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● PURPOSE: To assess the prevalence of PRPH2 in auto- somal dominant retinitis pigmentosa (adRP), to report 6 

novel mutations, to characterize the biochemical features of a recurrent novel mutation, and to study the clinical 

features of adRP patients. 
● DESIGN: Retrospective clinical and molecular genetic study. 
● METHODS: Clinical investigations included visual field testing, fundus examination, high-resolution spectral- domain 

optical coherence tomography (OCT), fundus auto- fluorescence imaging, and electroretinogram (ERG) recording. 

PRPH2 was screened by Sanger sequencing in a cohort of 310 French families with adRP. Peripherin-2 protein was 

produced in yeast and analyzed by Western blot. 

RESULTS: We identified 15 mutations, including 6 novel and 9 previously reported changes in 32 families, account- ing 

for a prevalence of 10.3% in this adRP population. We showed that a new recurrent p.Leu254Gln mutation leads to 

protein aggregation, suggesting abnormal folding. The clinical severity of the disease in examined patients was 

moderate with 78% of the eyes having 1-0.5 of visual acu- ity and 52% of the eyes retaining more than 50% of  the 

visual field. Some patients characteristically showed vitelli- form deposits or macular involvement. In some families, 

pericentral RP or macular dystrophy were found in family members while widespread RP was present in other mem- 

bers of the same families. 
● CONCLUSIONS: The mutations in PRPH2 account for 10.3% of adRP in the French population, which is higher 

than previously reported (0%-8%) This makes PRPH2 the second most frequent adRP gene after RHO in our se- ries. 

PRPH2 mutations cause highly variable phenotypes and moderate forms of adRP, including mild cases, which could 

be underdiagnosed.      

 

 



 

INTRODUCTION 

In the retina, the human peripherin-2 gene  (prph2; mim #179605), also known as RDS (retinal 

degenera- tion slow), encodes peripherin-2, a transmembrane glycoprotein localized in the rim regions of 

photoreceptor outer segment discs.1–3 Peripherin-2 forms homo- and heterotetramers with its paralog 

protein ROM1 (retinal outer segment membrane protein 1; MIM #180721). These oligomers are 

essential for the stabilization of the disc rims and are required to pile up the discs as compact, elongated 

structures.
4–8 

Mutations in PRPH2 cause a wide range of autosomal dominant retinal dystrophies, either 

with involvement of the peripheral retina such as retinitis pigmentosa,
9 

cone-rod dystrophy,
10,11 

and 

even 1 case of retinitis punctata albescens,
12 

or with predominant involvement of the macula such as 

adult vitelliform macu- lar dystrophy,
13 

cone dystrophy,
14 

pattern dystrophy,
15,16 

and central areolar 

choroidal atrophy.
17–20 

In addition, the PRPH2 p.Leu185Pro substitution has also been associated with 

ROM1 mutations in a digenic form of retinitis pigmentosa.
21,22

 

Among the variety of retinal degenerations caused by PRPH2 mutations, autosomal dominant retinitis 

pigmentosa (adRP) is the most frequent condition. Typical symptoms of RP include night blindness and 

progressive visual field constriction, eventually progressing toward total blindness af- ter several decades.
23 

The 

prevalence of RP is approximately 1/3500 to 1/4000 and the mode of inheritance can be auto- somal dominant 

(30%-40%), autosomal recessive (50%- 60%), or X-linked (5%-15%).
23,24 

RP is the most genetically 

heterogeneous clinical entity of inherited retinal disorders, with 69 disease-causing genes currently known in 

this condition (www.sph.uth.tmc.edu/retnet), including 24 genes causing adRP. The prevalence of the known 

genes in adRP ranges from 26.5%
25,26 

to 16.6%
27 

for the most frequently found mutations in RHO   (MIM 

#180380), to many genes accounting for less than 1% of the adRP families. Among those genes, the prevalence of 

PRPH2 mutations varies widely from 0% to 8% of the cases of adRP in cohorts of different origins, but no accurate 

prev- alence data are available for the French population.
28–30 

Also, as usually found in adRP, the severity of the 

PRPH2 genetic form is considered as moderate, but it is not known whether there are important variations of 

severity inside the PRPH2 genetic category. Therefore, we sought PRPH2 mutations in a large cohort of 310 adRP 

families originating mainly from France. We found novel mutations, characterized the biochemical features of 1 

novel mutation, and analyzed the clinical features of the affected patients. 

CLINICAL INVESTIGATIONS: Patients had standard ophthalmologic examination (refractometry, visual acuity, 

slit-lamp examination, applanation tonometry, and fundu- scopy). Kinetic visual fields were determined with a 

Gold- mann perimeter with targets V4e, III4e, and I4e. Optical coherence tomography (OCT) measurement of the 

macula was performed using an OCT-3 system (Stratus model 3000; Carl Zeiss Meditec, Dublin, California, USA) or 

with a spectral-domain OCT (Spectralis, Heidelberg, Ger- many) with software version 3.0. Autofluorescence mea- 

surements were obtained with the  HRA2 Heidelberg retinal confocal angiograph (Heidelberg Engineering, 

Dossenheim, Germany) and fundus pictures were taken. Full-field electroretinograms (ERGs) were recorded using a 

Ganzfeld apparatus (Metrovision, Pe´renchies, France) with a bipolar contact lens electrode on maximally dilated 

pupils according to the ISCEV  protocol.
31

 

For numerical values, visual acuity was measured with Snellen charts in decimal numbers. Goldmann visual field 

http://www.sph.uth.tmc.edu/retnet


was quantified by counting the number of subdivisions of the Goldmann grid within the areas of the V4e isopter and 

expressed as a percentage of the normal visual field. Correlations between visual parameters (visual acuity, vi- sual 

field, and ERG amplitudes) and age were investigated with the coefficient correlation of ranks of Spearman with a 

confidence interval at 95%, calculated by a Fisher transfor- mation. 

MUTATION SCREENING: Genomic DNA was isolated from 10 mL peripheral blood leukocytes using standard 

salting-out procedure.32 Coding exons and  adjacent intronic sequences of the PRPH2 gene (NM_000322.4; primer 

pairs and polymerase chain reaction [PCR] condi- tions are available on request) were sequenced with an Applied 

Biosystems 3130xL genetic analyzer (Applied Bio- systems, Foster City, California, USA) using a BigDye 

Terminator cycle sequencing ready reaction kit V3.1 (Applied Biosystems) following the manufacturer’s instruc - 

tions. Sequence analysis and mutation identification were performed using Collection and Sequence Analysis soft - 

ware  package  (Applied  Biosystems).  SIFT,  PolyPhen2, and Align GVGD were  used to  predict  possible  impacts 

of missense variants. The genomic sequence environment 

 

METHODS 

PATIENTS: Three hundred and ten index patients were included in the study. Informed and written consent was 

obtained for all patients participating in the study. Patients of European origins were recruited from 10 different c lin- 

ical centers in France. The study (# 2008-A01238-47) received the authorization from the Sud me´diterrane´e IV 

ethical board committee (# 08 10 05 from 04/11/2008), was approved by the French regulation agency for medica- 

tion (AFSSAPS # B81319-70), and is registered at http:// clinicaltrials.gov (# NCT01235624). The investigators 

followed the tenets of the Declaration of Helsinki. of putative splice-site mutations was analyzed using Human 

Splicing Finder and MaxEnt. 

 

GENOTYPING OF MICROSATELLITE MARKERS AND LINKAGE ANALYSIS: PCR was carried out in 25 mL 

final volume containing 50 ng genomic DNA, 5 pmol of each 

primer, 0.2 mM dNTPs (MP Biochemicals, Asse-Relegen, Belgium), 2 mM MgCl2, PCR buffer, and 1 unit of DNA 

polymerase (AmpliTaq Gold; Applied Biosystems). Initial denaturation at 95 C for 10 minutes was followed by 35 

cy- cles of denaturation at 94 C for 30 seconds, specific anneal- ing temperature for 30 seconds, and extension at 72 C  

for 1 minute. A final extension step was performed at 72 C for 10 minutes. The PCR products were diluted and mixed 

with Genescan 400HD ROX size standard and subse-quently analyzed on an Applied Biosystems 3130xL genetic 

analyzer (Applied Biosystems). Results were analyzed with GeneMapper software (version 4.0; Applied Biosystems).  

 

Two-point LOD scores were calculated with Superlink-online (http://bioinfo.cs.technion.ac.il/superlink-online/). The 

phenotype was analyzed as an autosomal dominant and fully penetrant trait with an affected allele frequency of 

0.001. 

 

PERIPHERIN-2 EXPRESSION AND WESTERN BLOTS: 

 

Wild-type (WT) and p.Leu254Gln (L254Q) mutant were cloned into the pPICZ expression vector containing the c-

myc epitope and the polyhistidine (His)6-tag as described before33; the nucleotide sequence was confirmed by Euro-

fins MWG (Ebersberg, Germany) using automated DNA sequencing. Pichia pastoris cells (strain KM71H) were 

trans-formed with the PmeI linearized expression vector, stably transformed cells were spread on YPD plates (1% 

http://clinicaltrials.gov/
http://clinicaltrials.gov/
http://bioinfo.cs.technion.ac.il/superlink-online/


yeast extract, 2% peptone, 2% glucose, 2% agar) with media containing 100 mg/mL zeocin. Cells were cultured, 

harvested, and stored at 80 C as described before.33 Cells were lysed upon further processing and membranes 

containing the WT or L254Q proteins were isolated using differential centrifugation as described previously. The 

membranes were dissolved in 1% n-dodecyl-b-D-maltoside (DDM) using sequentially an 18G, 19G, and 25G needle. 

His-tagged WT or L254Q proteins were purified using Ni-NTA agarose (final buffer 10 mM NaPO4, 150 mM NaCl, 

200 mM imidazole, and 0.1% n-dodecyl-b-D-malto-side). Reducing sodium dodecyl sulfate–polyacrylamide gel 

electrophoresis (SDS-PAGE) was performed by mixing 1:1 (v:v) with 23 loading buffer containing 1% b-mercaptoe-

thanol and incubated for 5 minutes at room temperature prior to loading of the gel. Nonreducing SDS-PAGE was 

performed by mixing 1:1 (v:v) with 23 loading buffer without b-mercaptoethanol and immediate loading after 

mixing. Transfer to the polyvinylidene fluoride membrane and probing—using cmyc-tagged murine monoclonal 

(Cell Signaling Technology, Danvers, Massachusetts, USA) as primary and anti-mouse horseradish peroxidase–

conju-gated (Promega, Fitchburg, Wisconsin, USA) as secondary antibody—was done as described before. 

RESULTS 

 

IDENTIFICATION OF RECURRENT AND NOVEL PRPH2 

 

MUTATIONS: A cohort of 310 French families with auto-somal dominant retinitis pigmentosa was screened for the 

3 exons of the PRPH2 gene (NM_000322.4). We found that 32 probands (10.3%) carried a mutation. A total of 15 

different mutations were identified (Table 1). Nine of them were previously described, including 1 nonsense 

(p.Arg46*) and 8 missense mutations (p.Leu126Pro, p.Cys165Tyr, p.Trp179Arg, p.Ser198Arg, p.Gly208Asp, 

p.Phe211Leu, p.Pro216Ser, and p.Cys222Ser). Six others were novel, including 4 missense (p.Asp194Glu, 

p.Trp246Cys, p.Ala253Glu, and p.Leu254Gln), 1 frame-shift (p.Val69Cysfs*30), and 1 splice site (c.829-4C>G) 

mutation. All mutations co-segregated with the disease phenotype in available family members (Figures 1 and 2). The 

novel mutations were not identified in 96 ethnically matched control individuals and were not present in the public 

human SNP databases (including dbSNP, Ensembl, HapMap, the 1000 Genomes project and Exome Variant Server).  

 

Among the novel mutations, the truncating p.Val69Cysfs*30 mutation led to a premature termination located within 

the second transmembrane a-helix of peripherin-2. No affected family members were available to test the familial 

segregation for the p.Asp194Glu muta-tion (Figure 2, Bottom right), but Asp194 is conserved in 16 peripherin-2 

orthologs (Figure 3) and is surrounded by residues Lys193 and Arg195, which have been found mutated 

previously.20,34 Moreover, the substitution p.Asp194Glu was predicted to be damaging by PolyPhen2 and align-

GVGD programs but not by SIFT (Table 1). For the mutations p.Trp246Cys and p.Ala253Glu, both residues at 

positions 246 and 253 are also evolutionary p.Trp246Cys, p.Ala253Glu, and p.Leu254Gln), 1 frame-shift 

(p.Val69Cysfs*30), and 1 splice site (c.829-4C>G) mutation. All mutations co-segregated with the disease phenotype 

in available family members (Figures 1 and 2). The novel mutations were not identified in 96 ethnically matched 

control individuals and were not present in the public human SNP databases (including dbSNP, Ensembl, HapMap, 

the 1000 Genomes project and Exome Variant Server). Among the novel mutations, the truncating p.Val69Cysfs*30 

mutation led to a premature termination located within the second transmembrane a-helix of peripherin-2. No affected 

family members were available to test the familial segregation for the p.Asp194Glu muta-tion (Figure 2, Bottom 

right), but Asp194 is conserved in 16 peripherin-2 orthologs (Figure 3) and is surrounded by residues Lys193 and 

Arg195, which have been found mutated previously.20,34 Moreover, the substitution p.Asp194Glu was predicted to 

be damaging by PolyPhen2 and align-GVGD programs but not by SIFT (Table 1). For the mutations p.Trp246Cys 



and p.Ala253Glu, both residues at positions 246 and 253 are also evolutionary conserved (Figure 3), and Trp246 has 

been previously found mutated in p.Trp246Arg.35 These 2 mutations were predicted to be damaging by PolyPhen2, 

align-GVGD, and SIFT but tolerated by SIFT for p.Ala253Glu (Table 1). 

 

We identified 4 families (PHRC057, PHRC069, PHRC161, and PHRC162) with the novel missense muta-tion, 

c.761T>A (p.Leu254Gln), with all affected subjects heterozygous for the mutation except 2 homozygous brothers 

(II:2 and II:3) in Family PHRC161. These 2 subjects had presumed consanguineous parents, while unaffected 

individ-uals did not carry the mutation (Figure 2, Left). The evolu-tionary conserved Leu254 is located in the D2 loop 

(Figures 3 and 8) and the substitution p.Leu254Gln is predicted to be damaging by PolyPhen2, SIFT, and align-

GVGD programs (Table 1). In order to investigate whether p.Leu254Gln was a founder mutation, we genotyped the 

mi-crosatellite markers D6S1575, D6S1549, D6S1552, D6S282, and D6S1650 that spanned the 2.98 Mb surround-

ing PRPH2 in the available DNA samples in the 4 families. We found that all affected members of the 4 families 

shared an identical allele for the 5 markers, except Patient II:2 of Family PHRC161, who had a cross-over between 

D6S1552 and D6S1549 (Figure 2, Left). Since the 4 families origi-nated from the same area in the south of France, 

this indi-cates a founder effect. We confirmed the linkage at this locus with microsatellite markers reaching a 

maximum cumulated LOD (logarithm of odds) score of 4.484 for D6S1575 (Figure 2, Left). Since many patients 

carried the p.Leu254Gln, we performed biochemical investigations of the mutated peripherin-2. The WT and the 

mutated L254Q peripherin-2 proteins were expressed in yeast. We found that both purified WT and L254Q mutant 

showed monomers and formed dimers (Figure 4). However, aggre-gates, which were present in both WT and mutated 

protein extracts, were much more abundant with the L254Q mutant. In addition, in the absence of the reducing agent 

b-mercaptoethanol in the sample buffer, the amounts of monomeric and dimeric L254Q were dramatically decreased 

compared to the WT. Thus, the L254Q mutant exhibited a strong tendency to form large aggregates, which might 

sug-gests abnormal folding for L254Q mutant. 

 

Five independent families (PHRC011, PHRC084, PHRC197, PHRC276, and Fam716) had the c.829-4C>G mutation 

(Figure 2, Top right). Two algorithms (Human Splicing Finder and MaxEnt) predicted that the c.829-4C>G mutation 

would create an acceptor splice site located 3 base pairs upstream of the natural splice site and lead to the in-frame 

insertion of 1 glutamine between amino acids 276 and 277 (p.Glu276_Val277insGln) in the fourth transmembrane a-

helix of peripherin-2 (Figure 8). In 4 of the 5 families where several family members were available, the mutation 

was found to co-segregate with the disease. Only individual IV:2 of Family PHRC197 harbored the mutation and was 

presumed to be unaffected, but he was never examined. No common haplotype for 5 microsatellite markers 

(D6S1575, D6S1549, D6S1552, D6S282, and D6S1650) surrounding PRPH2 was found (data not shown) and the 

families were not originating from the same area, suggesting that c.829-4C>G could be a mutation hot spot.  

CLINICAL  CHARACTERIZATION  OF  PATIENTS  WITH 

 

PRPH2 MUTATIONS: From 27 to 67 patients were available for clinical analysis, depending on the type of 

examination. On average, the age at presentation was 45.2 6 17.5 years (n ¼ 44, range 13-78). The initial symptom 

was night blindness with an apparent age of onset at 30.8 6 13.8 years (n ¼ 29, range 10-57). Almost half the patients 

(31/67, 46%) were emmetropic (spherical equivalent 1 to þ1), 36% were myopic (SE < 1), and 18% were 

hypermetropic (SE > þ1), showing a skew toward moderate myopia (Figure 5, Top row, left). 

 

We found that cataract, typically present in adult pa-tients with retinitis pigmentosa, was encountered mostly in 



patients older than 40 (Figure 5, Top row, right). Visual acuity (VA) (decimal fraction) was variable with age 

(Figure 5, Middle row, left), 29 of 81 eyes (35.8%) having a normal visual acuity (VA ¼ 1) in patients aged 32.3 6 

15.2 years (range 13-61), 34 of 81 eyes (42.0%) having a moderately decreased VA (0.9-0.5) in patients aged 47.9 

6 15.4 years (range 29-78), and 18 of 81 eyes (22.2%) having a severely decreased VA (<0.4) in patients aged 61.2 

6 6.4 years (range 43–72). The decrease in VA was significantly correlated with age (r ¼ -0.64; P <0.001). The 

visual field also decreased progressively with age (Figure 5, Middle row, right). We found that 32 of 62 patients 

(51.6%) kept more than 50% of their visual field, being aged 37.7 6 13.9 years (range 16–59), while 30 of 62 

(48.4%) had lost more than 50%, being aged 54.8 6 17.6 years (range 16–78). The decrease in visual field was 

significantly correlated with age (r ¼ -0.56; P < .001). The rod ERG (dim blue) was recordable (b wave >10 mV) 

in 26 of 60 eyes (43.3%) from patients aged 34.2 6 16.8 years (range 16–61) and was undetect-able in 34 of 60 

eyes (56.7%) from patients aged 54.2 6 11.5 years (range 35–78) (Figure 5, Bottom row, left). The cone ERG (30 

Hz flicker) was recordable (b wave amplitude >5 mV) in 49 of 54 eyes (90.7%) from patients aged 43.9 6 18.5 

years (range 16–78) and was undetect-able in 5 of 54 eyes (10.3%) from patients aged 52.4 6 6.8 years (range 45–

58) (Figure 5, Bottom row, right). Both the rod and the cone ERG decrease was correlated with age, r ¼ 0.62 and 

0.44; P < .001 for rod and cone function, respectively. Fundus examination revealed the presence of pigment 

deposits in 73% of the patients with a mean age of 45 6 18 years. Fundus autofluorescence imaging revealed ab-

normalities in 62.9% (age 47 6 18 years), including mac-ular autofluorescence ring and atrophic spots in periphery 

(Table 2). On OCT examination, the majority of patients retained their ellipsoid zone at the fovea (70.4%), whereas 

a minority had a cystoid macular edema (14.3%). We noticed that some patients had macular involvement with 

either normal, moderately reduced (Figure 6, Row 1, outer left), or severely decreased (Figure 6, Row 1, inner left) 

visual acuity.  Some patients had a mild RP with a few spots of atrophy in the retinal periphery and macular sparing 

(Figure 6, Row 1, inner right). In other cases, typical pigment deposits and wide-spread atrophy in the 

midperipheral retina was present (Figure 6, Row 1, outer right). Some patients showed a pericentral localization of 

the retinal lesions even if other members of the family had a widespread form (Figure 6, Row 2, outer left). This 

was particularly evident in Family PHRC281 carrying the p.Pro216Ser (Figure 6, Row 2, inner left to outer right), 

which a family member (III:2)  had a pericentral localization of the retinal lesions sharply delimited from the 

unaffected peripheral retina while her sister (III:1) had a typical widespread retinitis pigmentosa. In a few 

circumstances, the presence of yel-low deposits was noticed, as in Family PHRC305 carrying the p.Pro216Ser, in 

which the mother had typical retinitis pigmentosa (Figure 6, Row 3, outer left) and the son a vitelliform foveal deposit 

but no signs of retinitis pigmentosa (Figure 6, Row 3, inner left).  

More clinical details were obtained for the 2 novel recurrent mutations c.761T>A (p.Leu254Gln) and c.829-4C>G 

(p.Glu276_Val277insGln), found in 4 and 5 families, respectively. In Family PHRC161 with p.Leu254Gln, the visual 

acuity of the 2 brothers homozy-gous for the mutation was severely decreased, with 0.1 at age 63 for Patient II:3 and 

hand motion on left eye and light perception on right eye at age 71 for Patient II:2. Yet, Patient II:3 still had 0.9 VA on 

the left eye at age 53, indicating that homozygosity for the mutation did not lead to early-onset severe disease. In general, 

clinical examination showed a progressive worsening of the visual function with age, with the youngest patients being 

pauci-symptomatic (Figure 6, Row 3, inner right) until the legal blindness stage in elder patients (Figure 6, Row 3, outer 

right to Row 4, inner left). In Family PHRC162 with p.Leu254Gln, variability in ERG responses was noticed. Patient 

II:9, who carried the mutation, still had a record-able scotopic rod ERG response and was asymptomatic, while other 

mutation carriers of the family had undetect-able scotopic ERG rod responses (Figure 7). In the 5 fam-ilies with c.829-

4C>G (p.Glu276_Val277insGln), the disease was very moderate, the fundus observation being normal (Figure 6, Row 4, 

inner right) or with moderate lesions (Figure 6, Row 4, outer right) and the ERG re-sponses being recordable, suggesting 



that the insertion of an additional amino acid had a moderate pathogenic effect. 

 

 

DISCUSSION 

 

Autosomal dominant retinitis pigmentosa is genetically heterogeneous, with 24 known causatives genes so far 

(www.sph.uth.tmc.edu/retnet). The present study assessed the prevalence of PRPH2, one of the major genes mutated 

in adRP, in a large French cohort of 310 families. We established the prevalence of PRPH2 as 10.3% in our cohort, 

making this gene, after RHO (16.5% in French population27), the gene second most frequently found mutated in 

French adRP patients. Therefore, both genes account for more than a quarter (26.8%) of adRP cases in France. 

Prevalence studies conducted in the French population revealed that PRPF31 (MIM #606419), with 6.7%,36 and RP1 

(MIM #603937), with 5.3%,37 are, respectively, the third and fourth most causatives genes. Altogether, these 4 genes 

represent 38.8% of French adRP patients. 

Based on the literature, the prevalence of PRPH2 mu-tations ranges from 0% to 8% of cases of adRP in cohorts of 

different origins. Mutations in the PRPH2 gene appear to be rare in Southern European adRP patients: 0% (0/ 48) in 

Italian30 and 1% (2/148) in Spanish38 patients with adRP. In comparison, the proportion of adRP attrib-utable to 

PRPH2 mutations is higher in populations with Northern European or Asian origins: 3.5% of the North-ern American 

population with altogether dominant and recessive RP (8/227),21 5% of Japanese adRP cases (5/96),9 8% of 

American (17/206)29 and Swedish (3/38)
28

 adRP patients. With a prevalence of 10.3% in our cohort, it is higher in 

France than usually reported, possibly because of underdiagnosed family members with mild disease that we describe in 

this study, leading to erroneously classifying them as simplex cases. We indeed found that some cases presented as 

pericentral forms of RP, and other cases are asymptomatic or pauci-symptomatic. In general, we found that the RP 

associated with PRPH2 mutations is not severe, with many patients retaining useful visual acuity and visual field at middle 

age. There is no specific refractive error, which distinguishes this RP from the X-linked RP in which myopia is consistently 

found.
39

 

This study reports 15 different mutations in PRPH2 found in 32 families from a cohort of 310 families with adRP; of 

these, 6 are novel and 9 were previously reported (Table 1). The referenced mutations represent 60% of the mutations 

identified in this report. Nevertheless, with 40% of novel mutations, it is still worthwhile to screen the whole PRPH2 gene 

for novel changes. 

Among the novel mutations, the deletion c.205delG leads to a premature stop, shortening the protein to 98 res-idues 

instead of 346 amino acids (p.Val69Cysfs*30), and the truncation affects the second transmembrane a-helix of peripherin-2 

(Figure 8) or, more likely, is a functional null allele. To date, 42 truncating mutations including nonsense substitutions and 

frameshift mutations are listed at the Human Genome Mutation Database (HGMD). Although no DNA samples from 

additional affected family members were available for segregation analysis, it is likely that the truncating change presented 

in this study is a path-ogenic mutation and causes the RP phenotype in Family PHRC126. 

The 4 novel missense changes identified in this study affect evolutionary conserved amino acids (Figure 3) and are 

located in the large intradiscal loop domain (D2) of peripherin-2 (Figure 8), which contains most disease-causing missense 

mutations.
40

 To date, 124 PRPH2 muta-tions are listed at the HGMD and approximately 65% of them are located in the D2 

loop of the protein, emphasizing the importance of this domain. This D2 loop plays a crucial role in the dimerization of 

homo- or heterotetramers with ROM1 (retinal outer segment membrane protein 1), the homolog of peripherin-2, to form 

essential interactions important for disc formation and stabilization.
4–8

 The p.Leu254Gln substitution appears to be 

recurrent in the French population, since it was found in 4 unrelated families with the same geographic origin. All the 



affected patients harboring the mutation share the same haplotype for 5 surrounding microsatellite markers (maximum 

cumulated LOD score of 4.484 for D6S1575), suggesting a founder effect. Two affected brothers (Figure 2, Left, II:2 and 

II:3 in Family PHRC161) were ho-mozygous for the mutation and were expected to display a more severe phenotype, 

although this did not seem obvious from clinical records. It is of note that mice with a heterozygous defect in PRPH2 

present a loss of photoreceptor outer segment organization while homo-zygous mice have no outer segments.41,42 

Contrary to the null mutation present in mice, the p.Leu254Gln mutation probably acts through a dominant-

negative effect by interfering with the dimerization process. The wild-type and mutant (L254Q) peripherin-2 

expressed in yeast (Figure 4) migrate as monomers and dimers, but the mutant peripherin-2 shows a pronounced 

tendency rela-tive to WT to form larger aggregates. This might suggest an abnormal folding for the L254Q mutant. 

The increased aggregation may disturb homo- and heterotetramers with ROM1 interactions, leading to a loss of 

some peripherin-2 function. 

All novel mutations identified in this study either were located in the D2 loop or truncated the protein before the 

D2 loop. Nevertheless, 1 mutation (c.829-4C>G), which was predicted to lead to the in-frame insertion of 1 gluta-

mine (p.Glu276_Val277insGln), was located in the fourth transmembrane a-helix of peripherin-2 (Figure 8). Three 

other mutations, within this last trans-membrane a-helix, are mentioned in the literature; the mutation p.Gly266Asp 

was found in an adRP patient,43 the mutation p.Val268Ile was found in a patient with adult vitelliform macular 

dystrophy,13 and the in-frame deletion p.Leu271del was identified in a simplex RP pa-tient.44 The Glu276 residue 

is conserved in all known peripherin-2 orthologs and is substituted with a glutamine in all known ROM1 

orthologs.45 The significance of this highly conserved glutamic acid at position 276 was inves-tigated for 

peripherin-2 structure and function.46 The au-thors created a p.Glu276Gln isosteric substitution, very similar to the 

p.Glu276_Val277insGln predicted muta-tion found in our study, and they demonstrated that this conserved residue 

is critical for outer segment discs morphogenesis. The major physicochemical consequence of the p.Glu276Gln 

substitution is a loss of ionization potential. They hypothesized that Glu276 may function as a pH sensor to 

regulate protein activity. Other studies suggest that Glu276 may be important for intramolecular interactions 

between transmembrane domains.47,48 

In conclusion, we have established that the prevalence of PRPH2 is 10.3% in a French cohort of 310 adRP 

individ-uals, which is higher than previously reported. We also established that PRPH2 cause highly variable 

phenotypes and moderate forms of adRP, including mild cases that could be underdiagnosed. Moreover, mutation 

analysis in a large cohort is important for the design of future clinical trials. 



 

 
Nucleotide Change Exon Protein Change Region PolyPhen2 SIFT a-GVGD

a 
EVS Reference 

          

c.136C>T 1 p.Arg46* D1 N.A. N.A. N.A. 0/13 006 Meins et al
49 

c.205delG 1 p.Val69Cysfs*30 2
nd

 TMD N.A. N.A. N.A. 0/13 006 Present study 

c.377T>C 1 p.Leu126Pro D2 Prob. APF C65 0/13 006 Renner et al
50 

c.494G>A 1 p.Cys165Tyr D2 Prob. APF C65 0/13 006 Souied et al
51 

c.535T>C 1 p.Trp179Arg D2 Prob. APF C65 0/13 006 Bareil et al
52 

c.582T>A 2 p.Asp194Glu D2 Pos. TOL C35 0/13 006 Present study 

c.594C>G 2 p.Ser198Arg D2 Prob. APF C65 0/13 006 Sullivan et al
26 

c.623G>A 2 p.Gly208Asp D2 Pos. APF C65 1/13 006 Kohl et al
35 

c.631T>C 2 p.Phe211Leu D2 Prob. APF C15 0/13 006 Ekstro¨m et al
53 

c.646C>T 2 p.Pro216Ser D2 Pos. TOL C65 0/13 006 Fishman et al
54 

c.664T>A 2 p.Cys222Ser D2 Prob. APF C65 0/13 006 Downs et al
55 

c.738G>C 2 p.Trp246Cys D2 Prob. APF C65 0/13 006 Present study 

c.758C>A 2 p.Ala253Glu D2 Prob. TOL C65 0/13 006 Present study 

c.761T>A 2 p.Leu254Gln D2 Prob. APF C65 0/13 006 Present study 

c.829-4C>G Int. 2-3 Splice site defect 4
th

 TMD N.A. N.A. N.A. 0/13 006 Present study 

  (p.Glu276_Val277insGln)        
 

D1 ¼ D1 loop; D2 ¼ D2 loop; TMD ¼ transmembrane helical domain; N.A. ¼ not applicable; Int. ¼ intron; EVS ¼ exome variant server; 

Pos. ¼ possibly damaging; Prob. ¼ probably damaging; APF ¼ affect protein function; TOL ¼ tolerated. 
a
a-GVGD scores: amino acid substitutions on a 7-scale scoring system, from C0 (neutral) to C65 (the most likely pathogenic); C35 is 

considered intermediate. 

TABLE 1. Summary of PRPH2 Gene Mutations Identified in This Study in Patients With Autosomal Dominant Retinitis Pigmentosa 
  
          
          



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 1. Pedigrees of French families with autosomal dominant retinitis pigmentosa and with recurrent mutations in PRPH2 

gene identified in this study. Filled symbols indicate affected family members; squares: male subjects; circles: female subjects; 

arrows: in-dex patients. (Top left) Family pedigrees of patients showing different recurrent PRPH2 mutations. (Top middle) 

Families with c.136C>T (p.Arg46*) mutation. (Top right) Families with c.494G>A (p.Cys165Tyr) mutation. (Middle left) Families 

with c.631T>C (p.Phe211Leu) mutation. (Bottom left) Families with c.594C>G (p.Ser198Arg) mutation. (Bottom middle) Families 

with c.535T>C (p.Trp179Arg) mutation. (Bottom right) Families with c.646C>T (p.Pro216Ser) mutation. 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2. Pedigrees of French families with autosomal dominant retinitis pigmentosa and with novel mutations in PRPH2 

gene identified in this study. (Left) Haplotypes at the PRPH2 locus of 4 families showing the c.761T>A (p.Leu254Gln) 

mutation and surrounding microsatellite markers. The common haplotype is shown in black. (Top right) Five families with 

c.829-4C>G splice site mutation. (Bottom right) Family pedigrees of patients showing different novel PRPH2 mutations. 

 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 3. Conservation of amino acids affected by novel 

PRPH2 missense mutations identified in this study in patients 

with autosomal dominant retinitis pigmentosa. Multiple amino 

acid sequence alignment of peripherin-2 for a region surround-

ing the novel p.Asp194Glu, p.Trp246Cys, p.Ala253Glu, and 

p.Leu254Gln missense mutations. The site of the mutation is 

indicated by an arrowhead. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 4. Western blot analysis of wild-type and 

p.Leu254Gln mutant peripherin-2 protein produced in 

yeast. Western blots of the wild-type (WT) and the mutated 

p.Leu254Gln (L254Q) peripherin-2 from P pastoris purified 

with Ni-NTA superflow agarose in the presence (D) or in 

the absence (L) of the reducing agent b-mercaptoethanol 

(b-M) in the sample buffer. The blot was probed with a 

monoclonal anti-c-myc antibody. 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 5. Clinical data of the patients with autosomal dominant retinitis pigmentosa and with PRPH2 gene mutations. 

(Top row, left) Refractive errors were classified in 5 groups as either severe myopia (<L3[), moderate myopia ([L3;L1[), 

emmetropia ([L1;D1]), moderate hyperopia (]D1;D3]), or severe hyperopia (>D3[) and the percentage (y-axis) and the 

absolute number (above each bar) of patients are given for each group. (Top row, right) Apparent onset of cataract was 

classified in 4 groups depending on age and the percentage (y-axis) and the absolute number (above each bar) of patients 

are given for each group. Visual acuity in decimal values (Middle row, left), percentage of remaining Goldmann visual field 

(Middle row, right), b-wave amplitude of the dim blue electroretinogram (ERG) testing rods (Bottom row, left), and peak-to-

peak amplitude of the 30 Hz flicker ERG testing cone function (Bottom row, right) were plotted against age. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 6. Fundus imaging of patients with autosomal dominant retinitis pigmentosa and with PRPH2 gene mutations. On top of each 

picture (fundus photographs, fundus autofluorescence [FAF] photographs, and spectral-domain optical coherence tomography [OCT] 

scans), the family number (PHRC), patient number in the family, age, and visual acuity in decimal values are indicated. (Row 1, outer left) 

Left eye FAF, macular alteration, parafoveal loss of autofluorescence (arrow) with moderate decrease in visual acuity. (Row 1, inner left) 

Left eye color fundus photograph, pale optic disc, narrow blood vessels, pigmentary changes in the periphery, and RPE changes in the 

macular region (arrow) correlated with severe loss of visual acuity at counting fingers (CF). (Row 1, inner right) Left eye color fundus 

photographs; there are a few small spots of atrophy in the retinal periphery and the macula appears normal. (Row 1, outer right, and Row 

2, outer left) Color fundus photographs from 2 affected brothers, with, for the left eye of Patient II:3, round foveal atrophy and pigment 

deposits covering a large proportion of the fundus, while for the right eye of the Patient II:2, most of the retinal atrophy and pigment 

deposits are present in the macular area. (Row 2, inner left to outer right) FAF and OCT of right eyes from 2 sisters, with, for Patient III:2, a 

pericentral form of retinitis pigmentosa with alteration of autofluorescence within the macular area and sharp limit of the lesions (arrows), 

while the sister, Patient III:1, has a typical widespread retinitis pigmentosa showing small spots of retinal atrophy (stars) and a ring of 

autofluorescence (white arrow); OCT scans of the macula in both sisters show a conserved inner segment/outer segment line (stars) in 

the fovea. (Row 3, outer left and inner left) The mother, Patient IV:4, has retinitis pigmentosa with pigment deposits in the retinal periphery 

while the son, V:1, has a foveal yellow vitelliform deposit (arrow) but 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 7. Variability of electroretinographic responses in Family PHRC162 with autosomal dominant retinitis pigmentosa 

and with the PRPH2 gene mutation p.Leu254Gln. Each patient from generation II in PHRC162 was subjected to dark-

adapted dim blue stimulation for rod responses and light-adapted 30 Hz flicker for cone responses. Black symbols indicate 

symptomatic patients, open symbols nonaffected or asymptomatic patients. Genotypes are shown. The 4 affected patients 

(II:3, II:7, II:12, and II:13) have no rod responses and severely decreased cone responses, while the asymptomatic carrier 

II:9 still has rod responses, although decreased in comparison to normal responses in II:4, II:5, II:6, and II:8. 

retinitis no pigmentosa. (Row 3, inner right to Row 4, inner left) FAF imaging in 4 members of the PHRC161 family; the 

youngest member, IV:4, has no retinal alteration, member III:2 has many round spots of loss of autofluorescence beyond 

the macula (arrow) but the macula is normal, member III:4 has a similar aspect to III:2 but there is a ring of 

autofluorescence around the fovea with mod-erate decrease of visual acuity, and the oldest member, II:2, has a complete 

loss of autofluorescence except for an open ring of remain-ing retina around the foveal area (arrow) and visual acuity 

reduced to hand motion (HM). (Row 4, inner right and outer right) Fundus photographs of the daughter, II:5, show retinal 

lesion and slightly reduced retinal vessel diameter while fundus photographs of the mother, III:3, revealed changes typical 

of retinitis pigmentosa, with overall moderate RPE changes and attenuated retinal vessels but no pigment deposits.



FIGURE 8. Summary of the novel mutations found in this 

study in peripherin-2 protein and in patients with 

autosomal dominant retinitis pigmentosa. Schematic 

representation of the peripherin-2 protein showing the 

location of the 6 novel mu-tations presented in this study. 

The 4 transmembrane a-helices and the 2 intradiscal loop 

domains D1 and D2 are schematized. 

 
 
 

    

TABLE 2. Frequency of Clinical Features in Patients With  
Autosomal Dominant Retinitis Pigmentosa and PRPH2 
Gene Mutation 

 
 Mean Age Number of Percentage of Positive 

Description (y) Patients Cases 
     

Pigment deposits 45 6 18 37 73.0%  

Autofluorescence 47 6 18 35 62.9%  

changes     

Cystoid macular 43 6 17 28 14.3%  

edema     

Conserved ellipsoid 43 6 17 27 70.4%  

zone     
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