13 100% 71% / 71% 95% / 96%
Θ1,2 0.00 0.04 0.03 0.04 100% 73% / 73% 95% / 95%
Θ2,2 0.00 0.10 0.08 0.10 100% 77% / 77% 95% / 95%

Panel (b) Generalized Method of Moments approach
Sample size: T=100

Θ1,1 −1.01 1.71 1.13 1.38 36% 38% / 59% 66% / 87%
Θ2,1 −0.31 2.16 1.44 2.14 36% 50% / 54% 73% / 76%
Θ1,2 −0.03 0.66 0.42 0.66 36% 51% / 46% 73% / 71%
Θ2,2 0.33 1.27 0.95 1.22 36% 44% / 63% 59% / 85%

Sample size: T=200
Θ1,1 −0.96 1.33 1.00 0.93 42% 38% / 73% 54% / 90%
Θ2,1 −0.04 1.33 1.01 1.34 42% 59% / 66% 78% / 84%
Θ1,2 0.00 0.44 0.33 0.44 42% 56% / 52% 75% / 70%
Θ2,2 −0.01 0.80 0.57 0.80 42% 58% / 65% 78% / 87%

Sample size: T=500
Θ1,1 −0.53 0.92 0.58 0.75 67% 53% / 78% 64% / 92%
Θ2,1 0.02 0.73 0.56 0.74 67% 69% / 76% 87% / 91%
Θ1,2 0.01 0.23 0.18 0.23 67% 68% / 71% 86% / 88%
Θ2,2 −0.06 0.34 0.25 0.33 67% 72% / 72% 93% / 94%

Note: This table documents the results of a Monte-Carlo study aimed at assessing the finite sample properties of
the Maximum Likelihood approach (Subsection 4.1) and the GMM approach (Subsection 4.2) in the context of a
Vectorial Moving-Average model of order 1. See the caption of Figure 3 for details regarding the model and the
Monte-Carlo exercise. Columns 2 to 5 give, respectively: the bias, the root mean-squared error, the mean absolute
error and the standard deviation of the estimator of the Θi, j’s. Columns 6 (“right side”) reports the fraction of cases
(among the N = 500 replications) where the right fundamental regime is estimated; specifically, we say that the
right fundamental regime is estimated when the two eigenvalues of the estimate of Θ lie on each side of the unit
circle and when the absolute values of the estimates of Θ1,1 and Θ2,2 are respectively below and above 1 (as the
true values). The last two columns indicate the fractions of times where the true value of Θi, j lies within the interval
[Θ̂i, j−φα σasy,i j,Θ̂i, j+φα σasy,i j] where σasy,i j denotes the estimate of the asymptotic standard deviation of the estimator
Θ̂i, j (based on the Hessian matrix of the log-likelihood function in the ML case and on the formula given in Appendix
C.3 in the GMM case) and where φα is such that P(−φα < X < φα) = α if X ∼N (0,1). For each parameter and
each value of α , two ratios are shown: contrary to the first one, the second ratio excludes those estimations that lead
to the wrong fundamental regime. We discard the replications leading to estimates of the Θi, j’s that are larger than 50
(which, out of N = 500 replications, happens at most once for each sample size and estimation approach).
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Table 3: Estimated SVARMA models (GNP and Unemployment rate)

Approach: GMM ML
param. std dev. param. std dev.

Φ1,[1,1] 0.883 (0.540) 0.641 (0.199)
Φ1,[2,1] −0.425 (0.355) −0.229 (0.096)
Φ1,[1,2] 0.064 (1.323) −0.832 (0.367)
Φ1,[2,2] 1.153 (0.722) 1.744 (0.193)
Φ2,[1,1] 0.210 (0.166) 0.233 (0.082)
Φ2,[2,1] −0.069 (0.088) −0.029 (0.038)
Φ2,[1,2] 1.187 (1.661) 2.039 (0.511)
Φ2,[2,2] −0.565 (0.904) −1.271 (0.246)
Φ3,[1,1] −0.165 (0.172) −0.332 (0.077)
Φ3,[2,1] 0.019 (0.091) 0.035 (0.038)
Φ3,[1,2] −1.763 (0.995) −1.467 (0.434)
Φ3,[2,2] 0.600 (0.688) 0.609 (0.208)
Φ4,[1,1] 0.048 (0.107) 0.164 (0.059)
Φ4,[2,1] 0.016 (0.072) −0.012 (0.031)
Φ4,[1,2] 0.604 (0.490) 0.321 (0.182)
Φ4,[2,2] −0.198 (0.320) −0.101 (0.098)
Θ1,1 0.814 (0.328) 0.388 (0.191)
Θ2,1 −0.468 (0.126) 0.005 (0.096)
Θ1,2 −2.733 (0.858) −2.048 (0.305)
Θ2,2 1.496 (0.393) 1.775 (0.148)
C1,1 0.298 (0.092) 0.555 (0.044)
C2,1 0.172 (0.028) −0.195 (0.017)
C1,2 0.689 (0.082) 0.645 (0.059)
C2,2 0.007 (0.072) −0.006 (0.017)
κ3,1 3.136 (0.126) µ1,1 0.421 (0.209)
κ3,2 0.071 (0.328) µ2,1 −0.130 (0.020)
κ4,1 19.828 (0.393) σ1,1 1.242 (0.099)
κ4,2 1.459 (0.858) σ2,1 0.081 (0.012)

p1 0.448 (0.115)
p2 0.286 (0.040)

Note: This table reports the results of the estimation of bivariate VARMA(4,1) models. The dataset is the one used
in Blanchard and Quah (1989); it covers the period from 1948Q1 to 1987Q4 at the quarterly frequency. The first
endogenous variable is the U.S. real GNP growth (i.e. ∆gnp, where gnp = log(GNP)) and the second endogenous
variable is the unemployment rate. The model is: Φ(L)Yt = (I−ΘL)Cηt , where, for j ∈ {1,2}, η j,t is drawn from
N (µ j,1σ2

j,1) with probability p j and from N (µ j,2σ2
j,2) with probability 1− p j. We impose E(η j,t) = 0 and V (η j,t) =

1, which implies that µ j,2 and σ j,2 can be deduced from µ j,1, σ j,1 and p j. Both the Maximum Likelihood (ML) and the
2SLS-GMM approaches are employed to estimate the model (see Subsections 4.1 and 4.2, respectively). Asymptotic
standard deviations are reported in parentheses. Φk,[i, j] is the (i, j) element of Φk, with Φ(L) = I−Φ1L−·· ·−ΦpLp.
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Figure 4: Estimated shock distributions
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Note: This figure displays the estimated p.d.f. of the structural shocks η j,t , for j ∈ {1,2} resulting from the ML
estimation of a SVARMA(4,1) model using Blanchard and Quah (1989)’s dataset. The dotted lines correspond to the
estimated parametric distributions (mixture of Gaussian distributions): η j,t is drawn from N (µ j,1σ2

j,1) with proba-
bility p j and from N (µ j,2σ2

j,2) with probability 1− p j; µ j,2 and σ j,2 are computed so as to have E(η j,t) = 0 and
V (η j,t) = 1. The model parameterization is detailed in the caption of Table 3. The black solid lines correspond to
kernel-based density estimates of the distribution of the (estimated) structural shocks η j,t . The latter are computed
by applying the backward/forward filtering algorithm underlying function at (see Subsection 4.1.2 for details on this
algorithm). For the sake of comparison, we also report the N (0,1) p.d.f. (dashed lines).
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Figure 5: IRFs – GNP and unemployment rate
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Note: This figure compares impulse response functions (IRFs) associated with models resulting from the BQ approach
(long-run restrictions à la Blanchard and Quah, 1989, 8-lag VAR model) as well as the Maximum Likelihood (ML)
approach (Subsection 4.1, VARMA(4,1) model). The dataset is the same as in Blanchard and Quah (1989). In the
context of the BQ approach, whereas Shock 1 (first column of plots) is interpreted as a demand shock, Shock 2
(second column of plots) is interpreted as a supply shock. In BQ, by construction, the long-run impact of the demand
shock (Shock 1) on real GNP is null. In the ML approach, Shock 1 is defined as the shock having the lower influence
on the long-run GNP variance. For the GNP variable, we report the cumulated impacts of the shocks on the (log) GNP
growth rate.
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Figure 6: Nonfundamentalness regimes when n = 2
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Note: This figure shows the 5 regions corresponding to the different (non)fundamentalness regimes when Yt is of
dimension 2 (i.e. when Θ is of dimension 2× 2). Region I is purely fundamental; Regions III and V are purely
nonfundamental; Regions II and IV are mixed. The dashed line represents the pairs (Tr(Θ),det(Θ)) for which the
discriminant Tr(Θ)2− 4det(Θ) is zero; the area that is below (respectively above) this parabola corresponds to real
(resp. complex) eigenvalues for Θ.
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