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Abstract. Many biological populations are subject to periodically changing environments
such as years with or without fire, or rotation of crop types. The dynamics and management
options for such populations are frequently investigated using periodic matrix models.
However the analysis is usually limited to long-term results (asymptotic population growth
rate and its sensitivity to perturbations of vital rates). In non-periodic matrix models it has
been shown that long-term results may be misleading as populations are rarely in their stable
structure. We therefore develop methods to analyze transient dynamics of periodic matrix
models. In particular, we show how to calculate the effects of perturbations on population size
within and at the end of environmental cycles. Using a model of a weed population subject to a
crop rotation, we show that different cyclic permutations produce different patterns of
sensitivity of population size and different population sizes. By examining how the starting
environment interacts with the initial conditions, we explain how different patterns arise. Such
understanding is critical to developing effective management and monitoring strategies for
populations subject to periodically recurring environments.

Key words: adaptive management; elasticity; periodic matrix model; Polygonum persicaria; population
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INTRODUCTION

Many biological populations are subject to periodi-

cally recurring environments, which have different

impacts on vital rates, e.g., survival may be higher in

one environment than another. Examples of populations

subject to periodic environments are plants exposed to

seasons with and without fire (Silva et al. 1991, Hoffman

1999, Satterthwaite et al. 2002), cycles of flood and

drought (Beissinger 1995), exploited organisms subject

to periodic harvesting (Escalante et al. 2004, Endress et

al. 2004), and weeds growing in crop rotations (Mertens

et al. 2002). Populations subject to periodic environ-

ments are often modeled using a simple extension of a

nonseasonal matrix population model (Caswell and

Trevisan 1994, Caswell 2001).

Asymptotic analysis provides useful insights into the

dynamics of populations (Benton and Grant 1999).

However, asymptotic results can be misleading in

formulating management decisions because conditions

are unlikely to remain stable for long enough for the

long-term dynamics to be reached (Fox and Gurevitch

2000, Yearsley 2004, Koons et al. 2005). Consequently,

analysis shortly after a perturbation is made and a focus

on population size may be more appropriate for manage-

ment purposes and is essential in adaptive management

programs (Walters 1986, Shea et al. 2002). Analysis of

transient dynamics is also useful in testing models when

time scales do not allow experiments to continue to the

point that asymptotic dynamics might be reached.

The transient dynamics of matrix population models

can be investigated in a variety of ways, for example by

examining the damping ratio (Lefkovitch 1971, Caswell

2001) or through calculating population momentum

(Keyfitz 1971). It is only recently, though, that analytic

methods have been developed for calculating transient

sensitivities of population size and the short-term growth

rate (Fox and Gurevitch 2000, Yearsley 2004). While it is

possible to use a simulation approach, it becomes very

time consuming because of the infinite number of

combinations of changes that can be made (Fox and

Gurevitch 2000). More importantly, the analytic results

can be used to gain a deeper understanding of the system.

For example, bounds can be placed on the range of

sensitivities over the set of all initial conditions. The

methods developed by Fox and Gurevitch (2000) and

Yearsley (2004), however, apply only to populations

exposed to constant (noncyclic) environments.

Periodic systems and permutation of environments

Periodic environments can be described as either

independent or dependent. When an environment is

dependent on a previous environment, it is not possible

to alter its position in the cycle relative to a previous

environment, for example, the temperate seasons. In

contrast, the order of environments can be changed
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when they are independent of each other and therefore

can be used as a management tool. There are many

economically and environmentally important examples

of systems composed wholly or partly of independent

environments such as rotations of crops or pesticides

(Liebman and Dyck 1993, May et al. 2005), periodic

imposition of anti-trampling measures to protect an

endangered plant (Gross et al. 1998), or periodic

harvesting strategies (Endress et al. 2004).

Due to the fact that matrix multiplication is not

commutative (see, e.g., Strang 1980), a key implication

of asymptotic analysis of periodic matrix models is that

different noncyclic permutations of a system of inde-

pendent environments will lead to different asymptotic

population growth rates (for examples see Caswell

[2001]). Cyclic permutations, though, will have identical

asymptotic growth rates and patterns of sensitivities of

the growth rate because the patterns of environments are

identical, and just out of phase (e.g., for two environ-

ments, C and W, the sequence CWCWCW produces the

same long-term population dynamics as WCWCWC).

However, because different stable population structures

are associated with each environment, one might expect

that different cyclic permutations will lead to different

population sizes and different short-term sensitivities of

population size due to the interaction with the initial

population structure.

Periodic systems and dynamics

within the environmental cycle

Regardless of whether a system is composed of

dependent or independent environments, another ques-

tion is how the timing of observations affects the

sensitivity of population size to perturbations of vital

rates. For example, in a population exposed to the

temperate seasons, one might expect that the effects of

perturbations to fecundity will be different depending on

whether they are observed after the spring or after the

winter. This requires having a method to calculate the

effects of perturbations on population size within the

environmental cycle. Asymptotic methods, however, are

focused on the effects of perturbations on the popula-

tion growth rate over the entire environmental cycle

(Caswell and Trevisan 1994, Caswell 2001).

Aims of this study

In this paper, we extend the transient demographic

analyses of Fox and Gurevitch (2000) and Yearsley

(2004) to the analysis of periodic matrix models, and in

particular we develop a method to examine the effects of

perturbations at any time within an environmental cycle.

Using the new methods, we investigate how cyclic

permutations and initial conditions affect population

size in the long term and its sensitivity to perturbations

in the short term for a weed Polygonum persicaria

subject to a periodically changing set of crops (crop

rotation). In Appendix A, we carry out the same analysis

for a model of the tropical savanna grass Andropogon

semiberbis (Silva et al. 1991), whose vital rates are a

function of the plant’s exposure to fire. Finally, we
discuss the implications of the results for the observation

and management of populations subject to periodically
changing environments, and provide some general

insights that have implications for the interpretation of

non-periodic and periodic sensitivity analysis.

METHODS: CALCULATING TRANSIENT EFFECTS

OF PERTURBATIONS

Periodic matrix models

The dynamics of a structured population subject to

periodically changing environments have frequently
been simulated using matrix population models (Silva

et al. 1991, Caswell and Trevisan 1994, Caswell 2001,
Lesnoff 1999). In a periodic environment, a population

is assumed to repeatedly experience the same sequence
of N environments. This sequence of environments is

called a cycle and provides a natural time scale for the

system (one cycle being one time step). Using a matrix
population model approach, the evolution of population

size in a periodic environment is then described by

nðtÞ ¼ Atnð0Þ ð1Þ

where n(0) is the vector of initial population sizes, n(t) is

the population vector after t cycles and A is the
population transition matrix for one complete cycle

(Caswell and Trevisan 1994, Caswell 2001).

Each environment can be expressed as a population
transition matrix whose elements give the demographic

parameters of the population in that environment. The
transition matrix A combines the transition matrices for

these individual environments in a way which depends

upon the number and the order of the environments.
Specifically, the matrix A can be written as

A ¼ PðNÞPðN�1Þ � � �Pð2ÞPð1Þ ð2Þ

where P(h) is the population transition matrix for the hth

environmental phase in the cycle. As a particular
environment can occur more than once in a cycle, it is

useful to refer to environments as ‘‘phases’’ in a
particular cycle. For example, in the cycle WCCWC,

the environment W occurs in the first and fourth phases.
A complete summary of the notation used in this paper

is given in Table 1.

Transient sensitivity

Methods for calculating various transient sensitivities
of a non-periodic matrix model have recently been

developed (Fox and Gurevitch 2000, Yearsley 2004).
The transient sensitivity of the population size to

changes in the element aij of the matrix A is

]nðtÞ
]aij

¼ Sðt; aijÞ
nð0Þ
jjwð1Þjj|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Independent of nð0Þ

þ DSðt; aijÞDn|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Linearly dependent on nð0Þ

ð3Þ

where n(t) is the vector of population size at time t, w(1)

is the dominant right eigenvector of A and
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Dn ¼ nð0Þ � nð0Þ
jjwð1Þjjw

ð1Þ ð4Þ

is the deviation of the initial population vector away

from w(1). The vector S(t; aij) and the matrix DS(t; aij)
can be calculated from A:

Sðt; aijÞ ¼ tkt�1
1

]k1

]aij
wð1Þ þ

X
m.1

kt
1 � kt

m

k1 � km
tðmÞi w

ð1Þ
j wðmÞ ð5Þ

DSðt; aijÞ ¼
X

m

tk t�1
m

]km

]aij
wðmÞ � vðmÞ�

þ
X
n6¼m

kt
m � kt

n

km � kn
tðmÞi w

ðnÞ
j wðmÞ � vðmÞ�: ð6Þ

The vector S(t; aij) quantifies the contribution that the

stable stage structure makes to the transient sensitivity,

while the matrix DS(t; aij) quantifies the contribution

that the initial deviations from the stable stage

distribution make toward the transient sensitivity (see

Yearsley [2004] for a derivation of these results). Eqs. 5

and 6 require that no two eigenvalues of the transition

matrix, A, are the same. The equations can be modified

to allow for repeated eigenvalues by following the

approach used for eigenvector–eigenvalue relations

(Elhay et al. 1999). If the eigenvalues of A are to be

calculated accurately the matrix must not be ill

conditioned (Press et al. 1996).

For a periodic system, a change in an element of the

transition matrix A bears no simple relationship to

environmental changes, so a standard analysis using A is

difficult to interpret. A more useful analysis of a periodic

system would quantify the effect of a change in one

environmental phase (i.e., an element, p
ðhÞ
kl , in one of the

matrices P(h)). This can be achieved by extending the

transient demographic analysis of Eq. 3 following many

of the same techniques used by Caswell and Trevisan

(1994). These techniques relate a change in the p
ðhÞ
kl

element of the P(h) phase to changes in A. Formally, this

is achieved by using the chain rule:

]nðtÞ
]p
ðhÞ
kl

¼
X

i;j

]nðtÞ
]aij

]aij

]p
ðhÞ
kl

ð7Þ

where

]aij

]p
ðhÞ
kl

¼ d
ðþhÞ
ik d

ð�hÞ
lj ð8Þ

and d
ðþhÞ
ik and d

ð�hÞ
lj are elements, respectively, of the

matrices

DðþhÞ[ PðNÞ � � �Pðhþ1Þ ð9Þ

Dð�hÞ[ Pðh�1Þ � � �Pð1Þ ð10Þ

and D(þN) ¼ D(�1) ¼ I are the identity matrices. Eq. 8

arises because the matrix A can be written as

D(þh)P(h)D(�h). Consequently, taking the derivative of A

with respect to an element of P(h) will lead to a matrix

product containing the matrix d(P(h))/dpkl, whose

elements are zero, except for the klth element, which is

one. The method underlying Eqs. 8–10 is the same as

that used by Lesnoff et al. (2003) in developing a more

efficient method to calculate asymptotic sensitivities of

periodic matrix models.

The transient sensitivity for a periodic system to

changes in p
ðhÞ
kl can now be calculated by substituting Eq.

3 and Eq. 8 into Eq. 7. Working through the algebra, the

expressions for the transient sensitivity and expressions

for S(t) and DS(t) can be written with respect to

perturbations to an element p
ðhÞ
kl :

]nðtÞ
]p
ðhÞ
kl

¼ S½t; p
ðhÞ
kl �

nð0Þ
jjwð1Þjj þ DS½t; p

ðhÞ
kl �Dn ð11Þ

TABLE 1. List of symbols and definitions used in this paper.

Symbol Definition

N Number of environmental phases.
h A particular environmental phase that is perturbed.
g A particular environmental phase after which the effect of a perturbation is observed.
A The transition matrix for one entire cycle.
aij The element in the ith row and jth column of A.
P
(h) The transition matrix for the hth environmental phase.

p
ðhÞ
kl The element in the kth row and lth column of P(h).

ki The ith eigenvalue associated with A.
w(i) The right eigenvector associated with ki.
n(0) The initial population vector.
n(t) The population vector after the ith cycle.
nm(t) The mth element of n(t).
n(t) The total population size after the tth cycle.
n(t; h) The population vector after the hth phase of the tth cycle.
n(t; g) The population vector after the gth phase of the ith cycle.
x The complex conjugate of the scalar x.
x* The complex conjugate transpose of vector x.
||x|| ¼ X

i

jxij The absolute sum of the elements of vector x (the L1-norm of x).

hx, yi ¼ X
i

xiyi The scalar product of vectors x and y.

xy [ x � y* The vector direct product of vectors x and y giving a matrix Mij ¼ xiyj.
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S½t; p
ðhÞ
kl � ¼

X
i;j

d
ðþhÞ
ik d

ð�hÞ
lj Sðt; aijÞ ð12Þ

DS½t; p
ðhÞ
kl � ¼

X
i;j

d
ðþhÞ
ik d

ð�hÞ
lj DSðt; aijÞ: ð13Þ

All the analytic methods for non-periodic environments

(Fox and Gurevitch 2000, Yearsley 2004) can now be

applied to periodic environments. In particular, the

elasticities of the population size can be calculated (Fox

and Gurevitch 2000):

e
ðhÞ
kl ðtÞ ¼ p

ðhÞ
kl NðtÞ�1 ]nðtÞ

]p
ðhÞ
kl

ð14Þ

where the matrix N(t)�1 is the inverse of diag(n(t)). The

transient elasticities give the proportional effect on

population size of a proportional change in a demo-

graphic parameter, p
ðhÞ
kl (de Kroon et al. 2000, Caswell

2001). Analogous to the non-periodic case, the sum of

the elasticities of each phase is always equal to t:X
k;l

e
ðhÞ
kl ðtÞ ¼ t: ð15Þ

Transient sensitivities and elasticities can be scaled by

time (Fox and Gurevitch 2000), or in the periodic case,

by the number of cycles t. In the long term, the time-

scaled elasticities of population size are the same as the

asymptotic elasticities of population growth rate.

The Supplement contains the Matlab scripts for

carrying out the calculations described above and for

calculating the immediate sensitivities and elasticities

described in the next section.

Within-cycle sensitivity

The transient sensitivity of the population size at the

end of each cycle (Eqs. 11–13) is not very informative

about the sensitivity of the population part way through

a cycle. Often the sensitivity within the environmental

cycle is of interest as it allows more flexibility in

observing the effects of perturbations. Essentially, this

involves either back or forward projecting the end-of-

cycle sensitivity by the product of the environmental

matrices occurring, respectively, after or up-to the point

of observation:

]nðt; gÞ
]p
ðhÞ
kl

¼ ½DðþgÞ��1 ]nðtÞ
]p
ðhÞ
kl

if g � h ð16Þ

and

]nðt; gÞ
]p
ðhÞ
kl

¼ Dð�½gþ1�Þ ]nðt � 1Þ
]p
ðhÞ
kl

if g , h ð17Þ

where h is the phase being perturbed, g is the phase

where the sensitivity is observed and [D(þg)]�1 is the

inverse of D(þg). D(þg) and D
(�[gþ1]) are given by Eqs. 9

and 10. Appendix B contains the derivation of Eqs. 16a

and b.

For example, if the cycle is the four temperate seasons

and the population is projected from autumn to autumn,

then the sequence is fall-winter-spring-summer and the

annual projection matrix is given by A¼U(4)S(3)W(2)F(1).

To observe the effect perturbations being made in

autumn, on the population after winter, Eq. 16a is

evaluated with h ¼ 1 and g ¼ 2 so that D(þ2) ¼ U(4)S(3).

Eq. 16b would be applied, say, when the effects are

observed after winter (g¼ 2), but perturbations occur in

spring (h ¼ 3), giving D
(�3) ¼W

(2)
F
(1).

A particularly useful application of Eq. 16a lies in

comparing the sensitivities associated with perturbations

to the same environmental phase but in different cyclic

permutations. A natural way to compare sensitivities

between cyclic permutations is to evaluate the sensitiv-

ities immediately after the environmental phase being

perturbed, e.g., when g ¼ h in Eq. 16a. We call such

sensitivities ‘‘immediate sensitivities.’’

Following a similar argument as for the end-of-cycle

elasticities, the within-cycle elasticities can be calculated

as

e
ðhÞ
kl ðt; h; gÞ

¼ p
ðhÞ
kl DðþgÞdiag½nðt; gÞ�
n o�1]nðtÞ

]p
ðhÞ
kl

if g � h ð17aÞ

and

e
ðhÞ
kl ðt; h; gÞ

¼ p
ðhÞ
kl diag½nðt; gÞ�f g�1Dð�½gþ1�Þ ]nðt � 1Þ

]p
ðhÞ
kl

if g , h

ð17bÞ

where n(t; g) is the population vector after the gth phase

of the tth cycle. Analogous to the immediate sensitiv-

ities, the immediate elasticities are calculated by

evaluating Eq. 17a when g ¼ h.

Sensitivity of total population size

Eq. 11 contains a lot of information that can be

difficult to interpret. One simplification is to concentrate

upon the total population size, n(t), rather than the

population vector, n(t). The transient sensitivity of the

total population size is simply the sum of the sensitivities

of the population vector:

]nðtÞ
]p
ðhÞ
kl

¼
X

m

]nmðtÞ
]p
ðhÞ
kl

¼ Sjj½t; p
ðhÞ
kl �

nð0Þ
jjwð1Þjj þ

D
DSjj½t; p

ðhÞ
kl �;Dn

E

ð18Þ

where the scalar Sjj(t; p
ðhÞ
kl ) and the row vector DSjj(t;

p
ðhÞ
kl ) are the sum of the elements in each column of

S(t; p
ðhÞ
kl ) and DS(t; p

ðhÞ
kl ), respectively. The result of Eq.

18 is a simple number, and the decomposition involves

nothing more complicated than vectors (i.e., DSjj(t; p
ðhÞ
kl )

and Dn). However, Eq. 18 is still a function of time, and

depends upon the initial population vector.
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Using Eq. 18, the elasticity of total population size

can also be calculated using

e
ðhÞ
kl ¼

p
ðhÞ
kl

nðtÞ
]nðtÞ
]p
ðhÞ
kl

: ð19Þ

Similarly, the within-cycle sensitivities and elasticities of

the total population size can also be calculated.

RESULTS

Example

In order to examine how cyclic permutations affect

transient population dynamics, we use a model of a

weed population subject to a crop rotation (a set of

periodically changing crops). The model is that based on

Mertens et al. (2002), in which a population of the weed

Polygonum persicaria is subject to a two-year rotation of

either carrots (C) or wheat (W). The population is

structured by the depth at which seeds occur, as depth

affects the probabilities of seedling emergence, seed

survival, and movement to other layers in the soil by

cultivation. In this case, there are four soil layers, each 5

cm deep. The population is projected from one spring to

the following spring, just after the crop has been sown,

so the population is formed only of seeds. As seeds are

produced by plants, each matrix element summarizes

information on seedling emergence from each layer (al),
survival of plants emerged from layer l (ml), seed

production of plants emerged from layer l (cl), move-

ment of seeds from layer l to layer k (dkl), mortality of

seeds at each soil depth before plowing (ll), and survival

of seeds at each soil depth after plowing (rk):

p
ðhÞ
kl ¼ almlcldklrk þ ð1� alÞð1� llÞdklrk ð22Þ

where p
ðhÞ
kl is the klth element of a matrix P for the hth

crop (see Eq. 2), and all parameter values correspond to

those found in the crop occurring in the hth phase.

Each crop and its associated management have

different effects on demographic transitions, such as

seedling emergence, plant survival, and fecundity (Table

2). For example, seedling emergence differs between the

crops due to differences in sowing time, while plant

survival differs due to differences in the efficacy of

mechanical control in each crop. Another difference is

the type of soil cultivation that is applied after each crop

has been harvested. In the carrot crop, a rigid-tine

implement is used which does not invert the soil, so seeds

stay more or less where they are. After the wheat crop

has been harvested, a plow is used that inverts the soil

and consequently many seeds from the top layer are

moved to deeper soil layers.

When the value of the transition elements are

calculated using (Eq. 20) and the parameter values in

Table 2, very different transition matrices are obtained

for each crop (Table 3). In the carrot matrix C, the

highest transitions lie mainly along the diagonal, while

in the wheat matrix W, the highest values are found for

the elements projecting seeds from the top layer to

deeper layers. We use these two matrices to study the

cyclic permutations of the simplest environmental

sequence: the two-year cycles carrots-wheat (CW) and

wheat-carrots (WC). For heuristic purposes and the

desire for simplicity, we focus on the composite matrix

elements rather than the underlying parameters and

suppose that each transition element can be perturbed

independently.

The long-term population dynamics for the cyclic

permutations CW and WC are identical in all but their

phase (Fig. 1). Consequently, the long-term population

growth rates over one cycle are the same for these two

permutations, at 1.01 per two-year cycle (the population

growth rates when C or W are grown singly are,

respectively, 0.762 and 1.821 per year). The long-term

periodic elasticities (Table 3) are also independent of the

cyclic permutation of the environments (Caswell 2001).

TABLE 2. Parameter values for the model of P. persicaria.

Crop and depth class

Parameter

ak lk ml cl rl

dkl

1 2 3 4

Carrots

1 0.45 1.0 0.001 400 1 0.70 0.33 0.02 0.00
2 0.0 0.3 0.001 400 1 0.23 0.50 0.15 0.00
3 0.0 0.2 0.001 400 1 0.06 0.15 0.68 0.16
4 0.0 0.2 0.001 400 1 0.02 0.01 0.16 0.84

Wheat

1 0.15 0.2 0.6 90 1 0.02 0.21 0.37 0.29
2 0.0 0.2 0.6 90 1 0.11 0.27 0.26 0.10
3 0.0 0.2 0.6 90 1 0.40 0.30 0.20 0.12
4 0.0 0.2 0.6 90 1 0.46 0.21 0.18 0.48

Notes: All parameter values are from Mertens et al. (2002), except those for seed movement, which are from Cousens and Moss
(1990). The symbols are defined as al, seedling emergence from each depth class; ml, survival of plants emerged from depth class l; cl,
seed production of plants emerged from depth class l; dkl, movement of seeds from class l to class k; ll, mortality of seeds at each
soil depth before plowing; and rk, survival of seeds at each soil depth after plowing. The shallowest soil depth is class 1, and the
deepest is class 4.
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In the case of the permutations CW and WC,

perturbations to c11, c12, c33, and c44 of the carrot phase

will have the largest effect, while perturbations to

elements w21, w31, and w41 of the wheat phase are most

important (Table 3). Likewise, the average long-term

stable structure is identical for all cyclic permutations of

the environments, but the stage structure does change

within a cycle. After a C year, only about 9% of the

seeds are in the upper soil layer, while after a W year,

more than 15% are in the upper soil layer (Table 3).

We first examine how cyclic permutations affect

transient population size and the pattern of transient

elasticities. We consider cyclic permutations CW and

WC, and use a total initial population size of n(0)¼ 100,

with an initial structure where 70% of the seeds are

concentrated in the upper layer (class 1) and the

TABLE 3. Life-history transition matrices for the weed species Polygonum persicaria growing in carrot (C) and wheat (W)
environments, and the elasticity values and stable depth structure associated with each crop and resulting from asymptotic
analysis of the cyclic permutations CW and WC.

Phase and class

Transition matrices Elasticity matrices (cycles CW and WC)

Stable structure1 2 3 4 1 2 3 4

Carrots

1 0.126 0.231 0.016 0 0.160 0.265 0.036 0 0.086
2 0.041 0.350 0.120 0 0.006 0.040 0.034 0 0.136
3 0.011 0.105 0.544 0.128 0.002 0.015 0.157 0.051 0.331
4 0.004 0.007 0.128 0.672 0 0.001 0.027 0.196 0.448

Wheat

1 0.176 0.168 0.296 0.232 0.011 0.016 0.069 0.073 0.162
2 0.966 0.216 0.208 0.080 0.127 0.045 0.105 0.055 0.147
3 3.512 0.240 0.160 0.096 0.178 0.019 0.031 0.025 0.292
4 4.039 0.168 0.144 0.384 0.146 0.010 0.020 0.072 0.399

Notes: In the matrices, the element at row 1, column 2 quantifies the transition from class 2 to class 1. The values of the transition
elements are derived from Eq. 20, and the values are in Table 2. The asymptotic growth rate resulting from permutations CW and
WC is k1 ¼ 1.01 per two-year cycle.

FIG. 1. The effects of initial population structure and cyclic permutation on population size at the end of each phase of a two-
phase cycle (carrots, C; wheat, W). Each line shows the population size for a different combination of initial population structure
and cyclic permutation. The total initial population size is N(0)¼ 100.
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remaining 30% are distributed evenly among the

remaining layers. We then examine how different initial
conditions interact with cyclic permutations. We again

use a total initial population size of n(0) ¼ 100 and

systematically consider four initial stage distributions

such that, in each set of initial conditions, 70% of the

seeds are concentrated in a different layer and the

remaining 30% are evenly divided among the remaining

three layers. Finally, by contrasting immediate and end-

of-cycle elasticities, we examine how elasticities of

population size are affected by the time of observation.

We present our results in terms of time-scaled elasticities

(Fox and Gurevitch 2000), which can be compared with

the elasticities of the long-term population growth rate.

To simplify interpretation, we focus on elements that

have an elasticity of population size greater than 0.1 at

some point in time.

Cyclic permutations of the environments

The cyclic permutations carrots-wheat (CW) and

wheat-carrots (WC) create different transient population

dynamics which ultimately produce a constant relative

difference in population size between the two cyclic

permutations (Fig. 1). When the population is initially

concentrated in the uppermost soil layer (class 1), the

CW permutation has a population size that is nearly an

order of magnitude lower than in the WC permutation

(Fig. 1). These differences are mainly due to interactions

between the initial environment and the initial popula-

tion structure. When the population is initially concen-

trated in the uppermost layer (class 1), starting with a C

phase reduces the population much more than starting
with the W environment, because all the transition rates

from class 1 are weaker in the C environment compared

to the W environment (Table 3). In short, the population

suffers an initial blow, from which it does not recover.

To make comparisons of the elasticities associated

with transitions for a particular environment in different
cyclic permutations (e.g., the elasticities of perturbations

to elements of C in the cycles WC and CW), we examine

the response of a population immediately after a

perturbation (i.e., immediate elasticities [Eq. 17a]),

rather than waiting until the end of a cycle. If we were

to use the elasticities at the end of each cycle (Eq. 14),

then perturbations at different phases would have

different following environments, confounding the

interpretation of differences (compare Fig. 2a and c).

The order of the environments affects both the pattern

of elasticities and the persistence of the transient period

(Fig. 2). The immediate elasticities for both the C and W

environments differ between cyclic permutations (com-

pare Fig. 2a with 2b and Fig. 2d with 2e). With regard to

the C environment, the pattern of elasticities is substan-

tially different between the two permutations, as well as

the persistence of the transients. In the CW cycle, the

immediate elasticity associated with c11 begins at 0.25,

increases to 0.35 and then decreases to its asymptotic

value of 0.16 after more than 10 cycles (Fig. 2a). In

contrast, in the WC cycle, the immediate elasticity

associated with c11 begins close to zero, increases to 0.1

by the third cycle, and then increasesmore slowly to reach

its asymptotic value (Fig. 2b). The elasticities associated

FIG. 2. Immediate and end-of-cycle transient elasticities of population size, scaled for time, for the two cyclic permutations CW
and WC. The total initial population has 100 seeds, and the initial population vector is n(0)¼ (70, 10, 10, 10)T. Results are shown
only for elements to which the transient elasticities are about 0.1 or greater at some time during the first 10 cycles. Panels (a)–(c)
give the elasticities for the carrot phase, and panels (d)–(f) give the elasticities for the wheat phase. When the last phase of a
permutation is perturbed, then the immediate and end-of-cycle elasticities are the same.

SHANA K. MERTENS ET AL.2344 Ecology, Vol. 87, No. 9



with elements c33 and c44 remain fairly close to their

asymptotic values in the CW cycle, whereas in the WC

permutation, they both start well above their asymptotic

values and then gradually decline (Fig. 2b). In the W

environment, the major difference in the immediate

elasticities is that, in the WC permutation, the elasticities

associated with elements w31 and w41 begin noticeably

higher than in the CW permutation (Fig. 2d and 2e).

The different elasticity patterns can be understood by

considering the initial population structure and its

subsequent evolution due to application of the transition

matrices. For example consider the initial conditions

n(0)¼ (70, 10, 10, 10)T and the permutation CW. Recall

that in the C environment, the largest transition from

the uppermost soil layer (class 1) is that of remaining in

the top layer (c11¼ 0.126, Table 3) and all transitions of

C lead to a decrease in the seed bank population. In the

W environment, however, elements w31 and w41, which

move seeds out of class 1, lead to large increases in the

population. Consequently, any actions that lead to an

increase in the population of the uppermost soil layer

during the first carrot phase will be magnified by the end

of the succeeding wheat crop. As the population is

initially concentrated in the uppermost soil layer, rather

than the second soil layer (class 2), the elasticity

associated with element c11 has the highest value

(e11(1) ¼ 0.25, Fig. 2). The increase in the immediate

elasticity by the end of the second carrot crop (e11(2) ¼
0.34) is due mainly to the continued effect of the increase

in c11 during the first cycle, as it leads to a large increase

in the population during the wheat crop. This increase in

population size is greater than that produced by any

other perturbation and so the elasticity associated with

c11 is the largest in the carrot phase in the second cycle.

A perturbation of c11 in the second cycle, would not,

however, lead to a larger change in population size than

a perturbation to c12, because most of the population is

concentrated in the second layer at the start of the

second cycle. In other words, as the proportion of the

population in the second layer increases at the end of

each wheat crop, the elasticity associated with c11
decreases and that associated with c12 increases. A

similar line of reasoning can be used to explain the

pattern of elasticities associated with other elements and

permutations.

Interaction of initial conditions and cyclic permutations

Even for this simple, four-stage model, the initial

population structure has a long-term effect on the total

population size of nearly an order of magnitude (Fig. 1).

In the WC cycle, relatively large population sizes result

from an initial structure that concentrates seeds in the

uppermost soil layer (class 1). However, in the CW

permutations, a larger population is achieved when the

population is concentrated in the second layer (class 2),

and even results in a population that is higher than that

for several of the WC populations. These differences

emerge from differences in the transient dynamics in the

first couple of cycles due to interaction of the initial

conditions with the cyclic permutation. After the

transient period, all populations approach the same

long-term growth rate. The effect of initial stage

structure on the population size can be analyzed by

looking at the sensitivity of the population size to the

initial stage structure (Fox and Gurevitch 2000).

The initial population structure can also have a large

effect on the elasticities of population size. For the

immediate elasticity associated with element c44, all

combinations of initial conditions with cyclic permuta-

tions result in different approaches to the asymptotic

value (Fig. 3). In the CW cycle, when the initial

population is concentrated in class 1, the immediate

elasticity of population size to perturbations of c44
quickly reaches its asymptotic value. In contrast, when

the initial population is concentrated in the deepest soil

layer (class 4), the elasticity begins at 0.65 and slowly

decreases to reach its asymptotic value of 0.196 (Table

3). In the WC rotations, when the population is

concentrated in either the top or bottom layer (class 1

or 4), e44 begins higher than if the population is

concentrated in either of the middle two layers (class 2

or 3). Even when the population is at its stable structure,

the transient elasticities are still quite far from their

asymptotic values (Fig. 3). There is, however, no

difference between cyclic permutations (see Discussion

for an explanation of this result).

Effects of the time of observation

Another aspect to consider is the time of observation

relative to phases in the environmental cycle. The impact

of a perturbation will differ depending on whether one

observes the population directly after the perturbation,

or at some other point in the cycle. For example, with

regard to perturbations of c11 and c12 in the CW cycle

and having the initial population concentrated in the

uppermost soil layer (class 1), perturbations will have a

larger effect when observed at the end of the entire CW

cycle, rather than if the population is observed directly

after the C cycle (Fig. 2a and c).

DISCUSSION

Previous methods for examining transient dynamics

of matrix population models have been limited to non-

periodic systems (Fox and Gurevitch 2000, Yearsley

2004). We have presented new analytic methods for

examining the transient sensitivities and elasticities of

periodic matrix models, and have demonstrated how

they can be applied. An important outcome of our work

is a method for calculating the effects of perturbations

immediately after a particular environmental phase,

rather than just at the end of a cycle of environments.

This method enables comparison of the effect of

perturbations to life history-transitions, between envi-

ronments in different cyclic and noncyclic permutations.

Below, we discuss implications for population manage-

ment in periodic systems, and discuss insights from our
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analysis that are also applicable to non-periodic matrix

models.

Understanding and managing periodic systems

Our methods can be used to answer several questions

relevant to the management and monitoring of cycles

regardless of whether they are composed of independent

or dependent environments. One question concerns

when, in an environmental cycle, to make a major

disturbance to the population vector, such as restocking

fisheries or reducing the population size of an invasive

species. As we have shown, the effect of a major

disturbance to the population vector will depend on

when in the cycle it is carried out. A second question is

how to design effective monitoring programs. The fact

that the effect of a perturbation depends on when it is

observed in the cycle allows managers, for example, to

target monitoring at the points in the cycle when the

effect is expected to be greatest and therefore most

discernible.

Another question is which cyclic permutation to use

when implementing a new management strategy. This

question is relevant for systems composed wholly or

partly of independent environments. One criterion for

choosing a permutation is target population size. Given

the initial population size, a manager could implement

the cyclic permutation that achieves the target popula-

tion size the fastest. Alternatively, a manager may wish

to take advantage of a particular pattern of elasticity

values, as some transitions may be more practical to

perturb. The pattern of elasticities becomes particularly

relevant when the difference in population size between

cyclic permutations is relatively small and so the criteria

of target population size is not an issue. The cyclic

permutation, therefore, could be chosen such that

perturbations to those easily perturbed transitions will

have the largest impact. However, because an observed

effect is due to past as well as the most recent

perturbation, careful analysis of the interaction of initial

conditions with the life-history transitions is imperative.

Finally, when there is uncertainty concerning initial

population structure, a manager could choose to use the

cyclic permutation that is least sensitive to the initial

population structure, e.g., in our example, using

permutation WC rather than CW, as shown in Fig. 3.

Remarks on perturbation analysis

of matrix population models

As transient sensitivity analysis of matrix population

models has only recently received scrutiny, there are

some aspects concerning perturbation analysis of both

periodic and non-periodic matrix models that merit

highlighting. These aspects are related to the interpre-

tation of transient elasticities and sensitivities and

transient dynamics even when the population is in the

stable distribution.

FIG. 3. The effect of different initial stage structures on the immediate elasticity (scaled by time) of population size to
perturbations to the transition for remaining in the bottom layer in the carrot phase (c44), for both permutations (CW and WC).
The asymptotic elasticity associated with c44 is e44 ¼ 0.196 (Table 3).
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First, the perturbation analysis shown in this study

corresponds to a permanent change in a life-history

transition rate (i.e., a press perturbation sensu Bender et

al. [1984]). For example, the high elasticity associated

with element c11 in the second cycle of the carrot-wheat

permutation (Fig. 2a) is due to the perturbation during

the first cycle, and its interaction with the first wheat

crop. Consequently one cannot choose to perturb a

transition when the elasticity is the highest and expect

the outcome to be similar to the results of the analysis.

Furthermore, one cannot simply perturb a single

element for several time steps and then change to

another element and expect similar results as given by

the transient elasticity analysis. Rather, a new transient

analysis must be carried out using the population size

and structure resulting from the first perturbation

events.

Second, even if the population is at its stable stage

structure, it will not necessarily settle into the asymp-

totic elasticities immediately (see example in Yearsely

[2004] and Fig. 3). In fact, it can take many generations

until the ranking of the asymptotic results is achieved,

by which time the system may have been disturbed by

unforeseen factors. This is a consequence of the fact

that a perturbation will also perturb the population

structure and can be seen by examining the first

component ((S(t; akl)f[n(0)]/||w(1)||g)) of Eq. 3, because
Dn(0) ¼ 0 (Yearsley 2004). With regard to periodic

systems, there may be slight differences in the immedi-

ate elasticities between cyclic permutations depending

on which stable structure one examines, but one would

expect the differences to be negligible (Fig. 3).

Further application of our methods

To focus attention on aspects of transient analysis

that are particular to periodic systems, we considered

transient dynamics of total population size only. In

many cases, this may be sufficient, as managers may be

more interested in maximizing or minimizing total

population size rather than that of a single class.

Furthermore, it appears that the pattern of transient

sensitivities and elasticities of population size tend to be

dominated by a single stage (S. K. Mertens, J. M.

Yearsley, F. van den Bosch, and C. A. Gilligan,

unpublished results). Consequently, while a particular

stage may be very sensitive to a given transition, its

impact on total population size may be relatively small.

Using our methods, all of the stage specific analyses

illustrated by Fox and Gurevitch (2000) and Yearsley

(2004) can be carried out. These can be useful for

comparing predictions with observations when some

population classes are difficult to observe.

Our analysis has focused on perturbing a single life-

history transition, while other transitions are kept

constant. This approach is useful for highlighting

important transitions. However, because the essence of

transient elasticities and sensitivities is that they change

with time, in a management context it can be

particularly relevant to explore the effects of changing

more than one element at a time. As one element

becomes more important, another element will decrease

in importance, therefore it may be useful to consider

perturbations to multiple elements. Caswell (2001)

shows how to calculate multiple perturbations; these

can easily be extended to transient analysis and periodic

systems with the methods described here and by Fox and

Gurevitch (2000) and Yearsley (2004).
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APPENDIX A

A discussion of the effects of cyclic permutations and initial conditions on the transient dynamics of a tropical grass (Andropogon
semiberbis) exposed to alternating burn and nonburn environments (Ecological Archives E087-141-A1).

APPENDIX B

Derivation of the equation for within-cycle sensitivity (Ecological Archives E087-141-A2).

SUPPLEMENT

Matlab scripts for calculating the sensitivity and elasticity of population size for periodic matrix models (Ecological Archives
E087-141-S1).
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