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Abstract

Genotypic frequencies at codominant marker loci in population samples convey informa-
tion on mating systems. A classical way to extract this information is to measure heterozygote
deficiencies (F\g) and obtain the selfing rate s from F;g = s/(2 — s), assuming inbreeding equi-
librium. A major drawback is that heterozygote deficiencies are often present without selfing,
owing largely to technical artefacts such as null alleles or partial dominance. We show here
that, in the absence of gametic disequilibrium, the multilocus structure can be used to derive
estimates of s independent of Fg and free of technical biases. Their statistical power and
precision are comparable to those of Fig, although they are sensitive to certain types of gametic
disequilibria, a bias shared with progeny-array methods but not F;;. We analyse four real data
sets spanning a range of mating systems. In two examples, we obtain s =0 despite positive
Fg, strongly suggesting that the latter are artefactual. In the remaining examples, all estimates
are consistent. All the computations have been implemented in a open-access and user-
friendly software called rRMEs (robust multilocus estimate of selfing) available at http://
ftp.cefe.cnrs.fr, and can be used on any multilocus data. Being able to extract the reliable
information from imperfect data, our method opens the way to make use of the ever-growing
number of published population genetic studies, in addition to the more demanding progeny-
array approaches, to investigate selfing rates.

Keywords: heterozygote deficiency, identity disequilibrium, inbreeding, mating system, microsatellite,
null alleles

Received 31 October 2006; revision accepted 19 February 2007

Introduction

Estimating selfing rates is a basic step in many population
studies, especially in plants (Schemske & Lande 1985; Jarne
& Charlesworth 1993). Since the advent of molecular
markers, increasingly sophisticated methods to infer selfing
rates from molecular data have been developed (Fyfe &
Bailey 1951; Brown & Allard 1970; Ritland & Jain 1981;
Shaw et al. 1981; Ritland 2002). The heterozygosity of the
typed individuals (with or without reference to their
parent’s genotype) is the main source of information on
their inbreeding status in all these methods. Two principal
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ways to infer selfing rates from molecular data, are based
on, respectively, the estimation of fixation indexes (F|g) in
population samples and the use of progeny arrays (Fyfe &
Bailey 1951; Ritland & Jain 1981). These two methods are
complementary: progeny arrays convey detailed information
on the mating system of the last generation, including
among-family variance in selfing and paternity correlations.
Fig is a more integrative measure because it integrates the
effect of selfing together with any other form of biparental
inbreeding over several generations. In plants, a vast
majority of estimates of selfing rates are now drawn from
progeny arrays (e.g. in the large data set compiled by
Schemske & Lande 1985; updated in Goodwillie ef al. 2005),
suggesting that geneticists are not as confident in indirect,
Fg-based estimates as they are in the direct method of
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progeny arrays. Yet, population data sets are commonly
found in the literature especially for animals in which
progenies are not always easy to get: as recently reviewed
by Jarne & Auld (2006) nearly all animal mating-system
studies are based on Fg. Moreover, the ease with which
multilocus Fig data can be obtained makes them more
appropriate for large-scale comparisons. It thus seems a
pity to discard such potential amounts of information.

One of the main reasons for being cautious with Fg-based
estimates of selfing certainly lies with typing artefacts
(Hoffman & Amos 2005; Pompanon et al. 2005). Even dio-
ecious species often show large heterozygote deficiencies,
not nearly compatible with what would look like reasonable
inbreeding levels for the species (see, e.g. Zouros & Foltz
1984). Often, F g values are quite different among loci, which
no form of systematic inbreeding can account for. For example,
Fig varies from —0.01 to 0.40 in Gaffney et al. (1990), in
which sampling variance is small owing to the large
sample size N = 1906 and large observed heterozygosities.
Of course, population substructure or homogamy could
also produce positive Fig. However, after critical examination
of all hypotheses, scoring artefacts often remain the only
realistic explanation (David et al. 1997b; Bonin et al. 2004).

Crucially, for the estimation of Fig, scoring should not
bias the frequency of heterozygous genotypes. Unfortu-
nately, one does expect a negative bias on heterozygosity,
given that null alleles and partial dominance, two of
the main sources of errors, both result in misscoring hetero-
zygotes as homozygotes. This problem concerns both
allozymes and (polymerase chain reaction) PCR-based
markers, in which nonamplified alleles (null alleles) and
asymmetric competition between sequences during ampli-
fication (short-allele dominance or large allele drop-out)
are a recurrent problem (Wattier et al. 1998; Bonin et al.
2004; Hoffman & Amos 2005; Pompanon et al. 2005). Of
course, a number of methods exist to detect such artefacts
(Brookfield 1996, Van Oosterhout et al. 2004; Bjorklund
2005), and to a certain extent to correct them (starting with
simple common sense: a conservative elimination of loci
with extreme heterozygote deficiency). However, most of
these methods address only one specific type of misscoring,
and were designed to correct allele frequencies rather than
heterozygosity, assuming either Hardy—Weinberg equilib-
rium (Brookfield 1996), or a known inbreeding coefficient
(Van Oosterhout ef al. 2006). Thus, it is extremely difficult
to extract reliable F g estimates (or, in fact, any other statistic
dependent on observed heterozygosity) corrected for typ-
ing errors, simply because it is not possible to estimate with
reasonable precision how many of the missing heterozy-
gotes are due to inbreeding and to artefacts, respectively.
Averaging F|¢ over several loci (as usually done) obviously
averages the bias rather than suppresses it.

Is there a way to estimate selfing rates in population
samples at equilibrium without using F;s? The multilocus
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structure of the sample in principle offers an independent
source of information. Indeed, partial selfing not only cre-
ates heterozygote deficiencies, it also generates identity
disequilibria, i.e. correlations in heterozygosity among dif-
ferent loci (Bennett & Binet 1956; Weir & Cockerham 1973).
Identity disequilibria, defined as relative excess in doubly
heterozygous genotypes (Weir & Cockerham 1973), can be
measured for all pairs of loci (or, even more, pairs of alleles
at different loci), which sums up to a large number of para-
meters. However, partial selfing generates identical dis-
equilibria at all pairs of loci and alleles (Weir & Cockerham
1973), allowing to construct multilocus statistics directly
linked to the selfing rate, independent of Fg and jointly
estimable on an arbitrary number of loci. Unless scoring
artefacts are correlated across loci within an individual,
such statistics will remain unaffected whatever the bias on
Fis. Another way to put it is that partial selfing does not
only modify the average inbreeding level of individuals
(and thus, the average Fig per locus) but also the variance
in inbreeding among individuals (Bierne et al. 2000): some
are produced by outcrossing, others by one or more gen-
erations of selfing. This variance in turn produces an excess
of multihomozygous or multiheterozygous genotypes com-
pared to random assortment of single-locus genotypes,
i.e. a disequilibrium in the distribution of multiple-locus
heterozygosity (MLH) that can be used to infer the selfing
rate, whatever the average observed heterozygosity. A
similar idea was already put forward by Enjalbert & David
(2000), although their method did make use of the average
heterozygosity (and therefore was not free of scoring
artefacts), and they focused on recent temporal changes in
selfing rates in domesticated populations rather than equi-
librium populations.

We here describe a general model providing a method to
extract selfing rates from the multilocus correlation struc-
ture of a population sample. Two related methods are pro-
posed, one based on a point estimate of the second-order
heterozygosity disequilibrium (see below), and the other
based on maximume-likelihood of the whole distribution.
The statistical behaviour of both methods is evaluated in
terms of bias, variance, and sensitivity to misscoring. Their
use is illustrated on four plant and animal data sets spanning
a range of selfing rates.

The model

The effects of the selfing rate and scoring biases on the
distribution of multilocus apparent heterozygosity

We consider a sample of individuals from a single population
at inbreeding equilibrium, in which heterozygosity is
recorded at a set of L loci. The apparent heterozygosity
of an individual at locus i (H;=0 if homozygous, 1 if
heterozygous) may differ from its true heterozygosity (%,)
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because of scoring artefacts. We assume that artefacts
lead to scoring true heterozygotes as homozygotes with a
probability x; that varies among loci. x; may also take
negative values (minimum: 1-1/E(h) if artefacts have
the opposite effects. We also assume that misscorings
occur independently at different loci of the same indi-
vidual. This assumption may be violated if, for example,
misscoring is due to the poor quality of a single DNA
extract used to type several loci; however, in practice, such
samples are likely to be detected (some loci may not
amplify at all) and discarded from the analysis.

The effect of selfing and other forms of systematic
inbreeding can be captured by the distribution of f, a vari-
able that represents the probability that two genes at a locus
in an individual will be identical by descent (Weir ef al.
1980). The mean of this distribution, E(f), usually noted Fig,
is well-known as E(f) = s/(2 - s) in an infinite population at
inbreeding equilibrium with selfing rate s. This mean f
(and hence the selfing rate) can be directly estimated by
heterozygote deficiencies at a neutral marker (Robertson
& Hill 1984; Weir & Cockerham 1984). However, it will
necessarily be biased (usually upwards) in the presence of
misscorings. On the other hand, partial inbreeding also
creates heterogeneity in f within the population, which can
be captured by the variance and higher moments of the
distribution of f. Because individuals with high f tend to be
homozygous at all loci at the same time (Bennett & Binet
1956,Weir & Cockerham 1973), the distribution of multiple-
locus heterozygosity (MLH) will deviate from the expectation
under random assortment of single-locus heterozygosities.
With two loci, this covariance in heterozygosity is usually
quantified through the identity disequilibrium (see Weir &
Cockerham 1973). We will here generalize this approach to
kloci (k > 0), defining the kth-order heterozygosity disequi-
librium g, as the relative excess of genotypes heterozygous
at k loci, compared to independent assortment:
E(hh, ... i) = E(h))E(hy) ... E(h) (1 +gp). (eqn 1)

Below, we will show that g, is independent of the choice
of the k loci when within-population inbreeding is the sole
source of deviation from Hardy-Weinberg equilibrium.
This can be done by conditioning on F values. Noting that
the probability of being heterozygous is reduced by a pro-
portion f at each locus, and that within a class of individuals
that have the same value of f (hereafter, an inbreeding level),
there is no correlation in heterozygosity among loci:

E(uhy ... 1) =Y p(EG, | HE(, |f) ... E(y | f)
0<f<1 (eqn 2)
=D,D, ... D.E( - f)¥)

where D, is gene diversity at locus i. Given that E(h) =
(1 - E(f))D,, the expression of g, only depends on the
characteristics of the distribution of f:

_Ea-pH

= (egn 3)
&= [Ea = o E

The values of g; ... §; can be easily computed using classical
methods under various schemes of partial inbreeding (see
Weir et al. 1980). In the most classical scheme, i.e. partial
selfing at rate s in an infinite population, we obtain

& = 1-s -1 (eqn 4)

k
_ookl1 |8
A =s/2 ){1 [2 — sﬂ

Under partial selfing, the g, values vary between 0 and + o,
and increase with the number of loci k, meaning that the
relative excess in multiheterozygotes (compared to random
assortment across loci) is enhanced.

Let us now evaluate the effect of misscoring. At each
locus i, misscoring will decrease apparent heterozygosity
by a factor (1 — x;) compared to true heterozygosity. Note
that our goal here is not to evaluate the extent and kind of
technical errors, but rather to derive a method insensitive
to them in order to estimate s. Nonetheless, x values can be
obtained as a by-product of our analyses (see below). The
estimate of E(f) (or F|¢) based on heterozygote deficiency,
will be inflated by an amount proportional to x; (1 - f) (see
Appendix I). Unlike sampling error, this bias is independ-
ent of sample size. Interestingly, provided scoring artefacts
do not occur in a correlated fashion across loci, the kth-order
heterozygosity disequilibrium is not affected, for k > 1:

EH,H, .. H) =1 -x,) ...(1 - x)E(h, ... h)

5
CEH)EH,) . EH)(+g) Y

In other terms, heterozygosity disequilibria can be
equivalently computed on apparent rather than on true
heterozygosities. A simple way to estimate selfing rates
without technical bias is therefore to estimate one of these
coefficients (the simplest being g,) and invert the formula
given in equation 4. Technical artefacts tend to decrease the
mean apparent heterozygosity at each locus but leave the
covariance unaffected because they occur independently
at each locus. This is why our estimate, based only on
covariances, is robust to artefacts. In the same way, it is also
possible to derive a maximume-likelihood estimate of s
based on the complete distribution of apparent heterozy-
gosities, without reference to true heterozygosities or true
heterozygote deficiencies. Below, we first derive a minimum-
bias estimator of g, and its statistical properties then detail
the maximume-likelihood method.

Estimation of second-order heterozygosity disequilibrium
and selfing rate using multilocus data

As shown above, g, is not dependent on the pair of loci
chosen in equation 1. In order to extract a maximum amount
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of information from a multilocus data set (L loci), the
estimator must combine information from all pairs of loci.
A simple way is to estimate the increase in variance in the
number of heterozygous loci per individual relative to
random-assortment of single-locus heterozygosities:

L L L L
Va{z Hi] =Y, Var(H) +2 ), > Cov(H;H;)

i=1 i=1 i=1 j=i+1

L L L (eqn 6)
- 2{ Var(H,) + 2g221‘ ‘ZlE(Hi )E(H )
i= =1 j=i+

From which we obtain immediately

i=1 i=1

& = 1 (eqn 7)
2, > EH)EH))

i=1 j=i+l

L L
Var[z HZ.J - Y Var(H;)

Taking the ratio between unbiased estimates of the
numerator and denominator in equation 7 yields a low-bias
estimate of g,

i ZiHikij

. i=1 j#i k=1

gZ = L N
N-DY>> Y Hy Hy,

i=1 j#i k=1 kzk

(eqn 8)

where H, is the apparent heterozygosity of individual k at
locus i, L is the number of loci and N is sample size. The
derivation of this estimate, and approximations for its bias
and sampling variance are given in the Supplementary
material, Appendix S1. A modified formula to account for
missing data (i.e. unknown values for H at some loci for
some individuals) is also given in this appendix.

From this, we can obtain an estimate of the selfing rate s
by inverting equation 4 and taking the only root < 1:

145§, —41+10g, + 983
S =
o 28,

(eqn 9)

For small values of §, (and s), this yields approximately 4¢,
(note that the selfing rate has to be set to zero if §, turns out
to be negative). The bias and variance of this estimator of s
can be deduced from those of ¢, (see Supplementary
material, Appendix 51). Testing whether the two estimates
significantly exceed zero can be done by chi-square tests
(Yang 2000) which are asymptotically accurate for large
samples, or simply (requiring no assumption) by generating
the null distribution of each estimate under the hypothesis
of no heterozygosity disequilibrium. To this end, single-locus
genotypes are randomly redistributed among individuals
to create a large number (say 1000) of pseudosamples from
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which ¢, and § are estimated. The observed values are
compared to null distributions to compute the P value for
the hypothesis g, = s = 0. Moreover, as a by-product of our
method, the rates of misscoring (x;) can be inferred as the
relative difference between the predicted and observed
numbers of heterozygous genotypes, i.e. x; = (Fy ;05— f)/
(1-f), wheref=5§/(2-3).

Joint estimation of s and apparent heterozygosity by
maximum likelihood

Several methods have already been designed to estimate s
by directly maximizing the likelihood of observed single-
locus (Hill ef al. 1995; Ayres & Balding 1997) or multiple-
locus (Enjalbert & David 2000) genotypes. All incorporate
the deviations from Hardy-Weinberg proportions, and
will therefore be affected by scoring bias. A more robust
estimate will be obtained by maximizing the likelihood of
the observed distribution of multilocus apparent hetero-
zygosity, conditional on the observed mean apparent
heterozygosity at each locus, without having to take into
account the comparison between apparent and expected
heterozygosities. This also has the advantage that the
number of parameters to be estimated (in addition to the
selfing rate) is considerably reduced, giving more stable
estimates. Instead of estimating the frequencies of all alleles
at all loci, we need to estimate only one parameter per
locus: the mean apparent heterozygosity y,, or, equivalently
the apparent heterozygosity expected under Hardy-
Weinberg d, = (1 — x,)D,, which is related to u; and s by ;=4
(1-s5/(2—5)). Our likelihood formula is therefore a function
of d, s and multilocus genotypes, coded for each individual
J as a vector of apparent heterozygosities (H,;, H,; ... H;))
without reference to allelic states. Our method differs from
other methods in that neither heterozygosities, nor gene
diversities, nor allele frequencies are estimated or assumed
to be known without error, as we rely only on apparent
heterozygosities. Apart from s, we estimate only L ‘nuisance’
parameters, i.e. the y; (or d)), all of which have simple
binomial distributions in the sample.

To compute the likelihood of a genotype j given a set of
parameters (s, d), withd = (d,, d, ... d;), we first compute its
conditional likelihood given a fixed inbreeding level f:

L
L, dif)=[T@a-mhia-da- )

i=1

(eqn 10)

We then integrate over all possible inbreeding levels,
which in this case represent different numbers of genera-
tions of selfing in the pedigree since the last outcrossing
event. This yields:

oo L H; 1-H;;
d; )"’ d )’
LiGs, d) = Y st - S)H[z—;J [l - Z—;J (eqn 11)
=0 i=1
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which can be multiplied over individuals (j = 1 to N) to get
the likelihood of the sample. In practice, it is impossible to
sum over an infinity of terms (t = 1 to e in equation 11). A
good approximation is obtained by closing the sum at some
level t . and equating to zero the probability of being
heterozygous after f . or more generations of selfing
(Enjalbert & David 2000). For reasonable values of t . (say
20 or more), this is a good approximation which turns out
not to be too costly in computing time. The approximate
likelihood is then:

=0 i=1

t L H;: 1-H; L
max di ] dl' y Lt
L/'(S,d)z zSt(l_S)];l[ ? 1—5 +5s maxH(l—Hi],)

(eqn 12)

The overall log-likelihood can be maximized numerically
using a steepest-ascent algorithm and starting values given
by equation 9 for s and by (Z]-I\i 1 Hj;/N)for ;. A good practice
is to include some random noise around the starting values
and run the algorithms several times to check that it has not
been trapped in local optima. Confidence intervals can be
determined by the profile-likelihood method. The CI95
bounds are obtained by varying s, keeping the y, constant,
until the likelihood is decreased by the threshold value 1.95
(McCullagh & Nelder 1989). The p; rather than d; are kept
constant because the estimates of d; are expected to be
positively correlated with those of s (likelihood maximi-
zation tends to automatically compensate an increase in s
by an increase in d so as to preserve L, close to the sample
mean heterozygosity). Hypothesis tests are performed
by likelihood-ratio (McCullagh & Nelder 1989). Various
hypotheses can be tested. s =0 within one population is
tested by comparing the deviance [= -2 Log(Likelihood)]
of the no-inbreeding model with the model with uncon-
strained s. The change in deviance is compared to a x2 with
one d.f. The equality of s among different populations can
be tested by comparing a model with a single value of s for
all populations (allowing a different value of d for each) to
a model where s is estimated independently in all popu-
lations. The change in deviance is then compared to a y?2
with Npop —1d.f.,, where Npop is the number of populations.
A Windows-compatible program called RMEs (robust
multilocus estimation of selfing rates) performing these
operations is available in http: //ftp.cefe.cnrs.fr/.

Simulations and data analyses

The properties of the above estimates were tested both by
simulation and on real data. Simulations were performed
by generating random arrays of genotypes coded in 0
(homozygotes) or 1 (heterozygotes) rather than by explicitly
drawing allele identities, as the information of allele
identities was never used. We simulated various parameter
combinations with respect to (i) design parameters

(sample size, number of loci), (ii) locus-specific parameters
(genetic diversity D,, misscoring rates x,), and (iii) selfing
rate s. Each multilocus genotype was generated as follows.
First, the number of selfing generations t since the last
outcrossing event was drawn in a geometric distribution,
with probability s!(1 — s). Then, the apparent heterozygosity
at each locus was drawn independently in a binary
distribution with probability (1 —x,)D,/2t. All individuals in
the sample were generated independently, and the resulting
matrix used to compute ¢, and 3.

Several published data sets on different species and
different marker types (allozymes and microsatellites)
spanning a presumably wide range of values of selfing
rates were used to illustrate our method. This comprises (i)
several African populations of Bulinus truncatus, a fresh-
water snail with high selfing rate (data from Viard ef al.
1997b); (ii) one population of cassava Manihot esculenta
(Pujol et al. 2005), a monoecious plant with presumably
moderate selfing rate; (iii) one population of marine
bivalves Spisula ovalis (data from David et al. 1997b), a
dioecious species that cannot self-fertilize; and (iv) several
populations of the hermaphroditic freshwater snail Physa
acuta, from Switzerland. This last data set has not been pre-
viously published; its interest, with respect to our method,
lies in the fact that Fig values suggest high selfing rates (0.5
or higher) while P. acuta is traditionally known as a prefer-
ential outcrosser, in other European populations (Jarne et al.
2000; Henry et al. 2005). These four studies include various
number of loci and numbers of populations, typed for
allozymes (for S. ovalis and P. acuta) or microsatellites
(B. truncatus and M. esculenta). The details are given in
corresponding references, except for P. acuta. For this spe-
cies, six populations were sampled from lake Geneva in
Switzerland (Versoix, Rolle, Vidy, Vevey and Thonon) and
six others from ponds nearby (Marion, Eysins, Longirod,
St Livres, Vufflens, Corcelles and Yverdon), and loci are
Esterase, Nucleoside-phosphorylase, Peptidase A, B, C and
D typed using standard methods from Pasteur ef al. (1987).
For all species, Weir & Cockerham’s (1984) estimates of Fig
were calculated for all populations using GENETIX 4.05
(Belkhir et al. 2004), and tested by permutation tests. For
comparison, estimates of selfing rates (s) were obtained
using three methods: (i) based on Fig [s = 2F¢/(1 + F,g)], (ii)
based on §,, (iii) by maximum likelihood. Using scoring-
error detection software such as MICRO-CHECKER (Van
Oosterhout ef al. 2004) was unfortunately not possible in
the microsatellite data, because we know that the two spe-
cies concerned (cassava and B. truncatus) are partial selfers
(or even, predominant selfers in the case of B. truncatus),
while the software requires Hardy—Weinberg equilibrium.

In order to visualize heterozygosity disequilibria, it is
also useful to plot the relative difference between observed
multilocus heterozygosity (MLH) and expected MLH
under random assortment of single-locus genotypes. The
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because it generates an excess of multihomozygous and
multiheterozygous combinations, and a deficiency in inter-
mediates. The expected distribution can be constructed
very simply by recursion on the number of loci. Say {1, is the
average apparent heterozygosity at locus i, and pj , is the
expected frequency of individuals with k loci heterozygous
amonglocil,2 ... [. Then, for0 <k<I+1
Pria = Peaiflig + P = ) (eqn 13)

Starting from p, , = I1};(1 - [i,), one can generate all
frequencies p; ; by sequentially adding all loci until /= L.
Similar expected distributions can be obtained assuming
heterozygosity disequilibria created by any hypothetical
selfing rate s, instead of independent assortment of single-
locus genotypes. We first compute frequencies p;; | ¢
conditional on a given number g of successive generations
of selfing in the pedigree, then average over all g, weighted
by their frequency s8(1 —s), using the same method as in
equation 12 to approximate the infinite sum by a finite one.
For any g, p;; ¢ can be found using the same recursion
system as in equation 13, replacing i, by {i,/[28(1—s/(2-s))].
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The bias and mean squared error of ¢, and § are given in
Fig. 1. We chose basic parameters sets to represent a typical
microsatellite study (100 individuals, 10 loci, D = 0.8) and
a moderate misscoring rate (x = 0.1). Alterations of this set
included less loci (5) or individuals (30); less polymorphic
markers (D = 0.4, more typical of allozyme data or highly
selfing species), and higher misscoring rates (x = 0.3). For
both g, and ML methods, decreasing D has roughly the
same effect as increasing x (keeping (1 — x)D constant); so D
was not varied in Fig. 1. In all cases, the analytic formulae
given in Appendix S1, Supplementary material, turned out
to be accurate (data not shown) compared to simulations
(i.e. the bias and variance on 300 simulations were not
significantly different from the expected ones).

The bias on ¢, is positive and increases with the selfing
rate; however, it remains very small (relative to the true
value of g,) even for large s. The bias in s (estimated either
from g, or by the ML method) is so small that it can be
considered negligible for practical purposes. A very slight
positive bias (~1%) is expected when s =0, which is
unavoidable as negative estimates are not possible. This



2480 P. DAVID ET AL.

1 >4
}3 0.8 1
3
&
g 0.6 1 —&— base
i —_4—x=03
_5:3 —>— N=30
= 044 —%—L=5
E
<
S
S
a 0.2

0 T T T :

0 0.05 0.2 0.5 0.8
selfing rate

Fig.2 The power to reject the null hypothesis s=0 at P <0.05,
using the maximume-likelihood method. The method based on
resampling g, values gives very similar results and has not been
represented.

contrasts with the bias expected when s is estimated using
Fig, which is of the order of magnitude of the misscoring
rate x (10-30% in our examples), or even twice the misscor-
ing rate, when s is low. The MSE (mean squared error, com-
bining bias and sampling variance) of § is given in Fig. 1(D),
together with that expected for Fig-based estimates of s.
The MSE of Fg is mostly driven by the bias due to misscor-
ing, so we also represent its value without misscoring
(x = 0) which represents pure sampling variance. The MSE
of ML or ¢ ,-based estimates (even with 10% misscoring) is
similar to the error variance expected for Fig-based esti-
mates without misscoring, although slightly smaller when
s =0 and slightly higher for intermediate s (e.g. s = 0.5).
The MSE of Fis-based estimates with misscoring (x =0.1) is

Table 1 Estimation of the selfing rate s from empirical data sets by three methods: Fis, g, and maximum likelihood (ML). N,

populations in the data set. N, ,,

much higher (because of the bias), except for very high s,
when the bias is constrained by the condition s < 1. Also,
the 95% confidence intervals (CI) on s obtained by the ML
method turned out to be accurate or slightly too conserva-
tive in all cases (i.e. with all the parameter sets tested,
the percentage of simulations in which the CI contained
the true value of s was on average 95% (minimum 93.7%
maximum 99%).

The power to reject the null hypothesis s = 0 is indicated
in Fig. 2. It is difficult here to compare with the F;g method
because, with misscoring rates of 0.1 or 0.3, Fi5 is always
significant, leading to a systematic rejection of the null
hypothesis s = 0 even when it is true. Figure 2 shows that
the g, or ML methods do not share this sensitivity to miss-
coring: the rejection rate is always less than or equal to the
nominal type I risk (here, 5%), when s = 0. There is a slight
difference between the ML and ¢, methods however.
When s =0, the rejection rate of the §, method is 0.046 (not
significantly different from 0.05) while that of the ML
method is lower (0.022, significantly less than 0.05). For
5=0.05, the powers are the same (respectively 0.55 and
0.57) in the optimal conditions (base parameter set) but tend
to be slightly lower for the ML method when the number
of loci, the sample size, the genetic diversity, the accuracy
of genotyping, or combinations thereof, are reduced (not
shown). The ML method is therefore slightly too conserv-
ative for very low selfing rates, especially when the data
sets are ‘imperfect’. This does not mean that estimates are
too low (biased), just that the ML method finds them non-
significant slightly too often. However, the power of both
methods quickly rises to 80-100% for all parameter sets
when s equals 0.2 or more (Fig. 2).

The estimations of s on empirical data sets are given in
Table 1 and Fig. 3. Each data set comprises several subsam-
ples (eight annual cohorts for the population of the bivalve
Spisula ovalis; 12 localities around Lake Geneva for Physa

op TTUMbeT Of

total sample size summed over populations. L, number of loci. For the g, and F;g methods, the average

parameter (overall populations), estimated selfing rate s and P value for the test of H: s = 0 are given. This P value has been obtained by
combining P values of all populations using Fisher’s method. For the ML method, estimates of s and 95% confidence intervals are given.
The hypothesis H: s = 0 is tested by model simplification, comparing the difference in deviance to a x2 with 1 d.f. The last two columns refer
to the test of homogeneity of s across populations (difference in deviance tested as a 2 with N, -1 d.f)

Fig method g, method ML method Homogeneity
Species Ny Ny L Fyg 8(F) Pre—o Meang, 3(§) P, $(ML) CI9 ddev,_, P._, ddev P
Spisula ovalis 8 2812 9 0.037 0.071 0.00 0.003 0.012 0.124 0.016 [0, 0.042] 1.680 0195 495  0.67
Physa acuta 12 460 6 0.297 0.458 0.00 0.008 0.031 0.275 0.000 [0, 0.083] 0.000 1.000 5.11 093
Manihot esculenta 2 395 8 0.071 0.132 0.00 0.057 0.182 0.000 0.163 [0.090,0.231] 19.88 0.000 022  0.64
Bulinus truncatus 3 177 4 0.828 0.906 0.00 1.873 0.855 0.000 0.841 [0.816,0.875] 66.60 0.000 0.41 0.814

Significant P-values are in bold.
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tions for Bulinus truncatus). In all cases, the likelihood-ratio
test indicates no significant difference in selfing rates among
subsamples, so we present pooled statistics in Table 1 (the
population details are in Appendix S2, Supplementary
material). The data on S. ovalis and P. acuta are consistent
with s = 0 using both the ¢, and ML methods, although the
Fgare very significant and yield substantial selfing rates of
7% and 45%, respectively. On the other hand, the three
methods give comparable estimates for M. esculenta (a
moderate selfer) and B. fruncatus (a highly selfing species),
although the Figs-based estimates are slightly above the
other two in the latter. Figure 3 allows visualizing hetero-
zygosity disequilibria. The two species in which the ¢, and
ML methods reveal no inbreeding (S. ovalis and P. acuta)
essentially show a good agreement with frequencies pre-
dicted by random assortment of single-locus genotypes
(flat graph). On the other hand, M. esculenta and B. truncatus
yield U-shaped graphs, in good agreement with expecta-
tions based on their estimated selfing rate (see Fig. 3). The
figure also illustrates an important characteristic of this
method, i.e. the important role of extreme heterozygosity
classes (very homozygous and very heterozygous individuals)
to infer selfing rates. For example, in B. truncatus, most
individuals originate from several generations of selfing,
and are homozygous at all four loci, but a few of them
are outcrossed, and are often heterozygous at three or four
loci at the same time (a very unlikely event if loci were
statistically independent). In this case, such individuals
are quite easy to spot in the data set. For moderate selfers
such as M. esculenta, the principle is the same although it is
impossible to tell apart selfed and outcrossed individuals
precisely.

© 2007 Centre National de la Recherche Scientifique
Journal compilation © 2007 Blackwell Publishing Ltd

The basic rationale behind this work is that genotypes contain
two different kinds of information about selfing, both of
which are correlations among genes within individuals:
within-locus correlations (i.e. excess homozygosity) and
among-locus correlations (i.e. identity disequilibria). The
different methods available to estimate selfing make use
of either one or both sources of information. Fig-based
estimates, the Bayesian and maximum-likelihood single-
locus population estimates available (Hill et al. 1995; Ayres
& Balding 1997), as well as single-locus estimates from
progeny arrays (Brown & Allard 1970) deal only with
within-locus correlations. Multilocus estimates from progeny
arrays (Ritland & Jain 1981; Shaw et al. 1981) and the
maximum-likelihood method of Enjalbert & David (2000)
use both types of correlations. The present methods use
only among-locus correlations. In principle, one might expect
that the most precise estimates will be obtained using a
maximum of information in the data, i.e. by combining
within- and between-locus correlations. However, in
practice, two limits exist. First, the number of ‘nuisance’
parameters to be estimated increases in proportion to
the complexity taken into account. For example, one can
generalize the maximum-likelihood approach to use multi-
locus genotypes, including not only heterozygosity (as
here) but also allelic states. However, this imposes the joint
estimation of a huge number of parameters (allelic frequencies
for all alleles in each locus, and misscoring rates for all
allele pairs) together with the parameter of interest. One
may avoid this by setting allele frequencies to constants
and ignoring sampling error on them. However, this will
discard the main advantage of the maximume-likelihood



2482 P. DAVID ET AL.

approach, which is to be based on an explicit, general
model. As soon as one enters sample-dependent constants
in the model, it is not general anymore. Allele frequencies
could, of course, be estimated on a separate sample much
larger than the one used for estimating selfing rates;
however, this is tedious and, in practice, rarely done. A
second limit, maybe more important in practical terms, is
that not all sources of information are equally reliable. In
that case, it is a good idea to compare estimates from
independent sources rather than using only one of them, or
collapsing them together. Within-locus correlations are
often less reliable than among-locus correlations because
the main sources of misscoring (null alleles and partial
dominance) only affect within-locus correlations. The
methods presented here allow extracting selfing rates
exclusively from among-locus correlations in multilocus
population data. Ignoring allele frequencies seems to decrease
precision, for example a homozygote for a rare allele is
very likely an inbred and this information will be ignored
by our method. However, in the presence of artefacts, such
genotypes also have the largest chance of being spurious.
To avoid such risks, our method should be used in addition
to the Fig-method (within-locus correlations) or other allele-
frequency methods, to get a realistic interpretation. In case
of disagreement, especially if s appears larger using Fg,
technical artefacts should be suspected.

Are technical biases frequent enough to worry about?
The answer is probably yes (Bonin ef al. 2004). Significant
heterozygote deficiencies are the rule rather than the
exception in both allozyme and microsatellite data, even
for dioecious or self-incompatible organisms unable to self
(Zouros & Foltz 1984; Bonin et al. 2004). Of course, nontech-
nical causes such as population substructure or homogamy
can generate heterozygote deficiencies. However, Fig values
are often higher than Fg. among neighbouring populations
or patches, making substructure an unlikely explanation
(David ef al. 1997b); similarly, homogamy is quite difficult
to imagine for molecular markers with little or no pheno-
typic effect. Therefore, inbreeding rates inferred from Fg
should be treated very cautiously, especially in predomi-
nantly outbred species in which the relative error can be
large. The progeny-array method is expected to be less sen-
sitive to technical biases because such biases can generate
inconsistent genotypes (i.e. offspring with no allele from
their mother) that can at least be noticed and raise suspicion.
However, we are aware of no study of the robustness of
progeny-array estimates with respect to technical biases.

Our simulations show that methods based on the among-
locus correlation structure of the data (¢, and ML) have
useful statistical properties. With realistic sample sizes and
genetic diversity, their statistical bias is negligible, irre-
spective of misscorings, and of the true value of s. Their
precision (SE) and, subsequently, the power to reject s =0
are very slightly lower than that of Fig (averaged over the

same number of loci) when s is intermediate or high, but
higher when s is small (Fig. 1). Whatever the method, a
useful starting point to evaluate the sample size necessary
to achieve a given precision in s, is to consider binomial
variance, i.e. the variance that would remain if we knew for
each individual its selfed or outcrossed status without
error. For example, for N = 30 and s = 0.1, the binomial 95%
CI on the proportion of selfed individuals in the sample is
[0, 0.23], and no statistical method, however, precise, will
give much better results. The two methods (based on §,
and ML) have very comparable performances in terms of
power and accuracy, although the ML method is slightly
too conservative for very small s. ML has the advantage of
providing simple hypothesis tests on the value of s or on its
variation among samples. However, checking that the
value of ¢, and the form of the MLH distribution (see Fig. 3)
are consistent with ML results is always a good idea.

We have illustrated the behaviour of the two methods
with four real data sets. Spisula ovalis is a dioecious species.
Yet, previous studies have suggested that some other
form of inbreeding occurs (at low rates) and generates
heterozygosity-fitness correlations in this species (David
et al. 1997a). The significant increase in heterozygosity with
age (David & Jarne 1997) suggests that inbred individuals
are progressively removed by selection. We therefore
expected young cohorts (rather than old ones) to show
traces of inbreeding, in the form of positive, if low, estimates
of selfing rates. The Fig method provides significantly
positive estimates for all cohorts (Table 1 and Appendix S2,
Supplementary material) but the detailed study of the
variation of Figamong loci, sites, and cohorts in that sample
has led to the conclusion that null alleles, rather than any
population phenomenon, were likely to account for most
of them (David et al. 1997b). The multilocus methods (g,
and ML) both give nonsignificant estimates, much lower
than Fig-based estimates. This is not contradictory with the
expected low, but positive, biparental inbreeding initially
expected. Although the power is too low to reach signifi-
cance in the pooled sample, there is a trend of decreasing s
from young to old cohorts (as expected, see above), and the
s is marginally significant in the youngest cohort (1 year)
using the less conservative of the two methods (§,). Atany
rate, the confidence intervals on s largely allow for a rate of
inbreeding equivalent to a few per cent of selfing in the
young cohorts. The discrepancy between Fig-based and
multilocus-based estimates is consistent with a low miss-
coring rate (x = 2.9%, averaged over loci). Null alleles with
frequency 1.5% or so would be sufficient to generate this
discrepancy, and yet would remain undetected as the null
homozygotes would be vanishingly rare.

The case of Physa acuta is, to an even greater extent than
S. ovalis, illustrative of the unreliability of Fi-based estimates.
Multilocus methods identify no hint of self-fertilization in
this hermaphroditic species, in agreement with the selfing
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rates of 0—0.1 obtained using allozyme or microsatellite-
based progeny arrays in other populations (Jarne et al. 2000;
Henry et al. 2005). Fs-based estimates suggest large selfing
rates (close to 50%) and are probably artefactual. This is
certainly suggested by the wide range of variation of Fig-
estimates among loci within populations (from —0.16 to 0.71).
The low polymorphism at many loci may decrease the power
to detect multilocus associations within each population;
however, in the combined data set, the sample size is quite
large and the estimates still do not come close to significance.
The confidence intervals clearly exclude high values of s in
this case, and the implied misscoring rate is close to 30%.

In the Manihot data set, in contrast, the multilocus struc-
ture shows the expected U shape for a moderately selfing
population and the multilocus estimates (by either method)
give significant values in the range 0.15-0.2. Note that this
is not necessarily ‘selfing’ in its usual sense. Traditional
cassava farmers in French Guiana (where the two fields
were sampled) propagate plants clonally and distinguish
several clonal varieties, purposely planting a few of them
in distinct patches of their fields (Pujol et al. 2005). ‘Selfing’
here may account for pollination events between clonemates
rather than by the mother plant. However, neglecting
mutational variation arising during clonal propagation,
the consequences are the same.

Finally, the case of Bulinus truncatus illustrates the
behaviour of the multilocus estimates with very high self-
ing rates (0.8—-0.9). One can expect our methods to lose
power (unlike Fig-based methods) in this case because very
few heterozygotes are found in such populations. There-
fore, these methods are bound to fail when s =1, because
they rely on the clustering of heterozygosity within indi-
viduals. However, the example of Bulinus, as well as our
simulations, show that up to very large selfing rates, this
clustering remains detectable and allows a surprisingly
precise estimation of s, in agreement (in this case) with Fig-
based estimates and progeny-array analyses (Viard et al.
1997a). This is due to the fact that outcrossing events, as
few as they might be, are readily detectable (multiple hetero-
zygotes, very unlikely under independence), and that
the ¢, and ML methods base their estimation on the whole
pedigree, i.e. incorporate not only the difference between
selfed and outcrossed, but also between one and several
generations of selfing, as in Enjalbert & David 2000). When
s is high enough, this allows multilocus estimates to have
a variance even lower than binomial, i.e. lower than it would
be if only two classes of individuals (selfed and outcrossed)
could be recognized without error (data not shown).

The final question that remains concerns the population
model underlying our estimation, i.e. an unstructured
mixed-mating population at linkage and inbreeding equi-
librium. No estimate can be accurate if the underlying model
is a bad description of reality. It is quite clear that very few
populations will fulfil all the assumptions, the problem is
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rather to know to what extent realistic deviations from the
model can affect the estimates and their biological signifi-
cance. Inbreeding equilibrium is a parsimonious assump-
tion unless one suspects recent changes in selfing rates (see
Enjalbert & David 2000 for a way to detect such historical
changes from multilocus genotypes). Because of the
geometric distribution of the number of selfing generations,
and of the resetting effect of outcrossing, inbreeding
nonequilibrium can be a serious problem only for high s
(say > 0.7). This bias is shared by Fi-based estimates.

A more complex problem lies with the fact that multi-
locus zygotic associations, or identity disequilibria, which
constitute the basis of our estimates, can be affected by
other phenomena than selfing. Gametic disequilibria within
samples, for example due to population substructure, are
known to produce multilocus zygotic associations (Yang
2000). The excess of multihomozygotes or multiheterozy-
gotes, either in real genotypes, or in theoretical genotypes
generated by random re-association of real haplotypes, has
even been used as a measure of gametic disequilibrium
(Brown et al. 1980; Sabatti & Risch 2002) in populations
assumed to be at HW equilibrium. Our methods could
therefore inaccurately estimate positive selfing rates in
such populations. The only solution to this problem is to
carefully evaluate the possibility of gametic disequilibria.
In many situations, gametic disequilibria are likely to be
small, because the population is large, the spatial scale of
sampling is small relative to dispersion, and the markers
are on different chromosomes. This can be checked using
tests of gametic disequilibria (e.g. based on R2 or D estimates).
Note that although gametic disequilibria usually tend to
increase the variance in heterozygosity (and thus ¢, and 3),
this is not necessarily the case, depending on the exact con-
figurations. Overall, the configurations that most affect the
variance are preferential associations between alleles of
similar frequencies at different loci (increase in variance) or
between alleles of very different frequencies (decrease in
variance) (Yang 2000, 2002). Averaged over many pairs of
loci and alleles (usually physically unlinked), neither case
is very likely to be frequent in standard population genetic
studies. An interesting case is linkage disequilibrium due
to population substructure (multilocus Wahlund effect).
Mixing different subpopulations within the sample will
affect our estimates of selfing only to the extent that it
changes the MLH distribution. This happens when sub-
populations with different average heterozygosities (over
all loci) are mixed together, which results in a mix of high-
heterozygosity and low-heterozygosity genotypes and
therefore mimics the effects of selfing. An advantage of our
multilocus method compared to Fig is that the latter is sen-
sitive to any heterogeneity in allele frequencies between
subpopulations, whereas our multilocus method is sensi-
tive to a much more restricted set of differences: those that
make one subpopulation systematically less heterozygous
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(on average over all loci) than the other. Unless popula-
tions with very different effective sizes are mixed together,
the latter case is probably not frequent.

However, there are definitely some special cases, such as
when hybridization between two distinct taxa is suspected
(Barton & Hewitt 1985), or when loci are extremely linked,
for example different nucleotidic sites within a sequence
(e.g. Sabatti & Risch 2002), where gametic disequilibria are
likely, and in such cases, our estimates of selfing rate
should therefore not be used. At the other extreme, popu-
lations with high rates of self-fertilization often have low
effective sizes (Doums et al. 1996; Charlesworth 2003),
which together with their low effective recombination
rates (even for physically unlinked loci) can generate large
gametic disequilibria, as the population becomes more or
less structured into homozygous selfing lines. In this case,
there may be a risk of overestimating s, as crosses between
two individuals within such lines mimic true selfing. This
problem usually remains minor because s has to be very
high (and N, small) to generate such a structure; and then
the overestimation is small because of the maximum value
s =1. In most data sets (N of the order of 100), the possible
bias due to gametic disequilibria in highly selfing popula-
tions will be small compared to the binomial sampling error.

Apart from linkage disequilibria, biparental inbreeding
(mating between relatives) and selection may affect the
estimates of s. Inbreeding depression, a widespread form
of selection (Charlesworth & Charlesworth 1987), is expected
to decrease the apparent selfing rate as a function of the age
of individuals, leading to underestimation of ‘primary’
selfing rates (Lande et al. 1994). We note, however, that
biases due to gametic disequilibria, biparental inbreeding,
and selection are shared by all methods to estimate selfing
rates published so far. The only exception is that progeny-
array analysis allows the estimation of biparental inbreed-
ing in addition to selfing rates (Ritland 2002). Inbreeding
depression is usually considered the most likely source
of systematic bias in estimates of selfing rates; however,
because inbreeding depression progressively removes inbred
individuals as the cohort grows older, none of the methods
can by itself avoid this bias. The only way out is to sample
as young individuals as possible to come closer to the primary
inbreeding or selfing rate, as exemplified by the Spisula data
set, in which inbreeding is detected in young, but not old,
cohorts. In comparison to progeny-array approaches, methods
based on population data (Fig and multilocus methods pre-
sented in this paper) are expected to be even more sensitive
to inbreeding depression, because the inbreeding equilib-
rium assumption is violated. However this additional effect
is likely to be small in comparison to the direct effect of
removing recent inbreds, because inbreeding depression is
likely to be strong in predominantly outbred species, where
inbreeding equilibrium is not a crucial issue (see above).

Finally, in many situations, the estimate of selfing rate

has a simple and biologically meaningful interpretation
even if affected by other phenomena. This is the case, for
example, in two of our data sets. In S. ovalis, a dioecious
species, s rather represents some form of biparental inbreed-
ing than selfing; and its decrease in successive cohorts can
be interpreted as an effect of inbreeding depression (David
et al. 1997a). In the Manihot data set, as already stated, mat-
ings between clonemates planted in patches within each
field is likely to account for apparent selfing. Strictly speak-
ing, this is a case of extreme population substructure and
linkage disequilibrium, rather than selfing. However the
predicted consequences, i.e. the occurrence of inbreeding
depression and relationships between heterozygosity and
fitness traits, are the same, and are readily observed (Pujol
et al. 2005; Pujol & McKey 2006). Symmetrically, true self-
ing can be viewed just as an extreme case of population
substructure with subpopulations of size N =1.

In conclusion, our multilocus methods to estimate s may
sometimes confound selfing with some other population
phenomena, just like other methods do — and little more
than biological knowledge of the system and good sense
can fix this. However, unlike others, it does not confound
selfing with (presumably ubiquitous) genotyping artefacts.
This is a crucial issue, especially for the study of animal
mating systems. One of the main contemporary issues in
animal mating system evolution, i.e. the very existence of
mixed-mating strategies (s close to 0.5) in animal species, is
at stake. Indeed, although many species were classified as
mixed-maters based on Fg (Jarne & Auld 2006), these spe-
cies may well turn out to be downright outcrossers once
typing artefacts are removed, as illustrated by our Physa
data set. We believe that, having to live in the real world, with
null alleles, ambiguous band patterns, and human error
(Pompanon ef al. 2005), population geneticists might often
find our methods useful to avoid misinterpretation of data.
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Appendix

The effect of misscoring at one locus on the
estimation of Fig

The effect of misscoring on the estimation of Fig will obviously
depend on which kind of artefacts affect the apparent
heterozygosity and on which estimator is chosen. To simplify
the picture, we will consider a single bi-allelic locus, and
the simple estimator of Fig based on heterozygote deficiency
(f). This can be generalized to several alleles using
estimators designed for this case (Robertson & Hill 1984;
Weir & Cockerham 1984). The heterozygote deficiency is:

fi=1 2H/N (eqn A1)
=1— ; eqn

1 D q

where the summation is over individualsj=1 ... n (no sub-

script for locus here as we consider only one locus), and

D= [(N-1)/NI2p(1 - p) is the estimated gene diversity,

given p the estimated allele frequency in the sample. The

© 2007 Centre National de la Recherche Scientifique
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factor (N —1)/N corrects for finite sample size. The artefacts
responsible for misscoring of heterozygotes (e.g. null alleles)
can simultaneously bias the estimation but the amount of
bias (say ) depends on the exact kind of artefact considered.
Hence the knowledge of x is not sufficient to obtain y
unless we assume some particular kind of misscoring.
Accounting for a rate x of misscoring of heterozygotes,
and a bias y in the estimation of D (note that y may be zero),
and noting X the parameter defined by (1-X)=(1-x)/
(1 - y) the expected value of f, is approximately:
E(f) =1-1-X)1 - E(f) = E()+ XA-E(f)  (eqn A2)
in which X(1 - E(f)) represents the absolute bias in the
estimate of E(f). This estimation neglects small-order terms
arising from the difference between the expectation of a ratio
and the ratio of expectations; Weir & Cockerham (1984)
have shown that this usually has little consequence. Note
also that in many cases (e.g. allele dropout) y is expected to be
relatively small and then x is a good approximation of X.



