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Purpose: We observed four individuals in two unrelated but
consanguineous families from Portugal and Brazil affected by early-
onset retinal degeneration, sensorineural hearing loss, microcephaly,
intellectual disability, and skeletal dysplasia with scoliosis and short
stature. The phenotype precisely matched that of an individual of
Azorean descent published in 1986 by Liberfarb and coworkers.

Methods: Patients underwent specialized clinical examinations
(including ophthalmological, audiological, orthopedic, radiological,
and developmental assessment). Exome and targeted sequencing was
performed on selected individuals. Minigene constructs were assessed
by quantitative polymerase chain reaction (qPCR) and Sanger
sequencing.

Results: Affected individuals shared a 3.36-Mb region of autozygosity
on chromosome 22q12.2, including a 10-bp deletion (NM_014338.3:
c.904-12_904-3delCTATCACCAC), immediately upstream of the last
exon of the PISD (phosphatidylserine decarboxylase) gene. Sequencing

of PISD from paraffin-embedded tissue from the 1986 case revealed the
identical homozygous variant. In HEK293T cells, this variant led to
aberrant splicing of PISD transcripts.

Conclusion: We have identified the genetic etiology of the Liberfarb
syndrome, affecting brain, eye, ear, bone, and connective tissue. Our
work documents the migration of a rare Portuguese founder variant to
two continents and highlights the link between phospholipid
metabolism and bone formation, sensory defects, and cerebral
development, while raising the possibility of therapeutic phospholipid
replacement.
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INTRODUCTION
The enzyme phosphatidylserine decarboxylase (PISD) is
responsible for the conversion of phosphatidylserine (PS) to
phosphatidylethanolamine (PE), a process that is essential in all
living organisms.1 PE is an abundant phospholipid in cellular
membranes and is particularly enriched in mitochondrial
membranes. PISD is located in the inner mitochondrial
membrane of eukaryotic cells2 and it was shown to be essential

for the production of PE in situ.3 Experiments in mice have
shown that complete inactivation of PISD causes lethality
during embryonic development, with no embryos surviving
further than embryonic day 12, and histologic images revealed
aberrantly shaped and fragmented mitochondria.4 Although
this enzyme has been studied extensively in model organisms
due to its essential function in eukaryotes, little is known about
the role of PISD in relationship to human health and disease.
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Here, we report the identification of a genetic and likely
hypomorphic variant in PISD, found in homozygosity in five
individuals from three families sharing a severe multisystem
disorder involving brain, eye, ear, bone, and connective tissue.

MATERIALS AND METHODS
Patients and families
This study was performed according to the tenets of the
Declaration of Helsinki, following the signature of written
informed consent forms (including the use of images, if
applicable) by the patients and their family members and the
approval by the institutional review boards of our respective
institutions.

Next-generation sequencing
Genomic DNA was extracted from peripheral blood leukocytes
according to standard procedures, and then exome libraries
(Agilent SureSelectXT Reagent Kit; Agilent Technologies) were
sequenced on an Illumina HiSeq 2500 at the Genomic
Technologies Facility in Lausanne, Switzerland. Bioinformatic
analyses were performed as described previously.5 Briefly, raw
reads were mapped to the human reference genome (hg19/
GRCh37) using the Novoalign software (V3.08.00, Novocraft
Technologies). Next, Picard (version 2.14.0-SNAPSHOT) was
used to remove duplicate reads and Genome Analysis Toolkit
(GATK) (version 3.8)6 was used to perform base quality
score recalibration on both single-nucleotide variants and
insertion–deletions. A VCF file with the variants was generated
by HaplotypeCaller. Then, DNA variants were filtered based on
quality, frequency in ExAC, gnomAD,7 1000 Genomes,8 ESP
(NHLBI Exome Variant Server, http://evs.gs.washington.edu/
EVS), GME (GME Variome http://igm.ucsd.edu/gme/index.
php), and ABraOM,9 and on predicted impact on protein
sequence and messenger RNA (mRNA) splicing. Finally, they
were annotated according to a specific in-house pipeline.5

Homozygosity mapping and haplotype analysis
Large segments of homozygosity (>1Mb) were computed
from exome sequencing data with a tool developed in-house,
AutoMap (unpublished), enabling the detection of shared
regions of homozygosity in multiple probands. Then,
sequences were visualized to detect shared haplotypes.

Sanger sequencing
To confirm the PISD variant identified by next-generation
sequencing (NGS), polymerase chain reaction (PCR) ampli-
fication and Sanger sequencing were performed using
standard reagents and conditions. The sequences of the
primers used in these experiments are 5′-gagtgggactccaaaca-
catgt-3′ (forward) and 5′-gaatgcaggctcttccgtctat-3′ (reverse).

In silico analysis of the variant
Annotation of chr22:g.32015826_32015835del was verified by
VariantValidator10 and its predicted effect on splicing was

assessed with MaxEntScan,11 HumanSpliceFinder,12 Splice-
Port,13 NNSplice,14 and SpliceAI.15

Minigene splicing assay
The genomic sequences of the PISD gene of one patient and a
control individual spanning exon 8 – intron 8 – exon 9 and
containing the putative splicing variant were amplified by
PCR with oligos carrying the recombinant sites attB1 and
attB2 (forward 5′-ggggacaagtttgtacaaaaaagcaggctgctccctgatgt-
cagtgaac-3′ and reverse 5′-ggggaccactttgtacaagaaagctgggtcta-
gagcgagcccagggctt-3′). This minigene was then cloned into a
pDEST26 vector (Gateway cloning system, Thermo Scienti-
fic). All plasmids were sequenced to verify the correct
insertion of mutated and wild-type DNA fragments. The
splicing assay was performed by transiently transfecting
HEK293T cells with each minigene plasmid using FuGENE
HD (Promega). At 24 hours post-transfection, cells were
harvested and total RNA was extracted. This was subse-
quently reverse-transcribed with GoScript (Promega), using
oligo-dT probes. The complementary DNAs (cDNAs) of both
plasmids were then amplified with sequence-specific primers
(5′-gtacaaaaaagcaggctg-3′ and 5′-gtcattgtaggagccctt-3′). PCR
products were separated by agarose gel electrophoresis and
fragments were analyzed by Sanger sequencing.

Quantitative real-time PCR assay (qPCR)
The expression levels of the wild-type (WT) construct and the
one bearing the deletion (del) were assessed using the SYBR
green technology (FastStart Universal SYBR Green, Roche) in a
QuantStudio 12K Flex real-time PCR system (Applied Biosys-
tems). RPLPO and GAPDH were used as endogenous reference
genes to normalize the results. A specific primer pair was used
for the amplification of the correctly spliced transcript (forward
5′-ccatcaccatcaccatcactc-3′ and reverse 5′-gccttgggctgtttgtgt-3′).
The size of the amplified products was verified by the presence
of a single melting peak at the appropriate temperature and
their relative expression level was assessed by the ddCt method
and by taking into account efficiency of each primer pair.
Significance of the difference between two groups was calculated
with unpaired Student’s t-test, assuming equal variance.

Targeted variant sequencing of DNA from paraffin-
embedded tissue
DNA was extracted from paraffin sections of tiny esophageal
biopsies using Nucleospin DNA FFPE (Macherey-Nagel)
following manufacturer guidelines. The high-quality DNA was
then PCR amplified and sequenced by capillary electrophoresis
using the following primers: forward 5′-gcgtcacgaagctgaagtca-3′
and reverse 5′-gagtgggactccaaacacatgt-3′.

Estimation of the degree of consanguinity between
affected individuals 1 to 4
In general, an individual having parents who are siblings is
expected to have 100/4= 25% of autozygous regions across
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their entire genome, and 100/16= 6.25% if the parents are
first cousins. This can be generalized to 100/2n for parents
distant by n degrees of relationship (meioses).16 In this
report, affected individuals 1, 2, and 3 shared a common
autozygous haplotype of 3.36 Mb, corresponding to
approximately 0.1% of the human genome. We calculated
that this haplotype’s size corresponds to 9.92 estimated
meioses, suggesting that the Portuguese and Brazilian
patients had a common ancestor approximately five
generations ago. Of note, these data do not allow us to
estimate the age of the variant itself, which might be
significantly older.

RESULTS
Clinical evaluation
Family 1: patients 1 and 2

Patient 1 is a currently 22-year-old man of Portuguese origin,
the first child of a healthy couple where parents are second
cousins once removed; the maternal grandfather and the
paternal great-grandmother were siblings (Fig. 1a). He was
referred to genetics at age 2 years 10 months for short stature,
generalized joint laxity, and suspicion of skeletal dysplasia. He
was born at 38 weeks after an uneventful pregnancy by
Cesarean section for pelvic presentation. At birth, weight was
3.4 kg (0 SD), length 47 cm (P5, −1.7 SD), and
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Fig. 1 Pedigrees of the three families segregating the Liberfarb syndrome associated with homozygosity for an intronic deletion in PISD.
(a) Family 1 is from Portugal; (b) family 2 from Brazil; and (c) family 3, who was the object of the first clinical description of this condition,17 resided in the
United States but originated from the Azores islands. (d) Sanger sequencing of the variant, in controls and patients.
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occipital–frontal circumference (OFC) 37 cm (+1.5 SD). He
was admitted to the neonatal unit for 2 days because of
respiratory difficulties, with a favorable clinical evolution.
Investigation at this point consisted of a karyotype (46,XY),
transfontanellar and abdominal ultrasound with normal
results, hemogram and thyroid function with normal results,
and skeletal survey. Postnatal growth was below −2 SD for
length/stature with bilateral hip dislocation as well as severe
kyphoscoliosis developing during childhood. Kyphoscoliosis
was surgically corrected at age 7 years. Bilateral hip
dislocation was treated by traction followed by surgical
repositioning with subsequent relapse requiring an additional
intervention with osteotomy. Elbow joint dislocation became
more pronounced. Height at 11 years was 98.5 cm (P≪ 3,
−7.54 SD); current adult height is 130 cm (P≪ 3, −7.55 SD).
Notably, the cranial circumference growth curve also drifted
toward the 5th percentile.
Developmental milestones were delayed (head control at

3 months; sitting alone at 8/9 months; first words after 2
years; walking alone at around 4 years), possibly in part
secondary to orthopedic findings. Learning difficulties were

noted at preschool and a developmental evaluation at 5 years
1 month revealed a global IQ of 50.1; at 7 years 6 months IQ
was 68.8 and at the age of 16 years a WISC-III testing revealed
a moderate intellectual deficit with a verbal IQ of 46; attention
deficit was also reported.
An ophthalmologic evaluation at age 7 revealed best

corrected visual acuity (BCVA) of 20/800 for distance and
20/250 for near, with no significant refractive error. A
horizontal/torsional manifest nystagmus was detected after
age 5 years, which dampened in convergence and in
lateroversion. After age 9 years, it became obvious that the
proband was mostly using an eccentric point of fixation.
Fundus examination disclosed optic disc pallor, generalized
mottling of the retinal pigment epithelium (RPE) with areas
of atrophy interspersed with pigmentary changes. Bone
spicules were identified in the midperiphery and vascular
caliber was reduced, rapidly evolving to peripheral avascular
areas with remaining ghost vessels (Fig. 2d). These findings,
in association with a nonrecordable electroretinogram (ERG)
at age 8 years, are compatible with a diagnosis of severe early-
onset retinal degeneration (EORD). At age 7 years, suspicion

a b c d j
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e
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Fig. 2 Clinical synopsis. (a–c) Patient 4 at the age of 9 years. There is a marked spinal deformity with forward tilting of the pelvis (because of bilateral hip
joint dislocation), exaggerated lumbar lordosis, and dorsal kyphosis with scoliosis. Features are identical to those of patient 5 (Fig. 2 in Liberfarb et al.,
1986).17 (d) Ocular fundus examination of patient 1 at age 9 years showing optic disc pallor, generalized mottling of the retinal pigment epithelium (RPE)
with areas of atrophy interspersed with pigmentary changes, and “bone spicules” identified in the macula and the midperiphery. Vascular caliber was
reduced, with peripheral areas being avascular with remaining ghost vessels. (e) Fundus of patient 2 at age 6 years showing atrophy of the optic disc,
extremely thin vessels, atrophic central macular area with pigment clumping. (f–k) Skeletal features including bilateral hip dislocation with femoral head
dysplasia (patient 3, age 7 years), dislocation of ulna and radial head at the elbow (patient 5, age 15 years), severe epiphyseal dysplasia with striations of
metaphyses (patient 3, age 7 years), delay in carpal and phalangeal ossification but no marked dysplasia (patient 3, age 2 years), platyspondyly but no spinal
deformity at age 2 months, and extremely severe spinal deformity at adult age (patient 5).
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of hypoacusis was substantiated with an audiogram revealing
an auditory threshold at 60 dB bilaterally. Subsequently,
evoked acoustic potentials confirmed bilateral sensorineural
hearing loss with electrophysiological thresholds at 50 and 60
dB respectively in the right and left ears, and hearing aids
were prescribed. More recently, symptoms of nasal obstruc-
tion have appeared due to hypertrophy of conchae. No other
health problems were noted. Neurological examination was
unremarkable. Dentition was normal.
Patient 2 is the younger brother of patient 1. Pregnancy was

normal including third trimester ultrasound. He was born at
38 weeks by Cesarean section with weight 3.2 kg (P25), length
47 cm (P < 5, −1.7 SD), OFC 36.5 (P50–75, approximately +1
SD), and Apgar 10/10, and was admitted to the neonatal unit
for hypotonia for 7 days with a good evolution. He was
referred to genetics at age 4 months because of short stature
and short limbs. At age 9 months he had short limbs, short
thorax, short neck, and joint laxity with limitation of elbow
extension. While global development was normal at 9 months,
later language development was delayed. A global develop-
ment evaluation at 4 years revealed an IQ of 66; at 7 years his
IQ was 52, with attention deficit also reported; at 11 years his
global IQ was 41. Sensorineural hearing loss was diagnosed at
the age of 3 years. Ophthalmological examinations revealed a
similar, yet more severe, ocular phenotype as his older sib,
since a sensory horizontal nystagmus was noted at age 2 years.
At his last examination at age 6 years, he presented a BCVA of
20/400 for distance and 20/200 for near. Fundus examination
disclosed findings compatible with severe EORD, revealing
bilateral optic atrophy, areas of RPE atrophy and hyperpig-
mentation in the macula, peripheral bone spicules, and thin
retinal vessels (Fig. 2e). At 6 years, seizures with fever
occurred and he was admitted to hospital for encephalitis.
Orthopedic complications included knee dislocation with
valgus left knee, bilateral necrosis of femoral head and pes
planus, with surgery performed on left knee and feet, and
mild scoliosis. Current weight (age: 12 years) is 27 kg (P < 5;
−3 SD), current height is 121 cm (P≪ 5, −4.32 SD).

Family 2: patients 3 and 4
These two affected brothers were born to healthy Brazilian
parents who were first cousins (Fig. 1b). Patient 3 was born at
term, after an uneventful pregnancy. At birth, weight was 2.8
kg (P10; −1.5 SD), length 44 cm (P < 3; −2.2 SD), and OFC
36 cm (P75; +1 SD). Motor development was retarded: sitting
and walking without support were possible at the ages of 1
year 6 months and 4 years respectively. Scoliosis was noted by
the parents “very early.” Clinical examination at the age of 14
years 6 months revealed the following values: height 91.5 cm
(P≪ 2; approximately −8 SD), weight 12.4 kg (P≪ 2;
approximately −9 SD), and OFC 49.5 cm (P≪ 2; −4 SD).
He had severe scoliosis, lumbar lordosis, thoracic kyphosis,
bilateral hip dislocation, and bilateral impairment of elbow
extension. Language was rudimentary.
Patient 4 was born after an unremarkable full-term

pregnancy. Primary adaptation was good. At birth, weight

was 3.0 kg (P25; −1 SD), length 44 cm (P < 3; −2.2 SD), and
OFC 36 cm (P75). He sat and walked without support at the
ages of 1 year 3 months and 3 years, respectively. Scoliosis was
observed by the parents since the first year of life. Clinical
examination at the age of 11 years 9 months revealed height
100.5 cm (P≪ 2; approximately −6 SD), weight 15.5 kg (P≪
2; approximately −5 SD), and OFC 48 cm (P≪ 2; approxi-
mately −5 SD). He had scoliosis, lumbar lordosis, and
bilateral impairment of elbow extension (Fig. 2a–c). There
was developmental delay (not formally measured) and very
poor language development.
In both patients 3 and 4, brainstem auditory potentials were

normal. There was a concern for bilateral cataracts in patient
3, but a formal ophthalmological evaluation could not be
performed. However, brain magnetic resonance image (MRI)
showed, in both sibs, bilateral optic nerve atrophy and
cerebellar atrophy affecting the upper portion of the vermis
and the hemispheres. Neurological examination including
electromyography (EMG) and neural conduction studies
ruled out myopathy and peripheral neuropathy. Patient 4
had onset of seizures at the age of 11 years and has been on
anticonvulsant medication since.

Family 3: patient 5
Detailed clinical features of this patient as a girl were
published in 1986.17 The patient continued to be followed
after initial publication until her death at age 35 years. Briefly,
the girl was born to consanguineous parents who had
immigrated to the United States from the Azores islands
(Portugal). She had first been hospitalized in Portugal at age
17 months for failure to thrive; short stature was noted with
marked delay of bone age. Repeat hospitalization at 3 years
8 months of age noted short stature (P < 5), early retinal
changes, 25° thoracic scoliosis, lordosis, and hyperextensible
joints including marked genu valgum and dislocatable hips.
At time of her first hospitalization in Boston (Boston
Children’s Hospital), at age 7 years 6 months, examination
continued to show short stature as well as respiratory
difficulty with subglottic tracheal stenosis, tapetoretinal
degeneration, sensorineural hearing loss, and developmental
delay. Musculoskeletal problems included thoracic scoliosis
increased to 90°, bilateral genu valgum passively positioned to
60°, and bilateral dislocated patellae, dislocated hips, and
elbow deformities with dislocated radial heads. Initial surgical
management included tracheostomy, bilateral
Roux–Goldthwait procedures for patellar dislocation and
posterior spinal fusion. In summary, the main observations in
this patient were short stature, severe scoliosis, joint laxity,
skeletal dysplasia, pigmentary degeneration of the retina,
severe sensorineural hearing loss, and moderate develop-
mental delay. No additional orthopedic procedures were
performed after spinal fusion as described in the original
report. Orthotic support continued over several years with
bilateral knee–ankle–foot orthoses and spinal support
thoracic–lumbar–sacral orthoses. The patient died at age 35
years following cardiac arrest and anoxic encephalopathy.
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The five patients shared a similar clinical pattern. One
component was a progressive disease of bone and connective
tissue. At birth, there was no scoliosis and no overt joint
dislocations. During childhood, the combination of epiphyseal
dysplasia and joint laxity resulted in luxation of the femoral
head and even more significantly in progressive, severe spinal
deformation with lumbar hyperlordosis, thoracic kyphosis,
and variable degree of scoliosis (Fig. 2). Joint laxity at the knee
joint resulted in severe genua valga. Luxation of the radial
head also developed in the first decade. Essential radiographic
features were delayed vertebral ossification (but no platy-
spondyly); markedly delayed ossification of all epiphyses,
contributing to joint instability and retarded bone age; and
fine metaphyseal striations observed in childhood x-rays,
especially at the knees (Fig. 2f–k). The formal classification is
that of a spondyloepimetaphyseal dysplasia with predomi-
nantly epiphyseal involvement; however, as confirmed by the
follow-up of patient 5, severe joint instability with joint
dislocations and progressive severe spinal deformation were
clinically more significant than the skeletal dysplasia. The
second cardinal feature in affected individuals was retinal
degeneration. This became clinically apparent in childhood.
Detailed ophthalmological evaluation was available for
patients 1, 2, and 5 (the findings in patient 5 were published
in 1986).17 Patients 3 and 4 had optic atrophy on MRI. The
fundus findings were pale optic disks, RPE mottling, severely
reduced caliber of the retinal vessels, and areas of bone spicule
pigment deposition (Fig. 2d, e). ERG was nonrecordable in
patient 1 at age 8 years. These findings are compatible
with EORD.
Similarly, microcephaly was not present at birth but was

present in all patients at school age, when it also became clear
that developmental delay was significant. The data about
hypoacusis are unfortunately not very detailed but are
compatible with moderate to severe early-onset loss of
hearing, rather than with congenital deafness. Thus, the
Liberfarb syndrome appears to be a progressive disorder
involving connective tissue, bone, retina, ear, and brain.

Genetic and molecular findings
Next-generation sequencing
Because of the association of spondyloepimetaphyseal dyspla-
sia and severe joint laxity, and in spite of the pedigree
suggestive of recessive inheritance, individuals 1 to 4 were
originally evaluated for the presence of monoallelic KIF22
variants associated with spondyloepimetaphyseal dysplasia
with joint dislocations, leptodactylic type (SEMDJL; MIM
603546); no such variants were detected. Subsequently, exome
sequencing was performed on three affected children, two
from the Portuguese family (patients 1 and 2, Fig. 1a) and one
from the Brazilian family (patient 3, Fig. 1b). As parental
consanguinity had been reported in both families, we searched
for large segments of homozygosity and found two regions
that were homozygous in these three subjects (all positions
refers to genome build hg19): chr1:66,067,109-84,880,380
(18.8 Mb) and chr22:28,389,453-34,022,284 (5.63 Mb). No

rare (allele frequency <1% in available databases and in-house
exomes) coding variants were detected in these regions.
Through sequence comparison, we found that a part of the
region on chromosome 22 was not only fully homozygous in
all three individuals, but also shared the same haplotype in the
three children (chr22:29,456,733-32,811,952, 3.36 Mb). The
investigation for noncoding rare variants identified only one
homozygous variant: chr22:g.32015826_32015835del;
NM_014338.3:c.904-12_904-3delCTATCACCAC, p.(?). This
10-bp deletion, located in intron 8 of the PISD gene at
positions from −3 to −12 before the splice acceptor site of the
last exon of the gene (exon 9), was predicted to moderately
impair the correct splicing of intron 8 by five different splicing
predictors (Supplementary Table 1). Familial analysis con-
firmed that the variant cosegregated with the disease in both
pedigrees, according to a recessive pattern of inheritance
(Fig. 1). The exome sequence data was reanalyzed for other
putatively pathogenic variants in the shared haplotype region,
and none was identified. Targeted Sanger sequencing of the
DNA of individual 5 (Fig. 1c), extracted from a paraffin-
embedded surgical biopsy of the esophagus, confirmed the
presence of the same 10-bp deletion identified in the other
affected individuals (Fig. 1d).

Splicing alterations resulting from the variant in PISD
To functionally test the putative consequences of the deletion
and in absence of suitable patient-derived material, we
performed minigene-based splicing experiments. We designed
a minigene plasmid bearing the last two exons of PISD, with
and without the microdeletion identified in the patients, for
the purpose of expression in a mammalian cell line (Fig. 3a).
After plasmid transfection and incubation in HEK293T cells,
we examined transcripts originating from plasmids bearing
the pathogenic variant versus their wild-type counterpart. We
found that the deletion prevented the proper recognition of
the natural acceptor splice site of intervening sequence 8 and
led to production of both correctly spliced mRNA and
transcripts bearing the full retention of intron 8 (Fig. 3b, c,
Supplementary Fig. 1). In turn, this latter event resulted in the
creation of a premature stop codon within this intron, and
possibly to nonsense-mediated decay (NMD)–triggered
degradation. If, for any reason, these aberrant transcripts
were to escape NMD mechanisms,18 their further translation
into a protein is predicted to produce a truncated protein
lacking the last 74 amino acids, including its portion
containing the decarboxylase alpha chain and the cleavage
site for autocatalysis, as predicted by UniProt.19

Quantitative PCR analyses in this in vitro model indicated
that the proportion of correctly spliced mRNA transcripts
from plasmids bearing the deletion was only 5.7% compared
with transcripts from plasmids carrying the wild-type
minigene (Fig. 3d).

DISCUSSION
The four living individuals we studied shared a complex
multisystem phenotype including microcephaly, early-onset
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retinal degeneration, hearing loss, intellectual disability, severe
joint laxity, and short stature with skeletal dysplasia. This
combination of clinical features is unusual and led us to
speculate that they could share a common molecular basis,
possibly the same described more than 30 years ago by
Liberfarb and coworkers in a single case (individual 5 in this
report).17 We also noted that the three families seemed to
share a Portuguese ethnic background (the Azores islands are
part of Portugal, and Brazil has a strong Portuguese
admixture as a former Portuguese colony). DNA sequencing
confirmed that all five patients were homozygous for a single
variant in PISD, within a shared haplotype, likely due to the
presence of a common ancestor for all of them approximately
five generations ago. Importantly, no other rare variant was
detected within the parts of autozygous regions covered by
exome sequencing, including the one on chromosome 1.
The homogeneity of this rare phenotype (which we propose

to call the Liberfarb syndrome) in these independently
ascertained patients from three different continents, as well as
the genetic data obtained, strongly suggest the causal relation-
ship between the observed PISD variant and the clinical
phenotype. The transfection experiments confirm the effect of

this intronic deletion on mRNA splicing. However, the
pathogenesis of this disorder and its pleiotropism remain
unexplained. PISD is a fundamental biosynthetic protein that
has been studied extensively in model systems, due to its central
role in lipid and membrane biology.1–4,20–22 After synthesis, it is
transposed to the inner mitochondrial membrane, where it is
responsible for the transformation of phosphatidylserine to
phosphatidylethanolamine (PE) by decarboxylation, constitut-
ing a major source of PE in cells; the other principal PE-
biosynthetic pathway being the CDP-ethanolamine pathway
(Fig. 4). These two pathways, occurring in different subcellular
compartments, are both required for mammalian viability,4,23,24

evoking the existence of distinct pools of PE with dedicated
biological function. For instance, PISD is required to maintain
mitochondrial PE (mtPE), as PE imported from the CDP-
ethanolamine pathway alone cannot sustain adequate mtPE
levels.3,25,26 In turn, mtPE determines key biophysical properties
of the mitochondrial membrane, through acting as a modulator
in mitochondrial fusion and in the biogenesis of mitochondrial
membrane proteins.22,27 Complete knockout of PISD function
in mice leads to embryonic lethality combined with aberrant
morphology of mitochondria, indicating that this protein is
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probably essential for survival in humans as well. However,
heterozygous animals expressing 50% of normal Pisd mRNA
had regular mtPE content in tissues and appeared phenotypi-
cally normal.4 The presence of a single functional PISD allele
seems to be tolerated also in humans, since several presumably
healthy carriers of heterozygous loss-of-function variants are
reported in the gnomAD database (32 variants with a
cumulative frequency of ~0.05%).7 Based on our data from
in vitro splicing experiments, it is likely that homozygotes for
the variant identified here do not lack PISD function
completely, as a small proportion of full-length transcripts
could still be detected. Their phenotype may therefore result
from a severe but not complete loss of protein activity.
Two recent studies reported an association between variants

in PISD and human genetic disorders. In one report, a
homozygous variant causing a NM_014338.3:c.797G>A, p.
Cys266Tyr substitution in PISD was found in two individuals
from distantly related families, with a skeletal phenotype
classified as SEMD, apparently without other clinically
significant manifestations.28 We have been able to review
the original radiographs (courtesy of our colleague K. Girisha,
Manipal, India), and found that the radiographic features are
different; the condition observed by Girisha and coworkers
includes large (rather than small) epiphyses and does not
include joint dislocations, and those findings are at odds with

what we have observed in the cases described here. Absence of
extraskeletal manifestations (e.g., in eye or development) also
distinguishes that condition from the Liberfarb syndrome. A
second report associates the PISD variants NM_014338.3:
c.830G>A, p.Arg277Gln and c.697+5G>A in compound
heterozygosis in two sisters with a phenotype including short
stature, midface hypoplasia, infantile cataracts, hypomyelina-
tion, ataxia, and intellectual disability.29 The publication does
not provide x-ray images; some skeletal changes are
mentioned but were considered “not suggestive of a primary
skeletal dysplasia.” The global phenotype in those two sisters
was considered reminiscent of the CODAS30,31 and EVEN-
PLUS5 syndromes (in spite of those two conditions having
significant skeletal changes), caused by biallelic variants in the
two mitochondrial chaperones LONP1 and HSPA9, and
experimental evidence was obtained suggesting an impair-
ment in the function of the mitochondrial membranes.
Furthermore, incubation of patients’ fibroblasts with lyso-
phophatidylethanolamine resulted in an improvement of
mitochondrial and lysosomal morphology.29

In summary, the available evidence suggests that recessive
PISD variants may be responsible for quite divergent clinical
phenotypes, possibly related to the severity of the variants
detected, ranging from apparently isolated skeletal dysplasia
to multisystemic conditions affecting brain, ear, eye, con-
nective tissue, and bone. Such a clinical spectrum and
pleiotropism is unusual and goes beyond what is usually seen
in bone dysplasia families. But how can this variability and
pleiotropism be explained? Zhao and coworkers29 have
suggested a possible link between the PISD-associated
condition they have observed and the CODAS and EVEN-
PLUS phenotypes, supporting the concept of “mitochondrial
chaperonopathies.”5 However, we must remark that variants
in two other genes involved in the phospholipid synthesis
pathway have also been linked to phenotypes combining
skeletal dysplasia and sensory disturbances (eye and ear):
biallelic PTDSS1 (phosphatidylserine synthase 1) variants
determine Lenz–Majewski hyperostotic dwarfism (MIM
151050),32 and biallelic PCYT1A (CTP-phosphocholine
cytidylyltransferase) variants are the cause of spondylometa-
physeal dysplasia with cone–rod dystrophy (MIM 608940).33

While both enzymes are also expressed in the mitochondrion,
the functional relationship between PISD, PCYT1A, and
PTDSS1 remains to be clarified. Of note, the precise
pathogenesis of either the mitochondrial chaperonopathies
or the phospholipid synthesis disorders listed here remains
largely unexplained. As a mere hypothesis, we speculate that
the PISD protein might have both a metabolic role (in
producing PE) and a structural role in the inner mitochon-
drial membrane, and that different pathogenic variants might
have different functional, and thus phenotypic consequences.
In conclusion, in this study we identified the molecular

cause of a multiorgan condition, which we suggest calling the
Liberfarb syndrome in honor of the ophthalmologist who first
described it in 1986. This disorder is caused by a specific
variant that appears to have been inherited from an individual
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of Portuguese origin, and has subsequently spread to three
geographical regions. The pathogenesis remains unclear, but
the accumulating evidence, including other rare families
segregating pathogenic variants in PISD, points to a
pleiotropic and variable phenotypic spectrum possibly related
to mitochondrial dysfunction (“mitochondrial chaperonopa-
thies”) and to phospholipid synthesis disorders. Much work
remains to be done to elucidate molecular pathogenesis and
genotype–phenotype correlations in these two groups of
disorders. At the end of this road, exogenous replacement
with specific phospholipids might be a welcome therapeutic
outcome.
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