The power of genetic diversity in genome-wide association studies of lipids

https://doi.org/10.1038/s41586-021-04064-3

Received: 15 September 2020

Accepted: 27 September 2021

Published online: 9 December 2021

Check for updates

A list of authors and their affiliations appears online.

Increased blood lipid levels are heritable risk factors of cardiovascular disease with varied prevalence worldwide owing to different dietary patterns and medication use¹. Despite advances in prevention and treatment, in particular through reducing low-density lipoprotein cholesterol levels², heart disease remains the leading cause of death worldwide³. Genome-wideassociation studies (GWAS) of blood lipid levels have led to important biological and clinical insights, as well as new drug targets, for cardiovascular disease. However, most previous GWAS⁴⁻²³ have been conducted in European ancestry populations and may have missed genetic variants that contribute to lipid-level variation in other ancestry groups. These include differences in allele frequencies, effect sizes and linkage-disequilibrium patterns²⁴. Here we conduct a multi-ancestry, genome-wide genetic discovery meta-analysis of lipid levels in approximately 1.65 million individuals, including 350,000 of non-European ancestries. We quantify the gain in studying non-European ancestries and provide evidence to support the expansion of recruitment of additional ancestries, even with relatively small sample sizes. We find that increasing diversity rather than studying additional individuals of European ancestry results in substantial improvements in fine-mapping functional variants and portability of polygenic prediction (evaluated in approximately 295,000 individuals from 7 ancestry groupings). Modest gains in the number of discovered loci and ancestry-specific variants were also achieved. As GWAS expand emphasis beyond the identification of genes and fundamental biology towards the use of genetic variants for preventive and precision medicine²⁵, we anticipate that increased diversity of participants will lead to more accurate and equitable²⁶ application of polygenic scores in clinical practice.

The Global Lipids Genetics Consortium aggregated GWAS results from 1,654,960 individuals from 201 primary studies representing the following five genetic ancestry groups: admixed African or African (N = 99,432, 6.0% of the sample); East Asian (N = 146,492, 8.9%); European (N = 1,320,016,79.8%); Hispanic (N = 48,057,2.9%); and South Asian (N = 40,963, 2.5%) (Table 1, Supplementary Table 1, Supplementary Fig. 1). We performed GWAS for the following five blood lipid traits: low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TGs), total cholesterol (TC) and non-high-density lipoprotein cholesterol (nonHDL-C). Of the 91 million variants imputed from the Haplotype Reference Consortium or 1000 Genomes Phase 3 that successfully passed variant-level quality control, 52 million variants were present in at least 2 cohorts and had sufficient minor allele counts (>30 in the meta-analysis) to be evaluated as a potential index variant.

Ancestry-specific genetic discovery

We first quantified the number of genome-wide significant loci identified in at least one of the five ancestry-specific meta-analyses. We found 773 lipid-associated genomic regions that contained 1,765 distinct index variants that reached genome-wide significance ($P < 5 \times 10^{-8}, \pm 500$ kb) (Supplementary Tables 2 and 3, Supplementary Figs. 2 and 3) for at least 1 ancestry group and lipid trait. Of these regions, 237 were deemed new because the most-significant index variant in each region was >500 kb from variants that have been previously reported as associated with any of the five lipid traits^{4-23,27}. Of these loci, 76% were identified only in the European ancestry-specific analyses (N = -1.3 million, 80% of the sample). Of the non-European ancestries, the African ancestry GWAS (N = -99,000, primarily African American) identified more ancestry-specific loci (15 unique to admixed African or African) than any other non-European ancestry group (6 loci unique to East Asian, 6 to Hispanic, 1 to South Asian). This difference is probably because allele frequencies between African and European ancestry populations show the largest variation (Fig. 1a–d) and because African populations have greater genetic diversity than other populations²⁸.

Multi-ancestry genetic discovery

We next performed multi-ancestry meta-analyses using the meta-regression approach implemented in MR-MEGA^{29,30} to account for heterogeneity in variant effect sizes on lipids between ancestry groups. A total of 1,750 index variants at 923 loci (±500 kb regions) reached genome-wide significance for at least 1 lipid trait. These included 168 regions not identified by ancestry-specific analysis, 120 (71%) of which are new (Supplementary Tables 4 and 5, Supplementary Fig. 4, Extended Data Fig. 1). Almost all (98%) the index variants from the ancestry-specific analysis remained significant ($P < 5 \times 10^{-8}$) after meta-analysis across all ancestry groups. However, 15 admixed

Table 1 | Meta-analysis sample size by ancestry group

Sample size	No. of cohorts	Mean sample size per cohort (range)	No. of variants
1,320,016	146	10,928 (173–389,344)	47 million
146,492	40	7,448 (150–131,050)	17 million
99,432	19	5,330 (473–62,022)	33 million
48,057	10	6,032 (1,496–22,302)	27 million
40,963	7	6,413 (1,796–16,110)	17 million
1,654,960	201		52 million
	Sample size 1,320,016 146,492 99,432 48,057 40,963 1,654,960	Sample size No. of cohorts 1,320,016 146 146,492 40 99,432 19 48,057 10 40,963 7 1,654,960 201	Sample size cohorts Mean sample size per cohort (range) 1,320,016 146 10,928 (173–389,344) 146,492 40 7,448 (150–131,050) 99,432 19 5,330 (473–62,022) 48,057 10 6,032 (1,496–22,302) 40,963 7 6,413 (1,796–16,110) 1,654,960 201

The present meta-analysis represents a sixfold overall increase in sample size relative to the most recent 2018 Million Veteran Program blood lipid meta-analysis¹³, with a twofold increase in sample size of admixed African and Hispanic individuals.

African or African, 9 East Asian, 3 Hispanic and 1 South Asian index variants from the ancestry-specific analysis did not remain significant (multi-ancestry *P* values of 7.7×10^{-6} to 5.9×10^{-8}) (Supplementary Fig. 5, Supplementary Note). In total, we identified 941 lipid-associated loci including 355 new loci from either single- or multi-ancestry analyses.

Next, we compared the number of loci identified per 100,000 participants in each ancestry group and the combined dataset (Fig. 1e). Admixed African and Hispanic ancestry-specific analyses identified the most loci per genotyped individual, which is perhaps due to African ancestry and/or increased genetic diversity. European and multi-ancestry analyses identified slightly fewer loci per 100,000 individuals, which probably reflects a slight reduction in benefit from the addition of new samples to extremely large sample sizes (>1 million). For the genome-wide significant variants discovered in each ancestry, we estimated the proportion of ancestry-enriched variants by enumerating the number of other ancestries with sufficient power to detect an association (range of 0–4). We estimated the power for discovery of each variant by assuming an equivalent discovery sample size in the other ancestries, fixed effect size and observed allele frequencies from the other ancestries (Fig. 1f). To enable comparisons at similar sample sizes across ancestry groups, we selected European ancestry index variants identified from a meta-analysis of approximately 100,000 individuals subsampled from the current study. African ancestry index variants were the most ancestry-enriched, with only 61% of index variants demonstrating sufficient power in at least 1 other ancestry group (equal *N*, power of >80% to reach $\alpha = 5 \times 10^{-8}$). This result is probably due to population-enriched allele frequencies. By comparison, 88% of South Asian index variants had an estimated power of >80% in at least 1 other ancestry.

Finally, we found that both the number of identified variants and the mean observed chi-squared values from genome-wide lipid-association tests were approximately linearly related to the meta-analysis sample size across ancestries (Supplementary Table 6, Extended Data Fig. 2). However, in the European ancestry group, the incremental increase in either the number of loci or the chi-squared value was slightly attenuated at the largest sample sizes. Taken together, these results suggest that once sufficiently well-powered GWAS sample sizes are reached within a given ancestry group, the assembly of large sample sizes of other under-represented groups will only modestly enhance variant discovery relative to increasing the sample size of the predominant ancestry.

Comparison of effects across ancestries

Differences in association signals across ancestries despite similar sample sizes could be due to variations in allele frequencies and/or

and averaged across lipid traits. At currently available sample sizes, multi-ancestry and European ancestry analyses identify a lower proportion of loci relative to the number of individuals than analyses of other ancestry groups. However, the larger sample size of European or multi-ancestry analyses leads to a greater relative proportion of new loci and a higher proportion of loci significant only in European ancestry analyses. **f**, The proportion of index variants identified from each ancestry-specific meta-analysis that would be well powered to detect an association of the same effect size but with ancestry-specific frequencies in the other ancestry groups. Dark blue regions indicate variants that are likely to be detected at an equivalent sample size only in the original ancestry group (that is, ancestry-specific). Additional comparisons of allele frequencies and effect sizes across ancestries are provided in Supplementary Fig. 3.

Fig. 2|**Inclusion of multiple ancestries drives improved fine-mapping. a**, **b**, Association of the *DMTN* intron variant rs900776 with LDL-C in the admixed African, European, or multi-ancestry meta-analysis (**a**) or *DMTN* expression quantitative trait loci (**b**). The region spanned by the 99% credible sets are shown in the centre box. The LDL-C association signal significantly colocalizes with the

effect sizes. This could reflect different patterns of linkage disequilibrium (LD) with the underlying causal variant or an interaction with an environmental risk factor for which prevalence varies by ancestry and/or geography. We found that effect size estimates of individual variants were similar based on pairwise comparison between ancestries $(R^2 = 0.93 \text{ for variants with } P < 5 \times 10^{-8})$ (Extended Data Fig. 3, Supplementary Table 7, Supplementary Fig. 6). We also tested for genome-level differences in effect-size correlations for East Asian, European and South Asian ancestry groups using Popcorn³¹, and the results were not significantly different from 1 (P > 0.05; Supplementary Figs. 7 and 8). We tested for differences in genetic correlations between admixed African and European ancestries in the UK Biobank and the Million Veteran Program (MVP) using the bivariate genome-based restricted maximum likelihood (GREML) method^{30,32}, as the Popcorn method does not account for long-range LD in admixed populations. The genetic correlation between admixed African and European ancestries for HDL-C (r = 0.84) was not significantly different from 1 in the UK Biobank dataset (which may be due to the small numbers of African ancestry individuals in this database). By contrast, correlations for the other traits ranged from 0.52 to 0.60 in UK Biobank and from 0.47 to 0.69 in the MVP (Supplementary Table 8). These results indicate that there is a moderately high correlation in lipid effect sizes across ancestry groups when considering all genome-wide variants.

Of the 2,286 index variants that reached genome-wide significance in the multi-ancestry meta-analysis for any of the five lipid traits, 159 (7%) showed significant heterogeneity of effect size due to ancestry ($P < 2.2 \times 10^{-5}$; Bonferroni-corrected for 2,286 variants) (Supplementary Table 5). Of these 159 variants, 31 showed the largest effect in African ancestry analyses, 24 in East Asian, 67 in European, 20 in Hispanic and 17 in South Asian. Only 49 (2%) of these variants from the multi-ancestry meta-analysis showed significant residual heterogeneity that was not due to ancestry, which may be attributable to differences in ascertainment or analysis strategy between cohorts (Supplementary Table 5). This result suggests that cohort-related factors are a less important driver of heterogeneity than genetic ancestry.

Multi-ancestry analyses aid fine-mapping

We next assessed whether multi-ancestry fine-mapping narrowed the set of probable causal variants at each of the independent multi-ancestry association signals ($LD R^2 < 0.7$), assuming one shared causal variant per ±500 kb region (Supplementary Table 9). A total of 19% of the association signals had only one variant in the 99% credible set and 55% (816 out of

GTEx Consortium expression quantitative trait locus signal of *DMTN* in liver. **c**, The LD patterns for variants in the European ancestry 99% credible set differ greatly between African (AFR) and European ancestry individuals in 1000 Genomes. The lead variant has a posterior probability of 0.86 in the admixed African analysis, 0.51 in the European analysis and >0.99 in the multi-ancestry analysis.

1,486) had <10. By contrast, 5% (73 out of 1486) had >100. Of the 407 variants with >90% posterior probability of being the causal variant at a locus in the multi-ancestry meta-analysis, 56 (14%) were missense variants, 7 (2%) were splice-region variants and 4 (1%) were stop-gain variants (*CD36*, *HBB*, *ANGPTL8* and *PDE3B*) (Supplementary Tables 10–12).

The median number of variants in 99% credible sets from the European ancestry analysis was 13, but this was reduced to 8 in the multi-ancestry analysis. Of 1,486 independent association signals, 825 (56%) had reduced credible set size in the multi-ancestry analysis. At these 825 loci, the number of variants in the multi-ancestry credible sets was reduced by 40% relative to the minimum credible set size in either admixed African (the most genetically diverse group) or European ancestry analyses (Extended Data Fig. 4). We estimated that increasing the sample size of European ancestry samples to that of the multi-ancestry analysis would yield a 20% reduction in the credible set size, which is approximately half of the 40% reduction observed in the multi-ancestry analysis. This suggests that sample size differences alone do not explain the reduction. Instead, differences in LD patterns and effect sizes across ancestries probably contribute to the improved fine-mapping (Supplementary Note). For example, rs900776, an intronic variant in the DMTN region with many high LD variants and a posterior probability of 0.51 of being causal in the European ancestry group, increases to a posterior probability of 0.86 in the African-ancestry-derived credible sets, and >0.99 in the multi-ancestry analysis (Fig. 2).

Multi-ancestry polygenic risk scores are most predictive

We evaluated the potential of polygenic risk scores (PRS; sometimes also called polygenic scores (PGS)) to predict increased LDL-C levels, which is a major causal risk factor of coronary artery disease, in diverse ancestry groups. We created three non-overlapping datasets for the following discrete steps: (1) perform ancestry-specific or multi-ancestry GWAS to estimate variant effect sizes; (2) optimize risk score parameters; and (3) evaluate the utility of the resulting scores. For each ancestry-specific or multi-ancestry GWAS, we created multiple PRS weights, either genome-wide with PRS-CS³³ or using pruning and thresholding to select independent variants. We tested each score in the optimizing dataset, which was matched for ancestry to the GWAS (admixed African or African, East Asian, European, South Asian, and all ancestries from the UK Biobank; and Hispanic from the Michigan Genomics Initiative (MGI); Extended Data Figs. 5 and 6, Supplementary Tables 13-15). The top-performing score from each GWAS was selected: PRS-CS for East Asian ancestry, European ancestry and European ancestry scores from a previous GLGC GWAS from 2010⁴; and an optimized pruning and

Fig. 3 | **Multi-ancestry LDL-CPRS show similar performance across ancestry groups. a**, The multi-ancestry PRS shows equivalent or better performance across most ancestry groups relative to the ancestry-specific PRS, and European ancestry-specific scores show less transferability. Adjusted *R*² is calculated with the risk score as a predictor of LDL-C in a linear model with covariates. **b**, Multi-ancestry scores derived from equal proportions of each ancestry group predict LDL-C better for admixed African Americans (AFRAMR)

threshold-based score for all others. We then evaluated the optimal PRS in 8 cohorts of individuals (N = 295,577, Supplementary Table 16) not included in the discovery GWAS from 7 ancestral groupings: East Asian (146,477), European American (85,571), African American (21,730), African (2,452 East Africa, 4,972 South Africa and 7,309 West Africa), South Asian (15,242), Hispanic American (7,669), and Asian American (4,155).

The PRS developed from the multi-ancestry meta-analysis consistently showed the best or near-best performance in each group tested, with improved or comparable predictions relative to ancestry-matched scores (adjusted $R^2 = 0.10 - 0.16$; Fig. 3, Supplementary Table 17, Extended Data Fig. 7). This observation was particularly evident for ancestries with smaller GWAS sample sizes, as was the case for Hispanic and South Asian. For African Americans in the MGI and the MVP datasets, polygenic prediction scores were similar for individuals with different levels of African ancestry admixture (Extended Data Fig. 8) and reached the level of prediction observed for European ancestry individuals from the same dataset. The increase in LDL-C per each standard deviation increase in the PRS was also similar between ancestry groups in the MVP (effect size \pm standard error): 13.2 \pm 0.22 mg dl⁻¹ for African American, 8.9 ± 0.47 mg dl⁻¹ for Asian (East Asian/South Asian), 10.5 ± 0.10 mg dl⁻¹ for European and 10.6 ± 0.32 mg dl⁻¹ for Hispanic. We repeated the evaluation of multi-ancestry versus single-ancestry PRS by generating GWAS with a sample size of approximately 100,000 individuals and with fixed methodology, and the results were consistent with those from the full dataset (Fig. 3b, Supplementary Fig. 9). Thus, polygenic prediction for LDL-C in all ancestries appears to benefit the most from adding samples of diverse ancestries, given a scenario where large numbers of in the MGI dataset than predominantly European ancestry scores at constant sample size. Error bars depict 95% confidence intervals. Sample sizes for each cohort are provided in Supplementary Table 16. AADM, Africa America Diabetes Mellitus; ASN, Asian American; AWI-Gen, Africa Wits-INDEPTH partnership for Genomic Studies; ELGH, East London Genes and Health; KoGES, Korean Genome and Epidemiology Study; PMBB, Penn Medicine BioBank; ToMMo, Tohoku Medical Megabank Community Cohort Study.

European ancestry individuals have already been included. Additional studies are needed to determine whether this applies to other phenotypes with different genetic architectures and heritabilities.

Discussion

Genome-wide discovery for blood-lipid traits based on more than 1.65 million individuals from 5 ancestry groups confirmed that the contributions of common genetic variations to blood lipids are similar across diverse populations. First, we found that the number of significant loci relative to sample size was similar within each ancestry group and approximately linearly related to sample size, with a small increase in ancestry-specific variants observed in African ancestry cohorts relative to the others. Second, we demonstrated that inclusion of additional ancestries through multi-ancestry fine-mapping reduces the set of candidate causal variants in credible sets and does so more rapidly than in single-ancestry analysis. Multi-ancestry GWAS should therefore facilitate the identification of effector genes at GWAS loci and enable accelerated biological insight and identification of potential drug targets. Third, we found that a PRS derived from approximately 88,000 African ancestry and about 830,000 European ancestry individuals was correlated with observed lipid levels among individuals with admixed African ancestry equally well as among individuals with European ancestry. We hypothesize that the inclusion of African ancestry individuals in the GWAS yielded an improvement in polygenic prediction performance through the general fine-mapping of loci and the improved prioritization of multi-ancestry causal variants.

Fourth, and perhaps most important, the multi-ancestry score was generally the most informative score across all the major population groups examined. This provides useful information for other genetic discovery efforts and investigations of the utility of PRS in diverse populations.

The generalizability of these findings–regarding the portability of PRS from the multi-ancestry meta-analysis–to other traits may depend on the heritability, the degree of polygenicity, the level of genetic correlation, the allele frequencies of causal variants across ancestry groups, gene–environment interactions, and the representation of diverse populations in the GWAS^{34,35}. Although many traits show a high degree of shared genetic correlation across ancestries^{32,36,37}, others have distinct genetic variants with large effects that are more common in specific ancestry groups³⁴, which may limit the utility of multi-ancestry PRS for particular phenotypes in some ancestries.

The benefits for genetic discovery efforts as GWAS sample sizes increase will probably not be measured just by the number of loci discovered. Rather, the focus will increasingly turn to improving our understanding of the biology at established loci, identifying potential therapeutic targets and efficiently identifying individuals at high-risk of adverse health outcomes across population groups without exacerbating existing health disparities. Considering the results presented here, and those of related studies³⁸⁻⁴⁰, we consider that future genetic studies will substantially benefit from meta-analyses across participants of diverse ancestries. Further gains in the depth and number of sequenced individuals of diverse ancestries^{41,42} may also improve the discovery of new variants and loci in diverse cohorts, in particular variants that are absent at present from arrays and imputation reference panels. Our results suggest that diversifying the populations under study, rather than simply increasing the sample size, is now the single most efficient approach to achieving these goals, at least for blood lipids and probably for related downstream adverse health outcomes such as cardiovascular disease. However, if costs for recruitment of diverse populations are higher than recruitment of individuals from previously studied ancestry groups, and the total number of genome-wide significant index variants is the goal, then continued low-cost recruitment of any ancestry group is expected to still provide genetic insight. Taken together, our results strongly support ongoing and future large-scale recruitment efforts targeted at the enrolment and DNA collection of non-European ancestry participants. Geneticists and those responsible for cohort development should continue to diversify genetic discovery datasets, while increasing sample size in a cost-effective manner, to ensure that genetic studies reduce rather than exacerbate existing health inequities across race, ancestry, geographical region and nationality.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-021-04064-3.

- Taddei, C. et al. Repositioning of the global epicentre of non-optimal cholesterol. Nature 582, 73–77 (2020).
- Ference, B. A. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease.
 Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. *Eur. Heart J.* 38, 2459–2472 (2017).
- Roth, G. A. et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet **392**, 1736–1788 (2018).
- Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).
- Willer, C. J. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).
- Liu, D. J. et al. Exome-wide association study of plasma lipids in >300,000 individuals. Nat. Genet. 49, 1758–1766 (2017).
- Lu, X. et al. Exome chip meta-analysis identifies novel loci and East Asian-specific coding variants that contribute to lipid levels and coronary artery disease. *Nat. Genet.* 49, 1722–1730 (2017).
- Kathiresan, S. et al. A genome-wide association study for blood lipid phenotypes in the Framingham Heart Study. BMC Med. Genet. 8, S17 (2007).

- Kathiresan, S. et al. Polymorphisms associated with cholesterol and risk of cardiovascular events. N. Engl. J. Med. 358, 1240–1249 (2008).
- Peloso, G. M. et al. Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks. *Am. J. Hum. Genet.* 94, 223–232 (2014).
- Hoffmann, T. J. et al. A large electronic-health-record-based genome-wide study of serum lipids. Nat. Genet. 50, 401–413 (2018).
- Surakka, I. et al. The impact of low-frequency and rare variants on lipid levels. Nat. Genet. 47, 589–597 (2015).
- Klarin, D. et al. Genetics of blood lipids among -300,000 multi-ethnic participants of the Million Veteran Program. Nat. Genet. 50, 1514–1523 (2018).
- Holmen, O. L. et al. Systematic evaluation of coding variation identifies a candidate causal variant in TM6SF2 influencing total cholesterol and myocardial infarction risk. Nat. Genet. 46, 345–351 (2014).
- Asselbergs, F. W. et al. Large-scale gene-centric meta-analysis across 32 studies identifies multiple lipid loci. Am. J. Hum. Genet. 91, 823–838 (2012).
- Albrechtsen, A. et al. Exome sequencing-driven discovery of coding polymorphisms associated with common metabolic phenotypes. *Diabetologia* 56, 298–310 (2013).
- Saxena, R. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science **316**, 1331–1336 (2007).
- 18. Iotchkova, V. et al. Discovery and refinement of genetic loci associated with
- cardiometabolic risk using dense imputation maps. *Nat. Genet.* **48**, 1303–1312 (2016). 19. Tachmazidou, I. et al. A rare functional cardioprotective APOC3 variant has risen in
- frequency in distinct population isolates. *Nat. Commun.* **4**, 2872 (2013). 20. Tang, C. S. et al. Exome-wide association analysis reveals novel coding sequence variants
- associated with lipid traits in Chinese. *Nat. Commun.* **6**, 10206 (2015). 21. van Leeuwen, E. M. et al. Genome of the Netherlands population-specific imputations
- identify an ABCA6 variant associated with cholesterol levels. Nat. Commun. 6, 6065 (2015).
 Spracklen, C. N. et al. Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and trialyceride levels. Hum. Mol. Genet. 26, 1770–1784 (2017).
- Kanai, M. et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat. Genet. 50, 390–400 (2018).
- Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diversity in human genetic studies. Cell 177, 26–31 (2019).
- Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. *Nat. Genet.* 50, 1219–1224 (2018).
- Duncan, L. et al. Analysis of polygenic risk score usage and performance in diverse human populations. Nat. Commun. 10, 3328 (2019).
- Buniello, A. et al. The NHGRI–EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. *Nucleic Acids Res.* 47, D1005–D1012 (2019).
- Tishkoff, S. A. et al. The genetic structure and history of Africans and African Americans. Science 324, 1035–1044 (2009).
- Mägi, R. et al. Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. *Hum. Mol. Genet.* 26, 3639–3650 (2017).
- Lee, S. H., Yang, J., Goddard, M. E., Visscher, P. M. & Wray, N. R. Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood. *Bioinformatics* 28, 2540–2542 (2012).
- Brown, B. C., Ye, C. J., Price, A. L. & Zaitlen, N. Transethnic genetic-correlation estimates from summary statistics. Am. J. Hum. Genet. 99, 76–88 (2016).
- Guo, J. et al. Quantifying genetic heterogeneity between continental populations for human height and body mass index. Sci. Rep. 11, 5240 (2021).
- Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. *Nat. Commun.* 10, 1776 (2019).
- Majara, L. et al. Low generalizability of polygenic scores in African populations due to genetic and environmental diversity. Preprint at *bioRxiv* https://doi.org/10.1101/ 2021.01.12.426453 (2021).
- Lehmann, B. C. L., Mackintosh, M., McVean, G. & Holmes, C. C. High trait variability in optimal polygenic prediction strategy within multiple-ancestry cohorts. Preprint at bioRxiv https://doi.org/10.1101/2021.01.15.426781 (2021).
- Shi, H. et al. Population-specific causal disease effect sizes in functionally important regions impacted by selection. Nat. Commun. 12, 1098 (2021).
- Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).
- Cavazos, T. B. & Witte, J. S. Inclusion of variants discovered from diverse populations improves polygenic risk score transferability. HGG Adv. 2, 100017 (2021).
- Wojcik, G. L. et al. Genetic analyses of diverse populations improves discovery for complex traits. *Nature* 570, 514–518 (2019).
- Bentley, A. R. et al. Multi-ancestry genome-wide gene-smoking interaction study of 387,272 individuals identifies new loci associated with serum lipids. *Nat. Genet.* 51, 636–648 (2019).
- Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021).
- Kowalski, M. H. et al. Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations. *PLoS Genet.* 15, e1008500 (2019).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

 \circledast The Author(s), under exclusive licence to Springer Nature Limited 2021, corrected publication 2023

Sarah E. Graham¹, Shoa L. Clarke^{2,3,460}, Kuan-Han H. Wu^{4,460}, Stavroula Kanoni^{5,460}, Greg J. M. Zajac^{6,460}, Shweta Ramdas^{7,460}, Ida Surakka¹, Ioanna Ntalla⁸, Sailaja Vedantam^{9,10}, Thomas W. Winkler¹¹, Adam E. Locke¹², Eirini Marouli⁵, Mi Yeong Hwang¹³, Sohee Han¹³ Akira Narita¹⁴, Ananyo Choudhury¹⁵, Amy R. Bentley¹⁶, Kenneth Ekoru¹⁸, Anurag Verma⁷, Bhavi Trivedi¹⁷, Hilary C. Martin¹⁸, Karen A. Hunt¹⁷, Qin Hui^{18,20}, Derek Klarin^{21,22,23}, Xiang Zhu^{2,24,25,26}, Gudmar Thorleifsson²⁷, Anna Helgadottir²⁷, Daniel F. Gudbjartsson^{27,28}, Hilma Holm²⁷, Isleifur Olafsson²⁹, Masato Akiyama^{30,31}, Saori Sakaue^{30,32,33}, Chikashi Terao³⁴, Masahiro Kanai^{23,30,35}, Wei Zhou^{4,36,37}, Ben M. Brumpton^{38,39,40}, Humaira Rasheed^{38,39}, Sanni E. Ruotsalainen⁴¹, Aki S. Havulinna^{41,42}, Yogasudha Veturi⁴³, QiPing Feng⁴⁴ Elisabeth A. Rosenthal⁴⁵, Todd Lingren⁴⁶, Jennifer Allen Pacheco⁴⁷, Sarah A. Pendergrass⁴⁸, Jeffrey Haessler⁴⁹, Franco Giulianini⁵⁰, Yuki Bradford⁴³, Jason E. Miller⁴³, Archie Campbell^{51,52}, Kuang Lin⁵³, Iona Y. Millwood^{53,54}, George Hindy⁵⁵, Asif Rasheed⁵⁶, Jessica D. Faul⁵⁷, Wei Zhao⁵⁸, David R. Weir⁵⁷, Constance Turman⁵⁹, Hongyan Huang⁵⁹ Mariaelisa Graff⁶⁰, Anubha Mahajan⁶¹, Michael R. Brown⁶², Weihua Zhang^{63,64,65}, Ketian Yu⁶⁶, Ellen M. Schmidt⁶⁶, Anita Pandit⁶⁶, Stefan Gustafsson⁶⁷, Xianyong Yin⁶⁶, Jian'an Luan⁶⁸, Jing-Hua Zhao⁶⁹, Fumihiko Matsuda⁷⁰, Hye-Mi Jang¹³, Kyungheon Yoon¹³ Carolina Medina-Gomez^{71,72}, Achilleas Pitsillides⁷³, Jouke Jan Hottenga^{74,75}, Gonneke Willemsen^{74,76}, Andrew R. Wood⁷⁷, Yingii Ji⁷⁷, Zishan Gao^{78,79,80}, Simon Haworth^{81,82}, Ruth E. Mitchell^{81,83}, Jin Fang Chai⁸⁴, Mette Aadahl⁸⁵, Jie Yao⁸⁶, Ani Manichaikul⁸⁷, Helen R. Warren^{88,89}, Julia Ramirez⁸⁸, Jette Bork-Jensen⁹⁰, Line L. Kårhus⁸⁵, Anuj Goel^{61,91}, Maria Sabater-Lleal^{92,93}, Raymond Noordam⁹⁴, Carlo Sidore⁹⁵, Edoardo Fiorillo⁹ Aaron F. McDaid^{97,98}, Pedro Marques-Vidal⁹⁹, Matthias Wielscher¹⁰⁰, Stella Trompet^{101,102} Naveed Sattar¹⁰³, Line T. Møllehave⁸⁵, Betina H. Thuesen⁸⁵, Matthias Munz^{104,105,106}, Lingyao Zeng^{107,108}, Jianfeng Huang¹⁰⁹, Bin Yang¹⁰⁹, Alaitz Poveda¹¹⁰, Azra Kurbasic¹¹⁰, Claudia Lamina^{111,112}, Lukas Forer^{111,112}, Markus Scholz^{113,114}, Tessel E. Galesloot¹¹⁵, Jonathan P. Bradfield¹¹⁶, E. Warwick Daw¹¹⁷, Joseph M. Zmuda¹¹⁸, Jonathan S. Mitchell¹¹⁹, Christian Fuchsberger¹¹⁹, Henry Christensen¹²⁰, Jennifer A. Brody¹²¹, Mary F. Feitosa¹¹⁷, Mary K. Wojczynski¹¹⁷, Michael Preuss¹²², Massimo Mangino^{123,124}, Paraskevi Christofidou¹²³, Niek Verweij¹²⁵, Jan W. Benjamins¹²⁵, Jorgen Engmann^{126,127}, Rachel L. Kember¹²⁶ Roderick C. Slieker^{129,130}, Ken Sin Lo¹³¹, Nuno R. Zilhao¹³², Phuong Le¹³³, Marcus E. Kleber^{134,135}, Graciela E. Delgado¹³⁴, Shaofeng Huo³⁴², Daisuke D. Ikeda¹³⁷, Hiroyuki Iha¹³⁷, Jian Yang^{138,139}, Jun Liu¹⁴⁰, Hampton L. Leonard^{141,142}, Jonathan Marten¹⁴³, Börge Schmidt¹⁴⁴ Marina Arendt^{144,145}, Laura J. Smyth¹⁴⁶, Marisa Cañadas-Garre¹⁴⁶, Chaolong Wang^{147,148}, Masahiro Nakatochi¹⁴⁹, Andrew Wong¹⁵⁰, Nina Hutri-Kähönen^{151,152}, Xueling Sim⁸ 4. Rui Xia¹⁵³ Alicia Huerta-Chagoya¹⁵⁴, Juan Carlos Fernandez-Lopez¹⁵⁵, Valeriya Lyssenko^{156,157} Meraj Ahmed¹⁵⁸, Anne U. Jackson⁶, Noha A. Yousri^{456,457}, Marguerite R. Irvin¹⁵⁹, Christopher Oldmeadow¹⁶⁰, Han-Na Kim^{161,162}, Seungho Ryu^{163,164}, Paul R. H. J. Timmers^{143,165}, Liubov Arbeeva¹⁶⁶, Rajkumar Dorajoo¹⁴⁸, Leslie A. Lange¹⁶⁷, Xiaoran Chai^{168,169}, Gauri Prasad^{170,171}, Laura Lorés-Motta¹⁷², Marc Pauper¹⁷², Jirong Long¹⁷³, Xiaohui Li⁸⁶, Elizabeth Theusch¹⁷⁴, Fumihiko Takeuchi¹⁷⁵, Cassandra N. Spracklen^{176,177}, Anu Loukola⁴¹, Sailalitha Bollepalli⁴¹, Sophie C. Warner^{178,179}, Ya Xing Wang^{180,181}, Wen B. Wei¹⁸¹ Teresa Nutile¹⁸², Daniela Ruggiero^{182,183}, Yun Ju Sung¹⁸⁴, Yi-Jen Hung¹⁸⁵, Shufeng Chen¹ Fangchao Liu¹⁰⁹, Jingyun Yang^{186,187}, Katherine A. Kentistou¹⁶⁵, Mathias Gorski^{11,16} Marco Brumat¹⁸⁹, Karina Meidtner^{190,191}, Lawrence F. Bielak¹⁹², Jennifer A. Smith^{5,192}, Prashantha Hebba¹⁹³, Aliki-Eleni Farmaki^{194,195}, Edith Hofer^{196,197}, Maoxuan Lin¹⁹⁸, Chao Xue¹, Jifeng Zhang¹, Maria Pina Concas¹⁹⁹, Simona Vaccargiu²⁰⁰, Peter J. van der Most² Niina Pitkänen^{202,203}, Brian E. Cade^{204,205}, Jiwon Lee²⁰⁴, Sander W. van der Laan²⁰⁶ Kumaraswamy Naidu Chitrala²⁰⁷, Stefan Weiss²⁰⁸, Martina E. Zimmermann¹¹, Kumaraswamy Nalou Chitrata⁻⁻⁻⁻, steran weiss⁻⁻⁻, Naloura E. Zhinnermann , Jong Young Lee²⁰⁹, Hyeok Sun Choi²¹⁰, Maria Nethander^{211,212}, Sandra Freitag-Wolf²¹³, Lorraine Southam^{214,215}, Nigel W. Rayner^{18,61,214,216}, Carol A. Wang²¹⁷, Shih-Yi Lin^{218,218,220} Jun-Sing Wang^{221,22}, Christian Couture²²³, Leo-Pekka Lyytikäinen^{224,225}, Kjell Nikus^{226,227}, Gabriel Cuellar-Partida²²⁸, Henrik Vestergaard^{90,229}, Bertha Hildalgo²³⁰, Olga Giannakopoulou⁵, Qiuyin Cai¹⁷³, Morgan O. Obura¹²⁹, Jessica van Setten²³¹, Xiaoyin Li²³², Karen Schwander¹¹⁷, Natalie Terzikhan⁷², Jae Hun Shin²¹⁰ Rebecca D. Jackson²³³, Alexander P. Reiner²³⁴, Lisa Warsinger Martin²³⁵ Zhengming Chen^{53,54}, Liming Li²³⁶, Heather M. Highland⁶⁰, Kristin L. Young⁶⁰, Takahisa Kawaguchi⁷⁰, Joachim Thiery^{114,237}, Joshua C. Bis¹²¹, Girish N. Nadkarni¹²², Lenore J. Launer²³⁸, Huaixing Li³⁴², Mike A. Nalls^{141,142}, Olli T. Raitakari^{202,203,236} Sahoko Ichihara²⁴⁰, Sarah H. Wild²⁴¹, Christopher P. Nelson^{178,179}, Harry Campbell¹⁶⁵, Susanne Jäger^{190,191}, Toru Nabika²⁴², Fahd Al-Mulla¹⁹³, Harri Niinikoski^{243,244} Peter S. Braund^{178,179}, Ivana Kolcic²⁴⁵, Peter Kovacs²⁴⁶, Tota Giardoglou²⁴⁷, Tomohiro Katsuya^{248,249}, Konain Fatima Bhatti⁵, Dominique de Kleijn²⁵⁰, Gert J. de Borst²⁵⁰, Eung Kweon Kim²⁵¹, Hieab H. H. Adams^{252,458}, M. Arfan Ikram⁷², Xiaofeng Zhu²³ Folkert W. Asselbergs²³¹, Adriaan O. Kraaijeveld²³¹, Joline W. J. Beulens^{129,253}, Xiao-Ou Shu¹⁷³, Loukianos S. Rallidis²⁵⁴, Oluf Pedersen⁹⁰, Torben Hansen⁹⁰, Paul Mitchell²⁵⁵, Alex W. Hewitt^{256,257}, Mika Kähönen^{258,259}, Louis Pérusse^{223,260}, Claude Bouchard²⁶¹ Anke Tönjes²⁴⁶, Yii-Der Ida Chen⁸⁶, Craig E. Pennell²⁷⁷, Trevor A. Mori²⁶², Wolfgang Lieb²⁸³, Andre Franke²⁶⁴, Claes Ohlsson²¹¹²⁶⁵, Dan Mellström²¹¹²⁶⁶, Yoon Shin Cho²¹⁰, Hyejin Lee²⁶⁷, Jian-Min Yuan^{268,269}, Woon-Puay Koh^{270,271}, Sang Youl Rhee²⁷², Jeong-Taek Woo²⁷ Iris M. Heid¹¹, Klaus J. Stark¹¹, Henry Völzke²⁷³, Georg Homuth²⁰⁸, Michele K. Evans²⁷⁴ Alan B. Zonderman⁷², Ozren Polasek⁷⁴⁵, Gerard Pasterman⁵⁰⁶, Imo E. Hoefer²⁰⁶, Susan Redline^{204,205}, Katja Pahkala^{202,203,275}, Albertine J. Oldehinkel²⁷⁶, Harold Snieder²⁰¹, Ginevra Biino²⁷⁷, Reinhold Schmidt¹⁹⁶, Helena Schmidt²⁷⁸, Y. Eugene Chen¹, Stefania Bandinelli²⁷⁹, George Dedoussis¹⁹⁴, Thangavel Alphonse Thanaraj¹⁹ Sharon L. R. Kardia¹⁹², Norihiro Kato¹⁷⁵, Matthias B. Schulze^{190,191,280}, Giorgia Girotto^{189,281}, Bettina Jung¹⁸⁸, Carsten A. Böger^{188,282,283}, Peter K. Joshi¹⁶⁵, David A. Bennett^{186,187}, Philip L. De Jager^{284,285}, Xiangfeng Lu¹⁰⁹, Vasiliki Mamakou^{286,287}, Morris Brown^{89,288}, Mark J. Caulfield^{88,89}, Patricia B. Munro^{88,80}, Xiuqing Guo⁶⁶, Marina Ciullo^{182,183}, Jost B. Jonas^{289,290,291}, Nilesh J. Samani^{178,179}, Jaakko Kaprio⁴¹, Päivi Pajukanta²⁹⁴, Linda S. Adair^{300,301}, Sonny Augustin Bechayda^{302,303}, H. Janaka de Silva³⁰ Ananda R. Wickremasinghe³⁰⁵, Ronald M. Krauss³⁰⁶, Jer-Yuarn Wu³⁰⁷, Wei Zheng¹⁷³, Anneke I. den Hollander¹⁷², Dwaipayan Bharadwaj^{171,308}, Adolfo Correa³⁰ James G. Wilson³¹⁰, Lars Lind³¹¹, Chew-Kiat Heng^{312,313}, Amanda E. Nelson^{166,314}, Yoonne M. Golightly^{166,315,316,317}, James F. Wilson^{143,165}, Brenda Penninx^{318,319}, Hyung-Lae Kim³²⁰ John Attia^{160,327}, Rodney J. Scott^{160,321}, D. C. Rao³²², Donna K. Arnett³²³, Steven C. Hunt^{456,456}, Mark Walker³²⁴, Heikki A. Koistinen^{325,326,327}, Giriraj R. Chandak^{158,328}, Chittaranjan S. Yajnik³²⁹, Josep M. Mercader^{293,330,331}, Teresa Tusié-Luna^{295,296,297}, Carlos A. Aguilar-Salinas^{298,296}

Clicerio Gonzalez Villalpando³³², Lorena Orozco³³³, Myriam Fornage^{153,334}, E. Shyong Tai^{44,335}, Rob M. van Da^{44,335}, Terho Lehtimäki^{224,225}, Nish Chaturvedi¹⁵⁰, Mitsuhiro Yokota³³⁶, Jianjun Liu¹⁴⁸, Dermot F. Reilly³³⁷, Amy Jayne McKnight¹⁴⁶, Frank Kee¹⁴⁶, Karl-Heinz Jöckel¹⁴⁴, Mark I. McCarthy^{48,61,338}, Colin N. A. Palmer³³⁹, Veronique Vitart¹⁴ Kart-Heinz Jocket¹¹⁷, Mark I. McCarthy^{110,110}, Colin N. A. Palmer¹¹⁰, Veronique Vitart¹¹⁷, Caroline Hayward¹⁴³, Eleanor Simonsick³⁴⁰, Cornelia M. van Duijn¹⁴⁰, Fan Lu³⁴¹, Jia Qu³⁴¹, Haretsugu Hishigakl¹³⁷, Xu Lin³⁴², Winfried März^{134,343,344}, Esteban J. Parra¹³³, Miguel Cruz³⁴⁵, Vilmundur Gudnason^{132,346}, Jean-Claude Tardif^{131,347}, Guillaume Lettre^{131,348}, Leen M. 't Hart^{129,130,349}, Petra J. M. Elders³⁵⁰, Scott M. Damrauer^{353,354}, Meena Kumari³⁵⁵ Mika Kivimaki¹²⁷, Pim van der Harst¹²⁵, Tim D. Spector¹²³, Ruth J. F. Loos^{122,356} Michael A. Province¹¹⁷, Bruce M. Psaty^{357,358}, Ivan Brandslund^{120,359}, Peter P. Pramstaller¹¹⁹, Kaare Christensen³⁶⁰, Samuli Ripatti^{41,361,362}, Elisabeth Widén⁴¹, Hakon Hakonarson^{363,364}, Struan F. A. Grant^{351,364,365}, Lambertus A. L. M. Kiemeney¹¹⁵, Jacqueline de Graaf¹¹⁵, Markus Loeffler^{113,114}, Florian Kronenberg^{112,366}, Dongfeng Gu^{109,367}, Jeanette Erdmann³⁶⁸ Heribert Schunkert^{369,370}, Paul W. Franks¹¹⁰, Allan Linneberg^{85,371}, J. Wouter Jukema^{101,372}, Amit V. Khera^{373,374,375,376}, Minna Männikkö³⁷⁷, Marjo-Riitta Jarvelin^{100,378,3} Zoltan Kutalik^{98,380}, Francesco Cucca^{381,382}, Dennis O. Mook-Kanamori^{383,384}, Ko Willems van Dijk^{385,386,387}, Hugh Watkins^{61,388}, David P. Strachan³⁸⁹, Niels Grarup⁹⁰, Peter Sever³⁹⁰, Neil Poulter³⁹¹, Jerome I, Rotter⁸⁶, Thomas M, Dantoft⁸⁵, Fredrik Karpe^{392,393}, Matt J. Neville^{392,393}, Nicholas J. Timpson^{81,83}, Ching-Yu Cheng^{168,394}, Tien-Yin Wong¹¹ Chiea Chuen Khor¹⁴⁸, Charumathi Sabanayagam^{168,394}, Annette Peters^{80,191,395} Christian Gieger^{78,01,01}, Andrew T. Hattersley³⁹⁶, Nancy L. Pedersen³⁹⁷, Patrik K. E. Magnusson³⁹⁷, Dorret I. Boomsma^{74,398,399}, Eco J. C. de Geus^{74,319}, L. Adrienne Cupples^{73,400}, Joyce B. J. van Meurs^{71,72}, Mohsen Ghanbari^{72,401} Penny Gordon-Larsen^{300,301}, Wei Huang⁴⁰², Young Jin Kim¹³, Yasuharu Tabara⁷⁰, Nicholas J. Wareham⁶⁸, Claudia Langenberg⁶⁸, Eleftheria Zeggini^{214,215,403}, Johanna Kuusisto⁴⁰⁴, Markku Laakso⁴⁰⁴, Erik Ingelsson^{3,87,405,406}, Goncalo Abecasis^{66,407}, John C. Chambers^{63,64,408,409}, Jaspal S. Kooner^{64,65,410,411}, Paul S. de Vries⁶², Alanna C. Morrison⁶², Kari E. North⁶⁰, Martha Daviglus⁴¹², Peter Kraft^{59,413} Nicholas G. Martin⁴¹⁴, John B. Whitfield⁴¹⁴, Shahid Abbas^{56,415}, Danish Saleheen^{56,416,417}, Robin G. Walters^{53,54,19}, Michael V. Holmes^{53,54,19}, Corri Black⁴²⁹, Blair H. Smith⁴²¹, Anne E. Justice⁴²², Aris Baras⁴⁰⁷, Julie E. Buring^{50,233}, Paul M. Ridker^{50,293}, Daniel I. Chasman^{50,292}, Charles Kooperberg⁴⁹, Wei-Qi Wei⁴²³, Gail P. Jarvik⁴²⁴, Bahram Namjou⁴²⁵, M. Geoffrey Hayes^{426,427,428}, Marylyn D. Ritchie⁴³, Pekka Jousilahti⁴², Veikko Salomaa⁴², Kristian Hveem^{38,429,430}, Bjørn Olav Åsvold^{38,429,431}, Michiaki Kubo⁴³² Yoichiro Kamatani^{30,433}, Yukinori Okada^{30,32,434,435}, Yoshinori Murakami⁴³ Unnur Thorsteinsdottir^{27,346}, Kari Stefansson^{27,346}, Yuk-Lam Ho⁴³⁷, Julie A. Lynch^{438,439}, Daniel J. Rader^{351,352}, Philip S. Tsao^{2,3,440}, Kyong-Mi Chang^{352,441}, Kelly Cho^{437,442} Christopher J. O'Donnell^{437,442}, John M. Gaziano^{437,442}, Peter Wilson^{443,444}, Charles N. Rotimi¹⁶, Scott Hazelhurst^{15,445}, Michèle Ramsay^{15,446}, Richard C. Trembath⁴⁴⁷, David A. van Heel¹⁷, Gen Tamiya¹⁴, Masayuki Yamamoto¹⁴, Bong-Jo Kim¹³, Karen L. Mohlke¹⁷ Timothy M. Frayling⁷⁷, Joel N. Hirschhorn^{9,10,448}, Sekar Kathiresan^{374,376,449} VA Million Veteran Program*, Global Lipids Genetics Consortium*, Michael Boehnke⁶, Pradeep Natarajan^{3/450,451,452}, Gina M. Peloso^{73,461}, Christopher D. Brown^{7,461} Andrew P. Morris^{453,461}, Themistocles L. Assimes^{2,3,440,461,52}, Panos Delouka: A. Panos Deloukas^{5,89,454,461} Yan V. Sun^{19,20,461} & Cristen J. Willer^{1,4,455,461}

¹Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA. ²VA Palo Alto Health Care System, Palo Alto, CA, USA. ³Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA, ⁴Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA. ⁵William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK. ⁶Department of Biostatistics and Center for Statistics Genetics, University of Michigan, Ann Arbor, MI, USA. ⁷Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 8 Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK. ⁹Endocrinology, Boston Children's Hospital, Boston, MA, USA. ¹⁰Medical and Population Genetics, Broad Institute, Cambridge, MA, USA. 11 Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany. ¹²McDonnell Genome Institute and Department of Medicine, Washington University, St Louis, MO, USA. ¹³Department of Precision Medicine, Division of Genome Science, National Institute of Health, Cheongju-si, South Korea. ¹⁴Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan, ¹⁵Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.¹⁶Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA. ¹⁷Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.¹⁸Wellcome Sanger Institute, Hinxton, UK. ¹⁹Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA. ²⁰Atlanta VA Health Care System, Decatur, GA, USA. ²¹Malcolm Randall VA Medical Center, Gainesville, FL, USA. ²²Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL, USA. 23Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA, ²⁴Department of Statistics, The Pennsylvania State University, University Park, PA, USA. ²⁵Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA. ²⁶Department of Statistics, Stanford University, Stanford, CA, USA. ²⁷deCODE genetics/Amgen, Reykjavik, Iceland. 28 School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland. ²⁹Department of Clinical Biochemistry, Landspitali–National University Hospital of Iceland, Reykjavik, Iceland. ³⁰Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan, ³¹Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan. ³²Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan. ³³Department of Allergy and

Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. ³⁴Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan, ³⁵Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA. ³⁶Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA, ³⁷Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA. ³⁸K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway. ³⁹MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.⁴⁰Department of Thoracic Medicine, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway, ⁴¹Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.⁴² Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland. ⁴³Department of Genetics, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 44Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.⁴⁵Department of Medicine (Medical Genetics), University of Washington, Seattle, WA, USA. 46 Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA, 47Center for Genetic Medicine, Northwestern University, Evanston, IL, USA. 48 Genentech, South San Francisco, CA, USA. ⁴⁹Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA. ⁵⁰Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA. ⁵¹Centre for Genomic and Experimental Medicine. Institute of Genetics and Molecula Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK, ⁵²Usher Institute for Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK. ⁵³Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK.⁵⁴Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK. 55 Department of Population Medicine, Qatar University College of Medicine, QU Health, Doha, Qatar.⁵⁶Center for Non-Communicable Diseases, Karachi, Pakistan.⁵⁷Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA, ⁵⁸Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA. ⁵⁹Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA. 60 Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA. ⁶¹Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK, 62Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA. 63 Department of Epidemiology and Biostatistics, Imperial College London, London, UK. ⁶⁴Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Southall, UK. 65 Imperial College Healthcare NHS Trust, London, UK. 66 Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA. ⁶⁷Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden. 68 MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK. 69 Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge Strangeways Research Laboratory, Cambridge, UK. ⁷⁰Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan, ⁷¹Department of Internal Medicine, Frasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. 72Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. 73 Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA. ⁷⁴Department of Biological Psychology, Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, ⁷⁵Amsterdam Public Health, VU Medical Center Amsterdam, Amsterdam, The Netherlands. ⁷⁶Amsterdam Public Health Research Institute, VU Medical Center Amsterdam, Amsterdam, The Netherlands. ⁷⁷Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK. 78 Department of Clinical Acupuncture and Moxibustion, Nanjing University of Chinese Medicine, Nanjing, China. 79 Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.⁸⁰Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany, ⁸¹MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK. 82 Bristol Dental School, University of Bristol, Bristol, UK.⁸³Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK. 84 Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore. 85 Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark.⁸⁶The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovations (Formerly LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, USA. 87 Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA. 88 William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, John Vane Science Centre, Queen Mary University of London, London, UK.⁸⁹NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK. 90 Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.⁹¹Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK. 92Group of Genomics of Complex Diseases, Research Institute of Hospital de la Santa Creu i Sant Pau (IIB Sant Pau), Barcelona, Spain, ⁹³Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden. 94Department of

Internal Medicine, Section Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands. ⁹⁵Institute for Genetic and Biomedical Research, Italian National Council of Research (IRGB CNR), Cagliari, Italy, ⁹⁶Institute for Genetic and Biomedical Research, Italian National Council of Research (IRGB CNR), Lanusei, Italy. 97 University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland, 98Swiss Institute of Bioinformatics, Lausanne, Switzerland. ⁹⁹Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland. ¹⁰⁰Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK. ¹⁰¹Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands, ¹⁰²Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands. ¹⁰³BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, Glasgow, UK. ¹⁰⁴Institute for Cardiogenetics, University of Lübeck, DZHK (German Research Centre for Cardiovascular Research), Partner site Hamburg/Lübeck/Kiel, University Heart Center Lübeck, Lübeck, Germany.¹⁰⁵Charité–University Medicine Berlin, Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany. ¹⁰⁶Department of Periodontology and Synoptic Dentistry, Berlin Institute of Health, Institute for Dental and Craniofacial Sciences, Berlin, Germany. 107 Deutsches Herzzentrum München, Klinik für Herzund Kreislauferkrankungen, Technische Universität München, Munich, Germany. ¹⁰⁸Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Partner site Munich Heart Alliance, Munich, Germany. 109Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.¹¹⁰Lund University Diabetes Centre, Malmo, Sweden. ¹¹¹Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria. ¹¹²German Chronic Kidney Disease Study, Innsbruck, Austria.¹¹³Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany. ¹¹⁴LIFE Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany.¹¹⁵Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands. ¹¹⁶Quantinuum Research, Wayne, PA, USA. ¹¹⁷Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA. ¹¹⁸Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA. ¹¹⁹Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy, ¹²⁰Department of Clinical Biochemistry, Lillebaelt Hospital, Veile, Denmark.¹²¹Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA. ¹²²The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ¹²³Department of Twin Research and Genetic Epidemiology, King's College London, London, UK. ¹²⁴NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, UK. ¹²⁵Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands. ¹²⁶Institute of Cardiovascular Sciences, University College London, London, UK, ¹²⁷Department of Epidemiology and Public Health, University College London, London, UK. ¹²⁸Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA. ¹²⁹Amsterdam UMC, Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands. ¹³⁰Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands. ¹³¹Montreal Heart Institute, Montreal, Quebec, Canada. ¹³²Icelandic Heart Association, Reykjavik, Iceland. ¹³³Department of Anthropology, University of Toronto at Mississauga, Mississauga, Ontario, Canada. ¹³⁴Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. ¹³⁵Synlab MVZ Humangenetik Mannheim, Mannheim, Germany. ¹³⁷Biomedical Technology Research Center, Tokushima Research Institute, Otsuka Pharmaceutical, Tokushima, Japan, ¹³⁸Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia. ¹³⁹Institute for Advanced Research, Wenzhou Medical University, Wenzhou, China. ¹⁴⁰Nuffield Department of Population Health, University of Oxford, Oxford, UK. 141Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, USA. ¹⁴²Data Tecnica International, Glen Echo, MD, USA.¹⁴³MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK. 144Institute for Medical Informatics, Biometrie and Epidemiology, University of Duisburg-Essen, Essen, Germany. 145 Department of Computer Science, University of Applied Sciences and Arts Dortmund, Dortmund, Germany.¹⁴⁶Centre for Public Health, Queen's University of Belfast, Belfast, UK. 147 Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. 148 Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore. ¹⁴⁹Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan.¹⁵⁰MRC Unit for Lifelong Health and Ageing at UCL, London, UK. ¹⁵¹Department of Pediatrics, Tampere University Hospital, Tampere, Finland. ¹⁵²Department of Pediatrics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland. ¹⁵³Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.¹⁵⁴Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Ciudad de Mexico, Mexico, Mexico. 155 Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica, Ciudad de Mexico, Mexico, Mexico. ¹⁵⁶Center for Diabetes Research, University of Bergen, Bergen, Norway. ¹⁵⁷Lund University Diabetes Center, Lund University, Malmo, Sweden. ¹⁵⁸Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India. 159 Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA. ¹⁶⁰Hunter Medical Research Institute, Newcastle, New South Wales,

Australia.¹⁶¹Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea. ¹⁶²Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Korea. ¹⁶³Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea.¹⁶⁴Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea. ¹⁶⁵Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK. ¹⁶⁶Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA. ¹⁶⁷Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Aurora, CO, USA, ¹⁶⁸Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore, ¹⁶⁹Department of Ophthalmology, National University of Singapore and National University Health System, Singapore, Singapore. ¹⁷⁰Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India. ¹⁷¹Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology Campus, New Delhi, India.¹⁷²Departments of Ophthalmology and Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands. ¹⁷³Vanderbilt Epidemiology Center, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA. ¹⁷⁴Department of Pediatrics, University of California, San Francisco, Oakland, CA, USA. ¹⁷⁵National Center for Global Health and Medicine, Tokyo, Japan. ¹⁷⁶Department of Genetics, University of North Carolina, Chapel Hill, NC, USA. ¹⁷⁷Department of Biostatistics and Epidemiology, University of Massachusetts-Amherst, Amherst, MA, USA, ¹⁷⁸Department of Cardiovascular Sciences, University of Leicester, Leicester, UK. 179NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK.¹⁸⁰Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China. ¹⁸¹Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China. ¹⁸²Institute of Genetics and Biophysics "Adriano Buzzati-Traverso"-CNR, Naples, Italy. ¹⁸³IRCCS Neuromed, Pozzilli, Isernia, Italy.¹⁸⁴Department of Psychiatry, Washington University, St Louis, MO, USA. ¹⁸⁵Division of Endocrinology and Metabolism, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan. 186 Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA. 187 Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.¹⁸⁸Department of Nephrology, University Hospital Regensburg, Regensburg, Germany.¹⁸⁹Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy, ¹⁹⁰Department of Molecular Epidemiology, German Institute of Humar Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.¹⁹¹German Center for Diabetes Research (DZD), Neuherberg, Germany. ¹⁹²Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA. ¹⁹³Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait, Kuwait.¹⁹⁴Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece. ¹⁹⁵Department of Population Science and Experimental Medicine, University College London, London, UK, ¹⁹⁶Department of Neurology, Clinical Division of Neurogeriatrics, Medical University of Graz, Graz, Austria. ¹⁹⁷Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria. 198 Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA. 199 Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy. 200 Institute of Genetic and Biomedical Research, National Research Council of Italy, UOS of Sassari, Sassari, Italy, ²⁰¹Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands. ²⁰²Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland. 203 Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland. ²⁰⁴Sleep Medicine and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA, 205 Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA. 206 Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands. 207 Laboratory of Epidemiology and Population Science, National Institute on Aging Intramural Research Program, NIH Biomedical Research Center, NIA, Baltimore, MD, USA. 208 Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald and University Medicine Greifswald, Greifswald, Germany.²⁰⁹Oneomics, Bucheon, Korea.²¹⁰Department of Biomedical Science, Hallym University, Chuncheon, Korea. 211 Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. 212 Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. 213 Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany. ²¹⁴Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.²¹⁵Wellcome Trust Sanger Institute, Hinxton, UK.²¹⁶Oxford Centre for Diabetes Endocrinology and Metabolism, Oxford, UK. 217 School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, New South Wales, Australia. ²¹⁸Center for Geriatrics and Gerontology, Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital Taichung, Taiwan.²¹⁹School of Medicine, National Yang-Ming University, Taipei, Taiwan. ²²⁰School of Medicine, National Defense Medical Center, Taipei, Taiwan. ²²¹Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan. 222 Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan. 223 Department of Kinesiology, Université Laval, Quebec, Quebec, Canada.²²⁴Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland. ²²⁵Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.

²²⁶Department of Cardiology, Heart Center, Tampere University Hospital, Tampere, Finland. ²²⁷Department of Cardiology, Finnish Cardiovascular Research Center–Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland. 228 University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia, 229 Department of Medicine, Bornholms Hospital, Ronne, Denmark, 230 School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA. ²³¹Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands. ²³²Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA. 233 Division of Endocrinology, Ohio State University, Columbus, OH, USA. ²³⁴Department of Epidemiology, University of Washington, Seattle, WA, USA. 235 School of Medicine and Health Sciences, George Washington University, Washington, DC, USA. ²³⁶Department of Epidemiology, School of Public Health, Peking University Health Science Center, Beijing, China. 237 Institute for Laboratory Medicine, University Hospital Leipzig, Leipzig, Germany.²³⁸Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Baltimore, MD, USA. ²³⁹Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland. 240 Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan, ²⁴¹Centre for Population Health Sciences, Usher Institute, University of Edinburgh, Edinburgh, UK. 242 Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan.²⁴³Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland. 244 Department of Physiology, University of Turku, Turku, Finland. ²⁴⁵Faculty of Medicine, University of Split, Split, Croatia. ²⁴⁶Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany, 247 Department of Nutrition-Dietetics, Harokopio University, Eleftheriou Venizelou, Athens, Greece. 248 Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Japan.²⁴⁹Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan.²⁵⁰Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands. ²⁵¹Corneal Dystrophy Research Institute, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea. 252 Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. ²⁵³Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands. ²⁵⁴Second Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece, 255 Center for Vision Research, Department of Ophthalmology and The Westmead Institute, University of Sydney, Sydney, New South Wales, Australia. 256 Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Hobart, Tasmania, Australia.²⁵⁷Centre for Eye Research Australia, University of Melbourne, Melbourne, Victoria, Australia.²⁵⁸Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland. 259 Department of Clinical Physiology, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.²⁶⁰Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada. ²⁶¹Pennington Biomedical Research Center, Baton Rouge, LA, USA. ²⁶²Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia. ²⁶³Institute of Epidemiology, Kiel University, Kiel, Germany. ²⁶⁴Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany. ²⁶⁵Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, Sweden. 266 Geriatric Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. 267 Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea. 268 Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA. 269 Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA. 270 Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. 271Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore, Singapore. 272 Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea. 273 Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany. 274 Laboratory of Epidemiology and Population Science, National Institute on Aging Intramural Research Program, NIH Biomedical Research Center, Baltimore, MD, USA. 275 Paavo Nurmi Centre, Sports and Exercise Medicine Unit, Department of Physical Activity and Health, University of Turku, Turku, Finland. 276 Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. ²⁷⁷Institute of Molecular Genetics, National Research Council of Italy, Pavia, Italy, ²⁷⁸Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria.²⁷⁹Local Health Unit Toscana Centro, Firenze, Italy.²⁸⁰Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany. ²⁸¹Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy. 282 Department of Nephrology, Diabetology, Rheumatology, Traunstein Hospital, Traunstein, Germany. 283KfH Kidney Center Traunstein, Traunstein, Germany. 284 Center for Translational and Systems Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA. 285 Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA. ²⁸⁶Medical School, National and Kapodistrian University Athens, Athens, Greece. 287 Dromokaiteio Psychiatric Hospital, Athens, Greece. 288 Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK. 289 Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.²⁹⁰Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.²⁹¹Institute of Molecular

and Clinical Ophthalmology Basel, Basel, Switzerland. 292 Harvard Medical School, Boston, MA, USA. ²⁹³Harvard Medical School, Boston, MA, USA. ²⁹⁴Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA. 295 Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, Mexico.²⁹⁶Instituto de Investigaciones Biomédicas, UNAM, Ciudad de México, Mexico, Mexico.²⁹⁷Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Bimédicas UNAM/ Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, Mexico.²⁹⁸Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, Mexico, 299 Dirección de Nutrición and Unidad de Estudios de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, Mexico. 300 Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA. 301 Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA. ³⁰²USC–Office of Population Studies Foundation, University of San Carlos, Cebu City, Philippines. 303 Department of Anthropology, Sociology, and History, University of San Carlos, Cebu City, Philippines. 304 Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka. 305 Department of Public Health, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka. 306 Departments of Pediatrics and Medicine, University of California, San Francisco, San Francisco, CA, USA. ³⁰⁷Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan. ³⁰⁸Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India. ³⁰⁹Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA. ³¹⁰Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA. ³¹¹Department of Medical Sciences, Uppsala University, Uppsala, Sweden. ³¹²Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. ³¹³Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore. ³¹⁴Department of Medicine, University of North Carolina, Chapel Hill, NC, USA. ³¹⁵Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA ³¹⁶Injury Prevention Research Center, University of North Carolina, Chapel Hill, NC, USA. ³¹⁷Division of Physical Therapy, University of North Carolina, Chapel Hill, NC, USA. ³¹⁸Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. ³¹⁹Amsterdam Public Health Research Institute, VU Medical Center Amsterdam, Amsterdam, The Netherlands. 320 Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Korea. ³²¹Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia. 322 Division of Biostatistics, Washington University School of Medicine, St Louis, MO, USA. ³²³University of Kentucky, College of Public Health, Lexington, KY, USA. 324 Institute of Cellular Medicine (Diabetes), The Medical School, Newcastle University, Newcastle upon Tyne, UK. ³²⁵Department of Population Health, Finnish Institute for Health and Welfare, Helsinki, Finland. 326 University of Helsinki and Department of Medicine, Helsinki University Hospital, Helsinki, Finland. 327 Minerva Foundation Institute for Medical Research, Helsinki, Finland. 328 Academy of Scientific and Innovative Research (AcSIR), New Delhi, India. ³²⁹Diabetology Research Centre, KEM Hospital and Research Centre, Pune, India. ³³⁰Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA. 331 Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA. ³³²Instituto Nacional de Salud Publica y Centro de Estudios en Diabetes, Cuernavaca, Mexico. 333 Instituto Nacional de Medicina Genómica, Mexico, Mexico. 334 Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA. 335Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore. ³³⁶Kurume University School of Medicine, Kurume, Japan. ³³⁷Genetics, Merck Sharp & Dohme, Kenilworth, NJ, USA. 338Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK. 339 Population Health and Genomics, University of Dundee, Ninwells Hospital and Medical School, Dundee, UK. 340 Intramural Research Program, National Institute on Aging, Baltimore, MD, USA. 341The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China. ³⁴²Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. 343 Synlab Academy, Synlab, Mannheim, Germany. 344 Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria. ³⁴⁵Unidad de Investigacion Medica en Bioquimica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico, Mexico. 346 Faculty of Medicine, University of Iceland, Reykjavik, Iceland. ³⁴⁷Department of Medicine, Faculty of Medecine, Université de Montréal, Quebec, Quebec, Canada. 348 Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada. ³⁴⁹Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands. ³⁵⁰Amsterdam UMC, Department of General Practice and Elderly Care, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands. ³⁵¹Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA. ³⁵²Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. ³⁵³Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA. 354 Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA. ³⁵⁵Institute of Social and Economic Research, University of Essex, Essex, UK. ³⁵⁶The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ³⁵⁷Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA, USA, 358 Kaiser Permanent Washington Health Research Institute, Seattle, WA, USA. 359 Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark. ³⁶⁰Danish Aging

Research Center, University of Southern Denmark, Odense, Denmark. ³⁶¹Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland. ³⁶²Broad Institute of MIT and Harvard, Cambridge, MA, USA. ³⁶³Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA. ³⁶⁴Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA. ³⁶⁵Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA. ³⁶⁶Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria. 367 School of Medicine, Southern University of Science and Technology, Shenzhen, China. ³⁶⁸Institute for Cardiogenetics, University of Lübeck, DZHK (German Research Centre for Cardiovascular Research), Partner site Hamburg/Lübeck/Kiel, and University Heart Center Lübeck, Lübeck, Germany. 369 Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Munich, Germany. 370 Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., Partner site Munich Heart Alliance, Munich, Germany. ³⁷¹Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. ³⁷²Netherlands Heart Institute, Utrecht. The Netherlands. ³⁷³Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA. ³⁷⁴Program of Medical and Population Genetics, Broad Institute, Cambridge, MA, USA. 375 Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA. ³⁷⁶Department of Medicine, Harvard Medical School, Boston, MA, USA. ³⁷⁷Northern Finland Birth Cohorts, Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, Oulu, Finland. ³⁷⁸Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland. ³⁷⁹Biocenter of Oulu, University of Oulu, Oulu, Finland. ³⁸⁰University Center for Primary Care and Public Health, Lausanne, Switzerland. ³⁸¹Institute for Genetic and Biomedical Research, Italian National Council of Research (IRGB CNR), Cagliari, Italy. ³⁸²University of Sassari, Sassari, Italy. ³⁸³Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands. ³⁸⁴Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands. ³⁸⁵Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands. ³⁸⁶Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands. ³⁸⁷Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands. ³⁸⁸Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK. ³⁸⁹Population Health Research Institute, St George's University of London, London, UK. ³⁹⁰National Heart and Lung Institute, Imperial College London, London, UK. ³⁹¹School of Public Health, Imperial College London, London, UK. ³⁹²OCDEM, University of Oxford, Churchill Hospital, Oxford, UK. ³⁹³NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, UK. ³⁹⁴Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore. ³⁹⁵DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance Partner Site, Munich, Germany. ³⁹⁶University of Exeter Medical School, University of Exeter, Exeter, UK. ³⁹⁷Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. ³⁹⁸Amsterdam Public Health, VU Medical Center Amsterdam, Amsterdam, The Netherlands. ³⁹⁹Amsterdam Reproduction and Development Research Institute, VU Medical Center Amsterdam, Amsterdam, the Netherlands. ⁴⁰⁰Framingham Heart Study, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA ⁴⁰¹Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. ⁴⁰²Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China. ⁴⁰³TUM School of Medicine, Technical University of Munich (TUM) and Klinikum Rechts der Isar, Munich, Germany. 404 Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland. 405 Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA. 406 Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA. 407 Regeneron Pharmaceuticals, Tarrytown, NY, USA. ⁴⁰⁸Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore. ⁴⁰⁹Imperial College Healthcare NHS Trust, Imperial College London, London, UK. ⁴¹⁰MRC–PHE Centre for Environment and Health, Imperial College London, London, UK. $^{\rm 411}{\rm National}$ Heart and Lung Institute, Imperial College London, London, UK. $^{\rm 412}{\rm Institute}$ for Minority Health Research, University of Illinois College of Medicine, Chicago, IL, USA, ⁴¹³Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA. ⁴¹⁴QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia. ⁴¹⁵Faisalabad Institute of Cardiology, Faislabad, Pakistan. ⁴¹⁶Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA. 417 Department of Cardiology, Columbia University Irving Medical Center, New York, NY, USA. 418 Big Data Institute, University of Oxford, Oxford, UK. ⁴¹⁹National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals, Oxford, UK. 420 Aberdeen Centre for Health Data Science, School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, UK. 421 Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee. Dundee, UK. 422 Biomedical and Translational Informatics, Geisinger Health, Danville, PA, USA. 423 Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA. 424 Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington Medical Center, Seattle, WA, USA. ⁴²⁵Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA. ⁴²⁶Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA. ⁴²⁷Department of Anthropology, Northwestern University, Evanston, IL, USA. ⁴²⁸Center for Genetic Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA. ⁴²⁹HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian

University of Science and Technology, Levanger, Norway. 430 Department of Medicine, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway. 431Department of Endocrinology, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway. ⁴³²RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. ⁴³³Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences. Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan. 434 Laboratory of Statistical Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.⁴³⁵Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan. 436 Division of Molecular Pathology, Institute of Medical Science, The University of Tokvo. Tokvo. Japan. ⁴³⁷VA Boston Healthcare System, Boston, MA, USA. ⁴³⁸VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT, USA. 439University of Massachusetts, Boston, MA, USA. 440 Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA. 441Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA. 442Department of Medicine, Brigham Women's Hospital, Boston, MA, USA. ⁴⁴³Atlanta VA Medical Center, Atlanta, GA, USA. ⁴⁴⁴Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA. 445 School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa. 446 Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. 447School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College

London, London, UK, 448 Departments of Pediatrics and Genetics, Harvard Medical School, Boston, MA, USA. 449Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA. ⁴⁵⁰Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. ⁴⁵¹Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. ⁴⁵²Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA. ⁴⁵³Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK, 454Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia. 455 Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA. ⁴⁵⁶Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar. ⁴⁵⁷Department of Computer and Systems Engineering, Alexandria University, Alexandria, Egypt. ⁴⁵⁸Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. ⁴⁵⁹Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA. ⁴⁶⁰These authors contributed equally: Shoa L. Clarke, Kuan-Han H. Wu, Stavroula Kanoni, Greg J. M. Zajac, Shweta Ramdas. ⁴⁶¹These authors jointly supervised this work: Gina M. Peloso, Christopher D. Brown, Andrew P. Morris, Themistocles L. Assimes, Panos Deloukas, Yan V. Sun, Cristen J. Willer, *Lists of authors and their affiliations appear online. He-mail: tassimes@stanford.edu; cristen@umich.edu

VA Million Veteran Program

Shoa L. Clarke^{2,3,460}, Qin Hui^{20,21}, Derek Klarin^{22,23,24}, Xiang Zhu^{25,26,27,28}, Scott M. Damrauer^{374,375}, Yuk-Lam Ho⁴⁷², Julie A. Lynch^{473,474}, Daniel J. Rader^{373,475}, Phil S. Tsao^{2,3,476}, Kyong-Mi Chang^{475,477}, Kelly Cho^{472,478}, Christopher J. O'Donnell^{472,478}, John M. Gaziano^{472,478}, Peter Wilson^{479,480}, Themistocles L. Assimes^{2,3,476,502}, Yan V. Sun^{20,21,502}

A full list of members and their affiliations appears in the Supplementary Information.

Global Lipids Genetics Consortium

Sarah E. Graham¹, Shoa L. Clarke^{2,3,460}, Kuan-Han H. Wu^{4,460}, Stavroula Kanoni^{5,460}, Greg J. M. Zajac^{6,460}, Shweta Ramdas^{7,460}, Ida Surakka¹, Ioanna Ntalla⁸, Sailaja Vedantam^{9,10}, Thomas W. Winkler¹¹, Adam E. Locke¹², Eirini Marouli⁵, Mi Yeong Hwang¹³, Sohee Han¹³ Akira Narita¹⁴, Ananyo Choudhury¹⁵, Amy R. Bentley¹⁶, Kenneth Ekoru¹⁶, Anurag Verma⁷, Bhavi Trivedi¹⁷, Hilary C. Martin¹⁸, Karen A. Hunt¹⁷, Qin Hui^{19,20}, Derek Klarin^{21,22} Xiang Zhu^{2,24,25,26}. Gudmar Thorleifsson²⁷. Anna Helgadottir²⁷. Daniel F. Gudbiartsson^{27,28}. Nang Zitu ", Journa Information , Anna Hogarotti, Janet Todau Jan Saoh, Janet Todau Jan Saoh, Janet Todau Janet Saoh, Janet Sanni E. Ruotsalainen⁴¹, Aki S. Havulinna^{41,42}, Yogasudha Veturi⁴³, QiPing Feng⁴ Elisabeth A. Rosenthal⁴⁵, Todd Lingren⁴⁶, Jennifer Allen Pacheco⁴⁷, Sarah A. Pendergrass⁴⁸, Jaffrey Haessler⁴⁹, Franco Giulianini⁵⁰, Yuki Bradford⁴³, Jason E. Miller⁴³, Archie Campbell^{51,52}, Kuang Lin⁵³, Iona Y. Millwood^{53,54}, George Hindy⁵⁵, Asif Rasheed⁵⁶, Jessica D. Faul⁶⁷, Wei Zhao⁵⁸, David R. Weir⁶⁷, Constance Turman⁶, Hongyan Huang⁶⁹, Mariaelisa Graff⁶⁰, Anubha Mahajan⁶¹, Michael R. Brown⁶², Weihua Zhang^{63,64,65}, Ketian Yu⁶⁶, Ellen M. Schmidt⁶⁶, Anita Pandit⁶⁶, Stefan Gustafsson⁶⁷, Xianyong Yin⁶⁶, Jian'an Luan⁶⁸, Jing-Hua Zhao⁶⁹, Fumihiko Matsuda⁷⁰, Hye-Mi Jang¹³, Kyungheon Yoon¹⁵ Carolina Medina-Gomez^{71,72}, Achilleas Pitsillides⁷³, Jouke Jan Hottenga^{74,75}, Gonneke Willemsen^{74,76}, Andrew R. Wood⁷⁷, Yingji Ji⁷⁷, Zishan Gao^{78,79,80}, Simon Haworth^{81,82}, Ruth E. Mitchell^{81,83}, Jin Fang Chai⁸⁴, Mette Aadahl⁸⁵, Jie Yao⁸⁶, Ani Manichaikul⁸⁷, Helen R. Warren^{88,89}, Julia Ramirez⁸⁸, Jette Bork-Jensen⁹⁰, Line L. Kårhus⁸⁵, Anuj Goel^{61,91}, Maria Sabater-Lleal^{92,93}, Raymond Noordam⁹⁴, Carlo Sidore⁹⁵, Edoardo Fiorillo⁹⁶, Aaron F. McDaid^{97,98}, Pedro Marques-Vidal⁹⁹, Matthias Wielscher¹⁰⁰, Stella Trompet Naveed Sattar¹⁰³, Line T. Møllehave⁸⁵, Betina H. Thuesen⁸⁵, Matthias Munz^{104,105,10} Lingyao Zeng^{107,06}, Jianfeng Huang¹⁰⁹, Bin Yang¹⁰⁹, Alaitz Poveda¹¹⁰, Azra Kurbasic¹¹⁰, Claudia Lamina^{111,112}, Lukas Forer^{111,112}, Markus Scholz^{113,114}, Tessel E. Galesloot¹¹⁵, Jonathan P. Bradfield¹¹⁶, E. Warwick Daw¹¹⁷, Joseph M. Zmuda¹¹⁸, Jonathan S. Mitchell¹¹⁹, Christian Fuchsberger¹¹⁹, Henry Christensen¹²⁰, Jennifer A. Brody¹²¹, Mary F. Feitosa¹ Mary K. Wojczynski¹¹⁷, Michael Preuss¹²², Massimo Mangino^{123,124}, Paraskevi Christofidou¹²³, Niek Verweij¹²⁵, Jan W. Benjamins¹²⁵, Jorgen Engmann^{126,127}, Rachel L. Kember¹² Roderick C. Slieker^{129,130}, Ken Sin Lo¹³¹, Nuno R. Zilhao¹³², Phuong Le¹³³, Marcus E. Kleber^{134,135}, Graciela E. Delgado¹³⁴, Shaofeng Huo³⁴², Daisuke D. Ikeda¹³⁷, Hiroyuki Iha¹³⁷, Jian Yang^{138,139}, Jun Liu¹⁴⁰, Hampton L. Leonard^{141,142}, Jonathan Marten¹⁴³, Börge Schmidt¹⁴⁴ Marina Arendt^{144,145}, Laura J. Smyth¹⁴⁶, Marisa Cañadas-Garre¹⁴⁶, Chaolong Wang^{147,148} Masahiro Nakatochi⁴⁹, Andrew Wong¹⁵⁰, Nina Hutri-Kähönen^{151,152}, Xueling Sim⁸⁴, Rui Xia¹⁵³, Alicia Huerta-Chagoya¹⁵⁴, Juan Carlos Fernandez-Lopez¹⁵⁵, Valeriya Lyssenko^{156,157}, Meraj Ahmed¹⁵⁸, Anne U. Jackson⁶, Noha A. Yousri^{456,457}, Marguerite R. Irvin¹⁵⁹, Christopher Oldmeadow¹⁶⁰, Han-Na Kim^{161,162}, Seungho Ryu^{163,164}, Paul R. H. J. Timmers^{143,165}, Jubox Arbeara¹⁶⁶ Deiumar Deusla¹⁸⁴ Liubov Arbeeva¹⁶⁶, Rajkumar Dorajoo¹⁴⁸, Leslie A. Lange¹⁵⁷, Xiaoran Chai^{168,169}, Gauri Prasad^{170,171}, Laura Lorés-Motta¹⁷², Marc Pauper¹⁷², Jirong Long¹⁷³, Xiaohui Li⁸⁶, Elizabeth Theusch¹⁷⁴, Fumihiko Takeuchi¹⁷⁵, Cassandra N. Spracklen^{176,177}, Anu Loukola⁴¹, Sailalitha Bollepalli⁴¹, Sophie C. Warner^{178,179}, Ya Xing Wang^{180,181}, Wen B. Wei¹⁸¹, Teresa Nutile¹⁶², Daniela Ruggiero^{182,183}, Yun Ju Sung¹⁸⁴, Yi-Jen Hung¹⁸⁵, Shufeng Chen¹⁰⁹, Fangchao Liu¹⁰⁹, Jingyun Yang^{186,187}, Katherine A. Kentistou¹⁶⁵, Mathias Gorski^{11,188}, Marco Brumat¹⁸⁹, Karina Meidtner^{190,191}, Lawrence F. Bielak¹⁹², Jennifer A. Smith^{57,192}, Prashantha Hebbar¹⁹³, Aliki-Eleni Farmaki^{194,195}, Edith Hofer^{196,197}, Maoxuan Lin¹⁹⁸, Chao Xue¹, Jifeng Zhang¹, Maria Pina Concas¹⁹⁹, Simona Vaccargiu²⁰⁰, Peter J. van der Most²⁰¹ Niina Pitkänen^{202,203}, Brian E. Cade^{204,205}, Jiwon Lee²⁰⁴, Sander W. van der Laan²⁰⁶, Kumaraswamy Naidu Chitrala²⁰⁷, Stefan Weiss²⁰⁸, Martina E. Zimmermann¹¹, Jong Young Lee²⁰⁹, Hyeok Sun Choi²¹⁰, Maria Nethander^{211,212}, Sandra Freitag-Wolf²¹³, Lorraine Southam^{214,215}, Nigel W. Rayner^{18,61,214,216}, Carol A. Wang²¹⁷, Shih-Yi Lin^{218,219,220} Jun-Sing Wang^{221,222}, Christian Couture²²³, Leo-Pekka Lyytikäinen^{224,225}, Kjell Nikus^{226,227}, Gabriel Cuellar-Partida²²⁸, Henrik Vestergaard^{90,229}, Bertha Hildalgo²³⁰ Olga Giannakopoulou⁵, Qiuyin Cai¹⁷³, Morgan O. Obura¹²⁹, Jessica van Setten²³¹, Xiaoyin Li²³², Karen Schwander¹¹⁷, Natalie Terzikhan⁷², Jae Hun Shin² Rebecca D. Jackson²³³, Alexander P. Reiner²³⁴, Lisa Warsinger Martin²³⁵, Zhengming Chen^{53,54}, Liming Li²³⁶, Heather M. Highland⁶⁰, Kristin L. Young⁶⁰, Takahisa Kawaguchi⁷⁰, Joachim Thiery^{114,237}, Joshua C. Bis¹²¹, Girish N. Nadkarni¹²², Lenore J. Launer²³⁸, Huaixing Li³⁴², Mike A. Nalls^{141,142}, Olli T. Raitakari^{202,203,23} Sahoko Ichihara²⁴⁰, Sarah H. Wild²⁴¹, Christopher P. Nelson^{178,179}, Harry Campbell¹⁶⁵, Susanne Jäger^{190,191}, Toru Nabika²⁴², Fahd Al-Mulla¹⁹³, Harri Niinikoski^{243,244}

Peter S. Braund^{178,179}, Ivana Kolcic²⁴⁵, Peter Kovacs²⁴⁶, Tota Giardoglou²⁴⁷, Tomohiro Katsuya^{24,24,4}, Konain Fatima Bhatti⁵, Dominique de Kleijn²⁸⁰, Gert J. de Borst²⁸⁰, Eung Kweon Kim²⁵¹, Hieab H. H. Adams^{252,458}, M. Arfan Ikram⁷², Xiaofeng Zhu²³², Folkert W. Asselbergs²³, Adriaan O. Kraaijeveld²³, Joline W. J. Beulens^{129,23}, Xiao-Ou Shu¹⁷³, Loukianos S. Rallidis²⁵⁴, Oluf Pedersen⁹⁰, Torben Hansen⁹⁰, Paul Mitchell²⁵⁵, Alex W. Hewitt^{256,257}, Mika Kähönen^{258,259}, Louis Pérusse^{223,260}, Claude Bouchard²⁶¹, Anke Tönjes²⁴⁶, Yii-Der Ida Chen⁸⁶, Craig E. Pennell²¹⁷, Trevor A. Mori²⁶², Wolfgang Lieb²⁶³, Andre Franke²⁶⁴, Claes Ohlsson^{211,265}, Dan Mellström^{211,266}, Yoon Shin Cho²¹⁰, Hyejin Lee²⁶⁷, Jian-Min Yuan^{268,269}, Woon-Puay Koh^{270,271}, Sang Youl Rhee²⁷², Jeong-Taek Woo²⁷ Iris M. Heid¹¹, Klaus J. Stark¹¹, Henry Völzke²⁷³, Georg Homuth²⁰⁸, Michele K. Evans²⁷⁴ Alan B. Zonderman²⁷⁴, Ozren Polasek²⁴⁵, Gerard Pasterkamp²⁰⁶, Imo E. Hoefer²⁰⁶, Susan Redline^{204,205}, Katja Pahkala^{202,203,275}, Albertine J. Oldehinkel²⁷⁶, Harold Snieder²⁰¹, Ginevra Biino²⁷⁷, Reinhold Schmidt¹⁹⁶, Helena Schmidt²⁷⁸, Y. Eugene Chen¹, Stefania Bandinelli²⁷⁹, George Dedoussis¹⁹⁴, Thangavel Alphonse Thanaraj¹⁹³ Sharon L. R. Kardia¹⁹², Norihiro Kato¹⁷⁵, Matthias B. Schulzs^{100,0154,01}, Giorgia Girotto^{189,281}, Bettina Jung¹⁸⁸, Carsten A. Böger^{108,282,283}, Peter K. Joshi¹⁰⁵, David A. Bennett^{186,187}, Philip L. De Jager^{284,285}, Xiangfeng Lu¹⁰⁹, Vasiliki Mamakou^{286,287}, Morris Brown^{89,288} Mark J. Caulfield^{88,89}, Patricia B. Munroe^{88,89}, Xiuging Guo⁸⁶, Marina Ciullo^{182,183} Jost B. Jonas^{289,290,291}, Nilesh J. Samani^{178,179}, Jaakko Kaprio⁴¹, Päivi Pajukanta²⁹⁴ Linda S. Adair^{300,301}, Sonny Augustin Bechayda^{302,303}, H. Janaka de Silva³¹ Ananda R. Wickremasinghe³⁰⁵, Ronald M. Krauss³⁰⁶, Jer-Yuarn Wu³⁰⁷, Wei Zheng¹⁷³ Anneke I. den Hollander¹⁷², Dwaipayan Bharadwaj^{171,308}, Adolfo Correa³⁰⁹, James G. Wilson³¹⁰, Lars Lind³¹¹, Chew-Kiat Heng^{312,313}, Amanda E. Nelson^{166,314}, Yvonne M. Golightly James F. Wilson^{143,165}, Brenda Penninx^{318,319}, Hyung-Lae Kim³²⁰, John Attia^{160,3} Rodney J. Soct^{180,32}, D. C. Raö³²², Donna K. Arnett³²³, Steven C. Hunt^{486,459}, Mark Walker³²⁴, Heikki A. Koistinen^{325,326,327}, Giriraj R. Chandak^{186,328}, Chittaranjan S. Yajnik³²⁹, Josep M. Mercader^{293,33,331}, Teresa Tusié-Luna^{295,296,297}, Carlos A. Aguilar-Salinas^{296,299}, Clicerio Gonzalez Villalpando³²², Lorena Orozco³³³, Myriam Fornage^{153,334}, E. Shyong Tai^{84,335}, Rob M. van Dam^{84,335}, Terho Lehtimäki^{224,225}, Nish Chaturvedi¹⁵⁰, Mitsuhiro Yokota³³⁶, Jianjun Liu¹⁴⁸, Dermot F. Reilly³³⁷, Amy Jayne McKnight¹⁴⁶, Frank Kee¹⁴⁶, Karl-Heinz Jöckel¹⁴⁴, Mark I. McCarthy^{48,61,338}, Colin N. A. Palmer³³⁹, Veronique Vitart¹⁴ Caroline Hayward¹⁴³, Eleanor Simonsick³⁴⁰, Cornelia M. van Duijn¹⁴⁰, Fan Lu³⁴¹, Jia Qu³⁴¹ Haretsugu Hishigaki¹³⁷, Xu Lin³⁴², Winfried März^{134,343,344}, Esteban J. Parra¹³³, Miguel Cruz³⁴⁵, Vilmundur Gudnason^{132,346}, Jean-Claude Tardif^{131,347}, Guillaume Lettre^{131,34} Leen M. 't Hart^{129,130,349}, Petra J. M. Elders³⁵⁰, Scott M. Damrauer^{353,354}, Meena Kumari³⁵⁵, Mika Kivimaki¹²⁷, Pim van der Harst¹²⁵, Tim D. Spector¹²³, Ruth J. F. Loos^{122,356} Michael A. Province¹¹⁷, Bruce M. Psaty^{357,358}, Ivan Brandslund^{120,359}, Peter P. Pramstaller¹¹⁹, Kaare Christensen³⁶⁰, Samuli Ripatti^{41,361,362}, Elisabeth Widén⁴¹, Hakon Hakonarson^{363,364}, Struan F. A. Grant^{351,364,365}, Lambertus A. L. M. Kiemeney¹¹⁵, Jacqueline de Graaf¹¹⁵, Markus Loeffler^{113,114}, Florian Kronenberg^{112,366}, Dongfeng Gu^{109,367}, Jeanette Erdmann³⁶⁸, Heribert Schunkert^{369,370}, Paul W. Franks¹¹⁰, Allan Linneberg^{85,371}, J. Wouter Jukema^{101,372}, Amit V. Khera^{373,374,375,376}, Minna Männikkö³⁷⁷, Marjo-Riitta Jarvelin¹ Zoltan Kutalik^{98,380}, Francesco Cucca^{381,382}, Dennis O. Mook-Kanamori^{383,384} Ko Willems van Dijk^{385,386,387}, Hugh Watkins^{61,388}, David P. Strachan³⁸⁹, Niels Grarup⁹⁰, Peter Sever³⁹⁰, Neil Poulter³⁹¹, Jerome I. Rotter⁸⁶, Thomas M. Dantoft⁸⁵, Fredrik Karpe^{392,393}, Matt J. Neville^{392,393}, Nicholas J. Timpson^{81,83}, Ching-Yu Cheng^{96,394}, Tien-Yin Wong^{66,394}, Chiea Chuen Khor¹⁴⁸, Charumathi Sabanayagam^{168,394}, Annette Peters^{80,191,395}, Christian Gieger^{79,80,191}, Andrew T. Hattersley³⁹⁶, Nancy L. Pedersen³⁹⁷ Patrik K. E. Magnusson³⁹⁷, Dorret I. Boomsma^{74,382,399}, Eo J. C. de Geus^{74,319}, L. Adrienne Cupples^{73,400}, Joyce B. J. van Meurs^{71,72}, Mohsen Ghanbari^{72,401}, Penny Gordon-Larsen^{300,301}, Wei Huang⁴⁰², Young Jin Kim¹³, Yasuharu Tabara⁷⁰, Nicholas J. Wareham⁵⁸, Claudia Langenberg⁶⁸, Eleftheria Zeggini^{214,215,403}, Johanna Kuusisto⁴⁰⁴, Markku Laakso⁴⁰⁴, Erik Ingelsson^{3,67,405,406}, Goncalo Abecasis^{66,407}, John C. Chambers^{63,64,408,409}, Jaspal S. Kooner^{64,65,410,411}, Paul S. de Vries⁶², Alanna C. Morrison⁶², Kari E. North⁶⁰, Martha Daviglus⁴¹², Peter Kraft^{59,413} Nicholas G. Martin⁴¹⁴, John B. Whitfield⁴¹⁴, Shahid Abbas^{56,415}, Danish Saleheen^{56,416,417}, Robin G. Walters^{\$3,8,4,4,8}, Michael V. Holmes^{\$3,8,4,49}, Corri Black⁴²², Blair H. Smith⁴²¹, Anne E. Justice⁴²², Aris Baras⁴⁰⁷, Julie E. Buring^{50,233}, Paul M. Ridker^{50,293}, Daniel I. Chasman^{50,292}, Charles Kooperberg⁴⁹, Wei-Qi Wei⁴²³, Gail P. Jarvik⁴²⁴, Bahram Namjou⁴²⁵, M. Geoffrey Hayes^{426,427,428}, Marylyn D. Ritchie⁴³, Pekka Jousilahti⁴², Veikko Salomaa⁴², Kristian Hveem^{38,429,430}, Bjørn Olav Åsvold^{38,429,431}, Michiaki Kubo⁴³², Yoichiro Kamatani^{30,433}, Yukinori Okada^{30,32,434,435}, Yoshinori Murakami⁴³⁶, Unnur Thorsteinsdottir^{27,346}, Kari Stefansson^{27,346}, Yuk-Lam Ho⁴³⁷, Julie A. Lynch^{438,439}, Daniel J. Rader^{351,352}, Philip S. Tsao^{2,3,440}, Kyong-Mi Chang^{352,441}, Kelly Cho^{437,442} Christopher J. O'Donnell^{437,442}, John M. Gaziano^{437,442}, Peter Wilson^{443,444}, Charles N. Rotimi¹⁶, Scott Hazelhurst^{15,445}, Michèle Ramsay^{15,446}, Richard C. Trembath⁴⁴⁷, David A. van Heel¹⁷, Gen Tamiya¹⁴, Masayuki Yamamoto¹⁴, Bong-Jo Kim¹³, Karen L. Mohlke¹⁷⁶, Timothy M. Frayling⁷⁷, Joel N. Hirschhorn^{310,448}, Sekar Kathiresan^{374,376,449}, Michael Boehnke⁶, Pradeep Natarajan^{37,405,451,452}, Gina M. Peloso^{73,461}, Christopher D. Brown^{7,461}, Andrew P. Morris^{453,461}, Themistocles L. Assimes^{23,340,461,162}, Panos Deloukas^{5,89,454,461}, Yan V. Sun^{19,20,461} & Cristen J. Willer^{1,4,455,461}

Methods

Cohort-level analysis

Each cohort contributed GWAS summary statistics for HDL-C, LDL-C, nonHDL-C. TC and TGs, imputation quality statistics, and analysis metrics for quality control (QC) following a detailed analysis plan. The GWAS protocol is deposited in Protocol Exchange (doi: 10.21203/ rs.3.pex-1687/v1). In brief, we requested that each cohort perform imputation to 1000 Genomes Phase 3 v5 (1KGP3), with European ancestry cohorts additionally imputing with the Haplotype Reference Consortium (HRC) panel using the Michigan Imputation Server (https:// imputationserver.sph.umich.edu/index.html#!), which uses Minimac software⁴³. Detailed pre-imputation QC guidelines were provided, and these included removing samples with call rate <95%, samples with heterozygosity > median + 3 (interquartile range), ancestry outliers from principal component (PC) analysis within each ancestry group and variants deviating from Hardy-Weinberg equilibrium (HWE; $P < 1 \times 10^{-6}$) or with variant call rate <98%. Analyses were carried out separately by ancestry group and were also stratified by cases and controls where appropriate (that is, for a disease-focused cohort such as coronary artery disease). Residuals were generated separately in males and females adjusting for age, age², PCs of ancestry and any necessary study-specific covariates. TG levels were natural log-transformed before generating residuals. Inverse normalization was then done on the residual values. Individuals on cholesterol-lowering medication had their pre-medication levels⁴⁴ approximated by dividing the LDL-C value by 0.7 and the TC value by 0.8. Association analysis of the residuals for the majority of cohorts was carried out using a linear mixed-model approach in rvtests or with other similar software, including BOLT-LMM⁴⁵, SAIGE⁴⁶ or deCode association software.

QC analysis

Each input file was assessed for QC using the EasyQC software⁴⁷ (www. genepi-regensburg.de/easyqc). We generated quantile-quantile plots using minor allele frequency (MAF) bins, assessed trends in standard errors relative to the sample size for each cohort and checked MAF values of submitted variants relative to their expected value based on the imputation reference panel. In addition, we checked that each cohort reproduced the expected direction of effect at most known loci relative to the cohort sample size. Cohorts identified to have issues with the submitted files were contacted, and corrected files were submitted or the cohort was excluded from the meta-analysis. Results from either sex-stratified analysis or sex-combined analysis with sex as a covariate were used. During the QC process, within each cohort we removed poorly imputed variants (info score or $R^2 < 0.3$), variants deviating from the HWE ($P < 1 \times 10^{-8}$, except for the MVP, which used HWE $P < 1 \times 10^{-20}$) and variants with minor allele count <3. An imputation info score threshold of 0.3 was selected to balance the inclusion of variants across diverse studies while removing poorly imputed variants. Summary statistics were then genomic control (GC) corrected using the λ_{GC} value calculated from the median *P* value of variants with MAF > 0.5%. To capture as many variants as possible, summary statistics from cohorts that had submitted both HRC and 1KGP3 imputed files were combined, selecting variants imputed from HRC for which both imputed versions of a variant existed. For variants imputed by both panels, we observed that variants imputed from the HRC panel resulted in a higher imputation info score for 94% of variants compared with the imputation info score from 1KGP3.

Meta-analysis

Ancestry-specific meta-analysis was performed using Raremetal⁴⁸ (https://github.com/SailajaVeda/raremetal). The multi-ancestry meta-analysis (also referred to as trans-ancestry meta-analysis) was performed using MR-MEGA⁴⁸ with five PCs of ancestry. The choice of five PCs was made after comparing the $\lambda_{\rm GC}$ values across MAF bins from

meta-analysis of HDL-C with MR-MEGA using from two up to ten PCs. In addition, fixed-effects meta-analysis was carried out with METAL⁴⁹ to calculate effect sizes for use in the creation of PRS. Study-level PCs were plotted for each cohort by ancestry group to verify that the reported ancestry for each cohort was as expected. Following the meta-analysis, we identified loci based on a genome-wide significance threshold of 5×10^{-8} after GC correction using the λ_{GC} value calculated from the median P value of variants with MAF > 0.5%. The choice of double-GC correction was made to be most conservative and to minimize potential false-positive findings. Observed λ_{GC} values were within the expected range for similarly sized studies and are included in Supplementary Tables 2 and 4. Variants with a cumulative minor allele count of \leq 30 and those found in a single study were excluded from index variant selection. Index variants were identified following an iterative procedure starting with the most significant variant and grouping the surrounding region into a locus based on the larger of either ± 500 kb or ± 0.25 cM. cM positions were interpolated using the genetic map distributed with Eagle v.2.3.2 (genetic_map_hg19_withX.txt)⁵⁰. Variants were annotated using WGSA⁵¹, including the summary of each variant from SnpEff⁵² and the closest genes for intergenic variants from ANNOVAR⁵³. Annotation of variants as known or new was done based on manual reviews of previously published variants and with variants reported in the GWAS catalogue²⁷ for any of the studied lipid traits (accessed May 2020, provided as Supplementary Table 18). For comparison between ancestries and lipid traits, index variants were grouped into genomic regions starting with the most significantly associated variant and grouping all surrounding index variants within ±500 kb into a single region.

Power to detect association within each ancestry was determined using the effect size and sample size of the variant within the original discovery ancestry group and the observed allele frequency from the other ancestry groups with α set to 5×10^{-8} . We excluded variants that were only successfully imputed in a single ancestry group to account for imputation panel differences between groups (for example, HRC for European ancestry individuals and 1KGP3 for other ancestries). Variants that were successfully imputed in two or more ancestries were assumed to have zero power in any other ancestry for which the variant was not successfully imputed. The proportion of variance explained by each variant was estimated as $2\beta^2(1-f)f$, where β is the effect size from METAL and f is the effect allele frequency (Supplementary Table 19). The proportion of variance explained within each ancestry was estimated using the multi-ancestry effect size from METAL with the ancestry-specific allele frequency. Coverage of the genome by associated genetic regions was calculated using BEDTools⁵⁴ for the regions defined by the minimum and maximum position within each locus with $P < 5 \times 10^{-8}$.

Conditional analysis

Approximate conditional analysis was performed using rareGWAMA55 to identify index variants that were shadows of nearby, more significant associations. LD reference populations were taken from UK Biobank specific to admixed African, European (subset of 40,000) or South Asian ancestry individuals or from 1KGP3 for East Asian or Hispanic ancestry individuals. Conditional analysis was carried out using the individual cohort-level summary statistics as was done for the meta-analysis with Raremetal. rareGWAMA requires imputation quality scores, which were set to 1 for all variants, that had previously passed QC (pre-filtered at imputation info/ $R^2 > 0.3$). The European ancestry subset of UK Biobank was used as the reference population for the conditional analysis of the multi-ancestry meta-analysis (approximately 80% European ancestry). Stepwise conditional analysis was performed sequentially for the index variants within each chromosome ranked by most to least significant. Index variants were then flagged as not independent from other more significant variants if the absolute value of the ratio of the original effect size to the effect size after conditional analysis was greater than the 95th percentile of all values (Supplementary Fig. 10). This threshold

was selected to remove variants for which the effects were driven by nearby, more strongly associated variants in LD. This corresponded to a ratio of original to conditional effect size of 1.6 for the ancestry-specific conditional analysis and a ratio of 1.7 for the multi-ancestry conditional analysis. The effect sizes from the meta-analysis with METAL were used for comparison with the multi-ancestry conditional analysis results. Variants flagged as non-independent were excluded from the summary results in the manuscript and are flagged as non-independent in Supplementary Tables 3 and 5.

Genetic correlation

Popcorn³¹ was used to assess the degree of correlation in effect sizes between ancestry groups for each of the lipid traits with 1KGP3 as the reference LD panel. Only variants with MAF > 0.01 in each ancestry individually were included in the comparison. Both the genetic effect and the genetic impact models were tested. Bivariate GREML from GCTA was used to calculate the genetic correlation between unrelated admixed African and a subset of white British individuals in the UK Biobank following the method of Guo et al. 30,32 . HapMap3 variants with MAF > 0.01 in each ancestry were used to construct the genetic relationship matrix with the allele frequencies standardized in each population. Individuals with genetic relatedness of >0.05 were removed. A total of up to 5,575 admixed African or African and 38,668 white British individuals from UK Biobank were included in the analysis of each trait after removal of related individuals. The measured lipid traits were corrected for medication use and were inverse-normalized after correction for age, sex and batch. PCs1-20 constructed from the genetic relationship matrix were included as covariates in the calculation of genetic correlation. Analysis within the MVP included 24,502 European ancestry and 21,950 unrelated African American individuals. Maximum measured values were used for LDL-C, TC and TGs, and minimum values were used for HDL-C. Lipid traits were inverse-normalized after correction for age and sex with PCs 1-20 included as covariates in the calculation of genetic correlation.

Credible sets

Credible sets of potentially causal variants were generated for each of the loci identified in the multi-ancestry meta-analysis. We determined 99% credible sets of variants that encompassed the causal variant with 99% posterior probability. Regions for construction of the credible sets were defined as the \pm 500 kb region around each index variant. Bayes factors^{56,57} (BFs) for each variant in the ancestry-specific meta-analysis were approximated as follows:

$$BF \approx \exp\left[0.5\left(\frac{\beta^2}{\text{s.e.}^2} - \log(N_{\text{AS}})\right)\right]$$

where β and s.e. are the effect size and standard error of the effect size estimate from the Raremetal meta-analysis, and N_{AS} is the ancestry-specific sample size. A full derivation is included in the Supplementary Methods. To account for the difference in sample sizes between ancestry groups, we also approximated the BFs after adjustment for the total multi-ancestry sample size for each trait (N_{TE}) relative to the ancestry-specific sample size for that trait using the following equation:

BF
$$\approx \exp\left[0.5\left(\frac{\beta^2 N_{\text{TE}}}{\text{s.e.}^2 N_{\text{AS}}} - \log(N_{\text{TE}})\right)\right]$$

Credible sets for the multi-ancestry meta-analysis were generated using the BFs as output by MR-MEGA. The credible sets within each region were generated by ranking all variants by BF and calculating the number of variants required to reach a cumulative probability of 99%. In addition, we calculated credible sets in the same manner using the European ancestry and multi-ancestry meta-analysis results, but including only the set of variants present in the admixed African or African meta-analysis. To summarize the size of the credible sets across the five lipid traits examined, we identified the set of independent index variants from the multi-ancestry meta-analysis after grouping variants based on LD. For each ± 500 kb region centred around the most significantly associated index variant for any trait, we determined the pairwise LD between all index variants in this region using LD pair⁵⁸ with all reference populations (1000 Genomes African, admixed American, East Asian, European and South Asian) included. We considered variants to be independent if they were outside this region, had $LDR^2 < 0.7$ or were not available in the LDpair reference populations. Variants within the credible sets were annotated with SnpEff⁵² using WGSA⁵¹ and with VEP⁵⁹. The number of variants in LD with an index variant was determined using LDproxv⁵⁸ (Supplementary Table 20). Protein numbering was taken from dbSNP⁶⁰. Expression quantitative trait loci colocalization was performed using coloc⁶¹ (v.3.2.1) with R (v.3.4.3) using the default parameters. Results from GTEx V8 (ref.⁶²) were compared with the GWAS signals in the region defined by the larger of ± 0.25 cM or ± 500 kb surrounding each index variant. The expression quantitative trait loci and GWAS signals (based on P values from MR-MEGA) were considered to be colocalized if PP3 + PP4 \ge 0.8 and if PP4/(PP3 + PP4) > 0.9, where PP3 is the probability of two independent causal variants while PP4 is the probability of a single, shared causal variant.

LDL-CPRS

Weights for the LDL-C PRS were derived from β estimates generated from each of the ancestry-specific meta-analyses and from the multi-ancestry results using METAL. Additional meta-analyses were carried out using the 2010 Global Lipids Genetics Consortium LDL-C meta-analysis results⁴ in combination with the (1) admixed African or (2) admixed African, East Asian, Hispanic and South Asian ancestry results from the current meta-analysis for comparison. Furthermore, we performed a meta-analysis of European ancestry cohorts randomly selected to reach a total sample size near 100,000, 200,000 or 400,000 to understand the role of increasing the European ancestry sample size and the influence of imputation panel. In addition, we tested possible methods for improving the performance of European -ncestry-derived scores in African ancestry individuals by separately fitting the European ancestry PRS in the UK Biobank admixed African ancestry subset to determine the best set of risk score parameters (various pruning and thresholding parameters or PRS-CS. Supplementary Note).

We generated PRS weights using both significant variants only (at a variety of *P* value thresholds) and using genome-wide methods. Meta-analysis results were first filtered to variants present in UK Biobank, the MGI and the MVP with imputation info score of >0.3. Pruning and thresholding was performed in PLINK⁶³ with ancestry-matched subsets of UK Biobank individuals (admixed African N = 7,324, European N = 40,000, South Asian N = 7,193, multi-ancestry: N = 10,000 (80% European, 15% admixed African, 5% South Asian)) or 1KGP3 (Hispanic N = 347, East Asian N = 504) used for LD reference. We also tested 1KGP3 with all populations included as the LD reference panel for the multi-ancestry score (results not shown), which gave similar results to those of the UK Biobank multi-ancestry reference set originally selected for its larger sample size. P value thresholds (after GC correction) of 5×10^{-10} , 5×10^{-9} , $5 \times 10^{-8}, 5 \times 10^{-7}, 5 \times 10^{-6}, 5 \times 10^{-5}, 5 \times 10^{-4}, 5 \times 10^{-3}$ and 5×10^{-2} were tested with distance thresholds of 250 and 500 kb and LD R² thresholds of 0.1 and 0.2. PRS weights were also generated using PRS-CS³³ with the LD reference panels for African, East Asian and European ancestry populations from 1000 Genomes provided by the developers. PRS-CS LD reference panels for the other ancestries were generated using 1000 Genomes following the same protocol as provided by the PRS-CS authors³³. This included removing variants with MAF \leq 0.01, ambiguous A/T or G/C variants and restricting to variants included in HapMap3. Pairwise LD matrices within pre-defined LD blocks⁶⁴ (using European LDetect blocks for Hispanic and multi-ancestry LD calculations and

Asian blocks for South Asian) were then calculated using PLINK and converted to HDF5 format.

For each individual in the testing cohorts, PRS were calculated as the sum of the dosages multiplied by the given weight at each variant. UK Biobank individuals not present in datasets used to generate the summary statistics (either admixed African, white British, both admixed African and white British, East Asian, South Asian, or all individuals excluding South Asian) were used to select the best-performing admixed African, European, admixed African+European, East Asian, South Asian, and multi-ancestry PRS, respectively. UK Biobank South Asian ancestry individuals were included in the multi-ancestry risk score weights but excluded from the UK Biobank multi-ancestry testing set due to an initial focus on comparing predictions among European and African ancestry individuals. The following sample sizes of the ancestry groups in UK Biobank used to test PRS performance were included: admixed African N = 6,863; East Asian N = 1,441; European N = 389,158; South Asian N = 6,814; ALL = 461,918. The best-performing Hispanic ancestry PRS weights were selected based on their performance in Hispanic ancestry individuals in the MGI dataset. Model fit was assessed using the adjusted R^2 of a linear model for LDL-C value at initial assessment adjusted for cholesterol medication (divided by 0.7 to estimate pre-medication levels) with sex, batch, age at initial assessment and PCs 1-4 as covariates (Supplementary Tables 21-23). Python and R were used for the analysis of PRS models.

The best-performing PRS in each ancestry group was then tested in the following validation cohorts: the MGI (European N = 17,190; African American N = 1,341; East London Genes and Health⁶⁵ (ELGH; South Asian N = 15,242; Tohoku Medical Megabank Community Cohort Study (ToMMo; East Asian N = 28,217); Korean Genome and Epidemiology Study⁶⁶ (KoGES; East Asian N = 118,260); Penn Medicine BioBank (PMBB; African American N = 2,138); Africa America Diabetes Mellitus (AADM; 3,566 West African; 707 East African); Africa Wits-INDEPTH partnership for Genomic Studies (AWI-Gen; 1,744 East African; 4,972 South African; 3,744 West African); and MVP participants not included in the discovery meta-analysis (European N = 68,381; African American N = 18,251; East Asian/South Asian N = 4,155; Hispanic N = 7,669). Adjusted R^2 values were reported for each cohort and ancestry group, with 95% confidence intervals for the adjusted R^2 values calculated using bootstrapping. Within each cohort, the following covariates were used: MGI: sex, batch, PCs 1-4 and birth year: PMBB: birth year, sex and PCs 1-4: ELGH: age, sex and PCs 1-10; MVP: sex, PCs 1-4, birth year and mean age; ToMMo: sex, age, recruitment method and PCs 1-20 (only participants from Miyagi Prefecture were included); KoGES: age, sex and recruitment area; AADM: age, sex, PCs1-3; AWI-Gen: age, sex and PCs1-6 for East African and South African, and age, sex and PCs 1-4 for West African. The type of LDL-C value used in the model varied depending on the measurements selected by each cohort. Mean LDL-C values were used for MGI, MVP and PMBB, maximum LDL-C values for ELGH, and baseline measurements for AADM, AWI-Gen, ToMMo and KoGES. A descriptive summary of each validation cohort is included in Supplementary Table 16. African admixture for MGI was calculated using all African ancestry individuals in 1000 Genomes with ADMIXTURE (v.1.3)⁶⁷. African admixture for MVP was calculated using the Yoruba in Ibadan, Nigeria (YRI) and Luhya in Webuye, Kenya (LWK) African ancestry individuals in 1KGP3.

Reporting summary

Further information on research design is available in the Nature Research Reporting Summary linked to this paper.

Data availability

The GWAS meta-analysis results (including both ancestry-specific and multi-ancestry analyses) and risk score weights are available at

http://csg.sph.umich.edu/willer/public/glgc-lipids2021. The optimized multi-ancestry and single-ancestry PRS weights are deposited in the PGS Catalogue (https://www.pgscatalog.org/) accession numbers PGS000886–PGS000897 (all intervening numbers).

Code availability

The code EasyQC is available at www.genepi-regensburg.de/easyqc, and Raremetal is available at https://github.com/SailajaVeda/raremetal.

- Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).
- Baigent, C. et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90 056 participants in 14 randomised trials of statins. *Lancet* 366, 1267–1278 (2005).
- Loh, P.-R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. *Nat. Genet.* 47, 284–290 (2015).
- Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018).
- Winkler, T. W. et al. Quality control and conduct of genome-wide association meta-analyses. *Nat. Protoc.* 9, 1192–1212 (2014).
- Feng, S., Liu, D., Zhan, X., Wing, M. K. & Abecasis, G. R. RAREMETAL: fast and powerful meta-analysis for rare variants. *Bioinformatics* 30, 2828–2829 (2014).
- Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. *Bioinformatics* 26, 2190–2191 (2010).
- Loh, P.-R., Palamara, P. F. & Price, A. L. Fast and accurate long-range phasing in a UK Biobank cohort. *Nat. Genet.* 48, 811–816 (2016).
- Liu, X. et al. WGSA: an annotation pipeline for human genome sequencing studies. J. Med. Genet. 53, 111–112 (2016).
- Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster* strain w1118; iso-2; iso-3. *Fly* 6, 80–92 (2012).
- Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. *Nucleic Acids Res.* 38, e164 (2010).
- 54. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinformatics* **26**, 841–842 (2010).
- Liu, D. J. et al. Meta-analysis of gene-level tests for rare variant association. Nat. Genet. 46, 200–204 (2014).
- Maller, J. B. et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. *Nat. Genet.* 44, 1294–1301 (2012).
- 57. Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773-795 (1995).
- Machiela, M. J. & Chanock, S. J. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. *Bioinformatics* **31**, 3555–3557 (2015).
- McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).
 Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).
- Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. *PLoS Genet.* 10, e1004383 (2014).
- GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).
- Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
- Berisa, T. & Pickrell, J. K. Approximately independent linkage disequilibrium blocks in human populations. *Bioinformatics* 32, 283–285 (2016).
- Finer, S. et al. Cohort Profile: East London Genes & Health (ELGH), a community-based population genomics and health study in British Bangladeshi and British Pakistani people. *Int. J. Epidemiol.* 49, 20–21i (2019).
- Moon, S. et al. The Korea Biobank Array: design and identification of coding variants associated with blood biochemical traits. Sci. Rep. 9, 1382 (2019).
- Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. *Genome Res.* 19, 1655–1664 (2009).

Acknowledgements Funding for the Global Lipids Genetics Consortium was provided by the NIH (R01-HL127564). This research was conducted using the UK Biobank Resource under application number 24460. Computing support and file management for central meta-analysis by S. Caron is acknowledged. This research is based on data from the MVP, Office of Research and Development, Veterans Health Administration, and was supported by awards 2101BX003362-03A1 and 1101BX004821-01A1. This publication does not represent the views of the Department of Veteran Affairs or the United States Government. Study-specific acknowledgements are provided in the Supplementary Information.

Author contributions S.L.C., K.-H.H.W., S. Kanoni, G.J.M.Z. and S. Ramdas contributed equally to this work as co-second authors. All authors reviewed the manuscript. Consortium management: G.M.P., P.N., T.L.A., M.B., S.Kathiresan and C.J.W. Study design, interpretation of results and drafting of the manuscript: S.E.G., S.L.C., K.-H.H.W., S. Kanoni, G.J.M.Z., S. Ramdas, I.S., I.N., E.M., K.L.M., T.M.F., J.N.H., S. Kathiresan, M. Boehnke, P.N., G.M.P., C.D.B., A.P.M., YV.S., P.D., T.L.A. and C.J.W. Primary meta-analysis and QC: S.E.G., S. Vedantam, T.W.W. and A.E.L. PRS analysis and development: S.E.G., S.L.C., K.-H.H.W., S. Kanoni, M.Y.H., S.H., A.N., A. Choudhury, A.R.B., K.E., A.V., B.T., H.C.M., K.A.H., C.N.R., S.H., M.R., R.C.T, DA.Y.H., G.T., M.Y. and B.-J.K. Individual study genetic analysis: S.E.G., S. Kanoni, S. Vedantam, A.E.L., K.L.M., G.M.P., P.D., C.J.W., Q.H., D.K., X. Zhu, G.T., A. Helgadottir, D.F.G., H. Holm, I.O.,

M. Akiyama, S.S., C. Terao, M. Kanai, W. Zhou, B.M.B., H.R., S.E.R., A.S.H., Y.V., Q.F., E.A.R., T. Lingren, J.A.P., S.A.P., J. Haessler, F.G., Y.B., J.E.M., A. Campbell, K. Lin, I.Y.M., G. Hindy, A.R., J.D.F., W. Zhao, D.R.W., C. Turman, H. Huang, M. Graff, A. Mahajan, M.R.B., W. Zhang, K. Yu, E.M.S., A. Pandit, S.G., X.Y., J. Luan, J.-H. Zhao, F.M., H.-M.J., K. Yoon, C.M.-G., A. Pitsillides, J.J.H., G.W., A.R. Wood, Y.J., Z.G., S. Haworth, R.E.M., J.F.C., M. Aadahl, J.Yao, A. Manichaikul, H.R.W., J.R., J.B.-J., L.L.K., A.G., M.S.-L., R.N., C. Sidore, E.F., A.F.M., P.M.-V., M. Wielscher, S.T., N.S., L.T.M., B.H.T., M. Munz, L.Z., J. Huang, B.Y., A. Poveda, A.K., C. Lamina, L.F., M. Scholz, T.E.G., J.P.B., E.W.D., J.M.Z., J.S.M., C.F., H. Christensen, J.A.B., M.F.F., M.K.W., M. Preuss, M. Mangino, P.C., N.V., J.W. Benjamins, J. Engmann, R.L.K., R.C.S., K.S.L., N.R.Z., P.L., M.E.K., G.E.D., S. Huo, D.D.I., H.I., J. Yang, Jun Liu, H.L.L., J.M., B.S., M. Arendt, L.J.S., M.C.-G., C.W., M. Nakatochi, A.W., N.H.-K., X.Sim, R.X., A.H.-C., J.C.F.-L., V.L., M. Ahmed, A.U.J., N.A.Y., M.R.I., C. Oldmeadow, H.-N.K., S. Ryu, P.R.H.J.T., L.A., R.D., L.A.L., X.C., G. Prasad, L.L.-M., M. Pauper, J. Long, X. Li, E. Theusch, F.T., C.N.S., A. Loukola, S. Bollepalli, S.C.W., Y.X.W., W.B.W., T. Nutile, D. Ruggiero, Y.J.S., Y.-J. Hung, S.C., F. Liu, Jingyun Yang, K.A.K., M. Gorski, M. Brumat, K.M. L.F.B., J.A.S., P.H., A.-E.F., E.H., M. Lin, C.X., J. Zhang, M.P.C., S. Vaccargiu, P.J.v.d.M., N. Pitkänen, B.E.C., J. Lee, S.W.yd, L., K.N.C., S.W., M.F.Z., J.Y.L., H.S.C., M. Nethander, S.F.-W., L.S., N.W.R., C.A.W., S.-Y.L., J.-S.W., C. Couture, L.-P.L., K.N., G.C.-P., H. Vestergaard, B.H., O.G., Q.C., M.O.O., J.v.S., Xiaovin Li, K. Schwander, N.T., J.H.S., R.D.J., A.P.R., L.W.M., Z.C., L.Li, H.M.H., K.L.Y., T. Kawaguchi, J. Thiery, J.C.B., G.N.N., L.J.L., H.Li, M.A.N., O.T.R., S.L. S.H.W. C.P.N., H. Campbell, S.J., T. Nabika, F.A.-M., H.N., P.S.B., I.K., P. Kovacs. T.G., T. Katsuva, K.F.B., D.d.K., G.J.d.B., E.K.K., H.H.H.A., M.A.I., Xiaofeng Zhu, F.W.A., A.O.K., J.W.J.B., X.-O.S., L.S.R., O. Pedersen, T.H., P. Mitchell, A.W.H., M. Kkähönen, L.P., C. Bouchard, A.T., Y.-D.I.C., C.E.P., T.A.M., W.L., A. Franke, C. Ohlsson, D.M., Y.S.C., H. Lee, J.-M.Y., W.-P.K., S.Y.R., J.-T.W., I.M.H., K.J.S., H. Völzke, G. Homuth, M.K.E., A.B.Z., O. Polasek, G. Pasterkamp, I.E.H., S. Redline, K.P., A.J.O., H. Snieder, G.B., R.S., H. Schmidt, Y.E.C., S. Bandinelli, G. Dedoussis, T.A.T., S.L.R.K., N.K., M.B.S., G.G., B.J., C.A.B., P.K.J., D.A.B., P.L.D.J., X. Lu, V.M., M. Brown, M.J.C., P.B.M., X.G., M. Ciullo, J.B.J., N.J.S., J. Kaprio, P.P., L.S.A., S.A.B., H.J.d.S., A.R.W., R.M.K., J.-Y.W., W. Zheng, A.I.d.H., D.B., A. Correa, J.G.W., L. Lind, C.-K.H., A.E.N., Y.M.G., J.F.W., B.P., H.-L.K., J.A., R.J.S. D.C.R., D.K.A., S.C.H., M. Walker, H.A.K., G.R.C., C.S.Y., J.M.M., T.T.-L., C.A.-S., C.G.V., L.O., M.F., E.S.T., R.M.v.D., T. Lehtimäki, N.C., M.Y., Jianjun Liu, D.F.R., A.J.M., F. Kee, K.-H.J., M.I.M., C.N.A.P., V.V., C. Hayward, E.S., C.M.v.D., F. Lu, J.Q., H. Hishigaki, X. Lin, W.M., E.J.P., M. Cruz, V.G., J.-C.T., G.L., L.M.t.H., P.J.M.E., S.M.D., M. Kumari, M. Kivimaki, P.v.d.H., T.D.S., R.J.F.L., M.A.P., B.M.P., I.B., P.P.P., K. Christensen, S. Ripatti, E.W., H. Hakonarson, S.F.A.G., L.A.L.M.K., J.d.G., M. Loeffler, F. Kronenberg, D.G., J. Erdmann, H. Schunkert, P.W.F., A. Linneberg, J.W.J., A.V.K., M. Männikkö, M.-R.J., Z.K., F.C., D.O.M.-K., K.W.v.D., H.W., D.P.S., N.G., P.S., N. Poulter, J.I.R., T.M.D., F. Karpe, M.J.N., N.J.T., C.-Y.C., T.-Y.W., C.C.K., C. Sabanayagam, A. Peters, C.G., A.T.H., N.L.P., P.K.E.M., D.I.B., E.J.C.d.G., L.A.C., J.B.J.v.M., M. Ghanbari, P.G.-L., W.H., Y.J.K., Y.T., N.J.W., C. Langenberg, E.Z., J. Kuusisto, M. Laakso, E.I., G.A., J.C.C., J.S.K., P.S.d.V., A.C.M., K.E.N., M.D., P. Kraft, N.G.M., J.B.W., S.A., D.S., R.G.W., M.V.H., C.Black, B.H.S., A.E.J., A.B., J.E.B., P.M.R., D.I.C., C. Kooperberg, W.-Q.W., G.P.J., B.N., M.G.H., M.D.R., P.J., V.S., K.H., B.O.A., M. Kubo, Y. Kamatani, Y.O., Y.M., U.T., K. Stefansson, Y.-L.H., J.A.L., D. Rader, P.S.T., K.-M.C., K. Cho. C. J.O., J.M.G., and P.W.

Competing interests G.J.M.Z. is an employee of Incyte Corporation. G.C.-P. is currently an employee of 23andMe. M.J.C. is the Chief Scientist for Genomics England, a UK Government

company. B.M.P. serves on the steering committee of the Yale Open Data Access Project funded by Johnson & Johnson. G.T., A. Helgadottir, D.F.G., H. Holm., U.T. and K. Stefansson are employees of deCODE/Amgen. V.S. has received honoraria for consultations from Novo Nordisk and Sanofi and has an ongoing research collaboration with Bayer. M. McCarthy has served on advisory panels for Pfizer, NovoNordisk and Zoe Global, has received honoraria from Merck, Pfizer, Novo Nordisk and Eli Lilly, and research funding from Abbvie, Astra Zeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck, NovoNordisk, Pfizer, Roche, Sanofi Aventis, Servier and Takeda. M. McCarthy and A. Mahajan are employees of Genentech and are holders of Roche stock. M. Scholz receives funding from Pfizer for a project unrelated to this work. M.E.K. is employed by Synlab. W.M. has received grants from Siemens Healthineers, grants and personal fees from Aegerion Pharmaceuticals, grants and personal fees from Amgen, grants from AstraZeneca, grants and personal fees from Sanofi, grants and personal fees from Alexion Pharmaceuticals, grants and personal fees from BASF, grants and personal fees from Abbott Diagnostics, grants and personal fees from Numares, grants and personal fees from Berlin-Chemie, grants and personal fees from Akzea Therapeutics, grants from Bayer Vital, grants from bestbion dx, grants from Boehringer Ingelheim, grants from Immundiagnostik, grants from Merck Chemicals, grants from MSD Sharp and Dohme, grants from Novartis Pharma, grants from Olink Proteomics, and is employed by Synlab Holding Deutschland, all outside the submitted work, A.V.K. has served as a consultant to Sanofi, Medicines Company. Maze Pharmaceuticals, Navitor Pharmaceuticals, Verve Therapeutics, Amgen and Color Genomics: received speaking fees from Illumina, the Novartis Institute for Biomedical Research; received sponsored research agreements from the Novartis Institute for Biomedical Research and IBM Research; and reports a patent related to a genetic risk predictor (20190017119). S.K. is an employee of Verve Therapeutics and holds equity in Verve Therapeutics, Maze Therapeutics, Catabasis and San Therapeutics. He is a member of the scientific advisory boards for Regeneron Genetics Center and Corvidia Therapeutics; he has served as a consultant for Acceleron, Eli Lilly, Novartis, Merck, Novo Nordisk, Novo Ventures, Ionis, Alnylam, Aegerion, Haug Partners, Noble Insights, Leerink Partners, Bayer Healthcare, Illumina, Color Genomics, MedGenome, Quest and Medscape; and reports patents related to a method of identifying and treating a person having a predisposition to or afflicted with cardiometabolic disease (20180010185) and a genetics risk predictor (20190017119). D.K. accepts consulting fees from Regeneron Pharmaceuticals. D.O.M.-K. is a part-time clinical research consultant for Metabolon. D.S. has received support from the British Heart Foundation, Pfizer, Regeneron, Genentech and Eli Lilly pharmaceuticals. The spouse of C.J.W. is employed by Regeneron.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41586-021-04064-3.

Correspondence and requests for materials should be addressed to Themistocles L. Assimes or Cristen J. Willer.

Peer review information *Nature* thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available

Reprints and permissions information is available at http://www.nature.com/reprints.

Extended Data Fig. 1 | Effect sizes of identified index variants from multi-ancestry meta-analysis. Index variants associated with a) HDL cholesterol, b) LDL cholesterol, c) triglycerides, d) nonHDL cholesterol

and e) total cholesterol include both common variants of small to moderate effect and low frequency variants of moderate to large effect.

Extended Data Fig. 2 | **Comparison of the number of index variants by sample size.** a) Comparison of the number of index variants reaching genome-wide significance ($p < 5x10^{-8}$) from meta-analysis of LDL-C in each ancestry group. A meta-analysis of five random subsets of European cohorts selected to reach sample sizes of approximately 100,000, 200,000, 400,000, 600,000, or 800,000 individuals is also shown. b) Comparison of chi-squared values from meta-analysis of LDL-C for each possible combination of ancestry groups (without genomic-control correction) for variants with minor allele

frequency $(MAF) \ge 5\%$. The colored lines indicate a linear regression model of all meta-analyses for a specific ancestry (eg. all analyses including European individuals). c) Comparison of chi-squared values from meta-analysis of LDL-C for variants with MAF $\le 5\%$. d) Comparison of chi-squared valued for variants with MAF $\ge 5\%$ for LDL-C without genomic-control correction in a meta-analysis of all European cohorts as well as five subsets selected to reach sample sizes of approximately 100,000, 200,000, 400,000, 600,000, or 800,000 individuals.

Extended Data Fig. 3 | Effect sizes by ancestry for unique index variants from ancestry-specific meta-analysis. Comparison of effect sizes and standard errors for the 389 unique variants reaching genome-wide significance (p-value < 5x10⁻⁸ as given by RAREMETAL) in two ancestry groups. Variants with discordant directions of effect between ancestries are labeled by chromosome and position (build 37). Association results for all index variants are given in Supplementary Table 3. The red line depicts an equivalent European ancestry and non-European ancestry effect size while the black line depicts a linear regression model. R² = 0.93.

Extended Data Fig. 4 | **Comparison of credible set size.** The number of variants in the 99% credible sets for each association signal are compared between a) admixed African ancestry and multi-ancestry analysis and b) European ancestry and multi-ancestry analysis.

Extended Data Fig. 6 | Optimal polygenic score threshold by ancestry group for either PRS-CS or pruning and thresholding based LDL-C polygenic scores. Adjusted R² estimated upon testing in UK Biobank ancestry-matched participants (who were not included in GWAS summary statistics). a) Admixed African, East Asian and South Asian ancestry polygenic scores. b) European and multi-ancestry polygenic scores. c) European ancestry (GLGC 2010) and multi-ancestry polygenic scores. d) All polygenic scores across all thresholds used for score construction. e) Comparison of adjusted R² across ancestry groups relative to the maximum for covariates alone, polygenic scores from PRS-CS or polygenic scores from pruning and thresholding.

Extended Data Fig. 7 | Improvement in PRS performance in African Americans when starting with ancestry-mismatched European ancestry scores by updating weights, updating variant lists, or updating both variants and weights to be ancestry-matched. By comparison to the gold-standard performance of the multi-ancestry-derived PRS in African Americans (adjusted R2 = 0.12), a European ancestry derived score capture only 47% of the variance explained by the multi-ancestry PRS. When LD and association information from the target population is used to optimize the list of variants for inclusion in the PRS, but with ancestry-mismatched weights from European ancestry GWAS, the variance explained reaches 71% of the gold standard. If the PRS variant list selected in European ancestry individuals were genotyped in the target population, and PRS weights were updated using a GWAS from the target population, the variance explained reached 87% of the gold standard. Finally, deriving both the marker list and weights from the target population (single-ancestry GWAS of admixed African individuals) explained 94% of the variance relative to the gold-standard trans-ancestry PRS.

Extended Data Fig. 8 | **Comparison of PRS performance by admixture quartile.** We divided the testing cohorts into quartiles by proportion of African ancestry and estimated the performance of the PRS separately within each quartile in a) the Michigan Genomics Initiative (*N* = 1,341), and b) the Million Veteran Program (*N* = 18,251). Error bars represent 95% confidence intervals.

nature portfolio

Corresponding author(s): Cristen Willer, Themistocles Assimes

Last updated by author(s): Aug 18, 2021

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our <u>Editorial Policies</u> and the <u>Editorial Policy Checklist</u>.

Statistics

For a	all st	tatistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
n/a	Со	nfirmed
	\boxtimes	The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
\boxtimes		A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
	\boxtimes	The statistical test(s) used AND whether they are one- or two-sided Only common tests should be described solely by name; describe more complex techniques in the Methods section.
	\boxtimes	A description of all covariates tested
	\boxtimes	A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
	\boxtimes	A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
	\boxtimes	For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted Give P values as exact values whenever suitable.
	\boxtimes	For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
\boxtimes		For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
	\boxtimes	Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
1		Our web collection on <u>statistics for biologists</u> contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection	No software was used
Data analysis	Cohort level GWAS analysis was performed with rvtests or related software as listed in the supplementary information. QC was performed using the EasyQC software (v.17.7) Meta-analysis was performed using RAREMETAL (v 4.15.1), METAL (released 2011-03-25), and MR-MEGA (v.0.1.5). Conditional analysis was performed with rareGWAMA (v0.4). Risk scores were developed using PRS-CS (April 2020) and plink (v1.90b4.5). Data summaries were generated using R (v3-4.1.1) and python (v2.7.14-3.8). Variants were annotated using WGSA (v065 and 085)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our $\underline{\text{policy}}$

The GWAS meta-analysis results (including both ancestry-specific and trans-ancestry analyses) and risk score weights are available at: http://csg.sph.umich.edu/ willer/public/glgc-lipids2021. The optimized trans-ancestry and single-ancestry polygenic score weights will be deposited within the PGS Catalog (https:// www.pgscatalog.org/).

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences

Behavioural & social sciences

Ecological, evolutionary & environmental sciences For a reference copy of the document with all sections, see <u>nature.com/documents/nr-reporting-summary-flat.pdf</u>

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	We recruited potential cohorts with lipid GWAS results, all interested cohorts were provided with an analysis plan. The total sample size was reported as the total number of individuals included in each analysis from all participating cohorts. The sample sizes obtained were equivalent or larger than GWAS studies of related quantitative traits that have successfully identified associated genetic variants and so were deemed to have sufficient numbers of individuals for the analysis.
Data exclusions	GWAS results that did not pass QC (due to issues identified with imputation or cohort-level statistical analysis) were excluded from the overall meta-analysis. QC metrics (eg. the assessment of observed vs. expected allele frequency) were established prior to cohort exclusions.
Replication	Polygenic scores were replicated in 8 independent cohorts, all replication attempts were included in the final manuscript.
Randomization	No randomization was required as all samples were included in the analysis
Blinding	Genotypes were assigned blinded to lipid status.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a	Involved in the study
\boxtimes	Antibodies
\boxtimes	Eukaryotic cell lines
\boxtimes	Palaeontology and archaeology
\boxtimes	Animals and other organisms
\ge	Human research participants
\boxtimes	Clinical data
\boxtimes	Dual use research of concern

M	et	ho	ds
1.61	Cu		u J

n/a	Involved in the study

 \boxtimes ChIP-seq

 \boxtimes Flow cytometry

 \boxtimes MRI-based neuroimaging