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Abstract. Random-walk based dissimilarities on weighted networks have demon-
strated their efficiency in clustering algorithms. This contribution considers a few
alternative network dissimilarities, among which a new max-flow dissimilarity, and
more general flow-based dissimilarities, freely mixing shortest paths and random
walks in function of a free parameter - the temperature. Their geometrical proper-
ties, and in particular their squared Euclidean nature are investigated through their
power indices and multidimensional scaling properties. In particular, formal and nu-
merical studies demonstrate the existence of critical temperatures, where flow-based
dissimilarities cease to be squared Euclidean. The clustering potential of medium
range temperatures is emphasised.

1 Introduction

Guex, G. , Bavaud, F. : Flow-Based Dissimilarities: Shortest Path, Commute Time, Max-

Flow and Free Energy. In: Lausen, B. et al. (Eds.) Data Science, Learning by Latent

Structures, and Knowledge Discovery, pp. 101–111. (Series: Studies in Classification,

Data Analysis, and Knowledge Organization). Springer, Heidelberg (2015)

The last decade has witnessed an increasing interest in centrality indices,
community detection algorithms or network clustering assisted by random
walks. Most approaches imply network dissimilarities, among which the short-
est path and the commute time, closely linked to the minimisation of path
functionals, namely a resistance or energy functional, respectively a relative
entropy functional. The maximum flow and p-resistances (Alamgir and Von
Luxburg (2011)) constitute alternative path functionals. Optimal flows min-
imising mixtures of path functionals characterise the global properties of the
network, beyond the limited local view provided by binary or weighted adja-
cency matrices. Optimal flows also generate network dissimilarities, such as
the presumably original maximum-flow dissimilarity (Section 2.2).

In particular, the free energy path functional (Saerens et al. (2009)) gen-
erates optimal flows interpolating between shortest paths and random walks
(Section 2.4), where the edge resistances and transition matrix can be fixed in-
dependently (Bavaud and Guex (2012)). After reviewing the main definitions
involved in the taxonomy of dissimilarities (Section 2.1), the geometric proper-
ties of the energy and free energy path functional dissimilarities (Section 2.5)
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are investigated. In particular, the question of their squared Euclidean charac-
ter is studied through the well-known Torgeson criterium, as well as through
the less-known power index criterium of Joly and Le Calvé (1986). Numeri-
cal examples and applications demonstrate the existence of phase transitions,
where path functional dissimilarities become non-Euclidean below some criti-
cal temperatures (Section 3.1). Section 2.5 addresses the issue of multidimen-
sional scaling network reconstruction by path functional dissimilarities. Their
better efficiency in clustering and classification of categorical data, as com-
pared to chi-square dissimilarities, is illustrated in Section 3.3 for intermediate
temperature ranges.

2 Dissimilarities

2.1 A few definitions and properties

Let us recall a few standard definitions (e.g. Joly and Le Calvé (1986); Citchley
and Fichet (1994)): a dissimilarity on a set S of n objects is a n× n symmet-
ric non-negative matrix D = (dij) with a null diagonal. The dissimilarity is
separable if dij = 0 iff i = j, and metric if dij ≤ dik + dkj (for all triples of S).
A distance is a metric dissimilarity. One further distinguish between

• ultrametric distances (D ∈ DU ) for which dij ≤ max(dik, djk).
• Minkowski(q) distances (D ∈ Dq, where q ≥ 1) if one can find n vectors

xik ∈ Rp such that dij = (
∑p
l=1 |xil − xjl|q)

1
q . D2 corresponds to the

Euclidean distance.
• squared Euclidean dissimilarities (D ∈ D2

2) if there exists an embedding
of the form dij =

∑p
l=1(xil − xjl)2.

• Chebychev or Frechet distances (D ∈ D∞) if there exists an embedding
of the form dij = maxpl=1 |xil − xjl|.

D∞ is the set of all distances, and DU ⊂ D2 ⊂ D1 ⊂ (D∞ ∩ D2
2) holds.

Our study of the squared Euclidean character of the graph dissimilarities
(Sections 2.5 and 3.2) mainly relies upon the following results, the first often
attributed to Torgeson (1958) (with many precursors e.g. mentioned by Lew
(1978)), and the second due to Joly and Le Calvé (1986). Here fi > 0 is the
relative weight of object i, normalized to unity, and δij is Kronecker’s delta:

Proposition 1. A dissimilarity D on finite set S is D2
2 iff the matrix of scalar

products B := − 1
2HDH

′ is positive semi-definite. Here, H = (hij) is the
centering matrix where hij = δij−fj, for any fixed normalised distribution f .

Proposition 2. For any dissimilarity D, there is a number a ≥ 0 such that
the elementwise power Da is a squared Euclidean dissimilarity. Also, Db is
D2

2 as well for 0 ≤ b ≤ a.
Define pow(D), the power of D, as the maximum value of a making Da

squared Euclidean. Then pow(D) ≥ 1 iff D ∈ D2
2, pow(D) ≥ 2 iff d ∈ D2 and

pow(D) =∞ iff d ∈ DU .
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2.2 Commute-time, max-flow graph and chi-square distances

A binary graph G = (V,E) on |V | = n nodes is specified by a n×n symmetric
adjacency matrix A = (aij) taking on values 0 or 1. The associated random
walk is defined by the Markov transition matrix W = (wij) with wij = aij/ai•
(here “•” denotes the summation over the replaced index).

Conversely, any regular Markov chain W = (wij) with stationary distri-
bution f defines a weighted graph with associated node weights fi, and edge
weights or exchange matrix (Berger and Snell 1957) eij := fiwij , giving the
probability to select the pair of nodes ij. For unoriented graphs, eij = eji,
that is W is reversible. By construction, ei• = e•i = fi and e•• = 1.

Let Xst denote the set of unit st-flows from the source node s ∈ V to the
target node t ∈ V , as specified by the edge transitions counts X = (xij) of
the trajectories or paths. By construction

xij ≥ 0 , xi• − x•i = δis − δit and xt• = 0 . (1)

The commute-time distance dctst associated with W is the average time to go
from s to t and back to i. That is dctst = xst•• + xts••, where xstij is the random

walk flow, obeying (1) and xstij = xsti•wij . One knows that Dct ∈ (D∞ ∩ D2
2),

even in the oriented case (e.g. Boley et al. (2011)). Also, Dct is graph-geodetic
(Klein and Zhu (1998); Chebotarev (2010)), that is obeys dctik + dctkj = dctjk
whenever all ij-paths and ji-paths moving over edges with non-zero weights
pass through k.

Let us introduce a presumably new distance on unoriented weighted
graphs, the ultrametric max-flow distance Dmf. In this setup, eij represents
the edge capacity, controlling for the flow of maximum value vst between s
and t, solution of the problem

vst := max v such that 0 ≤ xij ≤ eij , xi• − x•i = v(δis − δit), xt• = 0.

By construction, vij ≥ 0, vij = vji, vii = ∞ and vij ≥ min(vik, vkj) for all
triples in V 3. For eij = eji, define the max-flow distance as dmf

ij := 1/vij . Then

dmf
ij is a dissimilarity obeying dmf

ij ≤ max(dmf
ik , d

mf
jk ), that is Dmf ∈ DU .

Categorial data analysis can also be cast in the above setup: let N = (nil)
be a n×m contingency table. Define a pair selection scheme by first choosing
a row i, then a category l present in i, then another row j containing l. The
resulting edge weight, node weight and transition matrix read (e.g. Bavaud
and Xanthos 2005)

eij =

m∑
l=1

nilnjl
n••n•l

fi =
ni•
n••

wij =

m∑
l=1

nilnjl
ni•n•l

(2)

On the other hand, the chi-square dissimilarity Dχ = (dχij) between rows reads

dχij := n••
∑
l

1

n•l
(
nil
ni•
− njl
nj•

)2 (3)

Dχ ∈ D2
2, but Dχ 6∈ D∞. Neither Dχ nor Dmf are graph-geodetic.
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2.3 Shortest-path distances

Let rij ≥ 0 denote the length, cost, travel time or resistance of edge ij. The
shortest-path length from s to t is

dspst := min
X∈Xst

U(X) where U(X) :=
∑
ij

rij xij

Then dspii = 0, dspik + dspjk ≥ dspij and dspij = dspji for symmetric R = (Rij). In

general, Dsp 6∈ D2
2 (e.g. Deza and Laurent (1997) or Bavaud (2010)).

An important body of literature considers the plain setup rij = c/aij ,
where c > 0 is a normalisation constant, as e.g. in Yen (2008) and references
therein, or as in the celebrated Doyle and Snell monograph (1984); see also the
illustrations of Section 3. For c = 1, the seemingly counter-intuitive inequality
dctij ≤ d

sp
ij holds, with equality iff the graph is a tree (e.g. Chandra et al. (1989);

Deza and Deza (2009); Bavaud (2010)). Also, Dsp is graph-geodetic.

2.4 Interpolating random walks and shortest paths

Measuring the navigation effort within a weighted network depends on the
nature of the moving agents (people, goods, money, information, etc), either
knowledgeable of all networks characteristics, or only aware of their immediate
neighborhood: dsp models agents moving directly to their target, while dct

models agents just wandering randomly until the target is reached. The former
is more sensitive to short-cuts and to the length of paths in the network, while
the latter is more sensitive to the degree and the number of paths between
two nodes. Both capture information on the network structure, although of
different kind.

This section presents a flow formalism aimed at continuously interpolating
between the shortest path and the random walk, already detailed in Bavaud
and Guex (2012)); see also Yen et al. (2008) and Saerens and al. (2009) for a
close yet independent proposal, distinct in its implementation.

First, consider the general twofold setup endowed with two distinct edges
valuations, namely the transition matrix W = (wij) of Section 2.2, and the
resistances R = (rij) of Section 2.3. Both can be chosen independently, except
for the consistency condition rij =∞ iff wij = 0.

Secondly, define for each path X = (xij) the flow energy as

U(X) :=
∑
ij

rij ϕ(xij)

where ϕ(x) is a smooth non-decreasing function with ϕ(0) = 0. Flows of Xst
minimizing U(X) yield st-shortest paths for the choice ϕ(x) = x and st-electic
currents for the choice ϕ(x) = x2/2 (Alamgir and Von Luxburg (2011); Li et
al. (2011)). Define also the flow entropy:
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G(X) :=
∑
ij

xij ln
xij

xi•wij
=

∑
i

xi•Ki(X||W ) = x••
∑
i

xi•
x••

Ki(X||W )

where Ki(X||W ) :=
∑
j
xij

xi•
ln

xij

xi•wij
≥ 0 is the Kullback-Leibler divergence

between the empirical transitions xij/xi• and the theoretical transitions wij .
The entropy G(X) takes on its minimum value zero iff xij/xi• = wij . Note
that the multiplicative factor x•• aims at making G(X) homogeneous, that is
G(vX) = vG(X) for v > 0.

Third, the aforementioned interpolation is implemented by considering the
minimizing solution, noted X̃st or simply X̃, of the free energy

X̃st := arg minX∈Xst
F (X) F (X) := U(X) + T G(X)

where T > 0 is a free parameter, the temperature, which arbiters between
the conflicting objectives: st-flows X̃sp minimizing F (X) realise shortest paths
when T → 0 (and ϕ(x) = x), and random walks X̃rw when T → ∞. We will
also use β = 1/T , the inverse temperature.

On one hand, the feasible set Xst defined by (1) is convex; on the other hand,
F (X) is convex iff ϕ(x) is convex, in which case the solution X̃st is unique
and given by (Bavaud and Guex 2012)

x̃ij = x̃i•wij exp(−β[rijϕ
′(x̃ij) + λi − λj ]) (4)

where λi are the Lagrange multipliers associated to (1). Equivalently, defining
vij := wij exp(−βrijϕ′(x̃ij)) as well as V := (vij) (where i 6= t and j 6= t),
M := (I − V )−1, q := (vit)i 6=t and z := Mq, the solution reads:

x̃ij = msi vij
zj
zs

(j 6= t) x̃it = msi
qi
zs

.

The optimal flow X̃ = (x̃ij) can be interpreted as the expected number of
passages on edge ij when starting from s until eventually reaching t. The
minimum free energy simply express as F (X̃) = −T ln zs. In what follows, we
assume ϕ(x) = x. Then (4) is solved in a single step, instead of iteratively.

2.5 Energy and Free Energy Dissimilarities

Define, for any pair st of nodes, the energy dissimilarity DU and the free
energy dissimilarity DF as

dUst :=
1

2
(U(X̃st) + U(X̃ts)) dFst :=

1

2
(F (X̃st) + F (X̃ts)) . (5)

dUst is the expected resistance for going from s to t and coming back. In general,
DU 6∈ D∞; however, DF ∈ D∞, and is graph-geodetic as well (see Kivimäki
et al. (2012) and references therein). Furthemore, one can prove that



6 Guillaume Guex and François Bavaud

lim
β→∞

dFst = lim
β→∞

dUst =
1

2
(dspst + dspts )

lim
β→0

dFst = lim
β→0

dUst =
1

2

∑
ij

rij (x̃st rw
ij + x̃ts rw

ij ) := dwct
st

where dwct
st is the commute cost or weighted commute time, proportional to

dctst (Françoisse et al. (2013); Kivimäki et al. (2012)). The above suggests
the possibility of an Euclidean phase transition, with dissimilarities in D2

2 for
T ≥ Tc, but not anymore for T < Tc whenever Dsp 6∈ D2

2.

3 Numerical examples and applications

3.1 Experiments with small graphs

Both DU and DF capture network information related to Dsp as well as to Dct.
Let us investigate their squared Euclidean nature by using the two criteria of
Section (2.1). Figure 1 depicts the behaviour of the smallest eigenvalue of B
and the power index, in the plain setup rij := 1/aij and wij := aij/ai•.

The first example, K23, demonstrates the existence of critical temperatures
Tc in the sense of Section 2.5. The second example, C15, shows DF to be D2

2 in
the whole temperature range, contrarily to DU which is not D2

2 for intermedi-
ate values of β. In the third example, both DF and DU are D2

2 over the whole
temperature range, with a contrasted behaviour between the last eigenvalue
of B, monotonously decreasing, and the power, maximum around β = 0.5.
On all examples, DF stays in D2

2 longer than DU when β is raised, a po-
tentially interesting property since squared Euclidean dissimilarities are often
needed for statistical applications. Lacunary as they are, those results under-
line the wide behavioral range of simple graphs, as expected from statistical
mechanical entities.

3.2 Multidimensional scaling

A planar graph with n = 50 nodes, aimed at imitating a realistic road network,
is generated following a variant of an algorithm due to Gastner and Newman
(2006) (Figure 2). We define rij as the Euclidean distances between the pairs of
nodes, and apply the simple setup eij = c/rij . After computing DU or DF for
various β, we extract the MDS eigen-coordinates in the two first dimensions
(regardless of the possible negativity of the last eigenvalue of BU).

In addition, we evaluate the similarity between the original dissimilarities
and the path functional dissimilarities by means of a presumably original

configuration similarity index CSab := Tr(BaBb)√
Tr((Ba)2)Tr((Bb)2)

∈ [0, 1], where Ba

and Bb are the scalar products corresponding to configurations Da and Db.
The maximum similarity of CSplanar, U = 0.86 for which DU is still squared
Euclidean obtains for β = 0.3 (Figure 2).
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Fig. 1. Three toy graph examples, scanning the squared Euclidean character of DU

(dashed line) and DF (dotted line). The first plot depicts the evolution of the last
eigenvalue of B versus β. The second plot exhibits the power index versus β.

3.3 Clustering

A standard approach to clustering categorical data consists in computing chi-
square dissimilarities Dχ (3) between objects, and then applying a k-means
procedure. Alternatives based upon DU and DF might reveal more efficient,
as demonstrated here in a supervised context with groups known a priori.

Specifically, one considers the document-terms contingency tableN = (nil)
of the n = 160 documents of the Reuters21578 corpus, belonging to m = 8
different groups (20 documents in each group). Exchanges eij obtain as in
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Fig. 2. Top: the original planar graph (left) and the behaviour, regarding β, of the
last eigenvalue of B (middle) and the configuration similarity CS (right) between the
original configuration and the graph dissimilarities DU (dashed line) and DF (dotted
line). Bottom: MDS graph reconstruction from DU, whose first two dimensions
respectively explain 42.6% of the inertia (left, for β = 0.001), 53.8% (middle, for
β = 0.3) and 48.1% (right, for β = 4). In the last case, the dissimilarity is not
squared Euclidean and negative eigenvalues have been removed from the inertia.

(2), and resistances as rij = 1/eij (plain setup). Document eigen-coordinates
are obtained from weighted MDS on DU and DF, that is by considering the
spectral decomposition of K = (kij) with kij =

√
fifjbij instead of B =

(bij) (e.g. Bavaud (2010)); also, negative eigenvalues of KU or KF are set
to zero. A k-means procedure with 8 clusters is then applied on the eigen-
coordinates, and the resulting partition C is compared to the true partition
Ctrue by means of the variation of information dissimilarity dVI(C,C

true) :=
H(C)+H(Ctrue)−2I(C,Ctrue), where H is the entropy of the partition and I
the mutual information (Meila (2003)). Figure 3 shows that both DU and DF

yield noticeably better results than Dχ for intermediate value of β, but quickly
cease to be squared Euclidean. DU gives for β = 5 · 10−6 the clustering most
similar to the true classification, with a rate of correct classification (under
optimal group permutation) of 65.63%. See Kivimäki et al. (2102) for further
clustering experiments involving DU and DF, and e.g. Liu et al. (2013) for
random walk clustering.
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Fig. 3. Left: average information dissimilarity and 95% CI, comparing the true
classification and the clustering obtained from DU (dashed line), DF (dotted line)
and Dχ (baseline, top). Right: last eigenvalue of KU (dashed line) and KF (dotted
line) as a function of β.

4 Conclusion

Transforming a graph into a dissimilarity matrix most facilitates the discus-
sion of clustering and visualisation issues. It permits to open graph problems
to a large body of statistical and mathematical methods: classical data analy-
sis, machine learning, spectral graph theory and operations research. To that
extent, enriching the family of flow-based dissimilarities by considering further
sensible yet tractable functionals appears as a research priority. In particu-
lar, squared Euclidean dissimilarities immediately allow for MDS visualisation
and Ward hierarchical clustering.

Various dissimilarities capture (and hide) various aspects of the graph.
Results show that DU generally gives a better representation of the graph
structure than DF for a precise value of the temperature T opt, while the
latter is more stable over temperature changes. This suggest that DU should
be used when T opt is known, whereas DF is preferable otherwise.

Despite the above results, the questions of knowing how to determine, even
approximatively, T opt, which aspect of the graph structure is best enlightened
by which dissimilarity, and which dissimilarity is most efficient for a specific
clustering or visualisation task, remain largely open.
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JOLY, S. and LE CALVÉ, G. (1986): Etude des puissances d’une distance. Statis-

tique et analyse des donn?es, 11, 30–50.
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