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The power of genetic diversity in 
genome-wide association studies of lipids

Increased blood lipid levels are heritable risk factors of cardiovascular disease with 
varied prevalence worldwide owing to different dietary patterns and medication use1. 
Despite advances in prevention and treatment, in particular through reducing 
low-density lipoprotein cholesterol levels2, heart disease remains the leading cause of 
death worldwide3. Genome-wideassociation studies (GWAS) of blood lipid levels have 
led to important biological and clinical insights, as well as new drug targets, for 
cardiovascular disease. However, most previous GWAS4–23 have been conducted in 
European ancestry populations and may have missed genetic variants that contribute 
to lipid-level variation in other ancestry groups. These include differences in allele 
frequencies, effect sizes and linkage-disequilibrium patterns24. Here we conduct a 
multi-ancestry, genome-wide genetic discovery meta-analysis of lipid levels in 
approximately 1.65 million individuals, including 350,000 of non-European 
ancestries. We quantify the gain in studying non-European ancestries and provide 
evidence to support the expansion of recruitment of additional ancestries, even with 
relatively small sample sizes. We find that increasing diversity rather than studying 
additional individuals of European ancestry results in substantial improvements in 
fine-mapping functional variants and portability of polygenic prediction (evaluated in 
approximately 295,000 individuals from 7 ancestry groupings). Modest gains in the 
number of discovered loci and ancestry-specific variants were also achieved. As GWAS 
expand emphasis beyond the identification of genes and fundamental biology 
towards the use of genetic variants for preventive and precision medicine25, we 
anticipate that increased diversity of participants will lead to more accurate and 
equitable26 application of polygenic scores in clinical practice.

The Global Lipids Genetics Consortium aggregated GWAS results 
from 1,654,960 individuals from 201 primary studies representing the 
following five genetic ancestry groups: admixed African or African 
(N = 99,432, 6.0% of the sample); East Asian (N = 146,492, 8.9%); Euro-
pean (N = 1,320,016, 79.8%); Hispanic (N = 48,057, 2.9%); and South Asian 
(N = 40,963, 2.5%) (Table 1, Supplementary Table 1, Supplementary Fig. 1). 
We performed GWAS for the following five blood lipid traits: low-density 
lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol 
(HDL-C), triglycerides (TGs), total cholesterol (TC) and non-high-density 
lipoprotein cholesterol (nonHDL-C). Of the 91 million variants imputed 
from the Haplotype Reference Consortium or 1000 Genomes Phase 3 
that successfully passed variant-level quality control, 52 million variants 
were present in at least 2 cohorts and had sufficient minor allele counts 
(>30 in the meta-analysis) to be evaluated as a potential index variant.

Ancestry-specific genetic discovery
We first quantified the number of genome-wide significant loci identi-
fied in at least one of the five ancestry-specific meta-analyses. We found 
773 lipid-associated genomic regions that contained 1,765 distinct index 
variants that reached genome-wide significance (P < 5 × 10−8, ±500 kb) 
(Supplementary Tables 2 and 3, Supplementary Figs. 2 and 3) for at least 
1 ancestry group and lipid trait. Of these regions, 237 were deemed 
new because the most-significant index variant in each region was 

>500 kb from variants that have been previously reported as associated 
with any of the five lipid traits4–23,27. Of these loci, 76% were identified 
only in the European ancestry-specific analyses (N = ~1.3 million, 80% 
of the sample). Of the non-European ancestries, the African ances-
try GWAS (N = ~99,000, primarily African American) identified more 
ancestry-specific loci (15 unique to admixed African or African) than 
any other non-European ancestry group (6 loci unique to East Asian, 
6 to Hispanic, 1 to South Asian). This difference is probably because 
allele frequencies between African and European ancestry populations 
show the largest variation (Fig. 1a–d) and because African populations 
have greater genetic diversity than other populations28.

Multi-ancestry genetic discovery
We next performed multi-ancestry meta-analyses using the 
meta-regression approach implemented in MR-MEGA29,30 to account 
for heterogeneity in variant effect sizes on lipids between ancestry 
groups. A total of 1,750 index variants at 923 loci (±500 kb regions) 
reached genome-wide significance for at least 1 lipid trait. These 
included 168 regions not identified by ancestry-specific analysis, 120 
(71%) of which are new (Supplementary Tables 4 and 5, Supplemen-
tary Fig. 4, Extended Data Fig. 1). Almost all (98%) the index variants 
from the ancestry-specific analysis remained significant (P < 5 × 10−8) 
after meta-analysis across all ancestry groups. However, 15 admixed 
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African or African, 9 East Asian, 3 Hispanic and 1 South Asian index 
variants from the ancestry-specific analysis did not remain significant 
(multi-ancestry P values of 7.7 × 10−6 to 5.9 × 10−8) (Supplementary Fig. 5, 
Supplementary Note). In total, we identified 941 lipid-associated loci 
including 355 new loci from either single- or multi-ancestry analyses.

Next, we compared the number of loci identified per 100,000 par-
ticipants in each ancestry group and the combined dataset (Fig. 1e). 
Admixed  African and Hispanic ancestry-specific analyses identi-
fied the most loci per genotyped individual, which is perhaps due to 
African ancestry and/or increased genetic diversity. European and 
multi-ancestry analyses identified slightly fewer loci per 100,000 indi-
viduals, which probably reflects a slight reduction in benefit from the 
addition of new samples to extremely large sample sizes (>1 million). For 
the genome-wide significant variants discovered in each ancestry, we 

estimated the proportion of ancestry-enriched variants by enumerating 
the number of other ancestries with sufficient power to detect an associa-
tion (range of 0–4). We estimated the power for discovery of each variant 
by assuming an equivalent discovery sample size in the other ancestries, 
fixed effect size and observed allele frequencies from the other ancestries 
(Fig. 1f). To enable comparisons at similar sample sizes across ancestry 
groups, we selected European ancestry index variants identified from 
a meta-analysis of approximately 100,000 individuals subsampled 
from the current study. African ancestry index variants were the most 
ancestry-enriched, with only 61% of index variants demonstrating suf-
ficient power in at least 1 other ancestry group (equal N, power of >80% 
to reach α = 5 × 10−8). This result is probably due to population-enriched 
allele frequencies. By comparison, 88% of South Asian index variants had 
an estimated power of >80% in at least 1 other ancestry.

Finally, we found that both the number of identified variants and the 
mean observed chi-squared values from genome-wide lipid-association 
tests were approximately linearly related to the meta-analysis sample 
size across ancestries (Supplementary Table 6, Extended Data Fig. 2). 
However, in the European ancestry group, the incremental increase in 
either the number of loci or the chi-squared value was slightly attenu-
ated at the largest sample sizes. Taken together, these results suggest 
that once sufficiently well-powered GWAS sample sizes are reached 
within a given ancestry group, the assembly of large sample sizes of other 
under-represented groups will only modestly enhance variant discovery 
relative to increasing the sample size of the predominant ancestry.

Comparison of effects across ancestries
Differences in association signals across ancestries despite similar 
sample sizes could be due to variations in allele frequencies and/or 

Table 1 | Meta-analysis sample size by ancestry group

Ancestry group Sample size No. of 
cohorts

Mean sample size 
per cohort (range)

No. of 
variants

European 1,320,016 146 10,928 (173–389,344) 47 million

East Asian 146,492 40 7,448 (150–131,050) 17 million

Admixed African 
or African

99,432 19 5,330 (473–62,022) 33 million

Hispanic 48,057 10 6,032 (1,496–22,302) 27 million

South Asian 40,963 7 6,413 (1,796–16,110) 17 million

Total 1,654,960 201 52 million

The present meta-analysis represents a sixfold overall increase in sample size relative to the 
most recent 2018 Million Veteran Program blood lipid meta-analysis13, with a twofold increase 
in sample size of admixed African and Hispanic individuals.

a

b

0

0.25

0.50

0.75

1.00

A
lle

le
 fr

eq
ue

nc
y

E
ff

ec
t 

si
ze

−0.10

−0.05

0.00

0.05

0.10

ADM AFR EAS EUR HIS SAS

Ancestry

ADM AFR EAS EUR HIS SAS

Ancestry

A
lle

le
 fr

eq
ue

nc
y

0

0.25

0.50

0.75

1.00

−0.10

−0.05

0.00

0.05

0.10

ADM AFR EAS EUR HIS SAS

Ancestry

ADM AFR EAS EUR HIS SAS

Ancestry

E
ff

ec
t 

si
ze

c

d

0

10

20

30

40

50

Loci New
loci

Ancestry-
speci�c

loci

Coding
index

N
um

b
er

 p
er

 1
00

,0
00

 in
d

iv
id

ua
ls Ancestry

ADM AFR EAS EUR HIS SAS
0

0.25

0.50

0.75

1.00

Index variant ancestry

P
ro

p
or

tio
n

e

f

All
ADM AFR
EAS
EUR
HIS

Number of
ancestries with
power ≥80%

4
3
2
1
0

SAS

Fig. 1 | Comparison of identified loci across ancestry groups. a, b, Allele 
frequency distribution (a) and effect sizes (b) of admixed African (ADM AFR) 
ancestry index variants in non-African ancestry populations: East Asian (EAS), 
European (EUR), Hispanic (HIS) and South Asian (SAS). c, d, Allele frequency 
distribution (c) and effect sizes (d) of European ancestry index variants in 
non-European ancestry populations. Boxplots depict the median value as the 
centre, first and third quartiles as box boundaries, and whiskers extending 
1.5-times the inter-quartile range, with points beyond this region individually 
shown. Sample sizes for each ancestry are provided in Table 1. The mean effect 
size of identified index variants in the admixed African ancestry analysis is 
larger than from European ancestry analysis, which reflects the difference in 
power to detect an association within each group as a result of the more than 
tenfold difference in sample size. e, The number of loci identified within each 
ancestry group normalized to a constant sample size of 100,000 individuals 

and averaged across lipid traits. At currently available sample sizes, 
multi-ancestry and European ancestry analyses identify a lower proportion of 
loci relative to the number of individuals than analyses of other ancestry 
groups. However, the larger sample size of European or multi-ancestry analyses 
leads to a greater relative proportion of new loci and a higher proportion of loci 
significant only in European ancestry analyses. f, The proportion of index 
variants identified from each ancestry-specific meta-analysis that would be 
well powered to detect an association of the same effect size but with 
ancestry-specific frequencies in the other ancestry groups. Dark blue regions 
indicate variants that are likely to be detected at an equivalent sample size only 
in the original ancestry group (that is, ancestry-specific). Additional 
comparisons of allele frequencies and effect sizes across ancestries are 
provided in Supplementary Fig. 3.
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effect sizes. This could reflect different patterns of linkage disequi-
librium (LD) with the underlying causal variant or an interaction with 
an environmental risk factor for which prevalence varies by ancestry 
and/or geography. We found that effect size estimates of individual 
variants were similar based on pairwise comparison between ancestries 
(R2 = 0.93 for variants with P < 5 × 10−8) (Extended Data Fig. 3, Supple-
mentary Table 7, Supplementary Fig. 6). We also tested for genome-level 
differences in effect-size correlations for East Asian, European and 
South Asian ancestry groups using Popcorn31, and the results were not 
significantly different from 1 (P > 0.05; Supplementary Figs. 7 and 8).  
We tested for differences in genetic correlations between admixed 
African and European ancestries in the UK Biobank and the Million 
Veteran Program (MVP) using the bivariate genome-based restricted 
maximum likelihood (GREML) method30,32, as the Popcorn method does 
not account for long-range LD in admixed populations. The genetic 
correlation between admixed African and European ancestries for 
HDL-C (r = 0.84) was not significantly different from 1 in the UK Biobank 
dataset (which may be due to the small numbers of African ancestry 
individuals in this database). By contrast, correlations for the other 
traits ranged from 0.52 to 0.60 in UK Biobank and from 0.47 to 0.69 
in the MVP (Supplementary Table 8). These results indicate that there 
is a moderately high correlation in lipid effect sizes across ancestry 
groups when considering all genome-wide variants.

Of the 2,286 index variants that reached genome-wide significance 
in the multi-ancestry meta-analysis for any of the five lipid traits, 159 
(7%) showed significant heterogeneity of effect size due to ancestry 
(P < 2.2 × 10−5; Bonferroni-corrected for 2,286 variants) (Supplementary 
Table 5). Of these 159 variants, 31 showed the largest effect in African 
ancestry analyses, 24 in East Asian, 67 in European, 20 in Hispanic and 
17 in South Asian. Only 49 (2%) of these variants from the multi-ancestry 
meta-analysis showed significant residual heterogeneity that was not 
due to ancestry, which may be attributable to differences in ascertain-
ment or analysis strategy between cohorts (Supplementary Table 5). 
This result suggests that cohort-related factors are a less important 
driver of heterogeneity than genetic ancestry.

Multi-ancestry analyses aid fine-mapping
We next assessed whether multi-ancestry fine-mapping narrowed the set 
of probable causal variants at each of the independent multi-ancestry 
association signals (LD R2 < 0.7), assuming one shared causal variant per 
±500  kb region (Supplementary Table 9). A total of 19% of the association 
signals had only one variant in the 99% credible set and 55% (816 out of 

1,486) had ≤10. By contrast, 5% (73 out of 1486) had >100. Of the 407 vari-
ants with >90% posterior probability of being the causal variant at a locus 
in the multi-ancestry meta-analysis, 56 (14%) were missense variants, 7 
(2%) were splice-region variants and 4 (1%) were stop-gain variants (CD36, 
HBB, ANGPTL8 and PDE3B) (Supplementary Tables 10–12).

The median number of variants in 99% credible sets from the European 
ancestry analysis was 13, but this was reduced to 8 in the multi-ancestry 
analysis. Of 1,486 independent association signals, 825 (56%) had reduced 
credible set size in the multi-ancestry analysis. At these 825 loci, the number 
of variants in the multi-ancestry credible sets was reduced by 40% rela-
tive to the minimum credible set size in either admixed African (the most 
genetically diverse group) or European ancestry analyses (Extended Data 
Fig. 4). We estimated that increasing the sample size of European ancestry 
samples to that of the multi-ancestry analysis would yield a 20% reduction 
in the credible set size, which is approximately half of the 40% reduction 
observed in the multi-ancestry analysis. This suggests that sample size 
differences alone do not explain the reduction. Instead, differences in 
LD patterns and effect sizes across ancestries probably contribute to the 
improved fine-mapping (Supplementary Note). For example, rs900776, an 
intronic variant in the DMTN region with many high LD variants and a pos-
terior probability of 0.51 of being causal in the European ancestry group, 
increases to a posterior probability of 0.86 in the African-ancestry-derived 
credible sets, and >0.99 in the multi-ancestry analysis  (Fig. 2).

Multi-ancestry polygenic risk scores are most predictive
We evaluated the potential of polygenic risk scores (PRS; sometimes also 
called polygenic scores (PGS)) to predict increased LDL-C levels, which is 
a major causal risk factor of coronary artery disease, in diverse ancestry 
groups. We created three non-overlapping datasets for the following 
discrete steps: (1) perform ancestry-specific or multi-ancestry GWAS 
to estimate variant effect sizes; (2) optimize risk score parameters; and 
(3) evaluate the utility of the resulting scores. For each ancestry-specific 
or multi-ancestry GWAS, we created multiple PRS weights, either 
genome-wide with PRS-CS33 or using pruning and thresholding to 
select independent variants. We tested each score in the optimizing 
dataset, which was matched for ancestry to the GWAS (admixed Afri-
can or African, East Asian, European, South Asian, and all ancestries 
from the UK Biobank; and Hispanic from the Michigan Genomics Initia-
tive (MGI); Extended Data Figs. 5 and 6, Supplementary Tables 13–15). 
The top-performing score from each GWAS was selected: PRS-CS for 
East Asian ancestry, European ancestry and European ancestry scores 
from a previous GLGC GWAS from 20104; and an optimized pruning and 
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Fig. 2 | Inclusion of multiple ancestries drives improved fine-mapping.  
a, b, Association of the DMTN intron variant rs900776 with LDL-C in the admixed 
African, European, or multi-ancestry meta-analysis (a) or DMTN expression 
quantitative trait loci (b). The region spanned by the 99% credible sets are shown 
in the centre box. The LDL-C association signal significantly colocalizes with the 

GTEx Consortium expression quantitative trait locus signal of DMTN in liver. c, The 
LD patterns for variants in the European ancestry 99% credible set differ greatly 
between African (AFR) and European ancestry individuals in 1000 Genomes. The 
lead variant has a posterior probability of 0.86 in the admixed African analysis, 
0.51 in the European analysis and >0.99 in the multi-ancestry analysis.
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threshold-based score for all others. We then evaluated the optimal PRS 
in 8 cohorts of individuals (N = 295,577, Supplementary Table 16) not 
included in the discovery GWAS from 7 ancestral groupings: East Asian 
(146,477), European American (85,571), African American (21,730), Afri-
can (2,452 East Africa, 4,972 South Africa and 7,309 West Africa), South 
Asian (15,242), Hispanic American (7,669), and Asian American (4,155).

The PRS developed from the multi-ancestry meta-analysis consistently 
showed the best or near-best performance in each group tested, with 
improved or comparable predictions relative to ancestry-matched scores 
(adjusted R2 = 0.10–0.16; Fig. 3, Supplementary Table 17, Extended Data 
Fig. 7). This observation was particularly evident for ancestries with smaller 
GWAS sample sizes, as was the case for Hispanic and South Asian. For African 
Americans in the MGI and the MVP datasets, polygenic prediction scores 
were similar for individuals with different levels of African ancestry admix-
ture (Extended Data Fig. 8) and reached the level of prediction observed for 
European ancestry individuals from the same dataset. The increase in LDL-C 
per each standard deviation increase in the PRS was also similar between 
ancestry groups in the MVP (effect size  ±  standard error) : 13.2 ± 0.22 mg dl–1 
for African American, 8.9 ± 0.47 mg dl–1 for Asian (East Asian/South Asian), 
10.5 ± 0.10 mg dl–1 for European and 10.6 ± 0.32 mg dl–1 for Hispanic. We 
repeated the evaluation of multi-ancestry versus single-ancestry PRS by 
generating GWAS with a sample size of approximately 100,000 individuals 
and with fixed methodology, and the results were consistent with those 
from the full dataset (Fig. 3b, Supplementary Fig. 9). Thus, polygenic pre-
diction for LDL-C in all ancestries appears to benefit the most from adding 
samples of diverse ancestries, given a scenario where large numbers of 

European ancestry individuals have already been included. Additional 
studies are needed to determine whether this applies to other phenotypes 
with different genetic architectures and heritabilities.

Discussion
Genome-wide discovery for blood-lipid traits based on more than  
1.65 million individuals from 5 ancestry groups confirmed that the 
contributions of common genetic variations to blood lipids are similar 
across diverse populations. First, we found that the number of signifi-
cant loci relative to sample size was similar within each ancestry group 
and approximately linearly related to sample size, with a small increase in 
ancestry-specific variants observed in African ancestry cohorts relative to 
the others. Second, we demonstrated that inclusion of additional ancestries 
through multi-ancestry fine-mapping reduces the set of candidate causal 
variants in credible sets and does so more rapidly than in single-ancestry 
analysis. Multi-ancestry GWAS should therefore facilitate the identification 
of effector genes at GWAS loci and enable accelerated biological insight 
and identification of potential drug targets. Third, we found that a PRS 
derived from approximately 88,000 African ancestry and about 830,000 
European ancestry individuals was correlated with observed lipid levels 
among individuals with admixed African ancestry equally well as among 
individuals with European ancestry. We hypothesize that the inclusion 
of African ancestry individuals in the GWAS yielded an improvement in 
polygenic prediction performance through the general fine-mapping 
of loci and the improved prioritization of multi-ancestry causal variants. 
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across most ancestry groups relative to  the ancestry-specific PRS, and 
European ancestry-specific scores show less transferability. Adjusted R2 is 
calculated with the risk score as a predictor of LDL-C in a linear model with 
covariates. b, Multi-ancestry scores derived from equal proportions of each 
ancestry group predict LDL-C better for admixed African Americans (AFRAMR) 

in the MGI dataset than predominantly European ancestry scores at constant 
sample size. Error bars depict 95% confidence intervals. Sample sizes for each 
cohort are provided in Supplementary Table 16. AADM, Africa America 
Diabetes Mellitus; ASN, Asian American; AWI-Gen, Africa Wits-INDEPTH 
partnership for Genomic Studies; ELGH, East London Genes and Health; KoGES, 
Korean Genome and Epidemiology Study; PMBB, Penn Medicine BioBank; 
ToMMo, Tohoku Medical Megabank Community Cohort Study.
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Fourth, and perhaps most important, the multi-ancestry score was gen-
erally the most informative score across all the major population groups 
examined. This provides useful information for other genetic discovery 
efforts and investigations of the utility of PRS in diverse populations.

The generalizability of these findings—regarding the portability of 
PRS from the multi-ancestry meta-analysis—to other traits may depend 
on the heritability, the degree of polygenicity, the level of genetic 
correlation, the allele frequencies of causal variants across ancestry 
groups, gene–environment interactions, and the representation of 
diverse populations in the GWAS34,35. Although many traits show a high 
degree of shared genetic correlation across ancestries32,36,37, others have 
distinct genetic variants with large effects that are more common in 
specific ancestry groups34, which may limit the utility of multi-ancestry 
PRS for particular phenotypes in some ancestries.

The benefits for genetic discovery efforts as GWAS sample sizes increase 
will probably not be measured just by the number of loci discovered. 
Rather, the focus will increasingly turn to improving our understanding 
of the biology at established loci, identifying potential therapeutic tar-
gets and efficiently identifying individuals at high-risk of adverse health 
outcomes across population groups without exacerbating existing health 
disparities. Considering the results presented here, and those of related 
studies38–40, we consider that future genetic studies will substantially ben-
efit from meta-analyses across participants of diverse ancestries. Further 
gains in the depth and number of sequenced individuals of diverse ances-
tries41,42 may also improve the discovery of new variants and loci in diverse 
cohorts, in particular variants that are absent at present from arrays and 
imputation reference panels. Our results suggest that diversifying the 
populations under study, rather than simply increasing the sample size, 
is now the single most efficient approach to achieving these goals, at least 
for blood lipids and probably for related downstream adverse health out-
comes such as cardiovascular disease. However, if costs for recruitment 
of diverse populations are higher than recruitment of individuals from 
previously studied ancestry groups, and the total number of genome-wide 
significant index variants is the goal, then continued low-cost recruitment 
of any ancestry group is expected to still provide genetic insight. Taken 
together, our results strongly support ongoing and future large-scale 
recruitment efforts targeted at the enrolment and DNA collection of 
non-European ancestry participants. Geneticists and those responsible 
for cohort development should continue to diversify genetic discovery 
datasets, while increasing sample size in a cost-effective manner, to ensure 
that genetic studies reduce rather than exacerbate existing health inequi-
ties across race, ancestry, geographical region and nationality.
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Methods

Cohort-level analysis
Each cohort contributed GWAS summary statistics for HDL-C, LDL-C, 
nonHDL-C, TC and TGs, imputation quality statistics, and analysis 
metrics for quality control (QC) following a detailed analysis plan.  
The GWAS protocol is deposited in Protocol Exchange (doi: 10.21203/
rs.3.pex-1687/v1). In brief, we requested that each cohort perform impu-
tation to 1000 Genomes Phase 3 v5 (1KGP3), with European ancestry 
cohorts additionally imputing with the Haplotype Reference Con-
sortium (HRC) panel using the Michigan Imputation Server (https://
imputationserver.sph.umich.edu/index.html#!), which uses Minimac 
software43. Detailed pre-imputation QC guidelines were provided, and 
these included removing samples with call rate <95%, samples with 
heterozygosity > median + 3 (interquartile range), ancestry outliers 
from principal component (PC) analysis within each ancestry group 
and variants deviating from Hardy–Weinberg equilibrium (HWE; 
P <1 × 10−6) or with variant call rate <98%. Analyses were carried out 
separately by ancestry group and were also stratified by cases and 
controls where appropriate (that is, for a disease-focused cohort such 
as coronary artery disease). Residuals were generated separately in 
males and females adjusting for age, age2, PCs of ancestry and any neces-
sary study-specific covariates. TG levels were natural log-transformed 
before generating residuals. Inverse normalization was then done 
on the residual values. Individuals on cholesterol-lowering medica-
tion had their pre-medication levels44 approximated by dividing the 
LDL-C value by 0.7 and the TC value by 0.8. Association analysis of the 
residuals for the majority of cohorts was carried out using a linear 
mixed-model approach in rvtests or with other similar software, includ-
ing BOLT-LMM45, SAIGE46 or deCode association software.

QC analysis
Each input file was assessed for QC using the EasyQC software47 (www.
genepi-regensburg.de/easyqc). We generated quantile–quantile plots 
using minor allele frequency (MAF) bins, assessed trends in standard 
errors relative to the sample size for each cohort and checked MAF 
values of submitted variants relative to their expected value based 
on the imputation reference panel. In addition, we checked that each 
cohort reproduced the expected direction of effect at most known loci 
relative to the cohort sample size. Cohorts identified to have issues 
with the submitted files were contacted, and corrected files were sub-
mitted or the cohort was excluded from the meta-analysis. Results 
from either sex-stratified analysis or sex-combined analysis with sex 
as a covariate were used. During the QC process, within each cohort 
we removed poorly imputed variants (info score or R2 < 0.3), variants 
deviating from the HWE (P <1 × 10−8, except for the MVP, which used 
HWE P <1 × 10−20) and variants with minor allele count <3. An imputa-
tion info score threshold of 0.3 was selected to balance the inclusion 
of variants across diverse studies while removing poorly imputed vari-
ants. Summary statistics were then genomic control (GC) corrected 
using the λGC value calculated from the median P value of variants with 
MAF > 0.5%. To capture as many variants as possible, summary statistics 
from cohorts that had submitted both HRC and 1KGP3 imputed files 
were combined, selecting variants imputed from HRC for which both 
imputed versions of a variant existed. For variants imputed by both 
panels, we observed that variants imputed from the HRC panel resulted 
in a higher imputation info score for 94% of variants compared with the 
imputation info score from 1KGP3.

Meta-analysis
Ancestry-specific meta-analysis was performed using Raremetal48 
(https://github.com/SailajaVeda/raremetal). The multi-ancestry 
meta-analysis (also referred to as trans-ancestry meta-analysis) was 
performed using MR-MEGA48 with five PCs of ancestry. The choice of 
five PCs was made after comparing the λGC values across MAF bins from 

meta-analysis of HDL-C with MR-MEGA using from two up to ten PCs. In 
addition, fixed-effects meta-analysis was carried out with METAL49 to 
calculate effect sizes for use in the creation of PRS. Study-level PCs were 
plotted for each cohort by ancestry group to verify that the reported 
ancestry for each cohort was as expected. Following the meta-analysis, 
we identified loci based on a genome-wide significance threshold of 
5 × 10−8 after GC correction using the λGC value calculated from the 
median P value of variants with MAF > 0.5%. The choice of double-GC 
correction was made to be most conservative and to minimize potential 
false-positive findings. Observed λGC values were within the expected 
range for similarly sized studies and are included in Supplementary 
Tables 2 and 4. Variants with a cumulative minor allele count of ≤30 and 
those found in a single study were excluded from index variant selec-
tion. Index variants were identified following an iterative procedure 
starting with the most significant variant and grouping the surrounding 
region into a locus based on the larger of either ±500 kb or ±0.25 cM. 
cM positions were interpolated using the genetic map distributed with 
Eagle v.2.3.2 (genetic_map_hg19_withX.txt)50. Variants were annotated 
using WGSA51, including the summary of each variant from SnpEff52 and 
the closest genes for intergenic variants from ANNOVAR53. Annota-
tion of variants as known or new was done based on manual reviews of 
previously published variants and with variants reported in the GWAS 
catalogue27 for any of the studied lipid traits (accessed May 2020, pro-
vided as Supplementary Table 18). For comparison between ancestries 
and lipid traits, index variants were grouped into genomic regions 
starting with the most significantly associated variant and grouping 
all surrounding index variants within ±500 kb into a single region.

Power to detect association within each ancestry was determined 
using the effect size and sample size of the variant within the original 
discovery ancestry group and the observed allele frequency from the 
other ancestry groups with α set to 5 × 10−8. We excluded variants that 
were only successfully imputed in a single ancestry group to account 
for imputation panel differences between groups (for example, HRC 
for European ancestry individuals and 1KGP3 for other ancestries). 
Variants that were successfully imputed in two or more ancestries were 
assumed to have zero power in any other ancestry for which the variant 
was not successfully imputed. The proportion of variance explained by 
each variant was estimated as 2β2(1 – f)f, where β is the effect size from 
METAL and f is the effect allele frequency (Supplementary Table 19).  
The proportion of variance explained within each ancestry was 
estimated using the multi-ancestry effect size from METAL with the 
ancestry-specific allele frequency. Coverage of the genome by associ-
ated genetic regions was calculated using BEDTools54 for the regions 
defined by the minimum and maximum position within each locus 
with P < 5 × 10−8.

Conditional analysis
Approximate conditional analysis was performed using rareGWAMA55 
to identify index variants that were shadows of nearby, more significant 
associations. LD reference populations were taken from UK Biobank 
specific to admixed African, European (subset of 40,000) or South Asian 
ancestry individuals or from 1KGP3 for East Asian or Hispanic ancestry 
individuals. Conditional analysis was carried out using the individual 
cohort-level summary statistics as was done for the meta-analysis with 
Raremetal. rareGWAMA requires imputation quality scores, which were 
set to 1 for all variants, that had previously passed QC (pre-filtered at 
imputation info/R2 > 0.3). The European ancestry subset of UK Biobank 
was used as the reference population for the conditional analysis of the 
multi-ancestry meta-analysis (approximately 80% European ancestry). 
Stepwise conditional analysis was performed sequentially for the index 
variants within each chromosome ranked by most to least significant. 
Index variants were then flagged as not independent from other more 
significant variants if the absolute value of the ratio of the original effect 
size to the effect size after conditional analysis was greater than the 
95th percentile of all values (Supplementary Fig. 10). This threshold 
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was selected to remove variants for which the effects were driven by 
nearby, more strongly associated variants in LD. This corresponded to a 
ratio of original to conditional effect size of 1.6 for the ancestry-specific 
conditional analysis and a ratio of 1.7 for the multi-ancestry conditional 
analysis. The effect sizes from the meta-analysis with METAL were used 
for comparison with the multi-ancestry conditional analysis results. 
Variants flagged as non-independent were excluded from the summary 
results in the manuscript and are flagged as non-independent in Sup-
plementary Tables 3 and 5.

Genetic correlation
Popcorn31 was used to assess the degree of correlation in effect sizes 
between ancestry groups for each of the lipid traits with 1KGP3 as the 
reference LD panel. Only variants with MAF > 0.01 in each ancestry indi-
vidually were included in the comparison. Both the genetic effect and 
the genetic impact models were tested. Bivariate GREML from GCTA was 
used to calculate the genetic correlation between unrelated admixed 
African and a subset of white British individuals in the UK Biobank fol-
lowing the method of Guo et al.30,32. HapMap3 variants with MAF > 0.01 
in each ancestry were used to construct the genetic relationship matrix 
with the allele frequencies standardized in each population. Individuals 
with genetic relatedness of >0.05 were removed. A total of up to 5,575 
admixed African or African and 38,668 white British individuals from 
UK Biobank were included in the analysis of each trait after removal of 
related individuals. The measured lipid traits were corrected for medica-
tion use and were inverse-normalized after correction for age, sex and 
batch. PCs 1–20 constructed from the genetic relationship matrix were 
included as covariates in the calculation of genetic correlation. Analysis 
within the MVP included 24,502 European ancestry and 21,950 unrelated 
African American individuals. Maximum measured values were used 
for LDL-C, TC and TGs, and minimum values were used for HDL-C. Lipid 
traits were inverse-normalized after correction for age and sex with PCs 
1–20 included as covariates in the calculation of genetic correlation.

Credible sets
Credible sets of potentially causal variants were generated for each of 
the loci identified in the multi-ancestry meta-analysis. We determined 
99% credible sets of variants that encompassed the causal variant with 
99% posterior probability. Regions for construction of the credible sets 
were defined as the ±500 kb region around each index variant. Bayes 
factors56,57 (BFs) for each variant in the ancestry-specific meta-analysis 
were approximated as follows:
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where β and s.e. are the effect size and standard error of the effect size esti-
mate from the Raremetal meta-analysis, and NAS is the ancestry-specific 
sample size. A full derivation is included in the Supplementary Methods. 
To account for the difference in sample sizes between ancestry groups, we 
also approximated the BFs after adjustment for the total multi-ancestry 
sample size for each trait (NTE) relative to the ancestry-specific sample 
size for that trait using the following equation:
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Credible sets for the multi-ancestry meta-analysis were generated 
using the BFs as output by MR-MEGA. The credible sets within each 
region were generated by ranking all variants by BF and calculating 
the number of variants required to reach a cumulative probability of 
99%. In addition, we calculated credible sets in the same manner using 
the European ancestry and multi-ancestry meta-analysis results, but 

including only the set of variants present in the admixed African or 
African meta-analysis. To summarize the size of the credible sets across 
the five lipid traits examined, we identified the set of independent index 
variants from the multi-ancestry meta-analysis after grouping variants 
based on LD. For each ± 500 kb region centred around the most signifi-
cantly associated index variant for any trait, we determined the pairwise 
LD between all index variants in this region using LDpair58 with all ref-
erence populations (1000 Genomes African, admixed American, East 
Asian, European and South Asian) included. We considered variants to 
be independent if they were outside this region, had LD R2 < 0.7 or were 
not available in the LDpair reference populations. Variants within the 
credible sets were annotated with SnpEff52 using WGSA51 and with VEP59. 
The number of variants in LD with an index variant was determined 
using LDproxy58 (Supplementary Table 20). Protein numbering was 
taken from dbSNP60. Expression quantitative trait loci colocalization 
was performed using coloc61 (v.3.2.1) with R (v.3.4.3) using the default 
parameters. Results from GTEx V8 (ref. 62) were compared with the 
GWAS signals in the region defined by the larger of ±0.25 cM or ±500 kb 
surrounding each index variant. The expression quantitative trait loci 
and GWAS signals (based on P values from MR-MEGA) were considered 
to be colocalized if PP3 + PP4 ≥ 0.8 and if PP4/(PP3 + PP4) > 0.9, where 
PP3 is the probability of two independent causal variants while PP4 is 
the probability of a single, shared causal variant.

LDL-C PRS
Weights for the LDL-C PRS were derived from β estimates gener-
ated from each of the ancestry-specific meta-analyses and from the 
multi-ancestry results using METAL. Additional meta-analyses were 
carried out using the 2010 Global Lipids Genetics Consortium LDL-C 
meta-analysis results4 in combination with the (1) admixed African or 
(2) admixed African, East Asian, Hispanic and South Asian ancestry 
results from the current meta-analysis for comparison. Furthermore, 
we performed a meta-analysis of European ancestry cohorts randomly 
selected to reach a total sample size near 100,000, 200,000 or 400,000 
to understand the role of increasing the European ancestry sample size 
and the influence of imputation panel. In addition, we tested possible 
methods for improving the performance of European -ncestry-derived 
scores in African ancestry individuals by separately fitting the European 
ancestry PRS in the UK Biobank admixed African ancestry subset to 
determine the best set of risk score parameters (various pruning and 
thresholding parameters or PRS-CS, Supplementary Note).

We generated PRS weights using both significant variants only (at 
a variety of P value thresholds) and using genome-wide methods. 
Meta-analysis results were first filtered to variants present in UK 
Biobank, the MGI and the MVP with imputation info score of >0.3. Prun-
ing and thresholding was performed in PLINK63 with ancestry-matched 
subsets of UK Biobank individuals (admixed African N = 7,324, European 
N = 40,000, South Asian N = 7,193, multi-ancestry: N = 10,000 (80% Euro-
pean, 15% admixed African, 5% South Asian)) or 1KGP3 (Hispanic N = 347, 
East Asian N = 504) used for LD reference. We also tested 1KGP3 with all 
populations included as the LD reference panel for the multi-ancestry 
score (results not shown), which gave similar results to those of the UK 
Biobank multi-ancestry reference set originally selected for its larger 
sample size. P value thresholds (after GC correction) of 5 × 10−10, 5 × 10−9, 
5 × 10−8, 5 × 10−7, 5 × 10−6, 5 × 10−5, 5 × 10−4, 5 × 10−3 and 5 × 10−2 were tested 
with distance thresholds of 250 and 500 kb and LD R2 thresholds of 
0.1 and 0.2. PRS weights were also generated using PRS-CS33 with the 
LD reference panels for African, East Asian and European ancestry 
populations from 1000 Genomes provided by the developers. PRS-CS 
LD reference panels for the other ancestries were generated using 
1000 Genomes following the same protocol as provided by the PRS-CS 
authors33. This included removing variants with MAF ≤ 0.01, ambiguous 
A/T or G/C variants and restricting to variants included in HapMap3. 
Pairwise LD matrices within pre-defined LD blocks64 (using European 
LDetect blocks for Hispanic and multi-ancestry LD calculations and 
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Asian blocks for South Asian) were then calculated using PLINK and 
converted to HDF5 format.

For each individual in the testing cohorts, PRS were calculated as 
the sum of the dosages multiplied by the given weight at each vari-
ant. UK Biobank individuals not present in datasets used to generate 
the summary statistics (either admixed African, white British, both 
admixed African and white British, East Asian, South Asian, or all indi-
viduals excluding South Asian) were used to select the best-performing 
admixed African, European, admixed African+European, East Asian, 
South Asian, and multi-ancestry PRS, respectively. UK Biobank South 
Asian ancestry individuals were included in the multi-ancestry risk 
score weights but excluded from the UK Biobank multi-ancestry testing 
set due to an initial focus on comparing predictions among European 
and African ancestry individuals. The following sample sizes of the 
ancestry groups in UK Biobank used to test PRS performance were 
included: admixed African N = 6,863; East Asian N = 1,441; European 
N = 389,158; South Asian N = 6,814; ALL = 461,918. The best-performing 
Hispanic ancestry PRS weights were selected based on their perfor-
mance in Hispanic ancestry individuals in the MGI dataset. Model fit 
was assessed using the adjusted R2 of a linear model for LDL-C value 
at initial assessment adjusted for cholesterol medication (divided by 
0.7 to estimate pre-medication levels) with sex, batch, age at initial 
assessment and PCs 1–4 as covariates (Supplementary Tables 21–23). 
Python and R were used for the analysis of PRS models.

The best-performing PRS in each ancestry group was then tested 
in the following validation cohorts: the MGI (European N = 17,190; 
African American N = 1,341); East London Genes and Health65 (ELGH; 
South Asian N = 15,242); Tohoku Medical Megabank Community 
Cohort Study (ToMMo; East Asian N = 28,217); Korean Genome and 
Epidemiology Study66 (KoGES; East Asian N = 118,260); Penn Medi-
cine BioBank (PMBB; African American N = 2,138); Africa America 
Diabetes Mellitus (AADM; 3,566 West African; 707 East African); 
Africa Wits-INDEPTH partnership for Genomic Studies (AWI-Gen; 
1,744 East African; 4,972 South African; 3,744 West African); and MVP 
participants not included in the discovery meta-analysis (European 
N = 68,381; African American N = 18,251; East Asian/South Asian 
N = 4,155; Hispanic N = 7,669). Adjusted R2 values were reported for 
each cohort and ancestry group, with 95% confidence intervals for 
the adjusted R2 values calculated using bootstrapping. Within each 
cohort, the following covariates were used: MGI: sex, batch, PCs 1–4 
and birth year; PMBB: birth year, sex and PCs 1–4; ELGH: age, sex 
and PCs 1–10; MVP: sex, PCs 1–4, birth year and mean age; ToMMo: 
sex, age, recruitment method and PCs 1–20 (only participants from 
Miyagi Prefecture were included); KoGES: age, sex and recruitment 
area; AADM: age, sex, PCs 1–3; AWI-Gen: age, sex and PCs 1–6 for East 
African and South African, and age, sex and PCs 1–4 for West African. 
The type of LDL-C value used in the model varied depending on the 
measurements selected by each cohort. Mean LDL-C values were 
used for MGI, MVP and PMBB, maximum LDL-C values for ELGH, and 
baseline measurements for AADM, AWI-Gen, ToMMo and KoGES. A 
descriptive summary of each validation cohort is included in Sup-
plementary Table 16. African admixture for MGI was calculated using 
all African ancestry individuals in 1000 Genomes with ADMIXTURE 
(v.1.3)67. African admixture for MVP was calculated using the Yoruba 
in Ibadan, Nigeria (YRI) and Luhya in Webuye, Kenya (LWK) African 
ancestry individuals in 1KGP3.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The GWAS meta-analysis results (including both ancestry-specific 
and multi-ancestry analyses) and risk score weights are available at 

http://csg.sph.umich.edu/willer/public/glgc-lipids2021. The optimized 
multi-ancestry and single-ancestry PRS weights are deposited in the 
PGS Catalogue (https://www.pgscatalog.org/) accession numbers 
PGS000886–PGS000897 (all intervening numbers).

Code availability
The code EasyQC is available at www.genepi-regensburg.de/easyqc, 
and Raremetal is available at https://github.com/SailajaVeda/raremetal.
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Extended Data Fig. 1 | Effect sizes of identified index variants from 
multi-ancestry meta-analysis. Index variants associated with a) HDL 
cholesterol, b) LDL cholesterol, c) triglycerides, d) nonHDL cholesterol  

and e) total cholesterol include both common variants of small to moderate 
effect and low frequency variants of moderate to large effect.



Extended Data Fig. 2 | Comparison of the number of index variants by 
sample size. a) Comparison of the number of index variants reaching 
genome-wide significance (p < 5x10−8) from meta-analysis of LDL-C in each 
ancestry group. A meta-analysis of five random subsets of European cohorts 
selected to reach sample sizes of approximately 100,000, 200,000, 400,000, 
600,000, or 800,000 individuals is also shown. b) Comparison of chi-squared 
values from meta-analysis of LDL-C for each possible combination of ancestry 
groups (without genomic-control correction) for variants with minor allele 

frequency (MAF) ≥ 5%. The colored lines indicate a linear regression model of 
all meta-analyses for a specific ancestry (eg. all analyses including European 
individuals). c) Comparison of chi-squared values from meta-analysis of LDL-C 
for variants with MAF ≤ 5%. d) Comparison of chi-squared valued for variants 
with MAF ≥ 5% for LDL-C without genomic-control correction in a meta-analysis 
of all European cohorts as well as five subsets selected to reach sample sizes of 
approximately 100,000, 200,000, 400,000, 600,000, or 800,000 
individuals.
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Extended Data Fig. 3 | Effect sizes by ancestry for unique index variants 
from ancestry-specific meta-analysis. Comparison of effect sizes and 
standard errors for the 389 unique variants reaching genome-wide significance 
(p-value < 5x10−8 as given by RAREMETAL) in two ancestry groups. Variants  
with discordant directions of effect between ancestries are labeled by 
chromosome and position (build 37). Association results for all index variants 
are given in Supplementary Table 3. The red line depicts an equivalent 
European ancestry and non-European ancestry effect size while the black line 
depicts a linear regression model. R2 = 0.93.



Extended Data Fig. 4 | Comparison of credible set size. The number of 
variants in the 99% credible sets for each association signal are compared 
between a) admixed African ancestry and multi-ancestry analysis and  
b) European ancestry and multi-ancestry analysis.
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Extended Data Fig. 5 | Overview of LDL-C polygenic score generation and 
validation. Polygenic scores were calculated separately in each ancestry group 
(or in all ancestries) using either pruning and thresholding or PRS-CS. The 

polygenic scores were then taken forward for testing in ancestry-matched 
participants followed by validation in independent data sets.



Extended Data Fig. 6 | Optimal polygenic score threshold by ancestry 
group for either PRS-CS or pruning and thresholding based LDL-C 
polygenic scores. Adjusted R2 estimated upon testing in UK Biobank 
ancestry-matched participants (who were not included in GWAS summary 
statistics). a) Admixed African, East Asian and South Asian ancestry polygenic 
scores. b) European and multi-ancestry polygenic scores. c) European ancestry 

(GLGC 2010) and multi-ancestry polygenic scores. d) All polygenic scores 
across all thresholds used for score construction. e) Comparison of adjusted R2 
across ancestry groups relative to the maximum for covariates alone, 
polygenic scores from PRS-CS or polygenic scores from pruning and 
thresholding.
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Extended Data Fig. 7| Improvement in PRS performance in African 
Americans when starting with ancestry-mismatched European ancestry 
scores by updating weights, updating variant lists, or updating both 
variants and weights to be ancestry-matched. By comparison to the 
gold-standard performance of the multi-ancestry-derived PRS in African 
Americans (adjusted R2 = 0.12), a European ancestry derived score capture 
only 47% of the variance explained by the multi-ancestry PRS. When LD and 
association information from the target population is used to optimize the list 
of variants for inclusion in the PRS, but with ancestry-mismatched weights 
from European ancestry GWAS, the variance explained reaches 71% of the gold 
standard. If the PRS variant list selected in European ancestry individuals were 
genotyped in the target population, and PRS weights were updated using a 
GWAS from the target population, the variance explained reached 87% of the 
gold standard. Finally, deriving both the marker list and weights from the target 
population (single-ancestry GWAS of admixed African individuals) explained 
94% of the variance relative to the gold-standard trans-ancestry PRS.



Extended Data Fig. 8 | Comparison of PRS performance by admixture 
quartile. We divided the testing cohorts into quartiles by proportion of 
African ancestry and estimated the performance of the PRS separately within 
each quartile in a) the Michigan Genomics Initiative (N = 1,341), and b) the 
Million Veteran Program (N = 18,251). Error bars represent 95% confidence 
intervals.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used

Data analysis Cohort level GWAS analysis was performed with rvtests or related software as listed in the supplementary information. QC was performed 
using the EasyQC software (v.17.7) Meta-analysis was performed using RAREMETAL (v 4.15.1), METAL (released 2011-03-25), and MR-MEGA 
(v.0.1.5). Conditional analysis was performed with rareGWAMA (v0.4). Risk scores were developed using PRS-CS (April 2020) and 
plink ( v1.90b4.5). Data summaries were generated using R (v3-4.1.1) and python (v2.7.14-3.8). Variants were annotated using WGSA (v065 
and 085)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The GWAS meta-analysis results (including both ancestry-specific and trans-ancestry analyses) and risk score weights are available at: http://csg.sph.umich.edu/
willer/public/glgc-lipids2021.  The optimized trans-ancestry and single-ancestry polygenic score weights will be deposited within the PGS Catalog (https://
www.pgscatalog.org/).
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We recruited potential cohorts with lipid GWAS results, all interested cohorts were provided with an analysis plan.  The total sample size was 
reported as the total number of individuals included in each analysis from all participating cohorts.  The sample sizes obtained were 
equivalent or larger than GWAS studies of related quantitative traits that have successfully identified associated genetic variants and so were 
deemed to have sufficient numbers of individuals for the analysis.

Data exclusions GWAS results that did not pass QC (due to issues identified with imputation or cohort-level statistical analysis) were excluded from the overall 
meta-analysis. QC metrics (eg. the assessment of observed vs. expected allele frequency) were established prior to cohort exclusions.

Replication Polygenic scores were replicated in 8 independent cohorts, all replication attempts were included in the final manuscript.

Randomization No randomization was required as all samples were included in the analysis

Blinding Genotypes were assigned blinded to lipid status. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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