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Abstract 
Arbuscular mycorrhizal fungi (AMF) are endosymbionts of the vast majority of terrestrial plants 

species exchanging soil nutrient for plant carbohydrates. This symbiotic association evolved more 

than 600 Myrs ago and might have helped the colonization of land by plants. AMF have been 

shown to confer a large number of benefits to plants, such as resistance to drought, pathogens, salt 

and pollutants. They were also shown to be central in terrestrial ecosystems as AMF diversity was 

found to impact plant community diversity, structure and productivity. Up to now, AMF diversity 

was measured to around 348 virtual molecular taxa for approximately 200’000 host plants. It is 

surprising that during their long evolution, the AMF did not radiate in species number, as did their 

hosts. In the first part of the thesis, I thus investigated the possibility that AMF could hide more 

functional diversity than previously thought. A diversity that could have been hidden until now 

because traditional molecular methods used could have had a to low resolution. Therefore using 

double digested restriction-site associated DNA sequencing (ddRAD-seq) protocols on the model 

AMF, Rhizophagus irregularis, I found that ecologists probably underestimated the functional 

diversity of AMF. Indeed I found well-defined genetic groups within this model species with 

differential transcriptome expression and differences in phenotypic traits. I also confirmed the 

controversial results suggesting a low endemism of AMF. In the second part, I then tested the 

hypothesis that within species AMF diversity could be ecologically functional. The intra-specific 

diversity was then inoculated either as a single isolate inoculum or as a mix inoculum on 

simulated plant communities. I found that phylogenetically similar AMF tend to impact the plant 

community in the same way by more or less repressing the dominant plant of the community, 

thus, resulting in a change in resource partitioning among subordinate plants. In the third part I 

characterized the molecular interaction between within species functional AMF diversity and the 

globally important crop plant Manihot esculenta. By performing a dual-transcriptome sequencing 

experiment I was able to unravel important plant genes and fungal genes that could partly explain 

how the AM symbiosis could switch from one extreme to another along the symbiosis continuum, 

parasitic to mutualist. Finally I have also found that R. irregularis hosts a rare and probably 

parasitic endosymbotic bacterium adapted to the intracytoplasmic life. This thesis showed several 

plant and fungal factors explaining the variability in the outcome of this ecologically and 

agriculturally important symbiosis. 
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Résumé 
Les champignons endosymbiotiques à arbuscules (CEA) forment une symbiose avec la vaste 

majorité des plantes terrestres en échangeant des nutriments du sol contre des sucres issus de la 

photosynthèse. Cette association à évolué il y a plus de 600 millions d’années et a pu être d’une 

grande aide pour la colonisation du milieu terrestre par les plantes. Il a été démontré que la 

symbiose avec CEA peut apporter de nombreux bienfait aux plantes, comme une meilleure 

résistance à la sécheresse, aux pathogènes, au sel ainsi qu’aux polluants. De plus, les CEA 

s’avèrent jouer un rôle central dans les écosystèmes de plantes de par le fait que la diversité des 

CEA influence leur diversité, leur structure ainsi que leur productivité. De nos jours, la diversité 

des CEA est évaluée à 348 espèces moléculaires, pour environ 200'000 plantes hôtes. Il est 

surprenant cependant, après une évolution aussi longue, que si peu d’espèces soient trouvées chez 

les CEA comparées à leurs plantes hôtes. La première partie de cette thèse m’a permis de tester 

l’hypothèse qu’il existe une diversité demeurée cachée chez les CEA, du fait que les méthodes 

moléculaires utilisées jusque là avaient une trop faible résolution. A travers l’utilisation d’un 

protocole ddRAD-seq sur l’espèce modèle des CEA, Rhizophagus irregularis, j’ai pu déterminer 

que les écologistes moléculaires sous-estiment très probablement leur diversité. En effet, j’ai 

identifié quatre groupes génétiques bien définis avec de fortes différences transcriptomiques ainsi 

que phénotypiques. Dans la foulée, ce travail confirme les résultats débattus sur le faible taux 

d’endémisme trouvé chez les CEA. Dans la deuxième partie de cette thèse j’ai voulu savoir si 

cette nouvelle diversité pouvait jouer un rôle écologiquement fonctionnel. J’ai donc inoculé cette 

diversité, soit sous la forme d’une seule souche soit sous la forme d’un mix de souches, sur des 

communautés de plantes simulées en serre. Il en résulte que des CEA phylogénétiquement 

similaires tendent à influencer dans le même sens les communautés de plantes en réprimant, plus 

au moins selon les clades, la dominance d’une plante et permettant ainsi un changement dans la 

répartition des ressources entre les plantes secondaires. Dans la troisième partie de cette thèse, je 

me suis intéressé à l’effet de cette diversité sur la réponse phénotypique et moléculaire d’une 

espèce de végétale, le manioc (Manihot esculenta), une plante agricole de grande importance 

alimentaire. Par le biais d’une expérience de double séquençage d’ARN, j’ai pu identifier des 

gènes de plantes et de champignons importants pour la symbiose qui pourraient expliquer 

comment cette symbiose passe de parasitique à mutualistique. Finalement, j’ai identifié une 

bactérie endosymbiotique complètement adaptée à la vie intracytoplasmique dans Rhizophagus 

irregularis. Cette thèse apporte de nombreux éléments permettant de mieux comprendre la variété 

d’interactions existant entre les CEA et les plantes ainsi que leurs communautés. 
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Diversity of living forms 
 

All life is founded on the principle of diversity or variability. Diversity of forms and of 

behavior, giving rise to astonishing shape from the tiny body of the tree frog made for 

climbing to the huge and hydrodynamic shape of the blue whale. This diversity of living 

forms arose from the diversity of natural habitats available on earth and by the competition 

among organisms for obligatory resources necessary to sustain life. Every niche with 

available resources were occupied by the best competitors, that slowly changed their 

phenotypes to be more and more adapted and specialized for resource collection. Some 

organisms even specialized on other organisms as a food source. Their behavior ranging from 

completely harmless mutualisms where both organisms profit to complete pathogens that 

severely reduces the capability of the host to survive and reproduce. All such biotic 

interactions are described under the general term, symbiosis. Symbiosis was argued to be a 

strong evolutive force, allowing some of the major transitions of life on earth (O’Malley et 

al., 2014). The dynamics of these symbiotic relations is often described as an arms race 

following the Red queen hypothesis (Van Valen, 1973), where both the host and the symbiont 

try to improve its’ weapons to escape or control the other. Arms races can only occur if the 

host and the symbiont show diversity in the efficiency of the tools or weapons used to achieve 

the symbiosis. Such variability will permit a dynamic equilibrium, where occasionally 

individual in the population will lose the arms race for example because of a weaker defense 

system while some other individuals will escape the control of the symbiont. Such dynamic 

equilibrium could in some cases lead to a co-evolution of the host and the symbiont, where 

both are highly specialized and dependent on each other. 

One of these arms races is the arms race between plants and fungi. The kingdom of fungi has 

developed a large variety of strategies to obtain nutrients from the plant, from pathogenic to 

mutualistic (James et al., 2006). In this thesis I have focused on probably the most common, 

and possibly the longest arms race between two terrestrial organisms, between arbuscular 

mycorrhizal fungi (AMF) and land plants. 
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Arbuscular mycorrhizal fungi (AMF) symbiosis 
 

Arbuscular mycorrhizal fungi (AMF) are the major symbionts of terrestrial plants ecosystems 

from polar tundra to tropical forests, forming symbiotic interactions with more than 74% of 

land plants species  (van der Heijden et al., 2015). Each partner was shown to profit from this 

symbiosis. The gain of the plant in this symbiosis is mainly found in an increased amount of 

the nutrients taken up, such as phosphate (Karandashov & Bucher, 2005) and nitrate 

(Govindarajulu et al., 2005) that is provided by the so-called fungal “extended root system”. 

The fungus conversely, obtains carbon from the plant in the form of photosynthetic sugar 

(Bago et al., 2003). These fungi have specialized endocellular structures called the arbuscules 

(Fig. 1). These tiny tree-like structures found within the plant root cells are the center where 

exchange between the plant and the fungus occur (Parniske, 2008). AMF are composed of 

three other main structures. First, the hypha that comprises the mycelial network and that 

collects nutrients is found inside the root as the intra-radical mycelium (IRM) or outside the 

roots as the extra-radical mycelium (ERM). The hyphae are continuous such as no septa are 

formed such that, the cytoplasm, the multiple nuclei coexisting within the cytoplasm and all 

organelles and nutrients are potentially free to move from one extremity to another. Second, 

the spores are the reproductive organs representing propagules for dispersion. Spores are 

produced in large numbers and are filled with the flowing cytoplasm with large number of 

nuclei and organelles (Fig. 1). Spores are vegetative reproductive organs and no sexual 

reproduction was ever recorded in AMF, despite several clues indicating recombination 

(Vandenkoornhuyse et al., 2001, Croll et al., 2009, Ropars et al., 2016) as well as the findings 

of conserved meiotic genes (Halary et al., 2011). Thus, AMF have been characterized as 

ancient asexuals. Third, the vesicles are the storage organs of the fungi and are usually found 

in the roots of the plant (Fig. 1).  



Chapter 1  General introduction 
	
	

19	

 
Fig.1 (1) Roots colonized by an AMF (Rhizophagus irregularis, © J. Bonvin) (2) Arbuscule within a plant root 

cell (Bravo et al., 2017) (3) An AMF spore with multiple nuclei (© M. Hijri) (4) Vesicules within a root (5) 

extra radical hyphae. 

 

Evolution of the AMF 

 
Fossils of probable AMF were found with an age of up to 460 million years and helped the 

molecular dating to date the evolution of this symbiosis around 600 million years ago 

(Redecker et al., 2000). With such an early appearance of these fungi, it has been suggested 

that they could have potentially played a central role in the colonization of land by plants 

(Heckman et al., 2001, Parniske, 2008,). Despite having evolved more than 600 millions 

years ago, and having helped plants to make an important transition, it is surprising that the 

diversity of AMF has not flourished as has the diversity of plants. AMF diversity is restricted 

to only 300 to 1600 described morphological or molecularly characterized species. This low 

diversity could be the results of one of the keys of their success; their generalist life style with 

low host specificity, allowing them to colonize many plants. This faculty is somehow 

necessary for such obligatory fungi that could not survive without colonizing a plant host. The 

1

2

3

4
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obligatory biotrophic lifestyle of these organisms could suggest that AMF are highly 

specialized on some plant species or group of species. All efforts to find co-evolution of 

individual AMF species with individual plant species have been unsuccessful. The AMF 

taxonomic group remains as a group of species with low endemism according to the recent 

findinds of Davison et al., in 2016. Despite these findings of global low endemism of AMF, 

suggesting a low restriction of AMF species distribution to biomes, plant families or plant 

species, it has been shown that different plant species can harbour different AMF 

communities (Vandenkoornhuyse et al., 2002 & 2003). Moreover, at the within species level 

it has even been suggested that certain genotypes of R. irregularis could prefer one plant or 

another during the trap culture process used to isolate AMF from the field (Croll et al., 2008). 

These experiemental results contradict the findings of Davison et al., 2016 and support a 

specialization of the AMF species and genotypes to different plants. 

 

Even if AMF are obligatory biotrophs, they are not necessary strong competitive excluders. 

Thus it is common to find more than one species of AMF on a plant (Maherali & Klironomos, 

2007). It is also common for an AMF to colonize more than one plant at a time (Kiers et al., 

2011). All these interactions, thus, suggest highly complex networks where all the members 

of a community of AMF interact with a large number of individual plants in the community. 

Due to the complex numbers of combinations of AMF species, plant species and types of soil, 

the outcome of the symbiosis is plastic and can range from a mutualistic to a parasitic 

interaction (Klironomos, 2003). However, the mean outcome of the AMF-plant symbiosis is 

highly likely to be mutualistic. As a testimony we can cite the ~600 millions year of 

persistence of the interaction and the development of a specialized plant gene toolkit for AMF 

interactions, with a set of genes that are only conserved in the plants that engage into AMF 

symbiosis (Delaux et al., 2014, Bravo et al., 2016). The outcome of this symbiosis on the 

long term has to be positive on the fitness on both partners to observe such wide spread 

ecological success. 

 

Communities, species, populations and individuals 

 
The definitions of species and all deriving concepts of community, population and individuals 

commonly used in most vertebrates, invertebrates or plants should be readapted to AMF 

(Rosendahl 2008). Indeed the definition does not fit these organisms that lack a known sexual 
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reproduction and have such particular intra-cellular organisation including a free cytoplasmic 

population of nuclei suggested to be transferred from AMF to AMF by the process of 

anastomosis i. e. the fusion of hyphae.  

For a long time morphological characteristics of AMF spores was the way to describe an 

AMF species. The development of molecular methods has boosted the discovery of new AMF 

species by using common barcode markers, mostly ITS and the small and large subunits of 

the ribosomal genes (SSU and LSU, Krüger et al., 2012). The rise of the early molecular 

methods came with the development of the molecular definition of a species in AMF. The 

molecular species are described under the term of operational taxonomic unit (OTU) or 

virtual taxa (VT) and are based on arbitrary limits with a certain threshold of divergence 

between sequences (Opik et al., 2010). However, as the reproductive mode is not clearly 

stated, it is hard to define the boundary between two species where the gene flow has ceased. 

The mechanism of anastomosis between two different AMF was shown to be a way for AMF 

to exchange genetic information (Croll et al., 2009). Moreover, ability of performing perfect 

fusion between two isolates was shown to depend on the genetic distance. Indeed the meeting 

of the hyphae of two time the same clonal individual resulted in ~50% of perfect fusion, by 

increasing the genetic Euclidian distance between the two meeting AMF, suddenly these 

values dropped drastically and quickly to 5, 1 and finally 0%. A way to define the boundary 

of AMF species would then be to find the optimal genetic distance at which anastomosis no 

longer results in the persistence of the exchanged nuclei across generations. However, nothing 

is known about such persistence across generations.    

The definition of an individual in counterpart has been made clear, once AMF started to be 

isolated in in vitro conditions. In AMF, an individual is one spore that when through all the 

process of isolation. This process is going from the natural soil, to single spores culture and 

finally into in vitro culture with Ri-T DNA carrot roots, such that a new culture started from 

one single spore is commonly described as an isolate. This isolate will then be conserved, 

shared between laboratories and archived in AMF bank. As the process of isolation is difficult 

to achieve, highly time consuming (1-2 years) and does not work well for all AMF species 

(Koch et al., 2004), most research to date has focused on the model R. irregularis isolate 

DAOM197198 and on very few species of mainly the genus Rhizophagus. 

All isolates of this work are individuals that went through several generations of culturing and 

each isolate originated from a single spore that was cultured in order to maintain the original 

genetic makeup. 
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Genetics and Genomics of AMF 

 
With the first publication of an AMF genome in 2013, the genome of Rhizophagus irregularis 

(isolate DAOM197198, Tisserant et al., 2013) and later on the publications of 4 single 

nucleus genomes of the same R. irregularis isolate (Lin et al., 2014), 5 R. irregularis 

genomes (Ropars et al., 2016) and ddRADseq data on a population of 20 R. irregularis 

isolates (Wyss et al., 2016) great improvements were made in understanding the nuclear 

organisation and the molecular mechanisms of this fungal symbiont.  

In parallel to this deep characterization of one species of AMF, similar sequencing 

technologies were used for AMF community profiling. Such analysis performed via the 

amplification and the sequencing of a single marker of around 500bp, from DNA of a soil or 

root sample, resulted often in hundred of thousands of sequences per sample, allowing the 

characterization of AM fungal communities of an ecosystem, of a plant species or a plant 

family. Up to now, the most important findings that came out of a study of worldwide AMF 

community profiling showed no continental partitioning as 93% of the taxa were found at 

least on two continents and 34% of the taxa were found on all continents, leading to the 

conclusion that AMF is a group with low worldwide endemism (Davison et al., 2016). Such 

surprising findings immediately raised criticism. Bruns and Taylor (2016) advanced the 

argument that if mammals were analysed with the 500bp portion of the same maker, and 

clustered at the same level as the sequences used for AMF profiling, we would classify all the 

mammals in the same species and this species would then be widely spread on all continents.  

The gap between the deep characterization of few isolates and the low molecular resolution of 

the AMF diversity by community profiling needs to be filled. In chapter 2 we, thus, 

attempted to fill this gap by analysing large-scale diversity of R. irregularis across continents 

with deep sequencing methods.  

 

Ecological role of AMF 

 
As said earlier, AM fungal symbiosis is the most frequent terrestrial symbiosis involving 

plants and, thus, it could be central in ecological processes. Indeed, it was shown that up to 

20% of the carbon fixed by the plants is transferred to the fungi, demonstrating their 

important role the carbon cycling (Parniske, 2008). More than being at the crossroad of 
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ecological processes as a passive actor, AMF were shown to act on the diversity of plant 

species such that the diversity of AMF contributed positively to the diversity of plant species 

(van der Heijden et al., 1998). In parallel, AMF diversity was shown to increase the global 

productivity of plant communities and was also found to be important for plant community 

structure, as some isolate were found to increase the growth of specific plant while some 

others increased other plant species. In this context, isolates were also observed to reduce the 

growth of dominant plants within a community thereby allowing the increased growth of 

subordinate plants (Wagg et al., 2011, Mariotte et al., 2013). Several other benefits of the 

AMF symbiosis were observed on single plant species and could possibility be generalized to 

plant communities in the future. We can count among them the increase of inoculated plant 

resistance to drought, salinity stress, deprivation of nutrients, atrazine and other contaminants, 

pathogens and insects (Gonzalez-Chavez et al., 2002, Al-Karaki et al., 2004, Pozo & Azcón-

Aguilar 2007, Koricheva et al., 2009, Hajiboland et al., 2010, Song et al., 2015, Garcia et al., 

2017). 

 

Intra-specific diversity of AMF 
 

Following the findings of the impact of AMF diversity on plant diversity (van der Heijden et 

al., 1998), the ecological role of AMF diversity was then strongly investigated. To our 

knowledge almost all ecological experiments used only one AMF isolate per species making 

the assumption that, first the species concept in AMF is a reliable concept and second that 

within an AMF species the effect on plant and plant communities is homogenous (van der 

Heijden et al., 1998, Klironomos et al., 2000, Maherali & Klironomos, 2007). However, 

boundaries defining AMF species are still not clear and even molecular data of small variable 

markers may not be precise enough to detect variants of different species. Moreover, Sanders 

& Rodriguez (2016) suggested that the second assumption on homogeny of the effect of intra 

AMF specific diversity on plant communities might be violated and that a more relevant and 

ecological functional diversity could be found at the intra-specific level in AMF. This 

hypothesis emerged due to the results of several studies (Munkvold et al., 2004, Mensah et 

al., 2015) where separately several isolates of the same AMF species were inoculated on one 

plant species. This process was then repeated for other species of AMF. These studies 

concluded that the variability in plant growth response such as root, shoot dry mass and 

phosphate uptake and in fungal traits could be higher within AMF species than among 
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isolates of different species. A third study (Koch et al., 2006) found similar results of high 

variability in plant response but within only one population of R. irregularis isolates. 

From these results Sanders & Rodriguez (2016) suggested that intra-isolate diversity should 

be investigated as a potential driver of plant diversity and plant community structure. It would 

then be important to have a well-defined molecular diversity for several species of AMF. In 

chapter 2 we made a step in that direction by characterizing deeply the diversity of R. 

irregularis for a large number of isolates of R. irregularis from different geographical origins. 

The information in chapter 2 on the genetic divergence among isolates was then used in 

chapter 3 to investigate the effect of this within-AMF species genetic diversity as a potential 

source of functional variation impacting the stability of a simulated calcareous grassland plant 

community. 

 

Agronomic role of AMF 

 
With their low host specificity, the variability in plant response to different AMF and their 

capability in poor soil fertility to acquire and transmit phosphorus to plants, AMF were 

considered as ideal candidates for agronomic program to increase the yield of important crop 

plants (Rodriguez & Sanders, 2015). AMF can perform definitely symbiosis with the major 

crops plants and have the capacity to increase their growth, such as wheat, rice and cassava 

(Pellegrino et al., in 2015, Angelard et al., 2010 and Ceballos et al., 2013). The production of 

Manihot esculenta (cassava) was recently shown to be improved by the inoculation with R. 

irregularis in real farming conditions (Ceballos et al., 2013), this study paved the way for the 

use of AMF in agriculture, especially in order to increase important food security crops in 

tropical countries such as the cassava. Indeed, tropical soils are ideal for the symbiosis with 

AMF as they are deprived of phosphate. 

The functional diversity suggested within AMF species, and found as the result of the 

inoculation of several isolates of the same species on several plants, might also be true for 

crops plant species. In order to use these fungi in the future for a more productive and 

sustainable agriculture, a better understanding of the effect of this within-AMF species 

variability on crop plant is needed.  

The within-species diversity that we described in R. irregularis in chapter 2 was, thus, used 

in chapter 4 in a greenhouse experiment, where we inoculated clonal cassava plants with 12 

R. irregularis isolates, evenly spread across the phylogenetic diversity of this species, in order 
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to investigate the impact of this potential within-species diversity on an important crop plant. 

The impact of the diversity of R. irregularis isolates was investigated in terms of phenotypic 

measurements as well as transcriptome patterns. In this chapter, a dual-RNAseq was 

performed to understand at the molecular level the interaction of the expression of cassava 

genes and R. irregularis genes from different isolates. 
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Abstract 

Arbuscular mycorrhizal fungi (AMF; phylum Gomeromycota) associate with plants forming 

one of the most successful microbe-plant associations. The fungi promote plant diversity and 

have a potentially important role in global agriculture. Plant growth depends on both inter- 

and intra-specific variation in AMF. It was recently reported that an unusually large number 

of AMF taxa have an intercontinental distribution, suggesting long-distance gene flow for 

many AMF species, facilitated by either long-distance natural dispersal mechanisms or 

human-assisted dispersal. However, the intercontinental distribution of AMF species has been 

questioned because the use of very low resolution markers may be unsuitable to detect genetic 

differences among geographically separated AMF, as seen with some other fungi. This has 

been untestable because of the lack of population genomic data, with high resolution, for any 

AMF taxa. Here we use phylogenetics and population genomics to test for intraspecific 

variation in Rhizophagus irregularis, an AMF species for which genome sequence 

information already exists. We used ddRAD-sequencing to obtain thousands of markers 

distributed across the genomes of 81 R. irregularis isolates and related species. Based on 6 

888 variable positions, we observed significant genetic divergence into 4 main genetic groups 

within R. irregularis, highlighting that previous studies have not captured underlying genetic 

variation. Despite considerable genetic divergence, surprisingly, the variation could not be 

explained by geographical origin, thus also supporting the hypothesis for at least one AMF 

species of widely dispersed AMF genotypes at an intercontinental scale. Such information is 

crucial for understanding AMF ecology, and how these fungi can be used in an 

environmentally safe way in distant locations. 

 

Key words: ddRAD-sequencing, AMF, Rhizophagus irregularis, Population genomics, 

Symbiosis, microorganisms.  
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Introduction 

In 1934, Baas-Becking was the first to propose a worldwide distribution of microorganisms, 

saying that ‘Everything is everywhere, the environment selects’. A recent study of the global 

distribution of arbuscular mycorrhizal fungi (AMF), comprising the phylum Glomeromycota, 

suggests that the statement by Baas-Becking might be true for this phylum. Using virtual taxa 

(VT; Öpik et al., 2010), discriminated by a 520 bp region of the 18S (small sub-unit or SSU) 

rRNA gene, 93% of all AMF taxa were found to be present on more than one continent and 

34% of species occurred on all continents except Antarctica (Davison et al., 2015). Global 

distribution of one-third of a phylum in eukaryotes is particularly unusual, especially in 

organisms with a low dispersal rates (Tedersoo et al., 2014). Records of cosmopolitan 

species, excluding marine (Finlay, 2002) and invasive or pest species (Margaritopoulos et al., 

2009), are rare. Birds have great dispersal capabilities, but even so, only six out of 10 000 

species have a cosmopolitan distribution. Even those six species exhibit distinct genetic 

substructure (Monti et al., 2015). 

Several findings in fungal population genetics suggest that, for some species, a cosmopolitan 

distribution reflects hidden endemism (Taylor et al., 2006). Some species first thought to be 

cosmopolitan are actually comprised of cryptic species with distinct geographical ranges such 

as the Basidiomycete Schizophyllum commune (James et al., 1999), Aspergilllus fumigatus 

and six other cited Ascomycete species (Pringle et al., 2005). 

Morton (1990) hypothesized that AMF speciation occurred prior to the breakup of Pangea and 

that fungal lineages co-evolved with the emergence of plant species thereafter, thus, resulting 

in global distribution. Alternatively, Davison et al., (2015) favored a hypothesis based on a 

more recent VT-molecular clock phylogeny that such widespread distribution was the result 

of a recent dispersal of spores, mediated by strong storms, as well as previously 

underestimated human activities. In either case, interpretations may be misleading if there is 

an underestimation of true species and an overestimation of species with an intercontinental 

distribution. The use of such short SSU sequences and a 97% similarity threshold to construct 

VT taxa (Davison et al., 2015) might not be informative enough to resolve significant AMF 

clades (Bruns and Taylor, 2016; Schlaeppi et al., 2016). Their argument is based on the 

premise that two taxa that share a 97% similarity in their SSUs may have diverged genetically 

many millions of years ago into different species. Davison et al., 2015 justified the use of VT 

because they are “phylogenetically defined sequence groups that exhibit a taxonomic 
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resolution similar to that of morphological species”. However, the absence of clear 

morphological distinctions and indistinguishable life history traits between R. intraradices 

and R. irregularis, together with highly supported divergence based on rDNA sequences 

(Stockinger et al., 2009), provides compelling evidence of cryptic speciation in the 

Rhizophagus clade. Similarly, other species may be genetically divergent but are 

morphologically similar (Rosendahl et al., 2009). This is more likely to occur in small 

eukaryotes with limited phenotypic space for evolution of new traits but with a less 

constrained capacity for genotypic evolution (Taylor et al., 2000). Discovery of these cryptic 

taxa requires the sampling of globally distributed AMF taxa and the application of population 

genomics tools because a large number of markers distributed across the genome would give 

a finer resolution suitable to detect genetic differences among populations (Bruns and Taylor, 

2016; Öpik et al., 2016).  

A high throughput sequencing technique, double digested restriction-site associated DNA 

sequencing (ddRAD-seq) is a reliable way of obtaining a large number of genome-wide 

markers (Parchman et al., 2012; Peterson et al., 2012). This overcomes bias created by use of 

single gene sequences and low similarity thresholds (e.g., the SSU rRNA gene). This 

approach was previously applied to Rhizophagus irregularis, an AMF species that has a 

putative global distribution and can be cultured under in vitro conditions. In vitro culturing 

allows the extraction of DNA that is free of contaminant microorganisms or plant DNA. This 

technique was previously shown to be reliable for Fusarium (Talas and McDonald, 2015) and 

in a study  measuring inter- and intra- isolate variation in a population of R. irregularis (Wyss 

et al., 2016). This multi-locus approach can provide a much finer resolution of the divergence 

between different R. irregularis isolates, which in turn can provide data to resolve whether 

this species has evolved under strong or relaxed geographical constraints. 

Describing the genetic diversity of AMF species, and especially the genetic diversity of R. 

irregularis at a wide geographical scale, is fundamental to understanding biogeographic 

patterns. However, it is not only important for resolving biogeographic questions but also has 

strong implications for interpretation of ecological, agronomic, and environmental studies. 

First, AMF are important symbiotic partners that interact with many plant species. 

Approximately 300 – 1 600 predicted AMF taxa form symbioses with over 200 000 plant 

species (van der Heijden et al., 2015). The fungi have the capacity to efficiently absorb 

nutrients, particularly phosphate, from the soil and give them to the plant (Smith and Read, 

2010) and richness of AMF taxa promotes plant diversity (van der Heijden et al., 1998). Most 
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ecological studies have not considered the role of intra-specific AMF variation even though 

intra-specific differences in AMF can have larger effects on P uptake and variation in plant 

growth than inter-specific differences (Munkvold et al., 2004; Mensah et al., 2015; Rodriguez 

and Sanders, 2015). Thus, measurements of genetic variation within AMF species could be 

highly ecologically relevant. Second, genetic variability in R. irregularis population causes 

significant variation in plant growth (Koch et al., 2006). The potential of using naturally 

existing genetic variation in this species to develop more efficient strains to increase plant 

growth has been demonstrated by Angelard et al., (2010) where five-fold differences in rice 

growth could be achieved due to genetic variation in R. irregularis strains. Defining the total 

genetic variation in this AMF species is important for future programs using the genetic 

variation in this fungus for more efficient inoculants (Sanders, 2010). Third, in vitro grown R. 

irregularis significantly increases yields of the globally important crop cassava (Ceballos et 

al., 2013). R. irregularis is potentially a good candidate species for large-scale inoculation of 

tropical crops because it can be mass-produced in contaminant-free in vitro conditions and 

because it appears to have a global distribution. However, before introducing high growth-

promoting R. irregularis isolates from one location to another, it is important to establish with 

population genomics techniques the risk of introducing genetically novel isolates into a new 

environment with the potential to become invasive. If R. irregularis has a very wide 

geographical distribution of very genetically similar isolates then the risk of introducing 

exotic genetic material is low. If there is strong geographically determined genetic structure 

among R. irregularis populations then such a risk is much higher (Rodriguez and Sanders, 

2015). 

In this study, 61 isolates identified morphologically and genetically as R. irregularis were 

obtained from various locations across Europe, North Africa, Middle East and North America 

and were propagated in vitro and sequenced with ddRAD-seq. To the 61 isolates, data from 

20 other isolates, that had been sequenced previously with the same ddRAD-seq protocol by 

Wyss et al. (2016), were added. We addressed three central questions: (i) Is the low level of 

endemism reported by Davison et al., (2015) applicable to R. irregularis and related species 

when using high resolution genome wide markers that are capable of showing within 

population genetic variation? (ii) Is there significant genetic diversification among continents? 

(iii) Is there evidence that some quantitative traits vary in accordance with the genetic 

variation observed in this fungal species? 
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Material & Methods 

 

Fungal isolates and culturing 

 

Rhizophagus irregularis (known previously as Glomus intraradices, Glomus irregulare or 

more recently as Rhizoglomus irregulare) were obtained from collections and biobanks such 

as BEG (http://www.i-beg.eu), GINCO (http://www.mycorrhiza.be/ginco-bel/) and INVAM 

(http://www.invam.wvu.edu), from small enterprises: Symbiom (Czech Republic; 

https://www.symbiom.cz/en/ and INOQ (Germany), and from research groups (IRTA: 

http://www.irta.cat, TERI: http://www.teriin.org, or were present in our group at the 

University of Lausanne. For more details on nomenclature, see Supplementary note S1. Sixty-

one isolates were collected (Supplementary Table S1). The collection included the R. 

irregularis holotype, DAOM197198, cultured in vitro in two laboratories (Switzerland: 

DAOM197198-CH and Czech Republic: DAOM197198-CZ), the holotype of R. intraradices, 

FL208 grown in vitro from pot culture material provided by INVAM and R. proliferus that 

was used as an outgroup for some analyses.. All isolates in this study were cultured in vitro 

with Ri T-DNA transformed carrot roots in a two-compartment culture system (St-Arnaud et 

al., 1996) to obtain fungal spores free from host plant DNA or other microorganisms. Some 

isolates were received as soil samples and were transferred to in vitro single spore cultures 

(Supporting information, Supplementary note S2).  

 

DNA extraction, amplification and sequencing of the phosphate transporter and the SSU 

 

Three-month-old sporulating in vitro cultures were used for DNA extraction. The medium in 

compartments containing only spores and hyphae was dissolved in 500ml of citrate buffer 

(0.0062 M of citric acid anhydrous and 0.0028 M of sodium citrate tribasic dihydrate) for 1h 

with a magnetic stirrer. Spores and hyphae were collected by filtering in citrate buffer through 

a sieve with 32µm openings and rinsed with ddH20. Spores and hyphae were frozen in liquid 

nitrogen and ground with a sterile pestle. DNA was extracted with the DNeasy Plant Mini Kit 

(QIAGEN) following the manufacturer’s instructions. Species identity of each isolate was 

verified by sequencing the Phosphate Transporter Gene (PTG), which is considered a 

phylogenetically informative marker by Sokolski et al., (2011) .  

The primers AML2 and NS31, previously used by Davison et al., (2015), were used to 

amplify the 18S (SSU) rRNA gene of all isolates. This was done to observe whether this 
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marker could reveal genetic differences among the isolates used in this study and to compare 

those differences with the genetic variation revealed with ddRADseq data. The amplified 

PCR product was cloned with a StrataClone PCR Cloning Kit (Agilent Technologies ®) 

following manufacturer protocols and one to two clones were sequenced. For more 

information of PTG and SSU amplification, sequencing and sequence cleaning see 

Supplementary note S3. 

 

ddRAD-sequencing 

 

Double-digest restriction-site associated DNA sequencing was carried out on DNA of the 61 

isolates with three to five independent biological replicates per isolate (Wyss et al., 2016; 

Supplementary note S4). The sampling design is given in Supplementary note S5. The 

ddRAD-seq protocol was performed on 233 DNA samples. Between 1 and 25ng/µl of 

genomic DNA was digested with the EcoRI and MseI enzymes (NEB). Between 36 and 90 

samples were pooled into each of four libraries with independent barcode for each sample. 

Library quality was verified on a Fragment Analyser® (Advanced Analytical Technologies). 

Each library was then sequenced at the Lausanne Genomics Technologies Facility (GTF) on 

an Illumina HiSeq sequencer in one lane to give 100bp paired-end reads.  

 

In silico workflow 

 

An additional ddRAD-seq dataset containing 20 isolates of R. irregularis, with 3 biological 

replicates of each isolate, was included in the analyses (Wyss et al., 2016), thus increasing the 

total number of isolates analysed to 81 (and the number of samples analysed to 299). Read 

quality was controlled with FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The computations were 

performed at the Vital-IT (http://www.vital-it.ch) center for high-performance computing of 

the Swiss Institute of Bioinformatics (SIB). After Illumina adapter and low quality read 

trimming and de-multiplexing (Supplementary note S6), the reads were mapped to the 

DAOM197198 R. irregularis genome assembly N6 with the Novoalign software (Novocraft-

Technologies 2014) . We chose this assembly, because it was the most complete single 

nucleus genome assembly of this fungus to date (Lin et al., 2014). FreeBayes v1.0.2 (Garrison 

and Marth, 2012) software was used to call single nucleotide polymorphisms (SNPs), 

insertions and deletions (indels) and multiple nucleotide polymorphisms (MNPs). The –p 
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option was set up to 10, assuming a potential number of alleles up to 10 and a minimum 

frequency of each allele of 10%. VCFfilter from the VCFLib library (Garrison and Marth 

2012) was used to call positions with a phred quality >30. Markers falling in coding and non-

coding regions were defined based on a prediction of coding regions with GeneMark-ES (Ter-

hovhannisyan et al., 2008; Wyss et al., 2016). Positions identified as repeated elements in the 

genome, using RepeatModeler Open-1-0 (Smit and Hubley, 2008) and RepeatMasker Open-

3.0 (Smit et al., 1996), were removed from subsequent analyses (Wyss et al., 2016). An in-

silico double digestion EcoRI-MseI in the original genome allowed identification of predicted 

fragments and all fragments that potentially mapped two or more times to the DAOM197198 

genome. We did not consider samples with less than 450 000 reads after demultiplexing, and 

samples with less than 300 000 reads uniquely mapping to the N6 assembly for further 

analyses. This decreased the number of samples to 262 (Supplementary Table S2). The four 

libraries, RAD7, RAD8, RAD10B and RAD12 are available at NCBI (bioproject accession 

number PRJNA326895). 

 

SNP datasets 

 

Three datasets were generated and analyzed. All the positions included in these datasets were 

shared among all isolates, so that no missing data was present for any isolate or replicate. 

These positions were located in coding and non-coding regions and contained at least 10 reads 

of coverage. The first dataset included all 262 samples and included 498 mono-allelic and 

poly-allelic positions in total. This dataset allowed us to conduct analyses to study genetic 

variation among all isolates and all species included in this study. A second dataset included 

only one replicate of each isolate, where the replicate chosen to represent each isolate was the 

one with the highest number of uniquely mapped reads and the highest number of loci 

covered. This allowed us to conduct more precise analysis on the genetic differences among 

all isolates using a larger number of polymorphic sites than that available in dataset 1. Using 

this selection, a total of 2 491 mono-allelic positions were concatenated for 68 isolates. In this 

dataset, one isolate out of the 14 identified using the PTG sequences as R. proliferus was used 

as an outgroup. A third dataset comprised a single replicate of each isolate identified in the 

PTG tree as R. irregularis. By considering polymorphic positions that were only shared 

among all isolates identified as R. irregularis, a database with a larger number of 

polymorphic positions could be generated, allowing us to conduct analyses with a high 

resolution to identify and quantify genetic differences within the species R. irregularis. In this 
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dataset, 6 888 mono-allelic positions were concatenated. A summary of the three datasets is 

found in Table 1 and information about the samples used in each of the three datasets is found 

in Supplementary Table S2. 

 

Table 1: The three datasets used for the phylogenetic analysis and population structure 

analysis 

  
No. of 

Samples  
No. of 
Isolates  

No. of 
Sites Taxa included in dataset 

Dataset 1 265 81 489 R. intraradices, R. irregularis, Rhizophagus sp. 
LPA8-CH3, R. proliferus 

Dataset 2 68 68 2491 R. intraradices, R. irregularis, Rhizophagus sp. 
LPA8-CH3, R. proliferus (as outgroup) 

Dataset 3 59 59 6888 R. irregularis 
 

Phylogenetic analyses and 18S rRNA clustering 

Phylogenetic analysis of the PTG is described in Supplementary note S3. After sequence 

cleaning, SSU cloned sequences of each isolate were clustered at 97, 98 and 99% similarity 

thresholds with the script pick_otus and the uclust clustering algorithm in the QIIME 

environment (Caporaso, J. G. et al., 2010, Edgar 2010). Each clone was also blasted against 

the MaarjAM database (Öpik et al., 2010) and the best VT hit was retained. The sequences 

used for the PTG phylogeny comprised 71 from this study and 25 from Sokolski et al. (2011). 

All PTG sequences used to reconstruct this phylogeny have been deposited in NCBI GenBank 

as accession numbers KY348541 - KY348610 and KY436236. The SSU sequences were 

deposited in the NCBI GenBank with accession numbers KY436237-KY436352. 

 Scalar distances calculated on the first ddRAD-seq dataset were analysed with the package 

ape, version 3.5 (Paradis et al., 2003) in the R software 3.3.2. A dendrogram was built using 

the function hclust and plot.phylo (Wyss et al., 2016). A bootstrapping method described by 

Wyss et al. (2016), was applied to calculate support values. The second and third datasets 

were analyzed with MrBayes (Huelsenbeck and Ronquist, 2001), implementing Markov chain 

Monte Carlo (MCMC) probability analysis. A mixed model was set up with the command lset 

nst=mixed rates=gamma. The MCMC chains were run for 1 000 000 generations with the 

reversible jump MCMC (RJ-MCMC) procedure, avoiding the selection of only one model of 

substitution rate. The chains were run until the standard deviation (SD) of split frequencies 

reached 0.01. All PSRF+ values reached a value of 1. 
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Population structure, species and clade delimitation 

A constrained correspondence analysis (CCA) built with the function cca from the package 

vegan, version 2.4-1 (Dixon, 2003) was applied to the first dataset and based on a matrix of 

scalar distances among the 262 samples and the 498 positions. We did this to examine how all 

the different isolates used in this study would cluster. 

BP&P (Yang and Rannala, 2010, version 3.3) and STRUCTURE (Pritchard et al., 2000, 

version), two programs based on the Bayesian algorithm, were used in order to define species 

and genotype boundaries. First, the 2 491 positions of the second dataset were concatenated 

and tested under the multispecies coalescent (MSC) model (Rannala and Yang, 2003; Yang, 

2002). Using this model, species were delimited using a user-specified guide tree (Yang and 

Rannala, 2010; Rannala and Yang, 2013). The BPP software only evaluates the models that 

can be generated by collapsing nodes on the guide tree using the reversible jumps algorithm. 

We have added this text into the manuscript. The specific guide tree used is based on the 

phylogeny generated in Mr Bayes, as follows: 

 (R. proliferus, (R. intraradices, (Rhizophagus sp. LPA8-CH3 , ((R. irregularis Gp3, R. 

irregularis Gp4), ((R. irregularis Gp1A, R. irregularis Gp1B), R. irregularis Gp2))))), 

where Rhizophagus sp. LPA8-CH3 formed a distinct sister clade to R. irregularis comprising 

two isolates, R. intraradices is a known species, and R. irregularis groups Gp1A, Gp1B, Gp2, 

Gp3, Gp4 are distinct genetic groups within the phylogenetic analysis. Three models were run 

with varying ancestral population size (θ) and root age (τ0) following the protocol of Leaché 

and Fujita (2010) (Supplementary note S7). 

Population structure in the third dataset was analyzed using an admixture ancestry model with 

the program STRUCTURE, without prior knowledge of location and with correlated allele 

frequencies between populations. STRUCTURE (Pritchard et al., 2000) is a program suitable 

for defining species groups (K) even when the Hardy-Weinberg equilibrium is not respected 

and is also robust for analysis of population structure with data originating from organisms 

with low recombination rates (Falush et al., 2003, 2007). The MCMC chains were run for 100 

000 generations, with 10 000 generations of burn-in. Each run from K1 to K7 was replicated 

10 times. The delta K (Evanno et al., 2005) was computed using STRUCTURE 

HARVESTER (Earl and vonHoldt, 2012) in order to define the most likely number of K 

present in the sample. In order to concatenate all the replicates for each K, CLUMPP was 
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used (Jakobsson and Rosenberg, 2007). Graphical output of cluster assignment as barplots 

and pie charts for mapping each isolate to their geographical origin was performed in R. 

Finally, an analysis of molecular variance (AMOVA) was performed on the data using 

Continent as a factor with the highest number of isolates (i.e. Europe and North America), 

with 1000 permutations, based on scalar genetic distances (pegas package version 0.9, 

Paradis, 2010). A Mantel test with the package ape (Paradis et al., 2004, version 3.5) and with 

1000 permutation was also performed to test for isolation by distance, by correlating a 

geographical distance matrix and the matrix of phylogenetic scalar distance based on dataset 1 

derived from ddRAD-seq. 

A previous study (Croll et al., 2008) analyzed the genetic structure among 29 R. irregularis 

isolates with a reduced set of markers comprising ten microsatellites, two mitochondrial LSU 

gene introns and one nuclear gene intron. Those 29 isolates were also present in this study, 

allowing a comparison of the results. We produced a matrix of phylogenetic scalar distance, 

based on the ddRADseq dataset, but this time with the 29 isolates. This matrix was then 

compared with a Mantel test to a matrix of phylogenetic Jaccard distance based on 13 markers 

(Croll et al., 2008). This analysis combined with the other analyses indicated that the 

ddRADseq data were robust (Supplementary note S8). 

Measurement of hyphal density 

Previous studies have shown differences in hyphal density among some of the isolates used in 

this study. We wanted to see whether hyphal density patterns of R. irregularis varied in 

accordance with the genetic differences observed among R. irregularis isolates. After 

sequencing and analyzing all ddRADseq of each isolate, nine isolates spread across the major 

branches of the phylogeny were cultured for three months in vitro with five replicates. There 

were only three replicates of one of the isolates, DAOM197198-CZ. Following three months 

of growth, each plate was photographed using a camera attached to a stereomicroscope in 

order estimate hyphal density (Supplementary note S9).  
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Results 

Phylogeny based on phosphate transporter gene sequences 

Sequences of the PTG ranged between 800 to 1 191 bp in length, with 282 SNPs. Previously 

published sequences (Sokolski et al., 2011) and sequences of the reference isolates FL208 and 

DAOM197198, combined with the other PTG sequences from this study, resolved three 

Rhizophagus species; R. proliferus, R. intraradices and R. irregularis (Figure 1a). Twenty-

two different haplotypes were identified with a nucleotide diversity (PiT) of 0.0806. In the R. 

irregularis clade, 13 haplotypes were detected with a nucleotide diversity of 0.0158 and 49 

segregating sites. As expected, sequences of the reference strain DAOM197198 clustered 

within the R. irregularis clade. A highly supported sister clade to R. irregularis was 

designated as a distinct putative species Rhizophagus sp. LPA8-CH3 based on the two 

isolates comprising this group. The isolate FL208, considered as the holotype of R. 

intraradices (Stockinger et al., 2009), clustered with five other isolates and with a previously 

published sequence of R. intraradices. 

Sequences of the same SSU region studied by Davison et al., 2015 of 554 bp, revealed that at 

the 97% similarity threshold the different Rhizophagus species used in this study could not be 

discriminated from each other (Figure 1b; Supplementary Table S3). Only at the 99% 

similarity threshold, could the 3 species of Rhizophagus plus the putative species be 

distinguished from each other (Figure 1b). At the 99% similarity threshold, R. proliferus, R. 

intraradices and the putative Rhizophagus sp. LPA8-CH3, each occurred in one separate VT 

(as seen in the MaarjAM database). R. irregularis isolates occurred in three different VT.  
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Figure 1. Phylogeny constructed using phosphate transporter gene (PTG) sequences and schematic 

clustering of the SSU. (a) Additional sequences from Sokolski et al., 2011. Sequences of Funneliformis 

mosseae were used to root the tree. Holotypes of R. intraradices (FL208) and R. irregularis (DAOM197198) 

shown in dark grey. R. proliferus (green), R. intraradices (red), R. irregularis (blue) and Rhizophagus sp. LPA8-

CH3 (dark grey). Numbers at nodes represent bootstrap support for consensus tree bipartitions. (b) SSU 

sequences for all isolates clustered at 97%, 98% and 99% and corresponding virtual taxa number (VT) of the 

first hit after blast on MaarjAM database. 

Analysis of ddRAD-seq data 

Each of the four ddRAD-seq libraries generated more than 300 million reads (Supplementary 

Table S4. Barcodes to de-multiplex the samples in each library are listed in Supplementary 

Table S2. 

Sequencing details for each replicate of each isolate are reported in Supplementary Table S2. 

The ddRAD-sequencing on DNA from 81 isolates resulted in 509 563 positions covered with 

a mean of 12 282 SNPs and 1936 indels per isolate when compared to the reference genome 
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assembly. Not all of these positions had sufficient depth of coverage across all isolates in all 

samples. Among R. intraradices isolates, the number of positions in non-repeated coding and 

non-coding regions, covered by at least 10 reads, ranged from 23 668 in UK131-1 to 80 460 

in UK128-1. Among R. proliferus isolates, the number of positions ranged from 60 795 in 

AKO11-11-2 to 77 186 in AKO11-13-1. Among R. irregularis isolates, positions ranged from 

73 030 in ESQLS69-1 to 361 950 in DAOM240448-5.  

 

Based on the phylogenies of both ddRADseq datasets 1 and 2, and a CCA built with the first 

dataset (Supplementary Figure S1, Figures 2 and 3), similar clade structure to that found with 

the PTG phylogeny was obtained: R. proliferus (n=14), R. intraradices (n=6) and R. 

irregularis (n=59). These data provided additional support for recognizing Rhizophagus sp. 

LPA8-CH3 (n=2) as being genetically distinct from R. irregularis and R. intraradices. Four 

mains branches within the R. irregularis tree as well as four main groups of isolates within R. 

irregularis were clearly recognized in the CCA.  

Figure 2. Phylogenetic tree based on a concatenation of 2 491 SNPs across the genome (dataset 2) of three 

species of Rhizophagus and Rhizophagus sp. LPA8-CH3 and 68 isolates. Only one replicate per isolate was 

used. Names are composed of the isolate name followed by the replicate number (short name in Table S2). 

Numbers at nodes represent bootstrap support for consensus tree bipartitions. Colour coding follows that of 

Figure 1.  
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Figure 3: Constrained correspondence analysis (CCA) built on a scalar distance matrix computed among all 

samples and replicates (n=262) and based on 489 shared mono-allelic or poly-allelic positions. The four AMF 

species are well separated along the X-axis. Colour coding follows that of previous figures. 

Phylogeography and population genetic structure  

Rhizophagus irregularis and R. intraradices isolates co-occurred in Europe, the Middle East, 

North Africa and Northern America (Supplementary Figure S2.). We analyzed the speciation 

probability among Rhizophagus species as well as within R. irregularis. The MSC model 

implemented with dataset 2 using BP&P showed that in three models, the three distinct 

species were highly supported: R. irregularis, R. intraradices and R. proliferus and one 

putative species: Rhizophagus sp. LPA8-CH3 (Figure 4). A probability of > 0.95 would 

normally be considered likely to represent a speciation event. In this analysis we also found 

significant divergence between groups Gp3 and Gp4 and between groups Gp1 and Gp2 within 

R. irregularis. Two of the three tests exceeded the > 0.95 probability threshold for genetic 

differentiation between Gp1A and Gp1B. 
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Figure 4: Bayesian species delimitation tree (based on dataset 2). Marginal probabilities of speciation for 

three models with variable population size (θ) and divergence time (τ0) are presented at each node. 

The analysis using STRUCTURE and the Delta K on dataset 3 (59 R. irregularis isolates) 

suggested the possibility of either two or four divergent clades within the sampled R. 

irregularis isolates (Figure 5a), with Delta K values supporting a slightly higher probability 

of four groups than two (Supplementary Figure S3). BP&P and STRUCTURE analyses 

collectively suggested that the R. irregularis isolates were divided into at least four well-

defined genetic groups. 

The distribution of the divergent genetic groups of R. irregularis did not follow a 

geographical pattern (Figure 5b). Indeed, the Mantel test used to test for isolation by distance 

and an AMOVA using genetic distance and Continents as factor (America=9, Europe=37) did 

not reveal significant genetic differences (AMOVA: df=1, p=0.395) between the populations 

of the two different continents or any significant isolation by distance (z-statistic: 112835, p-

value: 0.518). Moreover, isolates of each of the four genetic groups could be found in highly 

distant locations. For example, R. irregularis group Gp4 occurred in several geographically 
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distant places in north America (Florida and Canada), in Europe from Switzerland to Finland 

and in North Africa (Tunisia). Similar patterns were evident in the other genetic groups. Two 

strains (DAOM234181 and DAOM240159) appeared to be the same clonal haplotype and 

originated from two locations separated by almost 4000 km in Canada. Isolates belonging to 

the two close genetic groups Gp3 and Gp4 coexisted in the same soil in Switzerland and both 

groups also co-occurred in geographically close sampling sites in Canada. 

The population structure of 29 R. irregularis isolates measured using 13 markers (Croll et al., 

2008) reflected that observed with the large number of SNPs identified in this study. The 

Jaccard distances among isolates measured with microsatellite data were significantly 

correlated with the scalar distance calculated on 2100 positions from ddRAD-seq data 

(Supplementary Figure S4, Mantel statistic r: 0.9624, p-value < 0.001). 
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Figure 5: Assignment to 4 genetic groups with STRUCTURE and distribution map of genetic groups. (a) 

Vertical bars represent one R. irregularis isolate of and colours represent the assignment to different genetic 

groups (K). The delta K value for K = 4 was slightly higher than for K = 2. (b) Colour coding corresponds to 

results obtained with STRUCTURE, based on dataset 3. Several isolates are of unknown geographical origin and 

are not presented here. The name of each isolate is written near its respective pie chart, except for the 29 Swiss 

isolates that are represented as the Swiss population. 

Extra-radical hyphal density 

Dataset 3 provided the finest resolution to discriminate between R. irregularis isolates and 

showed, based on 6 888 SNPs, that genetic variation within each of the 4 main genetic groups 

also existed (Figure 6a). Significant differences in extraradical hyphal density among the nine 
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chosen R. irregularis isolates, and among three genetic groups (Gp1, Gp3 and Gp4), was 

found (Figure 6b; lmer; Genetic groups: dF = 2, F.value = 5.94, p = 0.035*). Isolates in the 

genetic group Gp3 produced a significantly higher density of extraradical hyphae than those 

in Gp4. Other comparisons between genetic groups were non-significant (Gp 3 - 4, p= 0.01*, 

Gp 1 - 4, p= 0.09 ., Gp 1 - 3, p= 0.18). 
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Figure 6: Phylogeny of the four genetic groups and hyphal density of 9 R. irregularis isolates from three 

genetic groups. Colour coding follows that in previous figures and corresponds to the four genetic groups. (a) 

Phylogeny based on 6 888 concatenated SNPs across the R. irregularis genome constructed using data from 59 

isolates (dataset 3). The white squares represent clonal haplotypes. (b) Extra-radical hyphal density of R. 

irregularis isolates from three genetic groups. Genetic group 2 (Gp2) was not included. On the x-axis, N 

represents the number of plates and the number in parentheses represents the number of transects where the 

hyphae were counted. The significance among the three genetic groups and obtained with the mixed model is 

indicated above the boxplots (ns: non significant, * : p-value<0.05). 
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Discussion 

Describing the genetic diversity of AMF species, and especially that of the broadly distributed 

R. irregularis group, is fundamental to understanding their biogeographic patterns. Data 

confirmed that both R. irregularis and R. intraradices are widely distributed geographically 

across at least two continents (North America and Europe). Moreover, the four cryptic 

genomic forms within the species R. irregularis, identified by thousands of SNP markers 

obtained in this study, also have a broad geographic distribution. These data collectively 

support the hypothesis of Davison et al., (2015) that endemism is low in some 

Glomeromycota, not only at the 97% level of clustering resolution using VT and at the 

species level, but also amongst significantly diverged genomic forms within a species. 

We confirmed with both the PTG and ddRAD-seq loci that the two reference isolates FL208 

and DAOM197198 (holotypes of R. intraradices and R. irregularis, respectively) indeed 

belonged to two distinct clades and that a number of the other isolates in this study also 

clustered into these two clades. The four distinct genetic groups identified by variation in 

thousands of genome-wide SNPs among R. irregularis isolates were not fully resolved by the 

PTG and SSU phylogenies. This result stresses the need for higher resolution and larger 

number of markers for understanding AMF biogeography. 

While the four genetically defined R. irregularis groups cannot be fully ranked at the species 

level in this study, the data indicate that, at most, a negligible amount of gene flow occurs 

among the groups, even though they coexist in the same soil. Thus, rather than referring to 

these as different cryptic species, we define the genetically different groups as cryptic 

genomics forms of the fungus, meaning that they are genetically distinct, but would likely not 

be distinguishable by morphological studies or using single gene markers. Anastomosis has 

been observed in the laboratory at very low frequency between isolates in groups Gp3 and 

Gp4 originating from the same location (Croll et al., 2009). However, if this were common in 

nature, then such defined genetic groups would not be expected in the datasets generated in 

this study because intermediates should occur. 

The four genetic groups were found across large geographical distances. The most striking 

examples were genetic groups Gp3 and Gp4, which occur at several different localities in 

Europe, Northern Africa, Canada and the USA. Some isolates from the same genetic group 

occurred more than 8000 km apart. The four genetic groups described here were detected 
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because of the high resolution obtained by the large number of ddRAD-seq markers. Thus, 

Bruns and Taylor (2016) were correct that low-resolution markers such as the one used by 

Davison et al., (2015) would have failed to detect such genetic groups and would have 

assigned them to only one VT. However, regardless of the level of resolution informed by the 

SNPs or the 18S (SSU) rRNA, the same pattern of low endemism observed by Davison et al., 

(2015) was evident for R. irregularis. This suggests, as proposed by another study (Rosendahl 

et al, 2009), that at least the AMF species studied in detail so far, from the species level down 

to the intraspecific level, have a wide distribution attributable either to high dispersal via 

anthropogenic activities (Davison et al., 2015) or by slower dispersal over millions of years 

(Morton, 1990). Since many of the fungi in this study were isolated from agricultural fields, 

human agriculture may well be responsible for the dispersal of this species. We do not, 

however, consider it likely that the wide distribution of some of the groups is due to the 

application of exotic inoculum containing Rhizophagus irregularis because the more 

widespread use of such inocula is actually very recent and many of the donated cultures were 

isolated from the soil long before the use of commercial inocula.  

The considerable genomic variability described here for a large set of isolates has not 

previously been reported for R. irregularis. Given that genetically different AMF isolates can 

cause large differences in plant growth (Munkvold et al., 2004, Koch et al., 2006), it would 

now be important to identify if variation in plant growth during the symbiosis with these 

different forms is greater among or within R. irregularis genetic groups. In this present study, 

we found evidence that the extraradical hyphal density, a phenotypic trait that is known to 

impact the phosphate acquisition capacity of the fungus and benefit to the plant (Jakobsen et 

al. 1992), differed significantly among genetic groups. Identifying whether the within species 

genetic and phenotypic variability in these fungi has consequences for plant ecology would be 

an important step to understand the link between fungal communities and plant communities 

as well as an important step for using AMF in agriculture for increasing crop yields.  

The focus on the biogeography of R. irregularis in this study has broad agronomic 

implications. Genetically different R. irregularis applied to rice (Angelard et al., 2010) 

resulted in differential rice growth. Significant yield increases in cassava in the field have 

been achieved by applying in vitro produced R. irregularis (Ceballos et al., 2013). 

Rhizophagus irregularis is a potentially strong candidate species for large-scale inoculation of 

tropical crops because it can be mass-produced in contaminant-free in vitro conditions and 
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because of its global distribution. The occurrence of R .irregularis genotypes distributed 

across diverse environments suggests broad adaptability to different soil types.  

The introduction of non-native exotic strains with a strong geographically determined genetic 

structure among populations could be perceived as a risk for potential invasiveness 

(Rodriguez and Sanders, 2015; Schlaeppi et al., 2016). However, that concern is alleviated for 

R. irregularis, given that distribution of genetically similar isolates is widespread. For 

example, if isolates Gp3 and Gp4 from Switzerland were introduced in a field sites in Canada, 

the presence of these genotypes there negate any classification as exotic. We propose that a 

population genomic study of R. irregularis from tropical soils should be undertaken to verify 

if similar patterns occur. 

Attention then would focus on the design of multi-isolate commercial inocula, where 

relatedness of isolates growing on the same plant strongly impacts plant biomass (Roger et 

al., 2013). The variation found in the 81 isolates of this study provides a bank of genetic 

diversity that can be utilized to test for crop compatibility and symbiotic efficiency and 

effectiveness. The variability described in this study has the advantage that each isolate is 

referenced and stored as in vitro pure culture and could be at any time mass-produced and 

used for breeding programs (Rodriguez and Sanders, 2015), ecological experiments (Koch et 

al., 2006) and agronomic trials (Ceballos et al., 2013). 

This study is, to our knowledge, the first to show that almost-clonal isolates of Rhizophagus 

irregularis occurred in highly distant localities up to 4000 km apart. It also confirms the 

findings of Davison et al., (2015) of low endemism and similar genomic forms on multiple 

continents. At the same time, our results also show that, as Bruns and Taylor (2016) 

suggested, considerable genetic divergence can indeed be hidden by the use of low-resolution 

markers. The presence of different genetic groups of R. irregularis across the globe should be 

now investigated by isolating and genotyping isolates from agronomic and natural ecosystems 

from other continents such as Australia, Africa, Asia and South America.  
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Supplementary information 

 
Supplementary Figure S1: Scalar distance tree based on 489 mono-allelic and poly-allelic 

markers of 81 isolates and their biological replicates. Three different species are depicted in 

blue (R. irregularis), in pale red (R. intraradices) and in pale green (R. proliferus). 

Additionally, Rhizophagus sp. LPA8-CH3 is depicted in grey. Within R. irregularis, different 

colours (pink: Gp4, green: Gp3, red: Gp2, orange: Gp1) correspond to four different genetic 

groups. 
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Supplementary Figure S2: Map of AMF species distribution  

Geographical origin of isolates and species of AMF. In blue, R. irregularis, in red R. 

intraradices, in green R. proliferus and in black Rhizophagus sp. LPA8-CH3. Numbers 

correspond to the number of isolates isolated in each site. When no number is present, only 

one isolate originated from the corresponding location.  
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Supplementary Figure S3: StructureHARVESTER plot. The delta K (Evanno et al. (2005) 

suggests the best number of K. The delta K for K2 and K4 have the highest values with a 

slightly higher value for K4. 
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Supplementary Figure S4: Mantel correlation between Jaccard distance based on 

microsatellites, and scalar distance based, on ddRAD-seq data. Twenty-nine isolates that 

were previously genotyped by Croll et al. in 2008 were also analysed by ddRAD-seq in this 

study. The genetic distances between the isolates based on microsatellites, and calculated with 

Jaccard distance, were strongly correlated with the distance between isolates based on 

ddRAD-seq data, based on a scalar distance (Mantel statistic r: 0.9624, p-value<0.001) 
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Supplementary note S1: Rhizophagus irregularis nomenclature 

Previously this species was ascribed as Glomus intraradices or was given the name Glomus 

irregulare (Stockinger et al., 2009; Krüger et al., 2011) or Rhizoglomus irregulare 

(Sieverding et al., 2014). It was recently defined as a separated species to Rhizophagus 

intraradices mainly based on the two holotypes, respectively DAOM197198 and FL208 

(Stockinger et al., 2009), both of which are included in this study. 

 

Supplementary note S2: Single spore isolation, decontamination and in vitro culturing 

protocol 

Twenty g of soil containing AMF spores was sieved with 3 mesh sizes: 200, 50 and 32µm. 

The contents of the 32 and 50 µm sieves were centrifuged for 4 min in a 50ml falcon tube 

with water. A second step of centrifugation for 4 min was carried out, replacing 50% of the 

water with a 50% sucrose solution. Around 200 spores were then collected from the 

supernatant and decontaminated in Chloramid T for 4 min and rinsed 3 times with a 

gentamycin and streptomycin solution at 1% in a sterile hood. Clean spores were then placed 

on M medium, separated from each other on a grid. Successfully germinated single spores 

were transferred to a medium with transformed carrot roots. Each fungus was then grown in 

the in vitro culture system for 3 months in the presence of root tumor-inducing plasmid T-

DNA-transformed carrot roots (Bécard and Fortin 1988). 

 

Supplementary note S3: Phosphate transporter gene (PTG) and 18S (SSU) rRNA gene 

sequencing and analysis 

The Phosphate Transporter Gene (PTG) was considered a phylogenetically informative 

marker by Sokolski et al., 2011. We amplified this marker from DNA of each isolate using 

primers P4 and P6 (Sokolski et al., 2011). We then sequenced the amplified product to 

confirm the species identity of each isolate. A PCR mix of 10µl was prepared with 1X of 

QIAGEN PCR Buffer, 1mM of MgCl2, 0.2 mM of dNTP mix containing all dNTPs, 0.5 µM 

of each primer, 0.4 U of Taq polymerase (QIAGEN) and 2µl of gDNA at a concentration 

ranging between 1 and 25ng/µl. PCR conditions for amplification of the PTG on a Biometra 

T1 Thermocycler PCR machine were as follows: 5 min at 95°C followed by 35 cycles at 95°C 

for 10s, 50°C for 30s and 72°C for 2min, a final elongation step at 72°C for 10min. 

 

The 18S (SSU) rRNA gene is a commonly used maker for NGS analysis of soil fungal 

communities; we used the primers AML2 and NS31 (Davison et al., 2015) to amplify this 
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region. The PCR mix of 12.5µl for the amplification of the SSU region consisted of 1.56X of 

QIAGEN PCR Buffer, 0.0625 mM of dNTP mix containing all dNTPs, 0.3125 µM of each 

primer, 1.25 U of Taq polymerase (QIAGEN) and 1µl of DNA of the same extraction used for 

the PTG amplification. Each successfully amplified fragment of each isolate was then cloned 

with the StrataClone PCR Cloning Kit (Agilent Technologies ®) following manufacturer 

protocols. Two clones of each isolate were selected and amplified with the set of primers 

T3/T7. 

 

Purification and Sanger sequencing of both markers was performed by GATC biotech 

(Germany). Quality assessment of the sequences, alignment and sequence cleaning was 

performed using MEGA 6.06 (Tamura et al., 2013). MrBayes software (Huelsenbeck et al., 

2001) was used to infer genealogy of the PTG. The GTR+G substitution model was selected 

using the best AIC values from jModelTest 2.1.4 (Darriba et al., 2012). The Markov Chain 

Monte Carlo (MCMC) simulations were run for 600 000 generations until the standard 

deviation of the split frequencies reached 0.01. All PSRF+ values reached the value of 1. The 

tree was finally modified and edited in FigTree and Adobe Illustrator. Standard estimators of 

diversity were calculated using DnaSP (Librado and Rozas, 2009). 

 

Supplementary note S4: Double-digest restriction-site associated DNA sequencing 

(ddRAD-seq) library preparation 

A double-digest RAD-sequencing protocol was carried out on DNA from the 61 AMF 

isolates, with three to five independent biological replicates of each isolate. Between 1 to 

25ng/µl of genomic DNA, obtained from in vitro plates of each isolate, was digested with 

EcoRI and MseI enzymes (NEB). The restriction digestion mix (RDM) contained 0.9 µl 10 X 

T4 DNA ligase buffer (NEB), 0.15M of NaCl, 0.15mg/ml of BSA (NEB), 1 unit of MseI 

(NEB) 10 000 U/ml, 5 units of EcoRI (NEB) 20 000 U/ml, and 0.85 µl of ddH2O. Three µl of 

RDM were mixed with 6µl of genomic DNA at an ideal concentration of 25 ng/µl. The 

digestion was carried out in a Biometra thermocycler. Incubation time was 2 hours at 37°C 

and inactivation of the enzyme was at 65°C for 20 minutes. 

 

 Ligation of individual barcodes was carried out by adding 1µl (1µM) of EcoRI-P1 adapter, 

containing individual barcodes, to 9µl of digested DNA and RDM and completed with 1.6µl 

of a ligation mix containing 1X of T4 DNA ligase buffer (NEB), 0.08 M of NaCl, 0.08 mg/ml 

of BSA (NEB), 6.25µM of MseI-P2 adapter and 335 units of T4 DNA ligase (NEB) 2 000 
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000 U/ml. The volume was then completed with 0.0125 µl of ddH2O.  The ligation was 

incubated for 6 hours at 16°C followed by heat-inactivation for 10 minutes at 65°C. The final 

volume was then completed to 65 µl with ddH2O. This step was followed by an AMPure 

(Agencourt AMPure XP beads, Beckman and Coulter) purification step with a 1X volume of 

AMPure beads and a PCR step to ligate Illumina primers. PCRs were repeated twice for each 

sample and then pooled. A second boost PCR was run in order to reduce primer dimer and 

heteroduplex formation. Details of these two PCR protocols are as follows: PCR master mix 

for amplification of ddRAD-seq fragments were run in a total volume of 20 µl, with 4µl of 

purified DNA after AMPure bead purification and 16µl of master mix. The master mix of 16 

µl contained 1.25X of Q5 HF buffer (NEB), 0.78 mM of dNTP, 0.42 µM of each of the 

Illumina PCR primer, 1.25X of High GC enhancer (NEB), 0.4 units of Q5 HF polymerase 2 

000U/ ml (NEB) finally the volume was completed with 6.3 µl of ddH2O. The PCR reaction 

was run on a Biometra T1 Thermocycler. The thermocycler was programmed as follows for 

the amplification: 98°C for 30s, 18 cycles of amplification at 98°C for 20 sec, 60°C for 30 sec 

and 72°C for 40 sec, a final elongation of 10 min at 72°C. 

 

A second PCR step was run in order to reduce primer dimer and heteroduplex formation. A 2 

µl aliquot of a master mix was added to each previous PCR of each sample. Two µl of master 

mix were composed of 1X Q5 HF buffer (NEB), 2 mM of dNTP, 3.35 µM of each of the 

Illumina PCR primers. The master mix was then completed to 2 µl with 0.1 µl of ddH2O. 

Amplification was run on a Biometra T1 Thermocycler at 98°C for 3min, 60°C for 2 min and 

finally 72° for 12min. The PCR product was then run on a 1.5% agarose gel for 30-40min at 

120V. 

 

Between 36 to 90 samples were pooled in each of the four libraries. The libraries were then 

precipitated and purified with AMPure beads to remove adapter dimers. Library quality was 

finally checked on a Fragment Analyser. Each library was then sequenced in one lane as 

paired-end reads on a HiSeq Illumina sequencer at the Lausanne Genomics Technologies 

Facility (LGTF).  

 

Supplementary note S5:  Biological replication 

Biological replicates were obtained by splitting a culture of an isolate into between ten and 

twenty parts, which were then sub-cultured on new plates. These were then grown for three 

months. Three to five spore-producing plates of each isolate were subjected to ddRAD-seq as 
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independent biological replicates. One plate corresponded to one extraction and one 

sequenced biological replicate. The ten Swiss isolates sequenced in this study, as well as the 

20 isolates sequenced by Wyss et al., 2016, underwent a slightly different protocol, where 

spores were extracted together from 3 plates and represented one sequenced biological 

replicate. In the study of Wyss et al., 2016, there were 3 replicates per isolate. 

 

Supplementary note S6: Trimming and demultiplexing of reads (ddRAD-seq)  

Illumina adapters were first removed using TagCleaner 0.14 (Schmieder et al., 2010) 

followed by a quality-trimming step with PrinSeq-lite 0.20.4 lite (Schmieder et al., 2011). 

Reads containing uncalled bases (N) or shorter than 50 bp were removed. The de-

multiplexing of the reads of each individual barcode was processed with process_radtags 

from the Stacks pipeline 1.21 (Catchen et al., 2011). The coverage calculation for each 

sample was made using Samtools 0.1.19 (Li et al., 2009).  

 

Supplementary note S7: BP&P analysis A10, species delimitation under the multispecies 

coalescent  (MSC) model. 

The BPandP model chosen for this analyses was A10 (BPP manual and Yang and Rannala, 

2010; Rannala and Yang, 2013), using a reversible-jump MCMC species delimitation 

approach that ran for 500 000 generations and with a burn-in period of 50 000 generations 

and a fixed species tree. Three scenarios were tested by varying two priors; population size 

(θ) and root age (τ0) following Leaché and Fujita (2010). A first run was set up with a small 

population size (θ [2,2000]) and small divergence time (τ0, [2,2000]). In the second run, a 

large ancestral population size (θ [1,10]) and a deep divergence time (τ0,  [1,10]) was used. 

Finally, the last prior values were established with a large ancestral population and a shallow 

divergence time (θ [1,10], τ0,  [2,2000]). Results are presented in the BP&P tree in Figure 6. 

A speciation probability of > 0.95 is considered as high and confident for a speciation event. 

Every analysis was run twice and the ESS values were verified as being above 1000 for all 

parameters. 

 

Supplementary note S8: Data quality assessment 

The sequence data appeared to be good quality. There are four main reasons leading to 

confidence in the sequence quality for answering the main questions. First, holotypes of two 

main species clearly defined two main clusters of species for R. irregularis and R. 

intraradices, based on the ddRAD-sequence data, as well as sequences of the PTG marker. 
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Secondly, distances among 29 individuals of two different genotypic groups of R. irregularis, 

calculated from the ddRAD-seq markers, were strongly correlated with Jaccard distance based 

on previously published microsatellite data from Croll et al., 2008. Third, the different 

biological replicates, sequenced with independent barcodes and in independent PCR 

reactions, clustered strongly together (Supplementary Figure S1), suggesting no strong bias 

due to PCR error, sequencing error or incorrect genetic distance analysis. Finally, Wyss et al., 

2016 showed that this ddRAD-seq protocol and pipeline were reliable for studying inter-

isolate genetic diversity in R. irregularis. 

 

Supplementary note S9: Measurement of hyphal density 

One day before DNA extraction, each in vitro plate was photographed. Eight photographs of 

each plate were taken, always using the same light and magnification. After sequencing and 

identification of the different genetic groups, nine isolates of three genetic groups defined 

during study (Gp1, Gp3 and GP4) and that were taken in picture were measure for hyphal 

density. In each picture, three random vertical transects were drawn and numbers of 

intersections of mycelium with the line were recorded.  

 

This resulted in 120 transects per isolate, except for DAOM197198-CZ, which resulted in 72 

transects. Using R software (R core Team 2014, version 3.3.2) we then tested whether hyphal 

density significantly differed among the three genotypic groups. A mixed model was 

implemented with the function lmer of the lme4 package (Bates et al., 2014). The genetic 

groups were considered as a fixed effect, the niched isolates in the genetic groups as well as 

the plates niched in each isolate were taken as the first random effect and were included in the 

model. The second random effect component of the model was added as the isolates niched 

into the genetic groups. 
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Abstract 

Arbuscular mycorrhizal fungi (AMF) have been shown to influence plant community 

structure and diversity. Studies based on single plant – single AMF isolate experiments show 

that within AMF species differences lead to large differential growth responses of different 

plant species. Because of these differential effects, genetic differences among isolates of an 

AMF species could potentially have strong effects on the structure of plant communities. 

In this study, we tested the hypothesis that within species variation in the AMF R. irregularis 

significantly affects plant community structure and plant co-existence. We took advantage of 

a recent genetic characterization of several isolates of this species using double-digest 

restriction-site associated DNA sequencing (ddRADseq). This allowed us to test not only for 

the impact of within AMF species variation on plant community structure but also for the role 

of the R. irregularis phylogeny on plant community metrics. Nine isolates of R. irregularis, 

belonging to three different genetic groups (Gp1, Gp3 and Gp4), were used as either single 

inoculum or as mixed diversity inoculum. Plants in a mesocosm representing common species 

that naturally co-exist in European grasslands were inoculated with the different AMF 

treatments. 

We found that within-species differences in R. irregularis did not strongly influence the 

performance of individual plants or the structure of the overall plant community. However, 

the equilibrium of the plant community was affected by the phylogeny of the fungal isolates, 

where more closely-related AMF isolates were more likely to affect pant community evenness 

in a similar way compared to more genetically distant isolates.  

Synthesis. This study is the first to date that underlines the effect of within AMF species 

variability on plant community structure. While differential effects of the AMF isolates were 

not strong, it is surprising that within a single AMF species enough functional variability 

exists that can change the equilibrium of a plant community and that this linked to the 

evolutionary history of the AMF species. 

Keywords: AMF, Rhizophagus irregularis, plant community, plant-plant interactions, 

phylosignal, evenness
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Introduction 
 
Soil microorganisms that influence plant-plant interactions play a central role in terrestrial 

ecosystems (Wardle et al., 2004). This is particularly true for arbuscular mycorrhizal fungi 

(AMF; phylum Glomeromycota), which are considered the commonest of plant root 

symbionts, due to their unique capacity to form endosymbioses and to exchange nutrients 

with 74% of land plants (van der Heijden, Martin, Selosse, & Sanders, 2015). During the last 

decades, various beneficial effects of these fungi on different plant species were reported such 

as an increase in plant growth and plant nutrient acquisition, (van der Heijden et al., 1998), 

greater resistance to pathogens (Pozo & Azcón-Aguilar, 2007) and herbivores (Koricheva, 

Gange, & Jones, 2009), and increasing tolerance to drought, high salinity and pollutants (Al-

Karaki, McMichael, & Zak, 2004; Hajiboland, Aliasgharzadeh, Laiegh, & Poschenrieder, 

2010; Gonzalez-Chavez, Harris, Dodd, & Meharg, 2002). In addition to direct effects on plant 

physiology, AMF have also been shown to alter competitive interactions between plants (van 

der Heijden et al., 1998). Consequently, this impacts common metrics of plant community 

structure, such as community richness, community evenness (i.e the relative abundance of 

community members) and community productivity. For example, removing AMF from 

nutrient-poor tallgrass prairies, where the dominant plant is highly mycotrophic, had a 

tendency to favor facultative mycotrophic plants, thus increasing total community evenness 

and richness without increasing total productivity (Hartnett & Wilson, 1999). Conversely, in 

grasslands, dominated by grass species that derive little benefit from the association, AMF 

have been observed to favour the productivity of subordinate forbs (van der Heijden et al., 

1998), thus increasing community evenness and richness (Mariotte et al., 2013). Other studies 

also demonstrated that AMF could promote or limit community productivity depending on 

the AMF taxon involved, regardless of plant community species richness (Klironomos, 

McCune, Hart, & Neville, 2000). 

 

In experiments studying the effect of an AMF species inoculated on a single plant species, the 

range of growth responses of plants was found to vary greatly depending on the combination 

of plant species and AMF species tested; spanning a range of response from highly positive to 

negative (Klironomos, 2003). One possible explanation for this effect was that AMF species 

were not equivalent in their functional characteristics (Hart & Reader, 2002) and, thus, 

impacted the outcome of a specific AMF-plant interaction. Later on, Powell et al. (2009) 

showed that some of these differences were correlated with AMF phylogeny. Indeed, they 
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found that some fungal quantitative traits of members of the Glomeromycota phylum appear 

to be phylogenetically conserved at the family level. Consequently, this created a similar 

conservatism towards plant response. Similarly, it was shown that the plant response varied 

greatly while in symbiosis with different genotypes of a single AMF species. (Munkvold, 

Kjoller, Vestberg, Rosendahl, & Jakobsen, 2004; Mensah et al., 2015; Koch, Croll, & 

Sanders, 2006; Koch, Antunes, Maherali, Hart, & Klironomos, 2017). Depending on the 

species tested, the amplitude of variation in plant response due to within-AMF species 

differences was similar, or even higher, than the variation in effects among AMF species. 

These observations lead Sanders and Rodriguez (2016) to suggest that there is an 

inconsistency between the level of AMF phylogenetic resolution used by experimental 

ecologists and the level of functionality in the AMF phylogeny. Indeed, most ecological 

studies to date used one representative isolate for each species (van der Heijden et al., 1998; 

Vogelsang, Reynolds, & Bever, 2006; Maherali & Klironomos, 2007), making the 

assumption that the within-AMF species genetic diversity and its plant effect was 

homogenous across any isolate of that species. In the light of the results of Munkvold, 

Kjoller, Vestberg, Rosendahl, and Jakobsen, 2004; Mensah et al., 2015; Koch, Antunes, 

Maherali, Hart, and Klironomos, 2017, this assumption would seem to be compromised. From 

the observed effects of high variation in a plants response to different genotypes of a single 

AMF species, we could expect that different R. irregularis genotypes might differentially 

affect plant-plant interactions in a plant community. Moreover, according to the findings of 

Powell et al. (2009), we could also expect that intra-specific variation in fungal traits, plant 

response and community response might be explained by phylogenetic conservatism. Testing 

intraspecific phylogenetic effects on plant communities were previously difficult because of 

the lack of accurate data on intraspecific genomic differences in AMF. 

 

According to recent estimates, the Glomeromycota phylum is composed of 300 to 1600 AMF 

species (van der Heijden, Martin, Selosse, & Sanders, 2015) and the vast majority of 

ecosystems harbour an assembly of several AMF species. Studies that manipulated AMF 

species richness in a plant community have shown that there was a positive relationship 

between AMF diversity and community productivity (van der Heijden et al., 1998). This 

effect could be the result of a functional complementarity of co-occuring taxa, since Maherali 

and Klironomos (2007) have shown that more phylogenetically diverse AMF communities 

were more stable and resulted in greater plant biomass compared to the effects of AMF 

communities composed of taxa that were phylogentically similar. In the putative framework 
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of a phylogenetic conservatism of AMF traits and plant responses, one could expect that AMF 

communities that are phylogenetically diverse at the intraspecific level will positively impact 

the different community metrics, as it has been suggested that a mix of different genotypes 

could affect ecosystem function as much as a mix of species (Johnson, Martin, Cairney, & 

Anderson 2012). 

 

In this study, we took advantage of a recent characterization of intraspecific genetic 

variability in one of the commonest AMF species Rhizophagus irregularis, using double-

digest restriction-site associated DNA sequencing (ddRADseq) (Savary et al., submitted). We 

also chose to use this AMF species because of the previously documented variability in 

quantitative traits and effects on plant growth (Koch, Croll, & Sanders, 2006). We tested the 

importance of intraspecific diversity of R. irregularis on different plant species co-existing 

within a plant community and on characteristics of plant communities. We sought to 

determine if genetic relatedness among isolates of R. irregularis was correlated to the putative 

effects on single plant species within a plant community and on characteristics of mesocosm 

plant communities. We also wanted to test if increasing phylogenetic diversity in a 

community of R. irregularis could positively affect plant community productivity and 

evenness. 

We built artificial mesocosms with a fixed plant community composed of six plant species, 

that are typical of central European calcareous grasslands. We chose nine R. irregularis 

isolates equally distributed into three genetic groups describing a large part of the known R. 

irregularis intraspecific genetic variation (Savary et al., submitted). The genetic groups are 

named Gp1, Gp3 and Gp4 (Savary et al. submitted). Both Gp3 and Gp4 naturally co-exist in 

several locations and all three genetic groups occur in central Europe (Savary et al., 

submitted). All isolates were cultured for several generations in an in vitro culture system in 

order to remove potential environmental effects from their place of origin that could 

otherwise be confounded with genetic effects. These isolates were either inoculated singly 

into the mesocosms or as a combination of isolates. This design allowed us to test three main 

questions: i) Do different isolates of R. irregularis, or combinations of the isolates, 

differentially colonize plants and differentially affect plant responsiveness, community 

structure and productivity? ii) Do individual plant species of a community respond more 

similarly to more closely genetically related AMF isolates compared to more distant ones? iii) 

Is the mycorrhizal responsiveness and structure of a plant community more similar in 

response to more closely genetically related AMF isolates compared to more distant isolates?  
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Material & Methods 

Soil and fungal inoculum 

A natural clay soil collected from a calcareous grassland at the University of Lausanne, 

Lausanne, Switzerland (46°31'32.0016" N, 006°34'46.6068" E) was used for this experiment. 

The soil was sieved through a 1 cm mesh, then mixed with quartz sand in a ratio 2:3. This 

mixture was then steam-sterilized at 105°C for three consecutive sessions of 20 min. 

Round  4.6 litre pots (30 cm diameter) were filled with the sterilized soil:sand mixture. 

Nine R. irregularis isolates were chosen in three different genetic groups (Gp1, Gp3 and 

Gp4), representing the major part of the diversity described in this species ( Savary et al., 

submitted). These were: Gp1 - 5B, ESQLS69, LPA54; Gp3 - A4, DAOM229457, 

DAOM240409; Gp4 - A1, DAOM197198-CZ, DAOM240159 (Fig. 1a). The delineation of 

this variation was based on previous ddRADseq data generated from DNA of 59 isolates of R. 

irregularis isolated from several geographical locations and comprising 6888 sites in the 

genome where single nucleotide polymorphisms (SNPs) occurred. Each of the 9 isolates was 

first grown in an identical in vitro environment for 5 months (Bécard & Fortin, 1988). In 

order to create a natural soil inoculum for each isolate, following Wagg, Jansa, Stadler, 

Schmid, and van der Heijden (2011b), we inoculated P. lanceolata with 500 in vitro-produced 

spores in ten 0.5 litre pots in a sterile autoclaved Oil-Dri® granular clay (Oil Dri corporation 

of America) with quartz sand in a 3:2 ratio. Ten P. lanceolata were mock inoculated with 

water in order to produce a substrate representing a mock-inoculated treatment. The P. 

lanceolata plants were grown for five months and then the soil of the ten pots per isolate were 

mixed to create the 9 inoculum stocks and substrate for the mock-inoculated treatment. 

Plant material 

In order to construct simple artificial European calcareous grassland community in the 

greenhouse, we chose six plant species commonly found in this type of phytosociological 

association (classified as Arrhenatherion according to Delarze & Gonseth, 2008). The 

following plant species were chosen to be equally partitioned across the different functional 

groups (Grime, Mackey, Hillier, & Read 1987). Thus, we chose two legumes, Trifolium 

pratense and Lotus corniculatus, two grasses, Arrhenatherum elatius and Festuca pratensis 

and two forbs Prunella vulgaris and Knautia arvensis. All these species are known to form 

the arbuscular mycorrhizal symbiosis (Wang & Qiu, 2006). Seeds of these plants were 
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obtained from UFA Samen (Switzerland) and germinated in trays on the same substrate used 

for the experiment. After two weeks of growth, one individual of each species was planted in 

a circle in each pot (Fig. 1b). The position was randomly chosen except that plants of the 

same functional group were never planted next to each other but always at the most distant 

location. Thus, Arrhenatherum elatius was always the most distant plant from Festuca 

pratensis, Trifolium pratense was always the most distant plant from Lotus corniculatus and 

Prunella vulgaris was always the most distant plant from Knautia arvensis (Fig 1b). 

Figure 1 Study design (a) Phylogeny of R. irregularis isolates from three genetic groups used as treatments 

either as single inoculants (treatments 1-9) or as mixed inoculant (treatments 10-14). (b) Representation of one 

mesocosm with the six plants. 

Fungal treatments and experimental design 

Fourteen mycorrhizal treatments and one non-mycorrhizal (NM) treatment were applied to 

the plant communities and were replicated ten times (Fig. 1a). We inoculated each pot of the 9 

single inoculation treatments  (treatments 1-9) with 100g of inoculum. Treatments with a co-

inoculation of three isolates (Gp1, Gp3 and Gp4; treatments 10-12) received 33.3g of 

inoculum of each isolate. In the case of Gp3+Gp4 (treatment 13) we used 16.6g of inoculum 

of each of the six isolates. Finally in the co-inoculation treatment with all isolates (treatment 

14), 11.1g of inoculum of each isolate was added per pot. The fifteen treatments were 

randomly arranged on a table in the greenhouse. This procedure was repeated 10 times for the 

10 replicates separated on 10 tables. Tables were regularly randomized to avoid microclimate 

effects. The greenhouse conditions were constant at, 24°C, 60% RH and 12h of daylight. The 

communities were grown for 3.5 months from May 4th 2015 to the August 19th 2015. 
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Harvest and measurements 

After 105 days of growth, the shoots of each plant in the community were harvested and dried 

at 70°C for three days and weighed to obtain the above ground dry mass (ADM) for each of 

the 900 plants. A small part of the roots of each plant was collected and frozen at -20°C for 

later measurement of AMF colonization by staining. Roots were stained and AMF 

colonization was measured (see supplementary note S1). The roots from each mesocosm of 

all the six plants were washed dried together and weighed, thus, giving the total community 

root dry mass (RDM). The sum of all plant ADM from one pot plus the RDM of this pot 

resulted in total dry mass (TDM) of the community. Inflorescence number was counted at 78 

and 105 days of growth. 

Statistical analysis 

In order to have a standardized measure of mycorrhizal effects on the different plant species, 

plant individual responsiveness was calculated following Gange and Ayres (1999) based on 

the mean ADM for each plant species in the non-mycorrhizal treatment. We used the data 

collected for each individual in a mesocosm to build the metrics of community structure. 

TDM was considered as the community productivity. Mean community responsiveness and 

mean AMF colonization were obtained by averaging the individual responsiveness across 

plant species and AMF colonization across plant species, respectively. Community evenness 

was measured with Pielou’s evenness index (Pielou, 1975) using the diversity function in 

vegan 2.3-3 (Oksanen et al., 2016). This was calculated by dividing the Shannon index of 

ADM by the log of the number of individuals in the community. Evenness represents a value 

of equality (1) or inequality (0) of biomass partitioning among species within a mesocosm. 

The AMF colonization evenness was calculated in the same way in order to assess equality or 

inequality of AMF colonization among the six plant species within a mesocosm. This could 

be considered as a proxy for AMF preferences within a mesocosm. Significant correlations 

between mesocosm variables, as well as the relationships between single plant data and 

mesocosm averages, were assessed using Pearson’s product moment and polynomial 

regressions. 

The effect of plant species and mycorrhizal treatments on AMF colonization, plant 

responsiveness and number of flowers produced were analyzed using a two-way ANOVA. 

Significant pairwise comparisons were assessed using a Tukey HSD post-hoc test. Significant 
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differences among AMF treatments towards plant community metrics were assessed using a 

one-way ANOVA and a Tukey HSD post-hoc test. 

The R. irregularis phylogeny 

All nine isolates used in this study were previously sequenced with ddRAD-seq with a 

minimum of 3 replicates (Savary et al., submitted). The raw sequence reads were retrieved 

from the NCBI bioproject (accession number PRJNA326895) and were trimmed and analysed 

following the workflow of Wyss, Masclaux, Rosikiewicz, Pagni, and Sanders (2016) and 

Savary et al. (submitted). Genetic distance matrices among the nine isolates were calculated 

based on the scalar distance method of Wyss, Masclaux, Rosikiewicz, Pagni, and Sanders 

(2016). For this calculation, data used were taken from the replicate with the deepest 

sequencing of each of the nine isolates and with the highest number of markers available. 

Phylogenetic signal 

The package phylosignal (Keck, Rimet, Bouchez, & Franc, 2016) was used to test 

phylogenetic signals between the phylogeny of the 9 isolates and i) AMF colonization and 

mycorrhizal responsiveness across the 6 plant species and ii) the mean AMF colonization, 

mean mycorrhizal responsiveness, evenness, total productivity and mean flower production 

after 78 and 105 days per mesocosm. 

Five phylogenetic signal indicators were calculated on variables of each of the plant species 

and on community metrics of the mesocosms. These were Moran’s I index (Moran, 1948, 

1950), Abouheif’s Cmean index (Abouheif, 1999), Blomberg’s K and K* (Blomberg, 

Garland, & Ives, 2003) and Pagel’s λ (Pagel, 1999). These were then tested against the null 

hypothesis of a random trait with no significant signal (Keck, Rimet, Bouchez, & Franc, 

2016). Plant and mesocosm variables showing significant phylogenetic signal towards AMF 

isolates were kept for following analyses on co-inoculation treatments. AMF community 

phylogenetic diversity for treatments involving more than one AMF taxa was calculated using 

Faith’s PD (Faith, 1992) and relationships between the retained variables and phylogenetic 

diversity were assessed using quantile polynomial regression on the median, 20th and 80th 

quantiles of the response variable. 



Chapter 3   AMF relatedness predicts plant community structure	

83	

Results 
 
Effect of fungal treatments on individual plant species 

Overall, plants in the fourteen treatments exhibited high levels of AMF colonization in all six 

plants with a global mean of 67.6% ± 19.7% (SD). Fifty-seven plants in the NM treatment 

exhibited no AMF colonization. Three plants were measured with a very small amount of 

AMF colonization (less than 5%). These were considered as a contaminant. Colonization of 

the roots by the fungi was significantly affected by the different AMF treatments as well as by 

plant species identity. However, the interaction between these two variables was not 

significant (Table 1a). Isolates A4 (Gp3) and ESQLS69 (Gp1) were significantly the lowest 

colonizers and the three isolates of Gp4: A1, DAOM240159 and DAOM197198-CZ were the 

highest colonizers (Fig. 2a). R. irregularis, independent of isolate identity, colonized a 

significantly greater proportion of the roots of K. arvensis, P. vulgaris and T. pratense than 

the dominant plant, F. pratensis (Fig. 2b). 

 

Large and significant differences in mycorrhizal responsiveness occurred among the different 

plant species but was not significantly influenced by the different AMF isolates (Table 1a). 

Mycorrhizal responsiveness of the plant community was positive (23.13 ± 107.82 SD) in the 

majority of fungal treatments (Fig. 2c). Mycorrhizal responsiveness of the grasses A. eliatus 

and F. pratensis, and L. corniculatus was negative and differed significantly from the positive 

mycorrhizal responsiveness of K. arvensis, P. vulgaris and T. pratense (Fig. 2d). F. pratensis 

responsiveness decreased with increasing AMF colonization (cor= -0.21, p= 0.013 ; Fig. S1). 

In contrast, mycorrhizal responsiveness of P. vulgaris and T. pratense increased with 

increasing AMF colonization (cor= 0.30, p<0.001, cor= 0.25, p= 0.004, Fig. S1). There was 

no significant correlation between mycorrhizal responsiveness and AMF colonization in the 

remaining plant species. 
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Figure 2 AMF colonization and responsiveness in the different treatments and different plant species 

(a) Mean and the standard error of AMF colonization (% root length) according in the 14 treatments, and (b) in 

the six plants species. (c) Mean and the standard error of the responsiveness of each plant in the different 

treatments and (d) in the six different plant species of the community. 

 

Effect of fungal treatments on plant communities 

The dry mass production of the mesocosms either as RDM, ADM or as total productivity 

(TDM), was not significantly affected by any of the AMF treatments (Fig. S2a and S2b, Table 

1b). Plant community evenness and AMF colonization evenness were not significantly 

different across all treatments (Fig. S2c; Table 1b). However, a number of interesting 

correlations were observed between variables. Mean AMF colonization per mesocosm was 

significantly and positively correlated with plant community evenness (cor=0.256, p=0.0023, 

Fig. S3), as was mean AMF colonization per mesocosm with AMF colonization evenness 

(cor=0.724, p<0.001, Fig. S4). Mean mesocosm responsiveness was significantly and 

positively correlated with mean AMF colonization (cor=0.300, p<0.001, Fig. 3a) and total 

productivity (cor=0.481, p<0.001, Fig. 3b). Plant community evenness was significantly and 
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positively correlated with mean mycorrhizal responsiveness (cor=0.752, p<0.001, Fig. 3c). 

The increase in plant community evenness was associated with a strong significant decrease 

in the relative contribution of F. pratensis to the total above-ground mesocosm productivity 

and a significant increase in the relative contribution of all the other plants (Table S1; Fig. 

3d). 

 
Table 1 Results of ANOVA on (a) AMF colonization, mycorrhizal responsiveness and flower production at 85 

and 105 days per plant; (b) above-ground dry mass evenness, root dry mass, above-ground dry mass, total 

productivity, flower production at 85 and 105 days, and AMDF colonization evenness per mesocosm. 

    Source of Variation df MS F   

a. Variables measured on individuals plants 

   
 

Colonization rate (%) 

    

  

AMF 13 1831.27 3.812 *** 

  

Plant 5 2450 6.491 *** 

  

AMF x Plant 65 328.77 0.871 

 

  

Residuals 715 377.43 

  
       
 

Mycorrhizal responsiveness 

    

  

AMF 13 10802 1.041 

 

  

Plant 5 241361 23.262 *** 

  

AMF x Plant 65 12276 1.12 

 

  

Residuals 724 10954 

  
       
 

Flower production 85 days 

    

  

AMF 13 17.11 0.5423 

 

  

Plant 5 605.85 32.211 *** 

  

AMF x Plant 65 18.79 0.999 

 

  

Residuals 756 18.81 

  
       
 

Flower production 105 days 

    

  

AMF 13 6.605 1.708 

 

  

Plant 5 60.545 15.658 *** 

  

AMF x Plant 65 4.114 1.064 

 

  

Residuals 756 3.867 
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b. Mesocosm variables 

    

 

ADM Evenness 

    

  

AMF 13 0.00193 1.03 NS 

  

Residuals 126 0.0019 

  
       

 

Root drymass 

    

  

AMF 13 6.861 0.447 NS 

  

Residuals 126 1931.62 

  

       

 

Above-ground drymass 

    

  

AMF 13 323.49 0.671 NS 

  

Residuals 126 35 

  
       

 

Total productivity 

    

  

AMF 13 44.2 0.704 NS 

  

Residuals 126 62.78 

  
       

 

Flower production 85 days 

    

  

AMF 13 39.63 1.6778 NS 

  

Residuals 126 23.62 

  
       

 

Flower production 105 days 

    

  

AMF 13 102.68 0.866 NS 

  

Residuals 126 118.58 

  
       

 

Colonization evenness 

    

  

AMF 13 0.00197 1.581 NS 

  

Residuals 116 0.00125 
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Figure 3 Community metrics and relative dry mass contribution of each plant to the community 

(a) Correlation between the mean mycorrhizal responsiveness and the mean colonization rate (cor=0.300, 

p<0.001) (b) Correlation between the mean plant responsiveness and the mesocosm productivity (TDM, 

cor=0.481, p<0.001) (c) Quadratic relation between the mean plant responsiveness and the plant community 

evenness per mesocom (cor=0.752, p<0.001). (d) Relative dry mass contribution of each plant species to the 

mesocosm according to the estimator of plant community evenness. All models were significant (p<0.001)
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Phylogeny of the nine isolates 

Out of the ddRAD-seq data (Savary et al. submitted) from the nine isolates used in this study, 

we retrieved the data from the biological replicate of each isolate that had been sequenced the 

deepest and with the highest SNP calling quality. We were able to retrieve 60668 shared 

sequence positions, which contained 16311 SNPs, 1137 insertions, 1453 deletions and 11 

MNPs. The much higher number of variable positions, in comparison to the study of Savary 

et al. (submitted), was due to the low number of isolates and replicates used. This enabled us 

to retrieve shared positions among all isolates that would not be shared among all isolates in a 

larger data set. This variation was used to build 100 genetic distance matrices from 5000 

randomly chosen sites, following the method described in Wyss, Masclaux, Rosikiewicz, 

Pagni, and Sanders (2016). All nodes showed a support value of 100, clearly separating the 

nine isolates into three main groups (Fig. 1a). This tree was then used for phylogenetic signal 

analyses. 

Testing for phylogenetic signals with plant species data 

There was a significant within-species AMF phylogenetic signal in AMF colonization of F. 

pratensis in two out of the five tests (Fig. 4a), with a globally highest colonization by Gp4 

isolates. Similarly, there was a significant within-species AMF phylogenetic signal in the 

mycorrhizal responsiveness of F. pratensis (Fig. 4b) in three tests out of the five. There was 

also a significant within-species AMF phylogenetic signal in the mycorrhizal responsiveness 

of K. arvensis for one test out of five (Fig 4b). 

Testing for phylogenetic signals in plant community metrics 

At the community level, the overall mean AMF colonization, RDM, ADM, TDM and flower 

production did not reveal a significant within-species AMF phylogenetic signal (Fig. 4c). In 

contrast, there was a significant within-species AMF phylogenetic signal in mean mycorrhizal 

responsiveness of the community in four out of five tests (Fig. 4c). There was no detectable 

within-species AMF phylogenetic signal in AMF colonization evenness (Col-evenness) (Fig. 

4d). There was a significant within-species AMF phylogenetic signal in terms of community 

evenness (ADM-evenness) in three tests out of five (Fig 4d). Phylogenetic diversity of the 

AMF community, calculated with Faith’s index, showed a significant quadratic relationship 

with plant community evenness (y=0.023x-0.088 + 0.195, p=0.0475, Fig. 5), showing the 

highest community evenness values at an intermediate level of phylogenetic diversity. 
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Figure 4 Individual plant species and mesocosm phylogenetic signals. Each of the phylogenetic signal plots 

are composed of the phylogeny of the nine isolates from the three genetic groups. The value of the different tests 

and their significance (. < 0.1, * < 0.05, ** < 0.01) are indicated under each set of bar plots. The phylosignals 

were calculated for each of the six plants independently for (a) the colonization level (%), here centred on the 

mean colonization per plant, and (b) for the responsiveness (not centered). Mesocosm phylosignals are presented 

(c) for mean colonization, RDM, ADM, TDM, flower production after 78 and 105 days and mean mesocosm 

responsiveness and (d) for mesocosm colonization repartition (Col-evenness) and plant community evenness 

(ADM-evenness)
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Figure 5 Relationship between plant community evenness and AMF phylogenetic diversity of the five 

treatments (10-14) with mixed AMF inoculant. 
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Discussion 

Up to now, the interaction between AMF and plant species within a community was mostly 

investigated by manipulating AMF at the species level, rarely taking into account the 

phylogenetic relatedness of AMF isolates. To our knowledge, this study is the first to consider 

genetic differences among isolates of an AMF species as a source of potential functional trait 

variability that could differentially impact plant-plant interactions within a community. We 

show that despite the strong AMF intraspecific effect on single plant responses observed 

elsewhere  (Munkvold, Kjoller, Vestberg, Rosendahl, & Jakobsen, 2004; Mensah et al., 2015; 

Koch, Antunes, Maherali, Hart, & Klironomos, 2017), the effect of R. irregularis isolates on 

each plant species and on the global community were weak. Though weak, the level of R. 

irregularis isolate relatedness did influence the response of some plant species in the 

community. Furtheormore, we observed a phylogenetic conservatism on plant community 

metrics of responsiveness and on community evenness. 

i) Do different isolates of R. irregularis, or combinations of the isolates, differentially 

colonize plants and differentially affect plant responsiveness, community structure and 

productivity? 

Although we observed significant differences in AMF colonization ability among the AMF 

isolates the overall mycorrhizal responsiveness of the community to these isolates did not 

differ significantly. This suggests that none of the R. irregularis strains used in this study was 

a general plant community growth promoter. Although the mycorrhizal responsiveness of the 

6 plant species differed greatly, this was not influenced by the identity of the AMF isolates 

and, thus, there were no strongly observable differences in plant community structure and 

productivity due to the different AMF isolate treatments. Despite that number of previously 

published studies have shown differential effects of within-species AMF variation on the 

growth of different plant species, in single plant – single fungus experiments, our study did 

not support the hypothesis that such effects could lead to strong differences at the plant 

community level. Some of the plant species and AMF isolates used in this study had been 

shown in previous studies to differentially alter the growth of different plant species. 

We found strong positive responsiveness of the subordinate plants of the community except in 

L. corniculatus. The two dominants plants, the grasses F. pratensis and A. eliatus responded 

negatively to being colonized by AMF. This resulted in fairly similar mesocosm productivity 
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in every AMF treatment. This observation might be explained by a limited amount of 

resources available in mesocosms leading to a saturation of the productivity. Such saturation 

has already been observed in similar experiments (van der Heijden et al., 1998). Therefore, 

the most relevant variation on plant community structure detectable in such an experimental 

design is the relative contribution of individual plants to community productivity. This is 

given by the evenness index, which describes the relative competition strength within the 

plant community (Mulder et al., 2004). Here, we did not find strong differences in evenness 

among treatments with different isolates. However, an increase in plant community evenness 

was mainly due to a decrease in F. pratensis drymass relative to an increase in T. pratense 

and A.elatius, as these three species contributed to almost 80% of the mesocosm productivity. 

This effect of dominance mediation by AMF has previously been observed in calcareous 

grasslands (Mariotte et al., 2013). 

ii) Do individual plant species of a community respond more similarly to more closely 

genetically related AMF isolates compared to more distant ones? 

When data collected for each plant species was analysed separately, a phylogenetic signal was 

detected on AMF colonization of F. pratensis meaning that the compatibility of F. pratensis 

and R. irregularis in a plant community is linked to the evolutionary history of the different 

isolates of R. irregularis. In addition, a significant phylogenetic signal in mycorrhizal 

responsiveness of F. pratensis as well as for K. arvensis was found. This suggests that the 

trait evolution of different R. irregularis isolates not only impacts the ability of the fungus to 

colonize a given plant species but also indicates that the outcome of the symbiosis in terms of 

plant growth is more likely to be similar of the AMF isolates are genetically closer. The 

potential preference of some R. irregularis genotypes for some plant species was previously 

observed (Croll et al., 2008) as similar R. irregularis genotypes tended to be more likely 

isolated from one plant species that was used as trap-culture than another plant species. This 

heterogeneity of preference among the plants could be explained by a slight co-adaptations 

between AMF genotypes and plant species and might favour diversity of AMF and allow the 

coexistence of closely related AMF genotypes within a community. 

iii) Is the mycorrhizal responsiveness and structure of a plant community more similar in 

response to more closely genetically related AMF isolates compared to more distant isolates? 
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At the community level, mean mycorrhizal responsiveness of the community, as well as mean 

community evenness, were found to be significantly affected by the phylogenetic 

relationships of the R. irregularis isolates. These findings are coherent with the AMF 

phylogenetic effects observed on F. pratensis since community evenness was mainly 

associated with a decrease of relative ADM contribution of this plant species. F. pratensis 

was the strongly dominant plant of the mesocosm and, similarly to other grass species, F. 

pratensis is known to produce a large amount of roots compared to forbs or legumes (Grime, 

Mackey, Hillier, & Read 1987). Thus, we could expect that isolates of Gp4 would benefit 

more than other R. irregularis genotypes on dominant grasses. In contrast, members of Gp3 

would more likely be associated with increased benefits on subordinate plants since this clade 

provoked a strong decrease in F. pratensis responsiveness, and concomitantly, an increase in 

K.arvensis and T. pratense responsiveness. The differences found among these phylogenetic 

groups suggest that some functional differences might exist at the intra-specific level in R. 

irregularis. 

Increasing fungal taxonomic diversity by inoculating different mixes of several R. irregularis 

isolates on the same mesocosm did not significantly influence plant community productivity. 

Nevertheless, studies showing this relationship were mainly performed in field assays, where 

space and soil nutrient levels are less limited and, thus, saturation is not reached (van der 

Heijden et al., 1998). We found a significant quadratic relationship between AMF community 

phylogenetic diversity and plant community evenness, even though only five treatments in the 

experiment were effectively manipulating AMF phylogenetic diversity. Community evenness 

was the highest at intermediate level of AMF community phylogenetic diversity and dropped 

to a lower value where all isolates were combined. This observation suggests a saturating 

effect of the AMF community where the potential benefit of AMF on biomass partitioning 

within the plant community is no longer observable. Nevertheless, we did not test all the 

combinations of AMF isolates so the relationship observed might still be attributed to a 

complementarity effect occurring by chance or to the effect of one particularly good isolate 

included in the co-inoculations (Wagg, Jansa, Schmid, & van der Heijden, 2011a). However, 

evidence for coexistence of Gp3 and Gp4 in the same grassland has been assessed, but not for 

the other combinations of phylogroups (Savary et al., submitted). This favours the hypothesis 

of less niche overlap between these two phylogroups, as suggested by the phylogenetic signal, 

which therefore might increase functional diversity in this particular treatment (Maherali & 

Klironomos, 2007). 
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Perspectives and Conclusions 

To our knowledge, these are the first results to show that within species diversity of these 

fungi and in particular phylogenetic relatedness can impact mycorrhizal responsiveness of 

dominant plants in a community and, consequently, biomass partitioning among a community 

of plants. These results extend the findings of Powell et al. (2009) in that phylogenetic 

conservatism of AMF functional traits on plant communities can exist within an AMF species 

and not only between major AMF clades. If confirmed, this feature is interesting because it 

suggests that the outcomes of plant-fungal and community-fungal interactions are genetically 

based and could be conserved over evolutionary time. Further studies should focus on AMF 

traits that are known to be of major importance to plant growth such as level of nutrient 

acquisition and transfer to the host and consider them in a phylogenetic context at AMF intra-

specific level. 
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Supplementary information 
 

Table S1 Coefficients of linear regressions between relative contribution of each plant 

species to total aboveground dry mass and plant community evenness. 

 
Plant species Coefficient SE P-value 

A.elatius 24.65 6.41 <0.001 

F.pratensis -105.27 -19.77 <0.001 

T.pratense 48.94 5.69 <0.001 

L.corniculatus 15.19 2.38 <0.001 

K.arvensis 11.25 1.49 <0.001 

P.vulgaris 5.54 0.8 <0.001 

        

 

  



Chapter 3   AMF relatedness predicts plant community structure	
	

	102	

Figure S1 Relationships between ADM responsiveness and AMF colonization rate for each 

of the six plant species. See main text for statistics 
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Figure S2 Plant community metric for all the treatments and NM for (a) ADM and RDM, (b) 

mesocosm productivity (TDM) and (c) plant community evenness.  
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Figure S3 Relationship between plant community evenness and mean colonization rate for 

each mesocosm. See main text for statistics. 
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Figure S4 Relationship between colonization evenness and mean colonization rate for each 

mesocosm. See main text for statistics. 
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Supplementary Note S1: Roots straining and colonization measurement protocol 

The staining protocol was as follow, the roots of all species were rinsed with clean water and 

transfer in a 2ml tube that was filled with 10% KOH and heated at 90°C for 1h for the roots of 

T. pratense, A. elatius, F. pratensis and P. vulgaris, 45min for K. arvensis  and 30 min for L. 

corniculatus. During the heating time the KOH was change at least three times. At the end of 

the heating time, the KOH was removed and HCL 1% was added for 3 to 5 minutes. Trypan 

blue solution was then added either for overnight staining or for a 2h staining at 90°C. The 

trypan blue was then removed and replaced by lactic acid at 80% for permanent conservation. 

Roots of each of the 900 plants were randomly spread on a petri dish previously marked with 

100 cells of 4x4mm arranged in a grid pattern. The presence or absence of fungal structure 

was recorded on each cell containing a root and sums up to calculate the colonization level 

(%)
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Abstract 

 

Arbuscular mycorrhizal fungi (AMF) are known to promote plant growth of important crop 

plants such as rice or cassava. However, the variability in plant response to different isolates 

of a single species was shown to be high. 

In order to more deeply understand, on both plant and fungal side, the range of responses and 

molecular mechanisms involved in this agriculturally important symbiosis, we conducted a 

greenhouse experiment. We inoculated 12 Rhizophagus irregularis isolates from 4 distinct 

genetic groups on clonal plants of the Cassava (Manihot esculenta Crantz, variety NGA-16). 

Transcriptomic data of both organisms obtained by the RNA sequencing of the roots were 

analysed using differential expression analysis and co-expression network analysis. 

A conserved global cassava root reprogramming was observed during the symbiosis with any 

genetic groups of R. irregularis. However, on the fungal side a strong transcriptomic 

difference was found among the four genetic groups. We detected high activity of the fatty 

acid biosynthesis and proteolysis in the plant that we further investigated. We also found a 

fungal secreted effector, a chitin deacetylase, that probably allows the fungus to hide from the 

plant. These results highlight a low specificity of the plants molecular response to each 

genetic group, and a high variation in transcriptome expression within a single AMF species. 

 

 

Key words: AMF, Chitin deacetylase, Dual RNA-seq, Fatty acid biosynthesis, Manihot 

esculenta (cassava), Rhizophagus irregularis, symbiosis.   
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Introduction 

 

Cassava (Manihot esculenta Crantz) is one of the most important crop plants for tropical 

countries, feeding more than 800 million people (FAO, 2013). With the constant and 

exponential increase of the world population there is a need to increase the yield of this crop. 

It has been shown that the production of M. esculenta, in symbiosis with Rhizophagus 

irregularis one fungal endosymbiont, could be a possible solution in order to increase its yield 

(Ceballos et al., 2013). Arbuscular mycorrhizal fungi (AMF) have been known for decades to 

alter plant growth, including major crops plants (Angelard et al., 2010). More precisely R. 

irregularis and other AMF, produce an extensive network of hyphae around the roots of three 

quarters of terrestrial plants (van der Heijden et al., 2015) that help plants to acquire nutrients 

such as phosphate and nitrate (Karandashov & Bucher 2005, Govindarajulu et al., 2005). 

Endocellular structures within the plant roots, called arbuscules, exchange these nutrients with 

the plant for photosynthetic carbohydrates such as sucrose (Parniske et al., 2008). Other 

benefits that plants obtain from the AM symbiosis are, increased plant resistance to insects, 

nematodes, bacterial or fungal pathogens (for a review see Pozo and Azcon-Aguilar, 2007), 

increased drought resistance (Al-Karaki et al., 2004) and increased salinity tolerance (Feng et 

al., 2002, Hajiboland et al., 2010). 

 

Up to now, responses of M. esculenta to inoculation with AMF were mainly characterized by 

plant growth variables (Ceballos et al., 2013). However, RNA-seq is a good way, not only to 

obtain a more detailed view of the gene transcription of the host plant but also a better 

understanding of the gene transcription on the fungal side of the symbiosis. By conducting 

RNAseq on RNA from the roots, the transcriptome of the fungus is also available to be 

analyzed in a so-called dual RNA-seq study. 

 

Despite the ecological importance of the AMF symbiosis for the large majority of land-plants 

(van der Heijden et al., 2015) and for potential agricultural application (Ceballos et al., 2013, 

Rodriguez & Sanders 2015), very few studies evaluated both plant and AMF transcriptomic 

responses during symbiosis (Handa et al., 2015, Shu et al., 2016). To our knowledge, no 

study to date jointly assessed both transcriptomic responses of AMF and M. esculenta. 

The large majority of recent plant-AMF RNA-seq studies focused on the plant response, e.g. 

differential reprogramming of rice root types (Gutjahr et al., 2015, Fiorilli et al., 2015), leaf 

and fruit development in tomato (Cervantes-Gámez et al., 2015, Zouari et al., 2014), or plant 
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response, with or without AMF, to abiotic stresses such as K+ deprivation (Garcia et al., 

2017) or atrazine (Song et al., 2015). However, at least two studies have focused on R. 

irregularis  (Tsuzuki et al., 2016, Sugimura and Saito, 2017), disentangling the molecular 

mechanism of the fungi during plant colonization and under high levels of phosphate.  

 

It was recently shown that inoculation with a variety of AMF isolates of a single species such 

as R. irregularis resulted in a wide range of plant growth response in cassava (Ceballos et al., 

in prep.), rice (Angelard et al., 2010), as well as in other plant species (Koch et al., 2006, 

Mensah et al., 2015). These types of plant response effects due to AMF intraspecific 

variability were also observed with other species of AMF (Munkvold et al., 2004, Mensah et 

al., 2015, Koch et al., 2017). In order to understand the molecular mechanism behind this 

variability, as well as its potential role and impact on gene transcription during plant 

symbiosis it is, thus, important to include the AMF intraspecific diversity while studying the 

response of crop plants to such microorganisms. 

 

In this context, recent deep molecular characterization of R. irregularis intraspecific diversity 

(Savary et al., submitted) uncovered four main genetic groups. This newly discovered 

diversity is, therefore, of interest for plant ecologists and for potential future agronomic 

applications.  

We investigated the morphological and molecular responses of both M. esculenta and R. 

irregularis during their symbiotic phase, and evaluated the potential functional effects of 

genetic variation of R. irregularis. We performed a greenhouse experiment where we 

inoculated clonal cassava plantlets with a selection of 12 R. irregularis isolates, spread across 

the four different genetic groups described in the phylogeny of this species (Savary et al., 

submitted). Dual RNA-seq was performed on clonal cassava roots to obtain whole 

transcriptome expression profiles of non-inoculated M. esculenta and M. esculenta inoculated 

with 12 different R. irregularis isolates. This dual RNA-seq was analysed by differential 

expression analysis as well as through the lens of co-expression network analysis.  

With this design we tested the hypothesis that i) within AMF species diversity will affect 

differentially the transcriptome of the clonal cassava plants. This hypothesis was formulated 

in accord with the observed high variation in plant response to the within AMF species 

diversity. A second tested hypothesis was that ii) if the different genetic groups within an 

AMF species represented different ecological functional species we must found different 
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transcriptome expression. We then investigated what were these changes in cassava and R. 

irregularis.  
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Material & Methods 

 

Fungal treatments 

 

Twelve isolates, identified as belonging to the species R. irregularis (Savary et al., submitted) 

were grown with Ri T-DNA transformed carrot roots in an in vitro culture system for a period 

of three and half month in order to produce enough spores for inoculation (St-Arnaud et al., 

1996). The selected isolates spanned the phylogeny of this species and represented the four 

different genetic groups described in R. irregularis. The isolate selected for the four groups 

were SAMP7, ESLQS69, LPA54, BEG140 and Israel (representing Gp1), BEG72 

(representing GP2), C3, DAOM229457 and A2 (representing Gp3) and DAOM243181, 

DAOM240448 and DAOM197198-CZ (representing Gp4)(Fig. 1a). All isolates were 

maintained in identical in vitro conditions to avoid environmental effects. Details of isolate 

origin are found in Savary et al., (submitted). 

 

Plant material and experimental design 

 

The Manihot esculenta cultivar NGA16 originated from Nigeria and was obtained from the 

International Center for Tropical Agriculture (CIAT; https://ciat.cgiar.org/). It was multiplied 

in in vitro conditions in order to produce 400 clones. After micropropagation (Santana et al., 

2009), the different clones were grown individually in glass tubes with an M1 phytagel 

solution (Santana et al., 2009) with 14h of daylight (light intensity 100 µE.m-2s-1) at 25°C in 

a growth chamber. After one month, the non-contaminated plantlets were planted into 0.37L 

small pots in a steam-sterilized soil composed of Seedling substrate (Klasmann) and perlite 

(1:1) and then moved onto tables in the greenhouse with constant conditions (28°C, 70%RH 

and 16h daylight). Young plants were protected from full light with a mesh for five weeks of 

acclimation. The plants were then transferred to final 2L pots with a new sterilized soil 

composed of substrate S4 (Klasmann), perlite, quartz sand and clay (1:1:1:1) and placed on 

pallets in the greenhouse with the same conditions for one more month before inoculation. All 

soil used in this experiment was steam-sterilized at 105°C for three consecutive sessions of 20 

min. 

Among the remaining living clonal plantlets, 208 were randomly chosen and 16 plantlets 

were assigned for inoculation to one of the 12 fungal treatments or to the CTL treatment (Fig. 

1b). Each of the twelve isolates was inoculated on a 3 month and one week old plant with 300 
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spores diluted in 10 ml of pure ddH2O. One control non-mycorrhizal treatment (CTL) was 

established by inoculating 10 ml of pure ddH2O without AMF. This inoculation process was 

repeated on sixteen clones of NGA-16 in order to obtain 16 replicates for each of the 12 

fungal treatments and the non-mycorrhizal treatment (CTL). Two replicates per treatment 

were then randomly assigned to one of the 8 blocks and to one position within the block. 

Thus, each block contained all the treatments arranged randomly (Fig. 1b). The blocks were 

rotated every two weeks in order to avoid microclimate effects in the greenhouse. Once 

inoculated and placed in the block, the plants were not watered during three days in order to 

avoid the washing of the inoculum. 

 

 

 
 
Fig. 1: ddRAD-seq phylogenetic diversity of R. irregularis and schematic representation of the greenhouse 

design. (a) ddRAD-seq phylogenetic tree of the four genetic groups based on 15 229 SNPs, 1085 insertion, 1455 

deletions and 14 MNPs, support of the tree was calculated with 5000 bootstraps. Colours represent the belonging 

each of the four genetic groups according to in Savary et al., submitted and are used as colour coding for theses 

groups along the paper (b) Schematic representation of one bloc out of eight, with 26 cassava plants, containing 

a randomization of two replicates of each of the 12 fungal + 1 CTL treatments. The reference for the images 

retrieved from Internet and modified are available in the supporting information. 

 

Harvest and measurements 

 

After 4 months of growth with the treatments the 7 months and 2 weeks old plants were 

harvested in one week, block per block. Each plant was unearthed and roots samples were 

collected for RNA extraction in less than one minute. Three samples of small non-tuberized 

roots, typically around 10 pieces of roots from different depth, were cleaned with ddH20, 
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collected in an eppendorf tube and kept in liquid nitrogen before being transferred to a -80°C 

freezer for later extraction. Another sample of non-tuberized roots was kept at -20°C for 

estimation of intraradical fungal colonization (Supp note S1). The plants were then dried in a 

stove for 72h at 60°C and then the above ground dry mass (ADM), the total root dry mass 

(RDM) and the tuberized root dry mass (TDM) were weighed (Table S1a). 

 

Statistical analysis of M. esculenta phenotypic measurements 

 

The ADM, the RDM, the TDM and the colonization for each M. esculenta plant were 

analyzed for differences among treatment using one-way ANOVA and significant difference 

between each treatment was assessed with Tukey HSD test.  

To measure the AMF phylogenetic signal in plant quantitative growth traits, a phylogenetic 

tree was built using the variation among the deepest sequenced ddRAD-sequencing replicate 

of each of the 12 isolates (Savary et al., submitted). We measured scalar distances (Wyss et 

al., 2016) using the variation founded in the 49 348 covered positions in the genome among 

all samples. This variation is based on 15 229 SNPs, 1085 insertions, 1455 deletions and 14 

MNPs. This tree was used to calculate a phylogenetic signal, using the phylosignal package 

(Keck et al., 2016), in M. esculenta clones growing with the different isolates. The 

phylosignal allow us to measure the link between the R. irregularis phylogeny and the 

colonization rate, the RDM, the TDM and the ADM for 5 types of phylogenetic signal 

indicators: The Moran’s I index (Moran 1948, 1950), The Abouheif’s Cmean index 

(Abouheif 1999), Blomberg’s K and K* (Blomberg et al., 2003) and finally the Pagel’s λ 

(Pagel 1999). 

 

RNA extraction, RNA-seq library preparation and sequencing 

 

RNA was extracted from 40 roots samples (31 inoculated roots, 9 CTL roots without AMF, 

Table S1b) following the protocol of Das et al., (2013). All solutions were prepared with 

DEPC water, mortar and pestles were soaked overnight in a 50% bleach and ddH20 solution, 

rinsed with ethanol and ddH20. One hundred mg of fresh roots were ground in a mortar in 

liquid nitrogen. The powder was transferred in 800 µl of Extraction buffer (100 mM Tris‐HCl 

pH 8.0, 10mM EDTA pH 8.0, 100mM LiCl, 1% SDS, 200mM β‐mercaptoethanol). Samples 

were homogenized and then incubated for 5 minutes at room temperature. Four hundred µl of 

cold Phenol:Chloroform:Isoamyl alcohol (25:24:1; PCI) was added. After mixing, samples 
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were centrifuged at 14'000 rpm at 4°C for 15 min. The supernatant was collected and an equal 

amount of PCI was added. After mixing, samples were centrifuged for 10 min at 14'000 rpm 

and 4°C. The supernatant was collected and 1 volume of isopropanol and 0.1 volume of 

Sodium acetate (1M, pH 5.2) were added. After mixing, the samples were incubated for 10 

min at room temperature and then centrifuged for 10 min at 14'000 rpm and 4°C. The pellet 

was washed with 500 µl ethanol 70%. It was then dissolved in 30 µl RNase‐free water. 

Samples were treated with Macherey‐Nagel Dnase kit and cleaned with the Nucleospin RNA 

cleanup XS kit from Macherey‐Nagel. Concentration and integrity of the RNA samples were 

assessed both with Nanodrop 2000 and Fragment AnalyserTM from Advanced Analytical, 

using RQN integrity score. For the remaining seven samples (Table S1b), grinding was 

performed and RNA extraction was achieved using the MaxwellTM 16 robot (Promega) with 

the Maxwell® 16 LEV Plant RNA Kit following manufacturers instructions. 

 

Libraries were constructed by polyA selection with the RNA extracted from the root samples 

stored at -80°C. Each library was prepared with the TruSeq Stranded mRNA Sample Prep Kit 

from © Illumina, following the manufacturers protocol and by round of 4 libraries at the time. 

For each treatment, we chose RNA samples replicates according to quality, selecting the best 

ones in term of RQN score (Table S2), absence of degradation and contamination. 

Concentration of the libraries was assessed with both Quantifluor from Promega and quality 

with Fragment analyzer from Agilent (Table S2). Libraries were sequenced using Illumina 

HiSeq Technology on Illumina Hiseq2000 platform. 47 libraries were generated and six 

samples were pooled and paired-end sequenced (2X 100-nt) in eight separate lanes (Table 

S2). Each lane contained at least one control treatment and biological replicates were spread 

as much as possible across lanes in order to avoid lane effects. Thus, for each fungal 

treatment, the 3 to 4 replicates were spread into two to three lanes.   

 

Bioinformatic pipeline 

 

An overview of the pipeline employed for the analysis of both M. esculenta and R. irregularis 

can be found in Fig. S1. The quality of paired-end reads of all 47 libraries was first checked 

with FastQC and then Illumina adapters were removed from each library. Low quality 

nucleotides or reads smaller than 40bp were also removed with Trimmomatic version: 0.33 

(Bolger et al., 2014). A 4-base wide sliding window was applied in order to cut sections of 

reads with an average quality lower than 15 Phred. 
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The clean libraries were pseudo-aligned with the Kallisto pseudoaligner version 0.42.4 (Bray 

et al., 2016) to obtain estimate counts based on an index of transcripts from both M. esculenta 

v6.1 transcripts (Bredeson et al., 2016) and on R. irregularis N6 predicted genes (Lin et al., 

2014, Mateus et al., in prep.).  The tximport function (Soneson et al., 2016) was used to create 

a datatable of estimated counts obtained from Kallisto in the R environnement 

(www.CRAN.R-project.org; R Development Core Team 2008). 

A second strategy was applied by mapping the reads with the 2pass aligner STAR version 

2.5.1b (Dobin et al., 2013) on both the M. esculenta genome v6.1 (Bredeson et al., 2016) and 

the N6 single nucleus genome of R. irregularis (Lin et al., 2014). The raw counts were then 

obtained from the .bam file using the command featureCounts from the Rsubread package 

(Liao et al., 2014) with the M. esculenta v6.1 annotation file and a new annotation file based 

on a new gene prediction of the N6 R. irregularis genome (Mateus et al., in prep.). 

The four counts tables (two obtained from Kallisto for M. esculenta and R. irregularis and 

two obtained from STAR and featurecounts for M. esculenta and R. irregularis) containing 

the counts of the 47 libraries were then analyzed in parallel (Fig. S1). Global visualization of 

the data for both M. esculenta and R. irregularis was obtained by normalizing the Kallisto 

estimated counts with the variance stabilization transformations applied through the 

varianceStabilizingTransformation function and then by using the plotPCA function of 

DESeq2 (Love et al., 2014). The differential analysis was run with the DESeq2 package 

(Love et al., 2014) for transcripts in M. esculenta and genes in R. irregularis. Transcript for 

M. esculenta and gene for R. irregularis differentially express (DE) were kept only if present 

in the DESeq results following both methods (Kallisto and Star-featureCounts) of mapping 

and read counting. 

 

Differential expression of M. esculenta transcripts 

 

M. esculenta count tables were analyzed with the DESeq function, which takes raw counts 

and includes a normalization for library size. First, a global comparison including controls 

against all AMF treatments was performed in order to obtain M. esculenta transcript DE 

during symbiosis with AMF. The transcripts found to be significantly DE with the 

comparison CTL vs AMF were considered as the core transcripts for the M. esculenta–R. 

irregularis symbiosis. These transcripts were kept for gene ontology (GO) enrichment 

analysis as well as for volcano plot visualization of the most highly differentially expressed 

transcripts.  
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Second, in order to obtain a more precise list of core M. esculenta transcripts express during 

symbiosis with R. irregularis and commonly differentially expressed in each genetic group of 

R. irregularis as well as to obtain specific M. esculenta DE transcript in response to 

inoculation of R. irregularis to each genetic group, we performed the following comparisons; 

i) CTL vs Gp1, ii) CTL vs Gp2, iii) CTL vs Gp3, iiii) CTL vs Gp4. The intersect of each of 

these four lists of DE transcript gave us the second list of core genes, but this time each of 

these transcript are significantly DE in each genetic group compared to non-inoculated plant. 

This approach was repeated after removing the seven libraries that were extracted with the 

other method of extraction with the MaxwellTM robot. These lists were used for Venn diagram 

construction as well as for GO enrichment analysis.  

In order to confirm the efficiency of the fungal treatments, we searched in the main results 11 

homologues of plant genes (Gst1, Lec5, Scp1, Pt4, Vapyrin, Flot4, Ann2, Lec7, Glp1, Ram2, 

Ha1) known to be differently transcribed during AMF symbiosis (Hogekamp and Küster, 

2013).  

 

Differential expression of R. irregularis genes 

 

R. irregularis counts tables were also analyzed with the DESeq function similarly to M. 

esculenta count tables. In these analyses, the CTL treatments were removed, as they do not 

contain R. irregularis transcriptomes. Comparisons were performed among the four genetic 

groups in order to achieve each pair-wise comparison. Thus, GP1 was compared to GP2, GP3 

and GP4. GP2 was compared to GP3 and GP4. GP3 was compared to GP4. The six lists of 

DE genes were used for GO enrichment analysis.  

 

Proteins prediction, annotations and GO enrichment analysis 

 

Prediction of fungal protein coding genes was performed with the tool Augustus based on 

hidden Markov model. Augustus was trained based on a dataset of Aspergillus proteins. 

The dataset of Aspegillus proteins was generated by retrieving proteins reviewed by Swiss-

prot from www.uniprot.org. Scipio and BLAT were used to align the Aspergillus proteins on 

the N6 genome and to define the gene structure. The structure of the genes was used to train 

and optimize Augustus following Augustus instructions 

(http://www.molecularevolution.org/molevolfiles/exercises/augustus/training.html).  
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We generated hints for Augustus predictions from DAOM197198 RNA-seq data using STAR 

aligner and cufflinks. Augustus predictions with hints were performed on the repeat-masked 

N6 genome using the trained parameters for the species. The same procedure was applied for 

the predictions of the cassava proteins except that Augustus was trained with plant proteins. 

R. irregularis N6 proteins were blasted against the UniProtKB fungal protein database 

(www.uniprot.org); the blast hits were then used in Blast2GO with the standard parameter 

(Conesa et al., 2005) in order to obtain GO terms. The same procedure was applied for the 

proteins of M. esculenta, except that the proteins were blasted against the UniProtKB 

"viridiplantae" database. The GOseq package (Young et al., 2010) was then used to perform 

GO enrichment analysis in accounting for gene length bias. An FDR was applied to detect the 

enriched GO terms (Benjamini & Hochberg 1995). 

 

Co-expression analysis 

 

In complement to the differential analysis, we performed a co-expression analysis with the 

package weighted correlation network analysis (WGCNA, Langfelder & Horvath, 2008). 

Such an analysis has the advantage over the differential expression analysis, that it can detect 

genes that potentially did not change significantly in mean expression between two conditions 

but that are central in the co-regulation network by highly correlated expression with a large 

number of other genes. 

For this analysis we used the counts obtained from Kallisto of both species, each time we 

removed control libraries as well as the low count genes with a minimum of 1 read per 

libraries and finally we removed low variation genes. The counts were then normalized using 

the varianceStabilizingTransformation function of DESeq2 as suggested by Langfelder and 

Horvath (FAQ, WGCNA website, 2014).  Ultimately, library outliers were removed based on 

hierarchical clustering (Analysis 1: Q13, C10, C13, G7, Analysis 2: Q13, C10, C13, G7).  

We then performed this analysis in two variants. First we implemented a multi-species co-

expression analysis using the filtered and normalized 949 DE transcripts of M. esculenta 

during symbiosis that we concatenated to all the filtered and normalized genes of R. 

irregularis. This analysis was performed only on colonized plants and, thus, the control plants 

were removed. The modules were built with a minimum size of 30 genes and were composed 

of plant DE transcripts and fungal genes. They were then correlated to the mean of the three 

phenotypic measurements (ADM, RDM, TDM) and to the colonization of each sample as 

well as to the mean colonization for each isolate that we will refer as colonizer type.  Modules 
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of genes and transcripts, significantly related to morphological traits, were conserved for 

network analysis in order to detect hub genes (module membership >0.9). Gene lists of 

significant modules were measured for enrichment in GO terms. 

Secondly, the 949 DEG transcripts of inoculated M. esculenta inoculated were assembled in 

co-regulation modules with a minimum module size of 5. Each module was then summarized 

into an eigengene values. In parallel, the same process was applied to the 10’727 filtered and 

transformed fungal genes with a minimum module size of 100. The eigengene values for each 

plant module was then correlated with the eigengene value of each fungal module in order to 

perform a module-to-module association. The gene lists for highly significantly correlated 

modules of M. esculenta and R. irregularis, were then used for GO enrichment. Hub genes 

(module membership >0.9) in these modules were then inspected. 

 

Effectors 

 

It was hypothesised that fungal effector proteins play a major role in the symbiosis with plant, 

by controlling the immune system of the host. Evidence showed that these effectors are highly 

conserved across AMF species (Sędzielewska Toro & Brachmann, 2016). The nucleotide 

sequences of the 64 effectors found by Sędzielewska Toro & Brachmann (2016) in 

Rhizophagus clarus were retrieved from NCBI (KU305736 - KU305799) and homologues 

were searched in the Nu6 Rhizophagus irregularis genome by retaining the best hit after 

Blastn. The presence of effector homologues of Rhizophagus irregularis was searched within 

the DE fungal gene lists and list of co-expressed gene modules.  
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Results 
 

Phenotypic differences in fungal and plant traits 

 

Colonisation by AMF of the cassava roots was significantly different among the 12 

genetically diverse isolates of the AMF species R. irregularis across all treatment excluding 

the control. Some isolate were low colonizers (BEG72: 21.7%±4.5 SE) while other were higer 

colonizers (DAOM197198: 72.9%%±5.9 SE). Moreover this colonization was not randomly 

distributed among isolates but was correlated with their phylogeny, as shown by four 

significant and one marginally significant phylogenetic signal indicators (Fig. 2). Inoculation 

of plants did not result in differences in either RDM, TDM or ADM, either between the 

controls and the different isolates or among isolates. We did not detect phylogenetic signal in 

any of these values (Fig. 2). Phenotypic information for all the 208 plants and for plants used 

for RNA-seq is available in Table S1a and S1b.  

 

 

 
 

 
Figure 2: Phenotypic measurements of inoculated cassava plants in relation to phylogenetic relatedness of each 

R. irregularis isolate. Bars in the histogram represent the mean of each observed traits (Colonization level %, 

RDM, TDM and ADM) as well as the standard error are represented. One-way ANOVA results for each 

phenotypic trait are indicated above each bar. The One-way ANOVA on colonization did not included the 

controls. Conversely, controls were included in One-way ANOVA for the other traits (RDM, TDM, ADM). 

Significant differences were determined by post-hoc Tukey HSD and results are represented by letters above 

bars. Underneath each barplot, results for five phylosignal indicators calculated based on the mean of each trait 

is given with their respective p-value ( . <0.1, * <0.05,  ** <0.01). 
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RNA-seq  

 

RNAseq generated a total of 4.47 billion reads with an average of 95 million of reads per 

library (Table S2). Information about the STAR 2pass mapping, counts measurement with 

featureCounts for both species could be found in Table S3, S4, S5 and S6. Mean pseudo-

mapped reads with Kallisto to the M. esculenta genome was 8’304’761 ±1’353’166 (Table 

S7) and to the R. irregularis genome 1’135’415±169’133 SE reads (Table S8). After 

trimming and mapping with both methods, removing contaminated controls, wrongly 

assigning treatments (Fig. S2), low quality libraries (CTL8, Q11, G12, G4), filtering 

transcripts and genes with less than one reads, we obtained M. esculenta expression 

information for 37 982 transcripts (Kallisto) and for 27 633 transcripts (STAR-featureCounts) 

out of a total of 41 381 transcripts. R. irregularis expression resulted in information on 13 107 

genes (Kallisto) and 12 599 (STAR-featureCounts) out of 15 953 genes. The raw reads of the 

47 libraries are available on the ncbi bioproject SRAXXXXXX. 

 

M. esculenta response 

 

We observed a reprogramming of cassava roots whole transcriptome while in symbiosis with 

any R. irregularis isolate or genetic groups (Fig. 3a). However cassava plants did not respond 

globally differentially to the different R. irregularis genetic groups. We found 949 

differentially transcribed genes between AMF treatments and the controls (845 up regulated, 

104 down regulated). 73% of the transcripts were common to both types of mapping and read 

counting analysis (Kalisto DE transcripts: 1161, 2passSTAR-featureCOunts DE transcripts: 

1089, Fig. 3b). We found 10 significantly differentially expressed genes out of the 11 

common up regulated plant gene during AMF symbiosis (Fig. 3b and c). 

To obtain a more precise view of the core gene plant toolkit used during the symbiosis with R. 

irregularis, we retrieved the 353 plant genes that are differentially transcribed with any isolate 

genetic group compare to the CTL. Finally, in order to avoid any bias towards the seven 

samples extracted with the robot, we removed those samples and retrieved again the DE 

transcripts across the four comparisons between CTL and four genetic groups, which resulted 

in 310 DE transcripts. The three lists of gene can be found in Table S9a, S9b and S9c, along 

with the DESeq2 results including their log2fold change and adjusted p-value for the Kallisto 

counts data. 
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Figure 3: M. esculenta transcriptomic response to the inoculation with 12 R. irregularis isolates from 4 different 

genetic groups. (a) PCA based on the normalized (vst, DESeq2) counts expression (Kallisto) of 37 982 

transcripts from control (n=8) and inoculated (n=35) plants. Venn diagram represent shared (353) or specific 

(778, 16, 9, 8) DE transcripts between controls and each genetic group. (b) Volcano plot of the comparison CTL 

vs AMF made with Kallisto counts, with 37 982 transcripts representing down-regulated (blue, left, 104) and up-

regulated (red, right, 845) transcripts found in both type of mapping analysis (Kallisto-DESeq2 or 2passStar-

featurCounts-DESeq2). Black dots (37 033) represent either non-differentially express transcript in both 

mapping strategies or differentially express transcript in one mapping strategy but not found in the other. The ten 

transcripts with the highest –log10 adjusted p-value are represented by circle triangle and annotated with their 

protein annotation and gene code. Green dots and numbers represent cassava homologues of eleven plant genes 

commonly express during AMF symbiosis. The name of each of these gene is found in the heatmap (c). (c) 

Heatmap detailing the normalized expression of the eleven cassava plant genes commonly DE in other 

mycorrhizal plants, for the 35 inoculated and 8 controls plants. 
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R. irregularis transcriptiome diversity 

 

The PCA of R. irregularis indicated that the four differential genetic forms of R. irregularis 

have different expression pattern during the symbiosis with cassava (Fig. 4a). The 

differentiation of global expression among the 4 genetic groups along PC2, correlated 

strongly with their ddRAD-seq phylogeny (mantel test: z-value=163.26, p=0.001, Fig. 4b). 

The number of differentially expressed genes increased with increasing genetic distance (Fig. 

4c). The results for the comparison between each genetic group as gene list and DESeq2 

results for Kallisto counts can be found in Table S10a, b, c, d, e and f. 

Genes differentially transcribed in only one fungal genetic groups compare to other were 

found (Fig. 4d) for each of the four group, with 27 genes differentially transcribed in GP1, 8 

differentially transcribed in GP2, 12 s differentially transcribed in GP3 and 46 differentially 

transcribed in GP4.  

	

DAOM197198-CZ

DAOM234181

DAOM240448

A2

C3

DAOM229457

BEG72

BEG140

Israel

LPA54

ESQLS69

SAMP7

A2

BEG140

BEG72

C3

DAOM197198-CZ

DAOM229457

DAOM234181

DAOM240448

ESQLS69

Israel

LPA54

SAMP7

G
en

ot
yp

ic
 (d

dR
AD

-s
eq

) 

Ph
en

ot
yp

ic
 (R

N
A-

se
q)

 
-20

0

20

-40 0 40 80 120

PC1: 69% variance

P
C

2
: 

8
%

 v
a

ri
a

n
c
e group

CTL

GP1

GP2

GP3

GP4

a

b

 (mantel test: z=163.26 p=0.001) 



Chapter 4          Transcriptome interactions of R. irregularis and Cassava 
        Transcriptome interactions of R. irregularis and Cassava	

127	

	

	

 
Figure 4: Transcriptomic response of 12 isolates of R. irregularis from 4 genetic groups to the inoculation on M. 

esculenta. (a) PCA based on normalized (vst, DESeq2) counts expression (Kallisto) of 13 107 genes from 37 R. 

irregularis transcriptomes from 12 isolates and their three replicates. The eight controls were included to show 

the low level of R. irregularis reads contamination. (b) Hierarchical clustering of the genetic distance and 

hierarchical clustering of the expression of 12 isolates of R. irregularis. The genetic hierarchical clustering was 

produced out of the scalar distances between the best replicates of 12 isolates of R. irregularis based on 15 229 

SNPs, 1 085 insertions, 1 455 deletions and 14 MNPs obtained by ddRAD-seq. The expression hierarchical 

clustering was performed using as distance the mean of the PC2 value across replicates per isolate. The result of 

a mantel test applied on both distances matrices is shown (a). (c) Number of differentially expresses genes 

shared in both mapping and read counting strategies, across the comparisons between every R. irregularis 

genetic groups. Number in bracket indicated the number of up-regulated and down-regulated genes. (d) Venn 

diagram indicates the number of specific gene up and down-regulated in each genetic group. 

 

Cassava and R. irregularis GO enrichment  

 

Gene ontology terms enriched in the DE transcripts of the inoculated cassava plants and 

found in common in the three gene lists (949, 353, 310) were proteolysis, serine-type 

endopeptidase activity and the cysteine-type peptidase activity. Fatty acid biosynthetic 

process as well as ammonium transmembrane transport, carbohydrate binding and transferase 

activity were also enriched (Fig. 5a and b, Fig. S3, Table S11).  
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Among the different fungi, the GO enrichment of the 6 DE gene lists, resulted in a main GO 

term, the “oxidoreductase activity” for 3 comparisons between the most genetically distant 

fungi (GP1 vs GP3, GP1 vs GP4, Gp2 vs GP4, Fig. S4, Table S12a, b, c, d, e and f). All other 

comparisons resulted in no other enriched GO term, except for the most distant comparison 

between isolates from GP1 and GP4. In this DE gene list, we also detected enrichment for cell 

wall organization and biogenesis, cellular organization and carbohydrate metabolism 

processes (Fig. S4 and Fig. S5, Table S12a, b, c, d, e and f). 

 

Multi-species co-expression networks and traits 

 

The first WGCNA analysis of the concatenated gene expression of the plants and fungi 

resulted 35 modules with gene sets containing between 46 and 1811 genes (Fig. S6a, b, c and 

d). We found after FDR correction one module (lightcyan, n=214, Fig. S6b, Table S13a, b 

and c) that was significantly correlated with colonizer type (cor=0.73, uncorrected p=3*10^-6, 

corrected p=0.00054) and that same module showed the highest value among the other 

modules (cor=0.53, uncorrected p=0.002, corrected p=0.36) for correlation with other 

colonization measurements. Another module (purple, n=378, Fig. S6b, Table S14a, b and c) 

was found to be significantly correlated, after FDR correction, to the colonizer type 

(respectively: cor=0.67, corrected p=0.0072). The ligthcyan and purple modules exclusively 

contained fungal genes with ~40% and 52%, of characterized proteins, respectively. In the 

modules, we found 22 and 11 hub fungal genes in the network with a module membership 

value higher than 0.9 (or kME>0.9) respectively. Among these hub genes we found only in 

the “lightcyan” module, 8 genes that were significantly linked to the colonizer type. These 

genes are mainly uncharacterized proteins, except for Tos3p (g7882.t1) and ring-8 

(g15266.t1, Table. S13) The GO term enrichment of the two modules gave significant term 

after p-value correction (FDR) only for the purple module, for oxidoreductase activity (padj=	

5.5e-10). However the higher significant term in the lightcyan module without correction is 

also the oxidoreductase activity (p=	 0.00779). The lightcyan module contained annotated 

genes that were differentially expressed between the most distant R. irregularis strains. 

Among those genes we found a sterol 14-demethylase, Tos3p a homologue of the effector 

Cdc15p, Cka2p, an alpha/beta hydrolase, ring8, a nitrogen reductase, a histone deacetylase, 

histone H2A, Env9, a Phosphatidylserine decarboxylase and a Glycerol-3-phosphate 

dehydrogenase 
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Co-expression of DE M. esculenta transcript and R. irregularis genes 

 

In the second analysis with the WGCNA package, we obtained from the 949 M. esculenta DE 

transcripts, 5 modules containing from 9 (yellow module) to 720 (turquoise module) 

transcripts (Fig. S7 a, b and c). We obtained from the 10’727 fungal genes 21 modules 

containing from 157 (royalblue module) to 1559 (turquoise module) genes (Fig. S7 a, b and 

c). The blue plant module (n=80) was the module for which the eigengene values correlated 

the best with two fungal gene modules (brown; n=684, cor=0.83, padj=1.05*10-6 and pink: 

n=479, cor=0.82, padj=2.1*10-6). Two other plant-fungus modules correlated significantly, 

after FDR correction. First the blue plant module (n=80) correlated with the fungal turquoise 

module  (n=1559, cor=0.59, padj=	 0.042) and secondly, the yellow plant module (n=9) 

correlated with the fungal cyan module. The GO enrichment of the blue module did not 

highlight a particular function after FDR p-value adjustment (Table S15a). However in this 

module we found 10 hub genes (Fig. S7 d and e, Table S15b and c), such as eukaryotic 

translation initiation factor 3 subunit, insulin-degrading enzyme, acetyl-carboxylase alpha-

CT, auxine response factor, ABC transporter family, transporters, Leucine-rich repeat kinase 

family isoform 1, phospholipid-transporting ATPase, kinase family peptidoglycan-binding 

domain-containing and universal stress. The GO enrichment of the brown and pink modules, 

resulted in the brown module of 11 terms mainly linked to a ribosomal activity for translation, 

other than that the term signal transduction, small molecule metabolic process, cytoskeleton 

as well as generation of precursor metabolites and energy were enriched (Table S16a). This 

last term was the only term enriched in the pink fungal module (Table S17a). We found 13 

hub genes in the brown module and 3 in the pink module (Fig. S7d and e, Table S16b and 

S17b). 

 

Fatty acid biosynthesis, Fat genes, lipid transport and fungal lipase 

 

Fatty acid biosynthesis being the second most enriched GO term in genes DE between 

cassava control plants and cassava-inoculated plants (Fig. 5b, Table S11). We, thus, 

investigated more deeply the hypothesis that an the increase in synthesis of plant fatty acids 

(Bravo et al., 2017, Kamel et al., 2017), represents a source of carbon for the fungus. We, 

thus, investigated the expression of the differential key genes, of plant fatty acid biosynthesis, 

fatty acid elongation, transport and potential digestion in the fungus. The normalized 

expression of all key genes of the fatty acid metabolism, in relation to the colonizer type, and 
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to the fungal treatment of the cassava can be found in supplementary information in Fig. S8 

and Fig. S9.  

All the 12 genes up regulated in the GO enrichment of fatty acid biosynthesis are key genes 

involved in the activation and elongation of the plant fatty acid  (Fig. 5a and b). Moreover, the 

FatM gene (Medtr1g109110), a palmitoyl-acyl carrier thioesterase shown to be only 

conserved in mycorrhizal plants (Bravo et al., 2016) and responsible for C16:0 palmitic acid 

synthesis, was found with blastp as two homologues in cassava (Manes.06G063300.1 and 

Manes.14G109400.1, Table S18a). Both were differentially expressed when the plant was in 

symbiosis with any R. irregularis genetic groups (Fig. 5a and b). A third palmitoyl-acyl 

carrier thioesterase found in the annotation was never DE. The homologues of FatA and FatB 

proteins of Ricinus communis, the two common plant acyl-ACP thioesterases (Sánchez-

García et al., 2010), were searched with blastp in cassava (Table S18b). The homologue of 

FatA (Manes.13G049100.1) was mostly DE between CTL and GP1 (Fig. 5a and b). Moreover 

it was found in the plant yellow module with a high module membership of 0.95, which 

correlated to two fungal gene modules. In contrast, none of the three FatB cassava 

homologues were found to be DE or present in modules linked to fungal modules (Fig. 5a and 

b). The production of lysophosphatidic acid from the acyl-CoA is performed in the 

endoplasmic-reticulum (ER) by the glycerol phosphate acyl transferases (GPAT). One of 

these enzymes, RAM2, is conserved in mycorrhizal plants and is constantly differentialy 

expressed in cassava with all genetic forms of R. irregularis. Another ER GPAT 

(Manes.01G193000.1) was strongly up regulated in the presence of any R. irregularis 

isolates. Two other acytransferase were DE and could have a role in the next strep of fatty 

acid transformation, from lysophosphatidic acid to phosphoatidic acid. 

We inspected several different lipid transporters potentially up regulated during the AM 

symbiosis and suggested as potential lipid transporters from the plant to the fungus (Kamel et 

al., 2017, Bravo et al., 2017). Four lipid non-specific transfer proteins were found to be 

conserved across 14 mycorrhizal plants, including Medicago truncatula, but not found in 9 

other non-mycorrhizal plants (Delaux et al., 2014). Homologues of these lipid transfer 

proteins were searched with bastp and gene(s) with the highest hits in the cassava genome 

were conserved. However, none of either the 4 conserved or 28 other non-specific annotated 

lipid transfer proteins were found to be differentially expressed or co-expressed in identified 

plant modules. We then applied the same blasp procedure to an ABC transporter conserved 

across all the mycorrhizal plant species (Delaux et al., 2014), indeed ABC transporters were 

often found to be involved in lipid transport (Li et al., 2016). This ABC transporter 



Chapter 4          Transcriptome interactions of R. irregularis and Cassava 
        Transcriptome interactions of R. irregularis and Cassava	

131	

(Manes.11G015600.1, Delaux et al., 2014, Fig. 5a and b, Table S19a) was found to be highly 

diff express in the presence of any fungal genetic groups.  

Six other ABC transporters were found to be differentially expressed with one comparison or 

the other. One of these transcript (Manes.11G063600.1) was found to be DE in three 

comparisons out of four (CTL/GP1, CTL/GP2, CTL/GP3, Fig. 5a and b). Among the 6 DE 

ABC transporters, Manes.01G234500.1 and Manes.05G060300.1 are hub (MM >0.9) or 

nearly hub genes (MM= 0.92 and 0.89) in the blue co-expression plant module (Fig. 5a and 

b). In the hub genes of the blue plant module, we are found another DE lipid transporter 

(MM>0.9), a Phospholipid-transporting ATPase (Manes.09G123600.1, Fig. 5a and b) DE 

with any R. irregularis genetic groups and correlated to different fungal modules, as well as 

with the colonization. 

A pair of ABC-G (STR/STR2) transporters were shown to be indispensable for arbuscule 

formation, conserved across mycorrhizal plant and suggested as potential lipid transporters 

(Bravo et al., 2017). The homologues of the Medicago truncatula ABC transporter STR 

(Manes.06G004300.2) and STR2 (Manes.13G104000.1, Zhang et al., 2010, Gutjahr et al., 

2012) were found in cassava (Table S19b). Only one of the two, the STR2 was found to be 

highly differentially expressed with any CTL vs genetic group comparisons (log2 foldchange 

range: 4.9-6.2, Fig. 5a and b). The first one, STR was DE with any genetic group with the 

Kallisto pseudo-mapping method, but did not appear with the other mapping strategy. 

However none were found in any identified modules. Moreover, STR2 is the only annotated 

ATP-binding cassette transporter among 45 that is differentially expressed. 

On the fungal side, in the GO enriched terms between GP1 and GP4 we found two genes 

involved in phospholipid transport (g2588.t1 and g5809.t1), both being up regulated in GP1 

compared to GP4 and the second one being found in the pink module (MM=	 0.77). Both 

fungal phospholipid-transport ATPases were well correlated with the plant phospholipid-

transport ATPase (Fig. S10), more particularly the fungal phospholipid-transport ATPase of 

the pink module, that correlated well (cor=0.82, p=1.09*10^-9) with the M. esculenta hub 

phospholipid-transport ATPase of the blue module. 

 

Among the 42 lipases found in the annotation of Rhizophagus irregularis, one lipase 

“Phospholipase D nuclease” (g9241.t1) was found to be highly differentially expressed 

between fungi from GP1 and GP4, as well as present in the lightcyan module, with a high 

modularity membership and a high and significant gene-trait correlating significantly with 

colonization (Fig. 5b and d). In the brown fungal module we found a (g8617.t1) 
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lysophospholipase, the third highest express lipase in mean expression (Fig. 5b, Fig. S11) and 

in the pink fungal another (g7289.t1) lysophospholipase, the fourth lowest expressed lipase 

(Fig. 5b, Fig. S11), both modules were highly correlating to the blue plant module of 80 

differentially expressed plant transcripts.  

The genes linked to fatty acid metabolism, and found in the ligthcyan module, are genes of 

the glycerophospholipid metabolism of fungi, such as the glycerol-3-phosphate 

dehydrogenase (g4087.t1, MM=0.70, gene-trait p-value=0.04). This gene was also DE 

between GP1 and GP4. The diacylglycerol cholinephosphotransferase (g8706.t1 MM=0.53, 

gene-trait p-value=0.003) and the hub gene phosphatidylserine decarboxylase 2 (g74.t1, MM= 

0.93, gene-trait p-value= 0.118) were also DE between GP1 and GP4. In the gene set of the 

enriched GO carbohydrate metabolic processes, we found another DE gene of the 

glycerophospholipid metabolism encoding a glycerol kinase (g1094.t1), an enzyme using the 

same substrat as the glycerol-3-phosphate dehydrogenase and being negatively correlated 

with it (Fig. S12). Phospholipase D and diacylglycerol cholinephosphotransferase use the 

same substrate, the phosphatidyl-choline, the expression of both enzymes being positively 

correlated (Fig. S13). 
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Figure 5: The fatty acid enriched pathway as a graphical representation, as a heatmap across the isolates and the 

control. (a) The fatty acid pathway from the formation and elongation in the plant to the suggestion of transport 

and use in the fungi. The acronym of the enzyme are, acetyl carboxylase (ACC), acyl-carrier-protein (MAT), 

Beta-ketoacyl-ACP synthase III (KASIII), 3-oxoacyl-(acyl-carrier-protein) reductase (KAR), hydroxyacyl-ACP 

dehydratase (HAD), enoyl-acyl carrier reductase (EAR), Palmitoyl-acyl carrier protein thioesterase (FATM1 

and 2) , acyl-ACP thioesterases (FATA),  acyl-ACP thioesterases (FATB), reduced arbuscular mycorrhization 

(RAM2), glycerol-3-phosphate acyltransferase (GPAT), stunted arbuscule ABC transporter (STR/STR2), 

6 ABC 
transporter 

Phospholipid-
transporting 

ATPase 

?

(GPAT)

RAM2

β-MAG?

LPA

Manihot esculenta

Rhizophagus 
irregularis

Fatty acid biosynthesis and transport Differentially 
express
Co-express
in modules

a

b

Phospholipid-
transporting 

ATPase 

2x

STR 

STR2 

ABC
 transporter 

(Delaux et al.,
 2014)

Acetyl-CoA

Malonyl-ACP

Malonyl-CoA

ACC

MAT

KAS III
3-ketoacyl-ACP

3-hydroxyacyl-ACP

enoyl-ACP

butyryl-ACP

KAR

HAD

EAR

16:0-ACP
18:0-ACP

FatA
   FatB

FatM1 & FatM2
   16:0 

Palmitic acid

18:0

Acyl-CoA

FAS

ER GPAT
xgsg

PA

DAG

2x acyltransferase LPAAT

PC

 
xgsg

PAP

CPT

TAG
LPC

PDAT

?

Fatty acid synthesis
GO:0006633 
p=1.07E-05   

12*/135

C
TL-2

C
TL-2

C
TL-5

C
TL-9

C
TL-9

C
TL-10

C
TL-12

C
TL-14

SAM
P7-12

SAM
P7-2

SAM
P7-4

ESQ
LS69-10

ESQ
LS69-13

ESQ
LS69-15

ESQ
LS69-3

LPA54-13
LPA54-16

LPA54-7
Israel-2
Israel-4
Israel-8

BEG
140-11

BEG
140-16

BEG
140-7

BEG
72-10

BEG
72-13

BEG
72-6

D
AO

M
229457-6

D
AO

M
229457-7

D
AO

M
229457-9

C
3-11
C

3-2
C

3-8
A2-12
A2-13
A2-14

D
AO

M
240448-4

D
AO

M
240448-5

D
AO

M
240448-6

D
AO

M
234181-7

D
AO

M
197198-15

D
AO

M
197198-6

D
AO

M
197198-9

Manes.S047300.2
Manes.06G063300.1
Manes.11G015600.1
Manes.11G063600.1
Manes.13G049100.1
Manes.16G064400.1
Manes.S047300.1
Manes.06G004300.2
Manes.01G097500.1
Manes.01G139400.1
Manes.02G227000.1
Manes.12G014900.1
Manes.03G055600.1
Manes.16G087900.1
Manes.02G007700.1
Manes.08G046300.1
Manes.05G060300.1
Manes.09G123600.1
Manes.13G104000.1
Manes.14G109400.1
Manes.02G053800.1
Manes.01G234500.1
Manes.01G193000.1
Manes.02G036200.1

4

6

8

10

12

CTL Gp1 Gp3 Gp4Gp2

FatB homologue
FatM*
ABC transporter (Delaux et al., 2014)
ABC transporter
FatA
FatB homologue
FatB homologue
STR
Biotin carboxyl carrier*
Hydroxyacyl-ACP dehydratase*
Biotin carboxylase*
Beta-ketoacyl-ACP*
Acyl carrier*
Acyl carrier*
3-oxoacyl-*
Enoyl-acyl carrier reductase*
ABC transporter
Phospholipid-trans. ATPase
STR2
FatM*
Biotin carboxyl carrier*
ABC transporter
RAM2
Beta-ketoacyl-ACP synthase III*

PC

LPC
Pospholipase D

PA

diacylglycerol 
choline

phosphotransferase

DAG
 

xgsg

TAG
 

xgsg

GPAT

G3P Glycolysis
GPD

Glycerol

GK

Glycerol

?

FatB
FatM

FatA
FatB
FatB
STR
ACC
HAD
ACC
KAR

KAR
EAR

STR2
FatM
ACC

RAM2
KASIII

MAT
MAT

GAPDH

G3P

GlycolysisGPD



Chapter 4          Transcriptome interactions of R. irregularis and Cassava 

	134	

lysophophatidic acid (LPA), lysophosphatidic acid acyltransferase (LPAAT), phophatidic acid (PA), 

phosphatidate phosphatase (PAP), diacylglycerol (DAG), choline phosphotransferase (CPT), 

phosphatidylcholine (PC), phospholipid:diacylglycerol acyltransferase (PDTA), triacylglycerol (TAG), 

lysophosphatidylcholine (LPC), glycerol-3-phosphate (G3P), glycerol-3-phosphate dehydrogenase (GPD), 

glycerol kinase (GK), Glyceraldehyde-3-phosphate dehydrogenase  (GAPDH), chitin deacytelase (CDA2). (b) 

Heatmap of normalized transcript expression (Kallisto) for the 12 enriched genes of the fatty acid synthesis (*) 

as well as other genes in the fatty acid pathway.  
 

Effectors 

 

Among the 64 effector candidates conserved in different species of AMF (Sędzielewska Toro 

and Brachmann, 2016), 26 were found with a high blastn hit in the NU6 genome. Across all 

the genetic group comparison for DE genes, only the comparisons between the most divergent 

R. irregularis genetic groups (GP1 and GP4) revealed the presence of 2 effectors that were 

significantly differentially expressed (Table S20a). The same two effectors were found to be 

co-expressed with a high modularity membership in the “ligthcyan” (Table S20b) the best of 

the two fungal gene modules that correlated with colonizer type. The first most highly DE 

effector (g7109.t1, log2foldchange=2.94±0.88, padj=0.013), a chitin deacetylase (CDA2) was 

the only homologue (% identity 83.77%, e-value=7E-156, Fig. S9, Table S20c and d) in R. 

irregularis of the effector found in R. clarus (KU305765, Sędzielewska Toro and Brachmann 

2016 supporting information, Table S20e). The other secreted effector differentially express is 

annotated as a Cdc15p  (g2725.t1), a potential serine/threonine protein kinases. 

Two high hit homologues of the well-described SP7 effector were found in the Nu6 genome 

(Table S21, g14902.t1 and g11683.t1). The first homologue (g14902.t1) had an identity of 

100% to the first 64 amino acids of SP7. This transcript was thus considered as the 

homologue of SP7. This SP7 is DE between the two genetic groups GP1 and GP4 being up 

regulated in GP4 and down regulated in GP1 (log2 foldchange=3.69, Fig. S9). However, it 

was not found in any identified fungal modules. The ethylene response factor of Medicago 

truncatula, ERF19 shown to be the pathogenesis-related transcription factor with which the 

SP7 effector interacts in the nucleus of the plant was found in cassava. This homologue was 

not differentially expressed when plants were in symbiosis with AMF. Among another 35 

ERF annotated in cassava, 6 were DE, and 2 (Manes.05G040000.1 and Manes.01G262100.1) 

were always DE with any genetic group. However, none were found in identified co-

expression modules.  
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Discussion 

 

In this study we show that despite no apparent differences in cassava growth in response to 

AMF, we can detect strong reprogramming of the plant root transcriptome. Such 

reprogramming was conserved across plants inoculated with different R. irregularis genetic 

groups, mainly in terms of the up-regulation of transcription in proteolysis genes, increased 

expression of numerous genes involved in the fatty acid biosynthesis, in ammonium 

transmembrane transport and in carbohydrate binding. We can, thus, reject the first hypothesis 

of an induction of major differential transcriptional changes due to within AMF species 

diversity. We proposed that changes in the plant phenotypes due to within species AMF 

diversity are more probably due to changes in a low number of targeted genes. Moreover we 

found that the colonization rate of the cassava roots with each isolate is tightly linked to the 

fungal phylogenetic relationship. This suggested that the fungus evolutionary history is 

impacting its ability to form the symbiosis. These findings suggested also that not only the 

plant control the fungus but also the fungus can control the plant though it evolutionary 

background. 

Major transcriptomic differences were found between isolates and genetic groups of R. 

irregularis. These differences were clearly explained by the phylogenetic position of the 

isolate and the genetic groups, with up to around 5% of the genes differentially express 

between the two phylogenetically most distant genetic groups, GP1 and GP4. These findings 

tended to confirm the second hypothesis of possibly different functional species within R. 

irregularis. The transcriptomes differences among fungi from different genetic groups were 

mainly in expression of genes related to the oxidoreductase activity.  Differences can be 

found as well between the two most phylogenetically distinct clades of R. irregularis, GP1 

and GP4 in three other enrich GO terms, cell wall organization or biogenesis, cellular 

component and carbohydrate metabolic process. These change reflecting the major transitions 

of the transcriptome evolution between these distant clades of R. irregularis.  

In the following sections we discussed the different major changes in cassava and in the 

different genetic groups of R. irregularis. 

 

Insights in the chemical war for the control of the symbiosis 

The first major and conserved change in cassava during AMF symbiosis was the up-

regulation and enrichment of numerous genes involved in proteolysis. This gene arsenal 

possibly reflected the chemical war between the fungus attempting to control the plant host 
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immune system and the plant trying to avoid being controlled by the fungus. Indeed, in the 

plant, among the 10 most highly differentially expressed genes, five were cysteine proteases, 

the five other were, hydrolases, peptidases or uncharacterized proteins. It is known that one of 

the two classes of fungal effectors; the apoplastic effectors are cysteine-rich proteins (SCRs) 

such as avirulence factors avr2, avr4 or avr9 or FonSIX6 (Van der Hoorn et al., 2001, Rooney 

et al., 2005, Nui et al., 2016). These effectors are secreted to reduce plant defences in the 

intracellular space (Sędzielewska Toro & Brachmann, 2016). Thus, these plant cysteine 

proteases were probably highly expressed to digest this kind of fungal effector. Similarly, 

plant carboxypeptidase, up-regulated during the symbiosis with R. irregularis, was probably 

involved in the fungal recognition as well as in the initation of the defence responses of the 

plant (Lui et al., 2008) 

Among the 26 homologues of fungal effectors of R. clarus found in R. irregularis, two were 

found to be DE between the mostly distant fungal genetic groups and found to be co-

expressed with 214 other genes in the lightcyan module that correlated with colonizer type. 

The first one, a chitin deacetylase (CDA2) could be central in the ability of the fungi to 

colonize strongly or not the roots of the cassava and potentially other plants. We suggested 

that this R. irregularis gene plays a role in hiding the presence of the fungus and its chitin 

components from the plant immune system by modifying the chitin into chitosan oligomers. 

This statement is strongly supported by evidence that the endophytic fungus Pestalotiopsis sp. 

inactivates the rice immune system by the modification of its chitin oligomers through a 

chitin deacetylase (Cord-Landwehr et al., 2016). One well-known system allowing the 

biotrophic symbiosis between plants and R. irregularis is the interaction between the SP7 

fungal effector and the plant ethylene response factor (ERF19). SP7 inactivate plant defence 

related genes in the plant nucleus. As expected, the homologue of ERF19 was not DE. 

However we found that SP7 was only really active in the genetic group of the well studied 

fungus DAOM197198, the isolate used in the study of Kloppholz et al., 2011. SP7 was 

partially active in GP3 but not expressed at all in GP1 and GP2. Moreover, a higher 

expression of SP7 was associated with a higher colonization level (Kloppholz et al., 2011). 

We also found that AMF colonization co-variated positively with the natural variation in the 

expression of SP7 in different isolate.  

 

Recognition  

The fourth most enriched plant term was carbohydrate binding. This term is composed of 

mainly kinases, such term reflect the ability of the plant to detect the fungi.  Indeed, kinases 
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are often characterized as plant receptors of pathogens by detecting chitin, peptidoglycan or 

pathogen effectors. Among them, we found an L-type lectin-domain containing a receptor 

kinase, such kinase are known to be induced in response to fungal pathogens (Nivedita et al., 

2017) and were shown to play a role in plant pathogen resistance (Wang et	al.,	2014). The 

homologues of the two common lectins 5 and 7 regularly reported as induced and specific to 

the AM symbiosis form part of this group of genes. Lectins are though to be able to bind 

fungal surface carbohydrates (Frenzel et	 al.,	 2005).	 The other kinases detected probably 

fungal effectors or fungal chitin oligomers such as the LysM receptor-like kinase (Wan et al., 

2008, Antolın-Llovera et al., 2014). However the homologue of the Ricinus communis chitin 

elicitor receptor kinase (CERK1) was not found to be up regulated. Two other central 

potential cassava fungal receptors were found in the blue module. The first one is a leucine-

rich repeat kinase family isoform 1 (LRR), similar LRR were shown to be essential for the 

activation of a non specific signal transduction in response to different microbes, the signal 

will then activate other symbiosis genes (e.g. SYMRK, Stracke et al., 2002). The second one, 

a kinase family peptidoglycan-binding domain-containing, has the same functionality as 

peptidoglycan binding LysM gene.  

The fungal partner also has to recognize the plant. We found an alpha/beta hydrolase linked to 

colonizer type varying in expression between genetic groups of R. irregularis. Alpha/beta 

hydrolases were shown in plant to be potential plant receptors of strigolactones (Gaiji et al., 

2012), some being essential in plant such as DWARF14-like for initiating the AMF symbiosis 

(Gutjahr et al., 2015). Strigolactones are plant hormones and the detection of these hormones 

by the fungi is a requirement for efficient root colonization, we can then speculate that the 

fungus uses the same mechanisms as the plant for the recognition of strigolactones and that 

this fungal alpha/beta hydrolase is a strigolactone receptor. 

 

Plant fatty acid synthesis, transport and recycling by fungi 

The second most enriched gene ontology term is related to the increase of the regulation of 

numerous plant genes used for the synthesis of fatty acids. It was hypothesized quite early 

that AMF relied on their plant host for the production fatty acid, particularly for palmitic acid 

(Trépanier et al., 2005). We, thus, took advantage of expression data of the fungi and the 

variability across isolates to investigated more deeply the expression of genes potentially 

involved in this important pathway. 

The common view of the plant-AMF symbiosis reported frequently this relation as being 

centred on the exchange of photosynthetic carbohydrates, mainly sugar in exchange for 
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nutrients such as nitrogen or phosphorous. The carbohydrates are thought to be used by the 

fungi to synthesize fatty acids (Trépanier et al., 2005). However, as highlighted by Kamel et 

al., 2017 and others, Rhizophagus irregularis as well as numerous other AMF species lack 

fatty acid synthases (FAS, Wewer et al., 2014, Tang et al., 2016), thus making the process of 

fatty acid synthesis impossible. It was also observed several times that plant under AMF 

symbiosis up regulate several lipids metabolism genes (Gomez et al., 2009, Tisserant et al., 

2012). Moreover on the plant side, a specific and central gene of the fatty acid synthesis, the 

Fat gene (acyl-ACP thioesterase) FatM was described to occur only in mycorrhizal plants and 

was shown to be essential for the formation of healthy arbuscules (Bravo et al., 2016). FatM 

in combination with three other mycorrhizal plant conserved genes; RAM2 and the ABC 

transporters STR/STR2 were suggested to be the essential modules for the final synthesis of 

potential 16:0 β-monoacylglycerol (β-MAG) that are potentially then transported in the 

fungus (Bravo et al., 2017). Another line of evidence is the change in lipid content when the 

plant enters into symbiosis (Wever et al., 2014). Kamel et al., 2017, ask the question of the 

origin of the palmitic acid found in the fungi and propose that the increased number of lipase 

genes in AMF, results from the requirement of the fungi to obtain carbon by digesting fatty 

acid transferred by the host plant.  

In this study, twelve annotated genes of fatty acid synthesis were significantly up regulated 

between non-inoculated and inoculated cassava and with an expression pattern conserved 

across the inoculation of a wide genetic variety of R. irregularis isolates. The third gene, the 

most central in the blue plant module is an Acetyl-carboxylase alpha-CT (ACC). This enzyme 

was globably differentially expressed, but more importantly it is the third most central gene in 

the co-expression network of the DE transcript of the plant, linked strongly to two fungal 

gene modules (brown and pink) containing 685 and 479 fungal genes, respectively. This 

enzyme is central in the production of fatty acid as it catalyses the permanent carboxylation of 

actely-CoA into malonyl-CoA, the first product of the fatty acid synthesis. The other genes 

encoding for the enzymes that transformed actely-CoA into malonyl-CoA, the biotin carboxyl 

carrier and the biotin carboxylase were always differentially expressed. The next enzymes in 

the cascade of the fatty acid synthesis were all up regulated, The complex of enzyme of the 

fatty acid synthase (FAS), the Beta-ketoacyl-ACP and Beta-ketoacyl-ACP synthase III and 

four other enzyme involved in the process of fatty acid elongation were all up-regulated. The 

FatM gene involved in elongation of fatty acid into palmitic acid was found in two copies in 

the cassava genome, both transcript being up regulated. Two other genes, FatA and FatB, 

common to all plants and involved in the same process of fatty acid elongation, were 
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transcribed but their transcription did not change (FatB) or poorly changed (FatA) when 

cassava plant was in symbiosis with R. irregularis. From this step of the fatty acid synthesis it 

was hypothesized (Bravo et al., 2017) that during AMF symbiosis, palmitic acid is transferred 

to the endoplasmic reticulum with other fatty acids. It is first transformed in acyl-CoA with 

the help of an acyl-CoA synthetase.  With the addition of glycerol-3-phosphate the previous 

product is transformed with the support of the mycorrhizal conserved enzyme RAM2 into β-

MAG.  β-MAG was hypothesized be then transferred fro the plant to the fungus via the 

STR/STR2 transporters. In the cassava, we did not detect any change in expression of the 

annotated acyl-CoA synthetase. However, this enzyme transformed any type of fatty acid into 

acyl-CoA, the palmitic acid produced by the FatM as well as the other form of fatty acid 

produced by FatA and FatB, such that the activity of this enzyme is probably not much 

influenced by an increase in the palmitic acid concentration. As suggested by Bravo et al., 

2017, the RAM2 (GPAT) was up regulated as well as the STR, ABC transporters, mainly the 

STR2. β-MAG is, thus, possibility one form of fatty acid also transported from the cassava to 

the different R. irregularis isolates. However another cassava GPAT was also DE across all 

fungal treatments, this enzyme traditionally transforms the acyl-CoA into the first compound 

of the phospholipids, the lysophospholipidic acid. The detection of certain transporters and 

enzymes differentially expressed in the plant and in the fungi during AMF symbiosis might 

suggest that other ways could be involved in the transfer of fatty acids. Indeed, among the 

other transporters detected in the plant to be differentially express, we find seven ABC 

transporters, one being a conserved transporter across mycorrhizal plants (Delaux et al., 2014) 

and two being hub genes in the blue plant module. More interestingly a plant phospholipid-

transporting ATPase was among the hub gene of the blue plant module and was always DE 

with any of the R. irregularis groups. On the fungal side two phospholipid-transporting 

ATPase were differentially express and up regulated in GP1 compared to GP4. Both were 

high to highly correlated to the expression of the plant phospholipid-transporter. 

Phospholipid-transporters could transport phosphatidylcholine (PC), phosphatidyethanoamine 

(PE), phosphatidylglycerol (PG), phosphatidylinositol (PI), phosphatidic acid (PA) and 

phosphatidylserine (PS). PC and PE were found to be in lower concentration and were the 

only phospholipids changing their concentration in the mycorrhized mutant plant roots where 

the conserved gene module FatM, RAM2 and STR were inactivated (Bravo et al., 2017). 

Moreover, the three molecular species of PC (32:4, 36:4 and 36:5) with the highest 

concentration in mock roots, and that showed the strongest reduction in concentration when 

the roots were inoculated, are also the three highest PC molecular form found in ERM 
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(Wewer et al., 2014). Lyso-phosphatidylcholine was reported to be a signal of the AMF 

fungus able to activate potato phosphate transporter genes (Drissner et al., 2007). It is, thus, 

plausible that at least PC could be transferred from the host to the fungi and inversely. This 

assumption is supported on the fungus side by the fact that in the fungi, a phospholipase D 

nuclease found in the lightcyan module was differentially expressed between GP1 and GP4 

and positively correlated with colonization. Phospholipase D hydrolysed the 

phosphatidylcholine into phosphatidic acid and choline. Moreover, a diacylglycerol 

cholinephosphotransferase was also found in the lightcyan module correlating to the colonizer 

type, this enzyme also transforms phoshpatidylcholine into choline and 1,2diacylglycerol 

(DAG). Both enzymes were correlated with each other. A low amount of DAG are found in 

the extra radical mycelium (ERM). However, their counterpart triacylglycerol (TAG) 

represented up to 90% of the total lipids. Thus we can suggest that DAG are rapidly 

transformed in the fungi into TAG non-polar storage lipids (Wewer et al., 2014). 

The phosphatidic acid obtained by phospholipase D hydrolyse of the phosphatidycholine, 

could be transformed into glycerol-3-phosphate by the action of a glycerol-3-phosphate O-

acyltransferase. Glycerol-3-phosphate is the substrate for two other enzymes that we found 

differentially expressed between distant genetic groups. The first one, a glycerol kinase, uses 

the glycerol-3-phosphate to produce glycerol and inversely. The second one, a glycerol-3-

phosphate deshydrogenase is a key enzyme at the crossroads between lipid metabolism and 

carbohydrate metabolism. This catalyses the reversible transformation of glycerol-3-

phosphate into dihydroxacteone phosphate; a molecule that enters glycolysis. Wei et al., 

(2004) have shown that disruption of this enzyme in the hemibiotrophic fungal plant pathogen 

Colletotrichum gloeosporioides resulted in severe defects in assimilation of glucose and 

amino acids as well as failure to form conidiat and resulted in arrhythmic growth. The only 

metabolite restoring the fungi was glycerol. Moreover, the defective fungal strain in glycerol-

3-phosphate deshydrogenase performed normally and continued to grow. Finally, a reduction 

in glycerol was detected in the peripheral area around the fungi. Wei et al., (2004) concluded 

that this hemibiotrophic fungus could survive only on glycerol transferred by the plant. It is 

also suggest that the genes involved in the biosynthesis of glycerol from glycolytic 

intermediates is one of the pathways that appears not to be conserved in obligate biotrophic 

pathogens (Tisserant et al., 2012). If arbuscular fungi would rely on the glycerol as a carbon 

source we should find evidence that at low expression of glycerol-3-phosphate dehydrogenase 

there is an increase of glycerol in the fungi. The negative relationship between the expression 

of the glycerol kinase, transforming glycerol into glycerol-3-phosphate and the glycerol-3-
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phosphate dehydrogenase, suggest that there is an increase transformation of the glycerol 

when the glycerol-3-phosphate dehydrogenase has low activity. Moreover, glycerol kinase is 

more active in low colonizers, in contrast to glycerol-3-phosphate dehydrogenase. 

We therefore propose the hypothesis that arbuscular mycorrhizal fungi rely on the plant 

phosphatidylcholine as a carbon source to produce TAG, their major storage lipids.  

We would also suggest that depending on the colonizer status of the isolate the 

phosphatidylcholine could be partially replace by glycerol as the source of carbon, such that 

low colonizer with low level of glycerol-3-phosphate dehydrogenase will have a high level of 

glycerol kinase, increasing the transformation of glycerol into glycerol-3-phosphate. 
 

Ammonium transport 

Finally, we found an intense ammonium transmembrane transport enriched, with five 

ammonium transporters differentially expressed in the plant. Such a finding is consistent with 

previous findings (Tisserant et al., 2012), and with the common view of AMF transferring 

nitrogen to the plants. In parallel in the fungi, three glutamine synthetase were differentially 

expressed between genetic groups, suggesting a reduction or an increase in the synthesis of 

the glutamine depending on nitrogen transferred to the plant. Moreover, we found a nitrate 

transporter that varied with the different genetic groups as well as a nitrate reductase that was 

found in the lightcyan module, negatively related to the module and to colonization. 

 

Conclusion 

In conclusion, the diversity of isolates with their variability in gene expression was a good 

tool to unravel the important fungal and plant genes allowing symbiosis. Among them, we 

particularly underline the possible effect of a fungal chitin deacetylase able to mask the 

presence of the fungi to the chitin plant receptors, as well as the variability in expression of 

four central enzymes, a glycerol kinase, a glycerol-3-phosphatase, a phosphatase D and a 

diacylglycerol cholinephosphotransferase present in the fungal fatty acid pathway and related 

to the potential uptake of the phosphatidily choline and glycerol by the fungi.  
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Fig. S2 Tree base on the concatenation of the R. irregularis called SNPs for each isolate and 

each replicates (n=38), in order to confirm the presence of the right fungal treatment in each 

pot. The treatment A2_11 represented a treatment supposed to have the isolate A2, which 

should have been clustering with other A2 treatments. A2_11 was then discared from the 

analysis. 
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Fig. S3 Heatmaps of the normalized expression (Kallisto) of the cassava transcripts for all 

treatments, included in GO terms significantly enriched after p-value adjustement. The 

heatmap for the GO term proteolysis includes all the genes present in the GO enriched terms 

serine-type endopeptidase activity and cysteine-type peptidase activity. The genes for the GO 

enrich terms ammonium transmembrane transport, ammonium transmembrane transporter 

activity, carbohydrate binding, transferase activity, transferring hexosyl groups are also 

presented. 
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Fig. S4 Heatmaps of the normalized expression (Kallisto) of R. irregularis genes included in 

GO terms significantly enriched after p-value adjustement. The first heatmap, represent the 

genes differentially express for the oxidoreductase activity GO term significant between GP1 

and GP3 and 4 and between GP2 and GP4. The second heatmap represent the cell wall 

organization or biogenesis GO term enrich in the DE genes between GP1 and Gp4 
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Fig. S5 Heatmaps of the normalized expression (Kallisto) of the R. irregularis genes included 

in GO terms significantly enriched after p-value adjustement for gene DE between GP1 and 

GP4. The first heatmap indicates the genes of the cellular component GO term. The second 

one, represent the gene of the Carbohydrate metabolic process GO term.  
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Fig. S6 The WGCNA multiple-species analysis, including the normalized expression 

(Kallisto) of the 949 DE M. esculenta transcript in the inoculated plants and the normalized 

expression of the 10’727 express fungal genes. (a) Part 3 of 3 of the cluster dendrogram of the 

gene in different modules. (b) Pearson correlations and p-value between module eigengene 

values and phenotypic values (ADM, RDM, TDM, Colonization, Colonizer type). The two 

most important modules are the lightcyan and the purple. (c) Relationship between module 

membership of a gene and gene significance for colonizer type. (d) Hierarchical clustering of 

eigengenes values of each modules and colonizer type.  
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Fig. S7 The second WGCNA analysis, (a) in parallel we performed the clustering of 

transcript/genes in modules of the normalized expression (Kallisto) of the 949 DE M. 

esculenta transcripts and of the normalized expression of the 10’727 express fungal genes. (b) 

Pearson correlations and p-value between plants modules eigengenes values and fungal 

modules eigengenes values. (c) Hierarchical clustering of eigengenes values of each plant and 

fungal modules. (d) Relationship between plant module membership of a gene and gene 

significance for both fungal gene modules. (e) Network of the blue plant gene module and the 

pink and brown fungal gene modules. Size and colors of the rounds surrounding each gene 

depict the centrality (degree) of the gene in the network. 
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Fig. S8 Plot of the M. esculenta normalized expression (Kallisto) versus colonizer type and 

boxplot of normalized expression (Kallisto) for the CTL and each genetic group for each 

cassava transcript involved in the fatty acid biosynthesis pathway represented as a graphical 

schema in Fig 5. 
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Fig. S9 Plot of the R. irregularis normalized expression (Kallisto) versus colonizer type and 

boxplot of normalized expression (Kallisto) for each genetic group for each fungal gene 

involved in the fatty acid biosynthesis pathway represented as a graphical schema in Fig 5. 
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Fig. S10 Pearson between the plant phospholipid transporting ATPase and the two fungal 

phospholipid-transporting ATPase. 
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Fig. S11 Normalized expression of the annotated R. irregularis lipases. 
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Fig. S12 Person correlation between the normalized expressions of the two fungal enzymes, 

the glycerol kinase and the glycerol-3-phosphate dehydrogenase using the glycerol-3-

phosphate as substrate. 
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Fig. S13 Pearson correlation between the normalized expressions of the two fungal enzymes, 

the phospholipase D and the dacylglycerol cholinephosphotransferase degradating the 

phosphatidylcholine. 
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Supplementary note S1: Fungal intraradical colonization staining and measurement in 

M. esculenta roots 

A sample of approximately 200mg of non-tuberized roots was taken during harvest for each 

of the 208 plants. These roots were used for the measurement of intraradical fungal 

colonization. In order to not only confirm the presence of the fungi in each treatments and the 

absence in the control, but also to measure colonization rate for each isolate. Clean roots of 

each plants separated in individual eppendorf were soaked in a KOH 10% solution for 4-6 

hours in a water bath at 90°C, the KOH solution was changed regularly, until it reached a 

clear color. After removing completely the KOH solution, HCL 1% was added for 5 min and 

then replaced with a Trypan blue solution for overnight straining (Trypan blue solution: 

333ml of lactic acid, 333ml of ddH20, 333ml of glycerol and 0.5g of Trypan blue). Trypan 

blue solution was then replaced by lactic acid 80% for long-term storage. Colonization was 

measure following an INVAM protocol (International Culture Collection of (Vesicular) 

Arbuscular Mycorrhizal Fungi; https://invam.wvu.edu/methods/mycorrhizae/mycorrhiza-root-

length, last access 02.03.17, Giovannetti and Mosse, 1980). Roots of each plant were 

randomly spread on petri dish with a grid with squares of 5mm. The numbers of intersection 

of the roots with the grid were counted with a binocular (brand), as well as the number of 

roots intersecting the grid that contained a fungal structure (arbuscule, hyphe, spores, 

vesicule). The number of roots intersecting the grid with a fungal structure divided by the 

total number of intersection between the roots and the grid multiplied by 100, gave us the 

colonization rate. 

 

Supplementary note S2: RNA-seq quality control and libraries removal 

The quality of the data was inspected in fives ways, in order to assess good quality of the 

control and the colonized fungal treatments and to remove potentially contaminated control 

and un-colonized treatments. First of all for samples used for plant morphology as well as for 

RNA-seq, control were kept only if their colonization assessed by straining was strictly zero, 

similarly the treatments were keeps only if the colonization by staining was different from 

zero. Second, colonization was also asses as a percentage of mapped reads to R. irregularis 

compare to the mapped reads of M. esculenta. The percentage of R. irregularis reads compare 

to M. esculenta was used to discard controls that were considered as contaminated if reaching 

over 1%. Third, in combination to the reads percentage, the PCA of R. irregularis normalized 

counts including the CTL treatments was used to visualized and discard the potential 

contaminated control. Fourth, we used FreeBayes (Garrison and Marth, 2012) in order call 
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SNPs of the R. irregularis mapped reads to confirm the presence of the right R. irregularis 

isolate in the right treatment. 

Five, we finally searched in the main results 11 well-known plant gene (Gst1, Lec5, Scp1, 

Pt4, Vapyrin, Flot4, Ann2, Lec7, Glp1, Ram2, Ha1) commonly differently expressed during 

AMF symbiosis, to confirm the efficiency of the treatments (Hogekamp and Küster, 2013). 
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Chapter 5 
 
RiMRE: A rare endosymbiotic bacteria in the arbuscular mycorrhiza fungi 

model: Rhizophagus irregularis 

 

Romain Savary1, Frédéric G. Masclaux1, 2 and Ian R. Sanders1. 

1Department of Ecology and Evolution, Biophore Building, University of Lausanne, 1015 
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Abstract 

 

Arbuscular mycorrhizal fungi (AMF) play an important role in ecosystems by forming an 

endosymbiotic relationship with most terrestrial plants. This symbiosis is often accompanied 

by a third partner, an endobacteria inhabiting the fungal cytoplasm. These mollicutes-related 

endobacteria (MRE) were recently found present in a large number of AMF species, spanning 

the entire AMF phylogeny and were suggested to have a parasitic nature. It was previously 

thought that the model AMF species, Rhizophagus irregularis, had lost this endobacteria. 

After screening ddRADseq data obtained from 81 R. irregularis isolates and closely related 

species from across the globe, two isolates, from which one R. irregularis isolate, were found 

to harbour a homogenous haplotype population of MRE. The presence was confirmed by 

cloning and sequencing of the 16S ribosomal RNA gene. Previously published data on these 

isolates tended to confirm the hypothesis of a parasitic nature of MRE. Genomes of the R. 

irregularis associated MRE (RiMRE) and its’ host, R. irregularis, were sequenced to better 

understand this rare case of the presence of MRE within R. irregularis, a species purported to 

have lost this symbiosis. Genome assembly and analysis are on-going and might reveal 

interesting features of the intimate life of endosymbionts with reduced genome size and 

potential horizontal gene transfer (HGT).  

 

Keywords: RiMRE, endosymbionte, bacteria, MRE, arbuscular myccorhizal fungi, AMF 
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Introduction 

 

Arbuscular mycorrhizal fungi (AMF) are well-described symbionts of most plant species, 

exchanging hard-to-attain soil nutrients for photosynthates. This symbiosis is central to 

terrestrial ecosystems, as AMF diversity influences the diversity of plant communities, as 

well as their structure and productivity (van der Heijden et al., 1998). A high variation in 

AMF phenotypic traits and plant responses were observed (Koch et al., 2006, Klironomos et 

al., 2003) and could be the result of differences in AMF genetic background (Savary et al., 

submitted) as well as due to the presence of endobacteria. Indeed, endobacteria are 

specialized symbionts, present in all AMF clades (Naumann et al., 2010). Moreover, it was 

shown that the presence of one endobacteria in an AMF isolate, increased fungal fitness 

(Salvioli et al., 2016) and thereby could impact the outcome of the AM symbiosis.  

There has recently been more attention given to these bacteria due to evidence of horizontal 

gene transfer (HGT) between the AMF genome and the MRE bacterial genomes as a result of 

their intimate relationship (Naito et al., 2015, Torres-Cortés et al., 2015). This mechanism 

was proposed as a major force in the evolution of these vertically transmitted bacteria (Torres-

Cortés et al., 2015). 

Recent studies describe two main species of endobacteria, exhibiting the typical reduced-gene 

repertoire of a host-depend symbiont (Naito et al., 2015). The first, Candidatus Glomeribacter 

gigasporum (CaGg) has only been described in the AMF family Gigasporaceae and was 

classified as a member of the Burkholderia (Bianciotto et al., 2003, Mondo et al., 2012), a 

bacterial genus harbouring another fungal endobacteria of Rhizopus microspores (Partida-

Martinez and Hertweck, 2005). The second, a Mollicute-related endobacteria (MRE), was 

found to be present in nearly the entire Glomeromycota phylogeny, including Gigasporaceae 

(Naumann et al., 2010, Desirò et al., 2014, Toomer et al., 2015) and are related to a number 

of animal and plant pathogenic bacteria within the Mycoplasma genus (Naumann et al., 

2010,). Only few AMF species, such as Rhizophagus irregularis were found to be free of 

these bacteria (Naumann et al., 2010, Toomer et al., 2015). 

R. irregularis is a model species of the Glomeromycota, being the first AMF species whose 

genome was sequenced and publicly available (Tisserant et al., 2013). Furthermore, it is one 

of the most frequently found species in natural and agricultural soils and one of the easiest to 

propagate via in-vitro culture (Lin et al., 2014). Despite intense research efforts on this 

species, the presence of R. irregularis MRE (RiMRE) within an isolate has not previously 

been reported. It has been hypothesized that endobacteria played a major role in the evolution 
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of AMF, as they have been maintained internally and transmitted for more than 100 million 

years across different AMF lineages (Torres-Cortés et al., 2015). It was therefore suggested 

that they probably confer an increase of fitness to their host (Naumann et al., 2010), which 

was recently confirmed for CaGg, in G. margarita, whose presence results in higher 

sporulation rates, bioenergetic capacity and ATP production (Salvioli et al., 2016). In 

contrast, Toomer et al., 2015, suggest that the MRE are possible parasites instead of 

mutualists, as they harbour a high genetic diversity, typical of parasites inherited through 

vertical transmission who maintain genetic diversity through recombination and horizontal 

transmission. However, to date no detailed comparison of AMF fitness with regard to MRE 

presence or absence has been done to confirm a parasitic nature. R. irregularis represents an 

interesting case due to the fact that this endosymbiotic interaction with endobacteria was 

thought to be lost in this AMF species. 

Identifying R. irregularis isolates able to form and maintain this symbiosis and quantifying 

fitness benefits and costs of RiMRE would be a first step in understanding the true nature of 

the interaction along the symbiosis continuum. Furthermore, studying RiMRE population 

diversity and sequencing their genomes would also shed light on the degree of HGT that 

occurred between homologous regions of R. irregularis and RiMRE genomes. 

To confirm the presence and absence of endobacteria in R. irregularis from highly diverse 

geographical origins, we use ddRAD-seq data on (81) 57 isolates of R. irregularis and 22 

isolates of related species such as Rhizophagus intraradices, Rhizophagus proliferus and 

Rhizophagus sp. LPA8-CH3 (Wyss et al., 2016, Savary et al., submitted) and screened for 

reads mapping to either the MRE genome or the CaGg genome. Using ddRAD-seq is a non-

selective method of sequencing, allowing for sequencing of individuals associated with the 

organism of interest, such as symbionts or the microbiome. As isolates used for generating 

ddRAD-seq data originate from sterile, in vitro culture, detection of bacterial reads belonging 

to MRE or CaGg were easily mapped. Isolates containing traces of endobacteria by mapping 

were then confirmed by PCR amplification, cloning and Sanger sequencing. These results 

were discussed in the context of the large literature on R. irregularis and on common isolate 

used in this study. Once confirmed, the genomes of these bacteria were then sequenced to 

identify potential HGT events. These genomes are being assembled and analysed and will 

probably resulted in interesting information. Together, this information will allow a better 

understanding of the endosymbiotic life of these RiMRE bacteria.  
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Material and Methods 

 

ddRAD-seq and workflow 

Recently published ddRAD-seq data on a large population of 81 R. irregularis isolates and 

related species obtained from the bioprojects PRJNA268659 and PRJNA326895 (Wyss et al., 

2016, Savary et al., submitted) were used to detect the presence of MRE reads within AMF 

reads. Read quality check and trimming was done following Savary et al., submitted. The 

demultiplexed reads of each isolate and each of the three to five replicate were mapped using 

Novoalign software (Hercus, 2011) to the DhMRE genome, an MRE present in Dentiscutata 

heterogama (Torres-Cortés et al. 2015) and on CeMRE (Claroideoglomus etunicatum MRE), 

RcMRE (Rhizophagus clarus MRE) and RvMRE (Racocetra verrucosa MRE) genomes 

(Naito et al. 2015). Reads were also mapped to the other type of AMF-endobacteria found in 

Gigaspora margarita, CaGg (Candidatus Glomeribacter gigasporum) as well to another 

bacteria also of the genus Burkholderia and commonly found in soil (Burkholderia terrae, 

Nazir et al., 2012). SAM files were converted to BAM files and indexed with Samtools (Li et 

al., 2009). Summary tables generated by Novoalign with the number of mapped reads per 

replicate to each genome were combined to detect candidate isolates with endobacteria (Table 

1). Visualisation of mapped reads was done using IGV (Robinson et al. 2011) 

 

DNA extraction and 16S rRNA and MBLFP gene amplification 

Sterile, two-compartment plates were produced for all 81 R. irregularis isolates and related 

species and grown for at least 3 months to obtain sufficient spores for DNA extraction. DNA 

extraction was performed as described in Savary et al., submitted. The 16S rRNA gene was 

amplified using primers 109F (109F-1 and 109F-2) and 1184R (1184R-1, 1184R-2 and 

1184R-3, Naumann et al., 2010). The MBLFP gene was amplified using MBLFP18f and 

MBLFP644r (Toomer et al., 2015) primers. A new reverse primer for the 16S rRNA 

(16SrRNA-RcMRE: 5’-AGTTACCTTGGCAGTCTGC-3’) was designed on the basis of the 

RcMRE 16S rRNA sequence specific to its’ genome (Naito et al., 2015). Similarly, a new 

forward (MBLFP-RcMRE-f, 5’-GAAAYYGGAGAAAAAACTGAYYTAGYYAA-3’) and 

reverse (MBLFP-RcMRE-r, 5’-GARGCATGMARTAWKTCYTCT-3’) degenerate primer 

set for MBLFP were designed based on the homologue MBLFP gene found in RcMRE 

genome. The following protocol; a PCR mix of 23µl with Qiagen reagents (1X Buffer, 

1.5mM MgCl2, 0.2 mM dNTPs, 0.5 µM forward and reverse primer, 0.4 U of Taq 

polymerase) was applied to 2µl of 1 to 25ng/µl of DNA of each of the isolates. The 



Chapter 5  RiMRE, the Rhizophagus irregularis endobacteria 
	

	180	

amplification on a Biometra T1 Thermocycler PCR machine was performed under the 

following conditions: 5 min at 95°C followed by 35 cycles at 95°C for 10s, 50°C for 30s and 

72°C for 2min, a final elongation step at 72°C for 10 min. A slight modification for MBLFP 

was necessary, by changing the annealing temperature to 49°C and by adding MgCl2 for a 

final concentration of 2.25 mM. Purification and Sanger sequencing was performed by GATC 

biotech (Germany). Alignment and sequence cleaning was performed using MEGA 7 

(Tamura et al., 2013).  

 

Localisation of the MRE 

To confirm the strict endocytoplasmic localisation of MRE, AMF lines carrying MRE, based 

on ddRAD-seq mapping and Sanger sequencing, were re-extracted from sterile two- 

compartment plates under a UVC sterilized laminar hood. After dissolution of the fungal 

compartment for 30 min in citrate buffer (0.0062 M of citric acid anhydrous and 0.0028 M of 

sodium citrate tribasic dihydrate), the pellet of spores and hyphae were washed with ddH20, 

which was used as PCR control. The pellet was surface sterilized with 2% chloramide-T for 3 

min, and subsequently washed with 0.03% of Penicillin-streptomycin before being immersed 

in a 2mL Eppendorf tube filled with ddH20. Each tube was sonicated for 1 min. The ddH20 

used for sonication served as a second control to detect potential contaminants or external 

MRE during PCR. Clean spores were finally extracted following the manufacturer’s 

specifications with the DNeasy plant mini kit (QIAGEN). 

 

Cloning and sequencing of the haplotypic population of MRE 

MRE were suggested to harbour a large diversity of haplotypes within one AMF isolate 

(Naito et al., 2015). Thus, cloning of the 16S rRNA amplicon was performed with 

StrataClone PCR Cloning Kit (Agilent Technologies®) for each isolate carrying an MRE and 

for which we were able to amplify the 16S region. The cloning protocol was carried out 

following the manufacturer’s specifications.  

 

Phylogeny of 16S rRNA and MBLFP genes  

A maximum-likelihood phylogeny was inferred in MEGA7 with a bootstrapping method of 

500 replicates (Kumar et al., 2016) using 16S rRNA sequences obtained from Sanger 

sequencing as well as publicly available sequences (Naumann et al., 2010, Toomer et al., 

2015, Naito et al., 2015). A second phylogeny, performed using the same guidelines, was 

built with MBLFP sequences generated in this study along with previously published 
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sequences (Toomer et al., 2015) and homologue sequences present within the four different 

MRE genomes. All trees were edited with Figtree v1.4.2 (Rambaut & Drummond, 2009) and 

Adobe Illustrator (2014.1.0 Release). 
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Results 
 

ddRADseq mapping 

From the 81 AMF isolates, spanning 4 AMF species, we were able to detect and confirm 

MRE in 2 isolates, A2 and LPA8 and this with consistency across three to five biological 

replicates. The highest mean percentage of paired-end reads mapped for both isolates were 

mapped to the RcMRE genome (Table 1, Fig. 1). One other isolate, CH3 showed signs of 

MRE reads in all three replicates of ddRAD-seq, but only when the RcMRE genome was used 

for mapping (Table 1, Fig. 1). Two other isolates (IRTA102, and BEG53) were probably 

contaminated by exogenous bacterial reads, as an inconsistency among replicates was found 

in the percentage of read mapping. With some outliers replicates having a higher percentage 

than other. Across 5 LPA8 replicates, the mean percentage of reads mapping to the 5 different 

endobacteria genomes was low, with a maximum mean of 0.13% for paired-end reads 

mapped to RcMRE genome. As expected, we were unable to detect the presence of CaGg. 

 

 
 
Figure 1. Boxplot of the percentage of ddRAD-seq reads from each of the 81 R. irregularis and related species 

(n=3-5) mapped to four MRE genomes, one CaGg and one common soil bacterial genome. Percentages are 

calculated, as the proportion of reads mapped to bacterial genomes compared to the total number of read in a 

given sample. The colour corresponds to the different species (blue = R. irregularis, grey = R. sp. LPA8-CH3, 

red = R. intraradices and green = R. proliferus). 
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16S rRNA and MBLFP phylogenies and haplotype populations within isolates 

According to both 16S rRNA and MBLFP phylogenic trees, the MRE identified within R. 

irregularis, isolate A2, and within R. sp. LPA8-CH3 isolate LPA8, are both closely related to 

the MRE found in R. clarus. Supporting results obtained from mapping ddRAD-seq 

sequences onto bacterial genomes, we were unable to amplify these two markers in any of the 

other 79 isolates.  

Cloning of A2 and LPA8 16S rRNA amplicon using forward primer 109F-1 and the newly 

designed reverse primer, 16SrRNA-RcMRE, resulted in homogeneous sequence with only a 

single MRE haplotype found within A2 (n=8) and LPA8 (n=10). 

 

 
Figure 2. Maximum-likelihood phylogeny of the MRE 16S rRNA sequences rooted with Nostoc punctiformes. 

Cloned sequences of MRE present in R. irregularis A2 isolate and R. sp. LPA8-CH3 LPA8 cluster with cloned 

sequences of R. clarus obtained from Naito et al., 2015. Here, is also included MRE sequences from Naumann et 

al., 2010 and Toomer et al., 2015. 
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Figure 3. Maximum-likelihood phylogeny of the MRE MBLFP sequences mid-point rooted. 

MBLFP sequences obtained from Toomer et al., 2015 are included as well as the MBLFP sequences of four 

sequenced MRE genomes. 

 
Table 1. Summary table of AMF species, origin of each isolate, mean % of ddRADseq reads proper pair across 

replicates mapping to 5 bacterial genomes and 16S and MBLFP confirmation. Due to it size the table could be 

found in electornical format, upon request. 
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Discussion 

 

R. irregularis, despite being a model AMF fungal species, has never been reported to form a 

symbiosis with an endobacteria. We have shown that this symbiosis is possible however 

poorly frequent. The A2 isolate that was found to harbour a homogenous haplotypic 

population of MRE is part of the well-studied R. irregularis Swiss population (Croll et al., 

2008, 2009, Wyss et al., 2015, Ropars et al., 2016). These Swiss isolates were isolated in 

1999 from a single Swiss field-site and have been shown to have high phenotypic and 

genotypic variability (Koch et al., 2004) as well as they were able to produce a high 

variability in plant growth responses (Koch et al., 2006). Given the presence of this 

endobacteria, it may be possible that a part of this variation in plant growth could be 

influenced by RiMRE endosymbiont.  

 

The results of this study are consistent with a vertical transmission of the RiMRE whose 

population is maintained within the fungal cytoplasm. This is consistent with supposed co-

evolution of the host and the bacterial endosymbiont. Indeed, 16S rRNA sequences of RiMRE 

present in R. irregularis isolate A2, and the candidate species R. sp. LPA8-CH8 (Savary et 

al., submitted) LPA8, reveal a high relatedness to MRE found within other closely related 

AMF species, Rhizophagus clarus, Funneliformis caledonium and Funneliformis mossae. The 

relatedness of these MRE strains has been confirmed by analysing the MBLFP gene. 

Similarly, the highest percentage of paired-end reads mapped from these isolates was onto the 

RcMRE genome (Naito et al., 2015). A third AMF isolate, CH3, could contain an 

endosymbiont given the amount of reads mapped to RcMRE. This MRE could possibly be 

related to the endosymbiont found within R. clarus, as reads could not be mapped with other 

MRE genomes. However, this hypothesis will have to be further investigated since DNA 

amplification was not possible either with 16S rRNA or MBLFP primer pairs. 

The endobacteria are probably found in low quantity within A2, LPA8 and CH3, based on the 

disproportionate low number of bacterial  MRE reads compare to the number of AMF fungal 

reads. 

It has been shown in certain cases that an AMF could host many diverged haplotypes of one 

MRE within the cytoplasm (Naito et al., 2015). Indeed, by cloning the 16S rRNA gene of 

MRE living in C. etunicatum, Naito et al., 2015 found that this AMF species hosted at least 5 

MRE haplotypes, coexisting in the cytoplasm. In contrast, R. clarus and R. verrucosa both 

contain a single homogenous population of haplotype endobacteria within the fungal 
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cytoplasm (Naito et al., 2015). In the case of MRE found within R. irregularis and R. sp. 

LPA8-CH3, the population was also shown to be homogenous based on 16S rRNA 

sequences, as in R. clarus as well. It could mean that the population was not enriched by 

horizontal haplotype transfer as suggested for many other isolates (Toomer et al., 2015). 

 

Toomer et al., 2015, suggested that MRE could be considered as parasite of AMF based on 

high intra-host diversity, recombination and co-diversification. More recently, another type of 

endobacteria restricted to the Gigasporaceae family, CaGg, was shown to increase fitness of 

its’ AMF host (Salvioli et al., 2016), and thus, could be considered as a mutualist of AMF. 

This observation was only possible thanks to a fungal isolate being cured of the endobacteria. 

In the field of MRE research, no such system was previously available to evaluate the nature 

of their symbiosis. However, fungal phenotypic information on many isolates of R. 

irregularis is published and could inform us how this relationship might fit within the 

spectrum of symbiotic interactions. One striking results of Koch et al., 2004 could be 

explained by the presence of the endobacteria. Koch et al., measured fungal phenotypic traits 

on 16 isolates of the Swiss R. irregularis population. All these 16 isolates were screened in 

this study for the presence of MRE. Only a single isolate, A2 among the isolate of Koch et al., 

was harbouring an MRE. This isolate is the only isolate having strongly reduced spore 

production compared to other isolates and having a spore production per hypha length ratio 

that is almost null. Similarly, in a greenhouse experiment (Savary et al., in prep), A2 and 11 

other isolates, representing a large phylogenetic diversity of R. irregularis, were inoculated on 

a clonal variety (NGA16) of cassava (Manihot esculenta). The colonization rate of this plant 

was found to differ strongly depending on the different isolate and clades and to be related to 

the phylogeny. Two phylogenetic clades showed high colonization rates with a mean 

colonization level of ~50%, with one exception, isolate A2, exhibiting a particularly low 

colonization rate of ~25%.  

The low colonization rate combined to the almost null spore production of A2 suggest that the 

presence of the endobacteria within this isolate comes at a fitness cost to A2 and tends to 

support the hypothesis of a parasitic nature of the MRE (Toomer et al., 2015). Moreover 

MRE are related to the Mycoplasma bacterial lineage, a lineage harbouring only parasitic 

bacteria of plants and animals.  

At the mutualistic end of the symbiosis continuum, one of the few other cases of endobacteria 

in a fungus was found to be related to the mutualist CaGg. Burkholderia rhizoxinica is found 

in Rhizopus microspores and reach even a stronger level of mutualism, where the presence of 
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the bacteria is obligatory for spore production as well as mycotoxin production (Lackner et 

al., 2009).  

Inspection of geographical distribution of MRE hyplotypes, revealed no genetic differences 

between continents (Toomer et al., 2015). This is not surprising given recent phylogenetic 

data from AMF isolates from across the globe, which yielded no sign of endemism or 

continental structure, but rather suggest that highly similar AMF genotypes can be found in 

distant locations (Davison et al., 2015 and Savary et al., submitted). For this reason, it is 

likely the MRE symbiosis is a highly maintained symbiosis, which pre-dates continental 

separation. 

Of the 59 R. irregularis isolates, only A2 was found harbouring this symbiont, implying that 

other R. irregularis have lost the symbiont by unknown means. This rarity of endoparasites 

within this particular AMF clade could have been one evolutionary innovation which 

contributes to their ecological success compared to other AMF clades still harbouring the 

endobacteria. Indeed, R. irregularis and close relatives are cosmopolitan and often present in 

large quantities. 

In the future, it would be interesting to take advantage of the in-vitro status of the A2 isolate 

to create several lines cured of their endobacteria in order to investigate the role of these 

bacteria in increasing or decreasing the fitness of the fungus as well as to inspect the 

presence/absence of this bacteria on plant growth response and plant community structure. It 

would allow a better understanding of the role of these bacteria in this trinary interaction, 

involving three Kingdoms. Still, caution should be taken in the method used to cure AMF 

from their endobacteria. In the past, sub-culturing of single spores from the parent for at least 

five to six generations was used to cure the Gigaspora margarita isolate BEG34 (Lumini et 

al., 2007), however it has been shown that single spore culturing can result in a genetic 

modification progeny in R. irregularis compare to the parental isolate (Angelard et al., 2010). 

Moreover, this change in genetic information could impact drastically the host plant response, 

even if parental isolates of R. irregularis already lack endobacteria. For example, these 

segregated lines, presumed to be clonal, were shown to contain a high diversity of nuclei 

which likely arose from differences in nucleotype frequencies assembling during spore 

formation leading to a bottleneck of genetic information in a single spore (Angelard et al., 

2010). Thus, the phenotypic comparison between an isolate containing an endobacteria 

(AMF-B+) and the same isolate cured of endobacteria (AMF-B-) should only be made if a 

large number of biological replicates of both populations is available, as the variability in the 

genetic background could over pass the effect of the presence or absence of the endobacteria. 
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Perhaps a better option, would be to cure the isolate of endobacteria via antibiotics, which 

would not likely influence the segregation of nuclei frequencies. 
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Findings summary 
 

Up to now, the diversity of AMF at large scales suggested a low global endemism. However 

these results were controversial due to the low resolution of the markers used. In chapter 2, I 

found, using high-resolution markers, that two AMF species, R. intraradices and R. 

irregularis could be found on different continents and at highly distant locations. Moreover R. 

irregularis showed similar patterns of low endemism at the within species level. My results 

confirmed that at the species, and even at the intra-species level, long distance dispersion and 

low endemism is possible in AMF. With this I, thus, identified a previously undescribed 

within R. irregularis diversity under the form of four R. irregularis genetics groups, this intra-

specific diversity was suggested to be ecologically functional and relevant.  

In chapter 3, I found that the within AMF species diversity identified in chapter 2 resulted in a 

gradual change in plant community response observed along the R. irregularis phylogeny in 

mesocosms simulating European calcareous grassland. This effect was stronger for some 

isolates, especially in the repression of dominance of one plant species, leading to a greater 

evenness in the community. These results support the view that AMF intra-species diversity is 

ecologically relevant.  

In the chapter 4, I found that a general transcriptomic reprogramming occurred in the roots of 

the crop plant M. esculenta in response to genetically different R. irregularis forms. This 

reprogramming took the form of a change in plant transcription of genes such as proteases 

that could control the progression of the fungi, receptors that could detect the fungi, increase 

in the fatty acid synthesis and in transporters to exchange nutrients such as ammonium and 

potentially phospholipids. Despite these clear signs of molecular changes, the response was 

not visible at the plant phenotypic level, for simple traits. In the fungi, sharp differences in 

transcriptomic strategies were observed across the diversity of R. irregularis, suggesting 

different molecular strategies to invade the host. 

Finally in chapter 5, I took advantage of ddRAD-seq data produced in chapter 2, to search for 

the presence of endobacteria that were previously shown to impact AMF fitness. Mollicute-

related endobacteria (MRE) were found in most AMF clades but were found lacking in 

Rhizophagus irregularis (Naumann et al., 2010, Toomer et al., 2015). I found the presence of 

an MRE in only one isolate of the R. irregularis species. This bacteria that I refer to RiMRE, 

presented a homogenous population with a single haplotype. In other AMF, MRE were 

suggested as being potential parasites. Thus, R. irregularis mostly successfully eradicated it 
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potential parasite, and this single case of preservation of the symbiosis probably at the limit of 

extinction of this bacterium could teach us a lot about maintenance of endosymbiotic life. 

 

Rhizophagus irregularis genomic, phenotypic and transcriptomic diversity 

 

Rhizophagus irregularis is the model AMF fungus and its genome and transcriptome were the 

first to be sequenced and assembled. However, given the importance of the symbiosis and the 

large body of literature using R. irregularis to understand the AMF symbiosis it is surprising 

that almost no information is available on the natural genomic diversity of this species. One 

population of R. irregularis in Switzerland has been studied (Koch et al., 2004, 2006, Croll et 

al., 2008, Roger et al., 2013). Those studies showed, at the small-scale, an unexpected high 

level of genetic diversity and a high variability in plants growth responses to inoculation with 

these fungi. Moreover, one isolate genotyped in that study originated from Canada. Despite it 

origins, it displayed a higher relatedness to certain isolates in the Swiss population than some 

Swiss isolates to each other. This single observation raised the question about the endemism 

of AMF. Could the same species of AMF disperse far and have survived in different climates, 

soils and with completely different plant hosts? A first positive clue toward this came from a 

global scale AMF community profiling study, showing a surprisingly low endemism for 93% 

of the species (Davison et al., 2015). However, this last study combined with the findings of 

other studies (Munkvold et al., 2004, Koch et al., 2006, Mensah et al., 2015) raised a new 

question. Do we use a sufficiently fine molecular resolution to define biologically and 

ecologically relevant species? Indeed the study of Davison et al., (2015) was criticized, as the 

low-resolution marker they used would not be sufficient to define the relevant level of the 

species. It was even suggested by Bruns and Taylor in 2016 that “all of these “species” 

(morphologicaly or single-marker defined) in the Glomeromycota are actually collections of 

fairly distantly related taxa”. In chapter 2, I provide evidence that for this species it is the 

case. Indeed, I have shown that within R. irregularis species clear genomic divergence is 

found, separating this species into four main genetic groups. I have shown also that this intra-

specific divergence, as well as the divergence between the species studied (R. irregularis, R. 

intraradices and R. proliferus) would not be detected with the marker and the clustering 

methods traditionally used by ecologists to make AMF community profiling such as used in 

the study by Davison et al., 2015. However, even though I found more genetic diversity that 

previously recorded in the Rhizophagus genus, and within Rhizophagus irregularis I did not 
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find (Bruns & Taylor, 2016) “that endemic species will be discovered to be the rule”. In 

contrast, I also found (Davison et al., 2015) low endemism in R. irregularis and R. 

intraradices as well as in the genetic groups of R. irregularis. 

 

The phenotypic measurements also showed significant differences in extra-radical mycelial 

(ERM) density among the different genetic groups of R. irregularis. This is important for 

species that rely on the trade of the nutrients collected by ERM. The nutrients taken up by the 

ERM are traded in the plant roots. I also uncovered differences in colonization rates levels 

among genetic groups of R. irregularis that were tightly linked to their phylogeny. Some 

clades were better colonizers than others on M. esculenta and on Festuca pratensis.  

The genomic, ERM and colonization differences among R. irregularis genetic groups 

combined with their clear differences in their whole transcriptomes are strong clues to suggest 

that these different genetic groups are evolutionarily stable units and could be considered as 

different species. I propose according to this findings that AMF which were previously 

considered as a poor groups of fungi in species number summing only 300-1600 species (van 

der Heijden et al., 2015) could be composed of a way larger number of species. This would 

make sense from a biological and ecological perspective. These results also bring important 

clues to suggest that level of relevant biological and ecological diversity is not considered in 

ecological studies. 

 

Rhizophagus irregularis relatedness effect on plant communities 
 

Strong effects of AMF diversity on plant diversity, community productivity and structure 

were shown, demonstrating the potentially important role of AMF in ecological processes. 

However most ecological studies used available isolates from morphologically described 

species (Maherali & Klironomos, 2007) or sometimes from unidentified species (van der 

Heijden et al., 1998). Such AMF diversity might not be the most relevant or not the only 

important AMF level of diversity. In chapter 3, I found that by using intra-specific diversity 

of different related isolates of R. irregularis, a signal within the phylogeny can be found 

within a plant community. This effect largely targets the dominant plants of the community, 

with a phylosignal of colonization and with an overall negative responsiveness that can be 

strong or less strong depending on the R. irregularis genetic groups. This negative 

responsiveness impacted the community by increasing or decreasing community evenness. In 



Chapter 6       General discussion 
 
	

	204	

other words, closely related isolates within an AMF species affect a whole plant community 

in the same way, with some clade of R. irregularis resulting in an higher or lower plant 

community evenness. I also found that increasing the phylogenetic diversity of R. irregularis 

isolates within a community increased the community evenness until a certain point. Then at 

high phylogenetic diversity the evenness decreased. These findings point towards the 

importance of within-AMF species diversity impacting plant-plant interactions in plant 

communities. 

 

Rhizophagus irregularis and Manihot esculenta diversity of molecular tools 

to perform symbiosis. 

 
In the last years, more and more plant genes have been found that are involved in the AM 

symbiosis. Some of these are necessary to allow establishment of symbiosis (Gutjahr et al., 

2012) and many are conserved across all mycorrhizal plants (Delaux et al., 2014, Bravo et al., 

2016) and differentially express (Hogekamp & Küster, 2013). The knowledge of the “gene 

machinery” necessary to make the symbiosis is well established. However, on the fungal side 

most of the machinery is still unknown. In chapter 4, I have tried to fill this gap by using the 

variability of “colonizer type” (mean colonization rate of an isolate) and genetic groups found 

within R. irregularis.  

 

I found a particularly interesting gene that is differentially transcribed among some R. 

irregularis genetic groups. That is co-expressed in a gene module linked to AMF colonizer 

type. This gene is a homologue of one of the 64 effectors found in R. clarus (Sędzielewska & 

Brachmann, 2016). This secreted protein; a chitin deacytelase was shown in another fungus 

(Cord-Landwehr et al., 2016) to help the fungi to modify chitin oligomers released by plant 

chitinases. By doing this, the fungus will not be recognized by the plant receptors, de facto 

inactivating the plant defences. The variability in the expression of this gene has probably 

played an important role in the ability of AMF to invade different host plants, Cord-Landwehr 

et al., even generalized this to most plant-invading fungi. 

 

Another interesting point raised by the dual RNA-seq of M. esculenta and R. irregularis, is 

the ability of the plant to specially increase the transcription of genes involved in fatty acid 

synthesis during the symbiosis. Indeed for a long time AMF were thought to receive 
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carbohydrate in the form of sugar from their host plants. However, the combined sequencing 

of different AMF genomes recently revealed that type 1 fatty acid synthase (FAS) is absent in 

R. irregularis (Wewer et al., 2014), thus, leading to the hypothesis that the fungi might be 

unable to correctly perform the synthesis of fatty acid and could obtain the fatty acid from the 

plant. This hypothesis is supported by the fact that plant lipid content was observed to change 

drastically during the AM symbiosis and that a number of fatty acid genes are conserved 

across mycorrhizal plants (Bravo et al., 2016). In 2017, Bravo et al., (2017) suggested that 

conserved plant fatty acid synthesis genes (FatM and RAM2) and transport (STR and STR2) 

were involved in the synthesis and the transfer of a monoacylglycerol (MAG) to the fungi.  

In my experiment, all the M. esculenta genes implicated in fatty acid synthesis were up 

regulated when the plant was inoculated with any genetic form of the R. irregularis species. 

The path suggested by Bravo et al., (2017) for the transfer of MAG was similarly up 

regulated in M. esculenta and tended to support the view of the transfer of MAG to the fungi. 

However, I found that another path was possible for the transfer of lipids, by the intermediate 

of a gene with the similar functionality of RAM2, but this time leading to the synthesis of 

phospholipids (PL) and to phosphatidylcholine (PC). Under the form of lyso-

phosphatidylcholine, PC was shown to be used in AMF as a signal (Drissner et al., 2007), 

thus suggesting that it could be transferred from the fungi to the plant and inversely. 

Moreover PC production was shown to be increase in inoculated roots (Wewer et al., 2014). 

Despite that not all the genes in the path of PC synthesis were found to be up-regulated, keys 

gene of the synthesis, transfer and degradation from the plant to the fungi were found to be 

differentially expressed (DE) between colonized and non-colonized plants and among R. 

irregularis genetic groups. First, a plant phospholipid transporting ATPase was found to be 

DE and correlated to the expression of two fungal phospholipid transporting ATPases. This 

suggests a synchrony in the transport of PL. Second, in the fungi, different enzymes of the 

phosphatidylcholine degradation and transformation were found to be differentially expressed 

among R. irregularis genetic groups. These enzymes, lead either to the transformation of PC 

into diacylglycerol (DAG) and then to triacylglycerol (TAG), the main lipid found in AMF 

ERM, or lead the product of decomposition of the PC to the glycolysis.  

The hypothesis that PC is transported to the fungi is supported by the observation that an 

increased production of PC occurs when the plant is inoculated with AMF, and that the main 

phospholipid in the ERM is PC (Wewer et al., 2014). In chapter 4, I proposed that PC used as 

a signal molecule in AMF symbiosis could be recycled by the fungi for the formation of DAG 

and TAG or used in glycolysis. However, this use could vary from one genetic group to 
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another, with a stronger or weaker ability of transporting and transforming the phospholipids. 

I also found that genetic groups with a lower ability to transform the PC could use another 

enzyme; a glycerol kinase, to obtain carbon from the glycerol. Such a hypothesis is supported 

by the paper of Wei et al., (2004) who showed the ability of a semi-biotrophic fungus to 

obtain glycerol from the plant and survive only by this uptake. 

 

Rhizophagus irregularis and its rare endosymbiotic bacteria; RiMRE 
 

It is known that highly specialized and obligate endobacteria occur in most AMF. Two types 

of endosymbiotic bacteria occur in AMF. The first, the CaGg, was shown to be restricted to 

the Gigasporaceae family. The second, the mollicute related endobacteria (MRE, Naumann et 

al., 2010), are found in almost all the species of AMF including Gigasporaceae. CaGg were 

suggested to be mutualists of the Gigasporaceae, increasing the fitness of their host (Salvioli 

et al., 2016) while MRE were considered as parasites of AMF due to their high within 

population haplotypic diversity (Toomer et al., 2015). Despite the large distribution of MRE 

in almost all AMF, R. irregularis is reported as having lost its endosymbiont. This potentially 

suggests a fungal success in the host-parasite arms race. The presence of such potentially 

parasitic or mutualistic bacteria could potentially perturb the symbiosis and the plant response 

to these fungi. 

In order to unravel the presence of these endobacteria in chapter 5, I used ddRAD-seq data 

generated in chapter 2 and standard 16S primers. The presence of the bacteria was confirmed 

with reads of the ddRAD-seq, 16S sequences and another nuclear gene in one R. irregularis 

isolate among the large-scale R. irregularis population. An additional MRE was found in one 

isolate of Rhizophagus sp. LPA8-CH3. A second isolate of the Rhizophagus sp. LPA8-CH3 

also showed signs of the presence of MRE. However their presence was not confirmed neither 

with 16S gene or the other nuclear gene. The R. irregularis isolate inhabited by the 

endobacteria was shown to exhibit highly reduce spore production (Koch et al., 2004) and 

colonization rate (chapter 4) compared to related isolates. This tends to confirm that MRE 

could have a parasitic life style (Toomer et al., 2015). However, the 16S sequences of the two 

confirmed isolates were cloned and resulted in a homogenous population of haplotypes, more 

specifically characterizing a non-essential mutualistic partner or maybe simply representing a 

relic of their parasitic ancestry. 
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Future work and conclusions 
 

In this work I suggested that the AMF diversity evaluated to 300-1600 species could be 

underestimated. In order to confirm my prediction, it would be important to undertake other 

studies looking at the genomic diversity within other AMF species. As up to now the study of 

the genomic of AMF needed a large amount of DNA, it would be crucial to isolate more 

species in vitro to obtain enough DNA. Many isolates are already available in different AMF 

bank and small enterprises and could be shared among researchers. Another option would be 

to develop new methods to perform ddRAD-seq or whole genome sequencing, on single 

spores directly extracted and cleaned from the soil, to avoid a potential selection of fungi 

during the isolation process. Such a protocol could potentially use whole genome 

amplification (WGA). The amplification and the sequencing of the genome of single nuclei 

(Lin et al., 2014) was already achieved, suggesting that such protocol could be developed, 

thus, avoiding the time consuming and possibly biased work of single spore isolation. 

In my work I have confirmed, at the within-species level, that there is weak or no endemism 

in R. irregularis as suggested from the global AMF community profiling study of Davison et 

al., (2015). However, it would be important to isolate or obtain isolates of a single species 

from uncultivated soils around the world in order to perform deep molecular characterization 

and to confirm my results and those of Davison et al., (2015). 

 

In chapter 3, I found that plant community structure could be impacted by intra-specific 

diversity of one AMF species. However, it would be essential to investigate the effect of 

intra-specific diversity on plant community biomass production and diversity. In that sense, 

an open field plot should be used in order to avoid a resource limitation found in pot 

experiments. Similar experiments as performed by van der Heijden et al., 1998 but with a 

within species diversity and a know relatedness of the isolates could bring good insight of 

ecological role of within-AMF species diversity.  

The findings of chapter 4 highlighted new insights into how the AMF-plant symbiosis works 

and showed a certain variation in the molecular strategies used by the different genetic groups 

of R. irregularis. I also proposed many genes that could be essential for the nutrient 

acquisition by the fungus as well as a gene that could enable the fungi to hide from the plant 

defence. It would be important to further investigate the role of these potentially important 

genes. Moreover I found modules of fungal and plant genes that interact, it would be 
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interesting to see how much of the module structure is maintained in other similar 

experiments, in order to confirm the central fungal and plant genes involved in the symbiosis. 

 

In the last chapter, I highlight the presence of an endobacteria within one isolate of R. 

irregularis. This rare case of endobacteria within R. irregularis; a species that is thought to 

have eradicated its endosymbiotic bacteria, could highlight the nature of the endosymbiotic 

life and how one AMF species finally succeeded in eradicating a bacterial partner with which 

it had co-evolved for the last 400Myrs. Moreover, the sequencing of other genomes of MRE 

suggested that some homologue genes of R. irregularis were horizontally transmitted to the 

MRE (Naito et al., 2015, Torres-Cortes et al., 2015). By sequencing the genome of the 

RiMRE and its fungal host I should be able to answer important questions of how and why 

the symbiosis has evolved and was maintained. Trans-kingdom horizontal gene transfers 

(HGT) that were observed between AMF and their endosymbiotic bacteria were found by 

comparing the bacterial gene repertories to the only fungus sequenced to date, R. irregularis, 

but never to their own AMF host. It would, thus, be important to sequence the R. irregularis 

host genome and its endosymbiotic partner genome. 

Having an in vitro isolate retaining an endobacteria is a unique chance to study the impact of 

the endobacteria on fungal host fitness as well as to study the results of this interaction on the 

plant. Indeed, it was shown experimentally that the type of AMF endobacteria restricted to 

Gigasporaceae had the ability to increase AMF host fitness. Although the MRE contained in 

the R. irregularis isolate and in most AMF species, was suggested to be parasitic, this fact 

was never demonstrated. By removing the bacteria with antibiotics or by segregation over 

generations, it could be possible to study the effect of the bacteria on the phenotype of the 

same isolate with or without the bacteria. It would be also possible to see the resulting effect 

on plants, by producing large quantities of in vitro inoculum with and without the bacteria. 

Further studies could even sequence the transciptome of the fungus with bacteria or without 

bacteria in order to unravel which gene are expressed while the bacteria is present. This would 

give more clues to understand the nature of this intriguing and certainly important driver of 

the evolution of AMF. 
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