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Measuring and Testing Multivariate Spatial

Autocorrelation in a Weighted Setting: A

Kernel Approach

François Bavaud

Department of Geography and Sustainability, Department of Language and Information Sciences,
University of Lausanne, Lausanne, Switzerland

We propose and illustrate a general framework in which spatial autocorrelation is mea-
sured by the Frobenius product of two kernels, a feature kernel and a spatial kernel. The
resulting autocorrelation index 𝛿 generalizes Moran’s index in the weighted, multivariate
setting, where regions, differing in importance, are characterized by multivariate features.
Spatial kernels can traditionally be obtained from a matrix of spatial weights, or directly
from geographical distances. In the former case, the Markov transition matrix defined by
row-normalized spatial weights must be made compatible with the regional weights, as well
as reversible. Equivalently, space is specified by a symmetric exchange matrix containing
the joint probabilities to select a pair of regions. Four original weight-compatible con-
structions, based upon the binary adjacency matrix, are presented and analyzed. Weighted
multidimensional scaling on kernels yields a low-dimensional visualization of both the fea-
ture and the spatial configurations. The expected values of the first four moments of 𝛿 under
the null hypothesis of absence of spatial autocorrelation can be exactly computed under a
new approach, invariant orthogonal integration, thus permitting to test the significance of
𝛿 beyond the normal approximation, which only involves its expectation and expected vari-
ance. Various illustrations are provided, investigating the spatial autocorrelation of political
and social features among French departments.

Introduction

Spatial autocorrelation denotes the presence of a relation between the attributes or features
characterizing a set of regions and the spatial disposal of the regions. Measuring and testing
spatial autocorrelation is at the very heart of a large body of geographical analysis, and
innumerable formal and empirical studies have addressed this issue.
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Geographical Analysis

The mainstream framework on spatial autocorrelation, shared among the geographical
community, has arguably been achieved and stabilized in the seminal work of Cliff and
Ord (1973, 1981): Moran’s I , the most popular measure of spatial autocorrelation, is expressed
as a normalized, covariance-like similarity between the value of a numerical feature and the
average value of its neighbors, where the neighborhood relation is specified by a continuous (as
opposed to binary) nonnegative matrix of spatial weights. Testing the statistical significance of
Moran’s I is traditionally performed (a) either by computing its expected first moments under
the null hypothesis H0 of absence of autocorrelation, under the additional assumption that the
feature under consideration is normally distributed (normal test); or (b), by permuting the values
of the feature among the regions, and comparing the distribution of the permuted Moran’s I to
its observed value (permutation test).

Yet, as a general rule, regions differ in importance, and this circumstance requires the use of a
weighted formalism, where the regional weights are typically proportional to the regional areas in
Physical Geography, or to the number of inhabitants in Human Geography, or more precisely to the
number of specified actors such as voters, active people, commuters etc. depending on the scenario
under analysis. Dealing with weighted objects disqualifies the direct use of normal and permu-
tation testing procedures: statistical distributions are bound to depend on the regional weights:
for instance, the highest (and lowest) proportions of votes in favor of a given candidate in a
presidential election are always attained in the smallest populated municipalities, and exchanging
those extreme scores with those of the more populated municipalities in a permutation test seems
questionable.

Also, a great deal of contexts require to simultaneously take into consideration numerous
regional features, thus requiring a multivariate approach (see, e.g., Wartenberg 1985; Thioulouse,
Chessel, and Champely 1995; Dray and Jombart 2011; Anselin 2019; Lin 2020; Eckardt and
Mateu 2021, and references therein), as well as the definition of a sensible measure of
inter-regional dissimilarity, aptly summarizing the contrasts between regions.

The present study adopts such a weighted, multivariate framework, and systematically
investigates the properties of a multivariate, weighted index of spatial autocorrelation 𝛿,
which constitutes a direct generalization of Moran’s I (section Generalizing Morans in the
multivariate, weighted setting). 𝛿 expresses as a convex mixture (direct or spectral) of Moran’s
I (section Decompositions of δ), and turns out to linearly decompose into local indicators
(Anselin 1995).

On one hand, components of the row-standardized matrix of spatial weights W = (wij) repre-
sent a measure of influence of region j on region i, and constitute a central ingredient in autoregres-
sive models and measures of spatial autocorrelation. On the other hand, row-standardized spatial
weights formally constitute the transition matrix of a Markov chain (Bavaud 1998), and, given the
major impact of regional weights on spatial analyses, as well as the extreme versatility in which
spatial weights can be constructed, it seems highly commendable, for formal as well as conceptual
reasons, to design the spatial weights in a weight-compatible way, that is such that the stationary
distribution of the corresponding Markov chain precisely coincides with the regional weights,
supposed constant (section Regional weights, adjusted, and reversible spatial weights). One will
also require spatial weights W to be reversible, which constitutes a natural condition of symmetry
(section Obtaining adjusted spatial weights from the adjacency matrix). The construction of such
adjusted, reversible spatial weights permits in turn to define a spatial kernel by equation (21).

Kernels, well-known in Machine Learning, appear in Classical Data Analysis in the
(weighted) multidimensional scaling (MDS) procedure, generalizing both Principal Component

574

 15384632, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gean.12390 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [04/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Geographical Analysis A Kernel Approach to Spatial Autocorrelation

Analysis and Correspondence Analysis (section Illustration: political and social autocorrelation
among French departments). Weighted MDS is a weighted extension of the Torgerson–Gower
classical MDS procedure, and consists in spectrally decomposing the matrix of weighted scalar
products or kernel. The procedure yields a low-dimensional factorial visualization (factor scores)
of the feature configuration, as well as the inertia expressed by each factor (scree plot).
Applying the same procedure to spatial kernels yields a low-dimensional visualization of the
spatial configuration (Fig. 1). It requires the spatial kernel to be positive semi-definite (p.s.d),
which can always be insured, if necessary, by redefining the spatial weights as W2, the matrix
square of the initial spatial weights W, or, equivalently, by considering the matrix square
of spatial kernel itself (section Spatial kernels: visualizing the geographic space from spatial
weights).

Figure 1. First spatial coordinates x̂i𝛼 (24) extracted from spatial weights Wa (8) (top, left),
W2

b (9) (top, right), W2
c (10) with g = 0.001 (bottom, left) and W2

c with g = 0.1 (bottom, right).
Factors 𝛼 = 1, 2 have been swapped to ease the comparison with the geography of French
departments, which is fairly well restituted in the top maps, but much less in the bottom maps.
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Geographical Analysis

Central to the article is the fact (Theorem 3) that the autocorrelation index 𝛿 is proportional
to the Frobenius product of the features kernel and the spatial kernel: in the present approach,
features and space kernels, respectively, determined from DX and W (1), play a symmetric role.

Alternatively, spatial kernels can also be directly constructed from geographic distances D

as in (32), that is without needing to introduce spatial weights W: the proposed formalism seeks
to extend and unify various approaches to spatial autocorrelation under a single umbrella.

Last but not least, the Frobenius product expression makes 𝛿 proportional to the (weighted
version of the) so-called RV coefficient, proposed by Escoufier (1973) and Robert and
Escoufier (1976) as a general measure of similarity between two multivariate configurations.
Hence, any significance testing procedure for the RV coefficient can be directly translated into
a significance testing for 𝛿, and section Testing δ by invariant orthogonal integration relies
upon a recent weighted, non-parametric approach (Bavaud 2023), namely invariant orthogonal
integration, permitting to compute the first expected moments1 of 𝛿 under H0, yielding p-values
beyond the normal approximation through the Cornish–Fisher expansion (45).

Section Illustration: political and social autocorrelation among French departments illustrates
the formalism by defining three political and socioeconomic feature kernels on the 94 continental
French departments, together with four spatial kernels, all based upon the adjacency matrix
between departments. To each kernel corresponds a visualization of the (feature or spatial)
configuration of departments, as well as a scree plot, permitting to determine the spectral
moments, directly entering into the definition of the first expected moments for 𝛿. Depending on
the pair of kernels involved, its expected asymmetry and excess kurtosis can be large or small,
as well as positive or negative (Table 3), with direct consequences on the p-values associated to
the test of significance for 𝛿 (Table 4).

This article contains quite a few mathematical formulas, as possibly expected in an essay
in quantitative geography. Yet, to resume, its underlying rationale is fairly straightforward: in a
general weighted, multivariate setting, spatial autocorrelation 𝛿 simply expresses as a similarity
index between a feature kernel KX and a spatial kernel KW , proportional to their Frobenius
product. The spectral decomposition of the kernels, provided they are p.s.d., permits to visualize
the feature and the spatial configurations. This framework further allows a nonparametric
significance testing procedure for spatial autocorrelation, based upon the spectral moments of
the two kernels at stake. Most of the above is summarized in the following identities (26), (16)
and (21) derived and detailed in the sequel:

𝛿 =
Tr(KW KX )

Tr(KX )
KX = −

1
2

√
𝚷HDXH⊤

√
𝚷 KW = 𝚷

1
2 W𝚷−

1
2 −

√
f
√

f
⊤

. (1)

A multivariate, weighted measure of spatial autocorrelation: the 𝜹 index

Regional weights, adjusted, and reversible spatial weights
Consider a set of n regions differing in importance (by population, area, wealth, etc.), together with
regional weights f ∈ R

n, where fi > 0, obeying f• =
∑n

i=1 fi = 1, reflects the relative importance
of region i.

Row-standardized spatial weights W = (wij) ∈ R
n×n are nonnegative (wij ≥ 0) and normal-

ized to wi• =
∑n

j=1 wij = 1: they constitute the components of a Markov chain transition matrix
W, specifying the conditional probability to visit region j immediately after visiting region i
(Bavaud 1998). In standard geographical and econometrical applications, W is regular, that is
irreducible (all regions communicate) and aperiodic (return times are not restricted to multiples
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Geographical Analysis A Kernel Approach to Spatial Autocorrelation

of t = 2, 3, … ). As a consequence (see, e.g., Levin and Peres 2017), W possesses a unique
stationary distribution 𝝅 (with 𝜋i > 0 and 𝜋• = 1) obeying W⊤

𝝅 = 𝝅.
Spatial weights W = (wij) are meant to model spatial proximity, spatial interaction, mutual

influence, etc. between pairs i, j of regions, and their precise specification from inter-regional
adjacencies, travel or cost times, migratory or economic flows, social interactions etc. can
accommodate considerable flexibility. It is hence most natural (and we advise it much vigorously,
when possible) to require𝝅 to coincide with the regional weights f, that is to impose W⊤f = f: such
spatial weights W are said to be weight-compatible or adjusted. Dealing with weight-compatible
spatial weights considerably simplifies the subsequent formalism and its interpretation. In
particular, the distinction between Moran and Geary autocorrelation indices becomes immaterial
(section Generalizing Moran’s I in the multivariate, weighted setting). Geographically speaking,
the condition of weight compatibility says that the initial distribution of regional importance
f coincides with the distribution W⊤f obtained after one transition, that is that the regional
importance is invariant, with no regions expanding or shrinking. By contrast, and for instance,
spatial weights directly constructed on migratory flows (see, e.g., Bavaud 1998, 2002), possess
in general two distinct regional weights, namely initial finitial and final ffinal, thus making the issue
of weight compatibility more involved.

Let us finally require that fiwij = fjwji, which simply says that W is a reversible Markov
chain. Equivalently, the associated backwards or time reversed Markov chain W⋆ = 𝚷−1W⊤𝚷,
giving the conditional probability w⋆

ji that region i was visited immediately before visiting j,
equals the forwards chain W. The reversibility condition insures that all eigenvalues of W
are real, and is trivially satisfied if one defines W from symmetric adjacencies or symmetric
geographic distances, as performed in this article. Yet, spatial weights directly constructed from
flows are generally non reversible, unless the flows are quasi-symmetric, that is follow a Gravity
modelling pattern (Bavaud 2002).

Summarizing up, and for a fixed vector of regional weights f ∈ R
n, one considers

row-standardized, weight-compatible, reversible spatial weights W of the form

W ≥ 0, W1n = 1n, W⊤f = f, 𝚷W = W⊤𝚷 where 𝚷 = diag(f) ∈ R
n×n

, (2)

where 1n ∈ R
n denotes the unit vector.

The joint probability of visiting i, and then j (or the other way round) constitutes the
components eij = fiwij of the the so-called exchange matrix (Berger and Snell 1957) E = (eij),
which obeys by construction

E = 𝚷W ≥ 0, E1n = f, E⊤ = E. (3)

W, similar to the symmetric matrix 𝚷−
1
2 E𝚷−

1
2 , possesses real eigenvalues 𝜆

𝛼
in the interval

[−1, 1] (Perron-Frobenius theorem. See, e.g., Levin and Peres 2017).
Two limit spatial weights are worth considering:

W0 =
(

w0
ij

)
= In i.e. w0

ij = 𝛿ij W∞ =
(

w∞ij

)
= 1nf⊤ i.e. w∞ij = fj. (4)

W0 is the pure stayers or frozen Markov chain with no interregional transitions, while W∞ is the
perfectly mobile Markov chain whose transitions do not dependent of the initial region. Both are
totally uninformative regarding the spatial configuration. The components fifj of the perfectly
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Geographical Analysis

mobile exchange matrix E∞ = 𝚷W∞ = ff⊤ yield the independent pair selection probabilities
resulting from sampling with replacement.

In the uniformly weighted case f = 1n∕n, row-standardized spatial weights W are adjusted
and reversible iff W = W⊤, that is iff W is symmetric.

Obtaining adjusted spatial weights from the adjacency matrix
Obtaining in full generality weight-compatible, reversible spatial weights W is an issue in
itself, requiring some additional computing effort (see e.g., Bavaud 2014). This article restricts
itself to symmetric constructions from the adjacency matrix (Definition 1) or from a matrix of
geographical distances (Definition 2).

Consider the binary adjacency (or connectivity) matrix between neighboring regions A =
(aij) ∈ R

n×n, defined as

aij =

{
1 if i and j are distinct and possess a common border,

0 otherwise; in particular, aii = 0.

The natural random walk transition matrix

P = (pij) with pij =
aij

ai•
(5)

defines a nonnegative, row-normalized matrix of reversible spatial weights (and adopted as such
by Thioulouse, Chessel, and Champely (1995)), corresponding to the simple random walk across
adjacent regions. Its stationary distribution 𝝅 is the normalized degree 𝜋i = ai•∕a••.

Yet, 𝝅 typically differs from the given regional weights f: the first distribution is a mesure
of regional centrality, but the second one is a measure of regional importance. Said otherwise,
P is adjusted to 𝝅, but not to f, and further modifications are required to obtain adjusted spatial
weights W.

Allowing, in addition to direct transitions between neighbors, null transitions within the
same region, that is carefully blending the pure movers dynamics P with stayer components
yields proposal (a) below. The latter, which emphasizes the role of the Laplacian operator, also
obtains as the first-order expansion of the continuous-time, diffusive exchange matrix presented
in Bavaud (2014); see also (7)

E(t) ∶= 𝚷1∕2 exp(−tA)𝚷1∕2 where t ≥ 0, (6)

and whose associated kernel constitutes a weighted extension of the so-called heat kernel in
Machine Learning (Kondor and Lafferty 2002). The diffusive dynamics (6) results from a jump
process, where a unit initially in region i remains there for some random time ti exponentially
distributed with mean E(ti) = fi∕ai• (sojurn time), until it jumps to a different region j with
probability pij.

Proposal (b) is presumably original in its presentation, but results from a direct application
of the Metropolis–Hastings algorithm Hastings (1970), which precisely solves the issue of how
to modify a Markov chain P so that the new Markov chain W possesses a given stationary
distribution f.

Finally, proposal (c) results from a simple iterative fitting procedure, known to converge with
a unique solution if the initial matrix is not “too sparse” (see, e.g., Schneider and Zenios 1990;
Ruschendorf 1995; Knight 2008, and references therein), thus generally requiring the initial
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Geographical Analysis A Kernel Approach to Spatial Autocorrelation

addition of a small uniform ground g > 0 to A. This modification, creating spatial interaction
between initially noninteracting regional pairs, could be justified in the same way as unit fictitious
flows are sometimes added to the observed flows in a Bayesian setting (see, e.g., LeSage and
Thomas-Agnan 2015).

Definition 1 Three constructions yielding spatial weights from the adjacency matrix.
Let A = (aij) ∈ R

n×n denote the symmetric binary adjacency matrix between regions:

(a) Linearized diffusive weights: define the Laplacian LA and the adjusted Laplacian A as

(LA)ij = ai•𝛿ij − aij , A = 𝚷− 1
2 LA𝚷− 1

2 , i.e. (A)ij =
ai•𝛿ij − aij

√
fifj

. (7)

where the Kronecker symbol 𝛿ij denotes the components of the identity matrix In ∈ R
(n×n). Define

Wa = In − t𝚷−1LA, i.e. wa
ij = 𝛿ij + t

aij − ai• 𝛿ij

fi

. (8)

where 0 < t ≤ t1 ∶= minn
i=1(fi∕ai•).

(b) Metropolis–Hastings weights: let P = (pij) be the random walk transition matrix (5), and define
𝚪 = (𝛾ij) as 𝛾ij ∶= min(fipij, fjpji), together with

Eb = 𝚷 − L𝚪 i.e. eb
ij = 𝛿ij(fi − 𝛾i•) + 𝛾ij and Wb = 𝚷−1Eb = In −𝚷−1L𝚪. (9)

(c) Iteratively fitted weights: Let g > 0 be a small quantity (g ≪ 1) and define the modified adjacency
matrix Ag = (a

g
ij) as ag

ij = aij + g, that is Ag = A + g Jn where Jn = 1n1⊤

n is the unit matrix. By
iterative fitting, determine c ∈ R

n such that the margins of the symmetric matrix Ec = CAgC, where
C = diag(c), yield the regional weights, that is in order to achieve Ec1n = f. Define

Wc = 𝚷−1Ec, that is, wc
ij =

ec
ij

fi

. (10)

Theorem 1 Wa, Wb and Wc defined above constitute row-normalized, adjusted and reversible
spatial weights.

Each the three above matrices favor transitions between adjacent regions, as they must.

Proof of Theorem 1. Reversibility of Wa, Wb and Wc is immediate. (a) wa
ij in (8) is nonnegative

for i ≠ j. For i = j, nonnegativity holds iff 1 − t ai•∕fi ≥ 0, in view of aii = 0. Also, LA1n = 0n,
and thus W⊤

a f = f − tLA𝚷−1f = f. (b) L𝚪1n = 0, thus implying W⊤

b f = f by the same reasoning. eb
ij

in (9) is nonnegative for i ≠ j. For i = j, nonnegativity holds since 𝛾i• =
∑

j𝛾ij ≤
∑

j fi pij = fi. (c)
Weight-compatibility and non-negativity follow directly form the iterative fitting procedure. □

Generalizing Moran’s I in the multivariate, weighted setting
The multivariate profiles of the n regions under consideration may differ by countless features.
A crucial responsibility of the analyst consists in aptly summarizing those regional contrasts by
specifying a relevant n × n dissimilarity matrix D = (dij), obeying

dij ≥ 0, dij = dji, dii = 0. (11)

We shall for the moment assume in addition D to be squared Euclidean, that is, of the
form dij = ||xi − xj||2 for some xi, xj ∈ R

p (see section Feature kernels: visualizing regional
dissimilarities).
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Geographical Analysis

For some time, Bavaud (2013, 2014) has proposed a weighted, multivariate generalization
of Moran’s I as the index

𝛿 =
Δ − Δloc

Δ
∈ [−1, 1], (12)

where the configuration inertia Δ and local inertia Δloc are

Δ = 1
2

n∑

i,j=1

fifjdij Δloc =
1
2

n∑

i,j=1

eijdij. (13)

Here eij are the components of the exchange matrix E (3), giving the joint probability to select
the pair i, j of regions. In the univariate case, dij = (xi − xj)2 for the variable of interest x ∈ R

n,
and

Δ = 1
2

n∑

i,j=1

fifj(xi − xj)2 =
∑

i

fi(xi − x)2 = var(x) where x =
∑

i

fixi.

The lagged variable Wx measures the average value among regional neighbors.
Weight-compatibility W⊤f = f entails the identity Wx = x, a circumstance making the
distinction between Moran and Geary indices irrelevant: the multivariate generalization of Geary
index is simply c = Δloc∕Δ = 1 − 𝛿 ∈ [0, 2]. Also, simple algebra demonstrates that

Δ − Δloc = cov(x,Wx) =
∑

ij

fi(xi − x)wij(xj − x) =
∑

ij

eij(xi − x)(xj − x).

In the unweighted univariate case, fi = 1∕n, and, for possibly unstandardized spatial weights,
one gets the familiar Moran’s index expression (Cliff and Ord 1973)

𝛿 = I = n
∑

ijwij

∑
ijwij(xi − x)(xj − x)

∑
i(xi − x)2

, (14)

where the first ratio in the r.h.s. is equal to one for row-standardized spatial weights.
In the weighted univariate case, identity 𝛿 = cov(x,Wx)∕var(x), involving weighted

(co-)variances, shows 𝛿 to be identical to the slope a of the weighted least squares (WLS)
regression Ŵx = ax + b in the Anselin–Moran scatterplot, mapping the values of x versus those
of Wx, with an intercept given by b = (I − 1)x (see Figs. 2 and 3).

Feature kernels: visualizing regional dissimilarities
Since the regional dissimilarities (11), reflecting disparities among regional features, are assumed
to be squared Euclidean (see the illustrations (34) and 35)), there exists a for each region a vector
of regional coordinates x̃i = (x̃i𝛼) such that dij = ||x̃i − x̃j||2 =

∑
𝛼≥1(x̃i𝛼 − x̃j𝛼)2. Such regional

coordinates will serve in turn to visualize the feature dissimilarities in dimensions 𝛼 = 1, 2, … .
The regional coordinates are far from unique, since their rotation and reflection yields the same
dissimilarities (orthogonal invariance). In the quest for a unique solution, one further requires
that, in addition, the first components 𝛼 = 1, 2, … of the regional coordinates express a maximal
proportion of the weighted inertia Δ (13).

The solution to the above problem exactly reproduces the well-known Torgerson-Gower
classical MDS procedure (see, e.g., Borg and Groenen 2005), slightly modified in the weighted
setting (Bavaud 2023). Weighted MDS, aiming at obtaining regional coordinates associated to
the feature dissimilarity D, results from the spectral decomposition of feature kernels, constructed
as follows:
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Geographical Analysis A Kernel Approach to Spatial Autocorrelation

Figure 2. Moran–Anselin scatterplots for the two first social factorial coordinates (19) with
spatial weights Wb (Metropolis–Hastings). Left: ŷ1. Middle: ŷ1 again, but with iterated weights
W2

b. Right: ŷ2. The slopes of the regression lines give the corresponding Moran’s I , with
values (in order) 0.706, 0.616, and 0.564. The intercepts are zero, since factorial coordinates are
centered.

Figure 3. Moran–Anselin scatterplots for the share of votes for Macron (first round of the
French presidential election, 2022), with spatial weights specified as Wa (diffusive, left), Wb

(Metropolis–Hastings, middle) and Wc (iterative fitting, right). The larger Tr(W), the smaller
the dispersion around the regression line, whose slope 𝛿 figures in the last line of Table 1.

1. First, define the weighted centering matrix H = In − 1nf⊤, where In ∈ R
n×n is the identity

matrix and 1n ∈ R
n the unit vector. The centering matrix is a projection (H2 = H), but

H⊤
≠ H, unless f is uniform.

2. Second, compute the symmetric matrix B of scalar products by double centering:

B = −1
2

H D H⊤
. (15)

3. Third, compute the diagonal matrix 𝚷 = diag(f) and define the kernel K ∈ R
n×n as the

symmetric matrix of weighted scalar products:

K =
√
𝚷 B

√
𝚷 = −1

2

√
𝚷 H DH⊤

√
𝚷, that is Kij =

√
fifjBij. (16)

By construction, the kernel K is symmetric, and centered in the sense

K
√

f = 0n (in view of B1n = 0n), (17)
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Geographical Analysis

Table 1. Values of the autocorrelation index 𝛿 (12), together with its standardized value z (41)

Wa Wb Wc W
D

𝛿 z 𝛿 z 𝛿 z 𝛿 z

X 0.96 10.51 0.75 15.59 0.55 14.21 0.094 17.57
Y 0.94 7.78 0.67 10.88 0.42 8.94 0.078 11.73
x 0.95 5.64 0.66 7.14 0.45 6.64 0.131 14.50

Note: Rows refer to the three sets of features considered in section Illustration: political and social
autocorrelation among French departments. Columns refer to the three spatial weights considered in
Definition 1 with s = s2 for Wa, g = 0.001 for Wc, as well as W

D
in Definition 2 with c = c1.

as well as p.s.d, the latter property characterizing the squared Euclidean nature of D.
4. Fourth, perform the spectral decomposition of the kernel K. (17) shows K to possess a

trivial eigenvaluedenoted 𝜆0 = 0 associated to the trivial eigenvector denoted u0 =
√

f. The
remaining n − 1 nontrivial eigenvalues are ordered as 𝜆1 ≥ 𝜆2 ≥ … ≥ 𝜆n−1 ≥ 0, among
which r = rank(K) are strictly positive. The spectral decomposition reads

K = U𝚲U⊤
, (18)

where 𝚲 = diag(𝜆1, … , 𝜆n−1) and U = (u1| … |un−1) ∈ R
n×(n−1) contains the associated

n − 1 nontrivial eigenvectors.
5. Finally, the sought-after feature regional coordinates obtain as

x̃ = 𝚷−
1
2 U𝚲

1
2 that is, x̃i𝛼 =

1
√

fi
ui𝛼

√
𝜆
𝛼

for 𝛼 = 1, … , n − 1. (19)

By construction, Δ = Tr(K) =
∑n−1

𝛼=1 𝜆𝛼 , and 𝜆
𝛼
∕Δ gives the proportion of inertia explained

by factor 𝛼.
Kernels play a central role in the forthcoming developments, permitting in particular to

provide an alternative expression for the autocorrelation index 𝛿 (section Expressing δ by
kernels). Note that, whether D is squared Euclidean or not, definition (16) always yields a
well-defined kernel K = (Kij) obeying K = K⊤ and K

√
f = 0n. From K (respectively B), the

regional weights f obtain as the square of the unique positive normalized eigenvector
√

f
in the null space of K (respectively f in the null space of B), and dissimilarities can be
recovered as

dij = Bii + Bjj − 2Bij =
Kii

fi
+

Kjj

fj
− 2

Kij
√

fifj
. (20)

In conclusion, any weighted configuration (f,D) yields a unique, symmetric, centered kernel K,
and conversely. Moreover, K is p.s.d. iff D is squared Euclidean, that is iff the configuration can
be visualized by means of (19).

Spatial kernels: visualizing the geographic space from spatial weights
Spatial weights W quantify neighborhood relations between regions, and a possible extraction
of spatial kernels KW , apt to provide, by applying the weighted MDS of the previous section, a
visualization of the spatial configuration, is provided by the following:
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Geographical Analysis A Kernel Approach to Spatial Autocorrelation

Theorem 2 whose proof is immediate. Let the row-standardized spatial weights matrix W ∈ R
n×n

be adjusted and reversible, that is satisfy (2) and (3). Define the associated spatial kernel KW as the
“Pearson residuals” of the exchange matrix E, that is,

KW = 𝚷− 1
2 (E − ff⊤)𝚷− 1

2 = 𝚷
1
2 W𝚷− 1

2 −
√

f
√

f
⊤

, i.e. KW
ij =

eij − fifj
√

fifj

=

√
fi wij
√

fj

−
√

fifj. (21)

Then KW is symmetric and centered (KW

√
f = 0n). Its nontrivial eigenvalues 𝜇

𝛼
(𝛼 =

1, … , n − 1) coincide with the non-trivial eigenvalues of W. Yet, to the trivial eigenvalue
𝜇0 = 0 of KW corresponds the Perron-Frobenius eigenvalue of 1 for W. In consequence,
Tr(W) = Tr(K) + 1.

Also, KW is p.s.d. iff W (or equivalently E) is p.s.d., that is iff all the eigenvalues 𝜇
𝛼

of W are
non-negative.

Note that off-diagonal spatial weight matrices are never p.s.d. since Tr(W) =
∑

𝛼≥1𝜇𝛼
= 0.

In definition (1), Wa in (8) can readily seen to be positive semi-definite (p.s.d.) iff 0 < t ≤ t2
where t2 ∶= 1∕𝓁 and 𝓁 denotes the largest eigenvalue of the adjusted Laplacian A; also
t2 ≤ t1 = minn

i=1(fi∕ai•) as a consequence of the Schur-Horn theorem (see, e.g., Bhatia 2001)
applied on the p.s.d. matrix A. By contrast, Wb in (9) is generally not p.s.d., and Wc in (10)
cannot be p.s.d. if g is small enough.

This being so, any adjusted and reversible spatial weights matrix W can be made p.s.d.
by simply replacing W with its matrix square W2, which is adjusted and reversible as well,
with eigenvalues 𝜇

2
𝛼
≥ 0. This amounts in replacing KW by its square K2

W in view of the
identity

Kq
W = 𝚷

1
2 Wq𝚷−

1
2 −

√
f
√

f q = 1, 2 … . (22)

If the spatial weights W are p.s.d., the spectral decomposition

KW = VMV⊤ with V = (vi𝛼) ∈ R
n×(n−1)

,V⊤V = In and M = diag(𝜇1, … , 𝜇n−1),
(23)

yields, as in (19), spatial factorial coordinates of the form

X̂ = 𝚷−
1
2 VM

1
2 i.e. x̂i𝛼 =

1
√

fi
vi𝛼

√
𝜇
𝛼

for 𝛼 = 1, … , n − 1. (24)

The present use of spectral decomposition for visualizing spatial networks, illustrated in Figs. 1
and 4 below, follows a long geographical tradition (see, e.g., Boots 1982; Griffith 1996; Dray,
Legendre, and Peres-Neto 2006; Demšar et al. 2013).

The spatial kernels (21) associated to the two limit Markov chains (4), as well as the
associated dissimilarities 20 are

K0 = In −
√

f
√

f , d0
ij =

⎧
⎪
⎨
⎪
⎩

1
fi
+ 1

fj
, for i ≠ j,

0, otherwise.
, K∞ ≡ D∞ ≡ 0n×n (25)

The nontrivial eigenvalues of K0 are 𝜇1 = · · · = 𝜇n−1 = 1 (constant scree graph), and D0 is the
weighted extension of the so-called discrete distances, characterizing a maximally incompressible
configuration (see also section Testing δ by invariant orthogonal integration).
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Geographical Analysis

Figure 4. Left: MDS on K2
D
, where K

D
is the kernel associated to the shortest-path distances D on

the adjacency network. Right: eigenvalues {𝜇
𝛼
} of K

D
, some of which are negative, thus ruining

the squared Euclidean nature of D. Spectral moments are 𝝁 = 0.023, v(𝝀) = 0.011, a(𝝁) = 6.45
and 𝛾(𝝁) = 43.20.

Expressing 𝜹 by kernels
The following result together with its implications constitutes the main motivation for the present
article:

Theorem 3 Let KX in (16) be the standard kernel associated to the squared Euclidean feature
dissimilarity, denoted as DX , and let KW in (21) be the spatial kernel associated to the adjusted and
reversible spatial weights W. Then the 𝛿 index of spatial autocorrelation (12) expresses as

𝛿 =
Tr(KW KX )

Tr(KX )
. (26)

Proof. By (16), and using Tr(QR) = Tr(RQ) and H⊤𝚷H = 𝚷 − ff⊤,

Tr(KX ) = Tr(𝚷 BX ) =
1
2

Tr([ff⊤ −𝚷]DX ) =
1
2

Tr(DX ff⊤) = 1
2

∑

ij

fifjD
X
ij = Δ.

On the other hand, using H⊤f = 0n and H⊤EH = E − ff⊤,

Tr(KW KX ) = Tr(E BX ) =
1
2

Tr([ff⊤ − E]DX ) = Δ − Δloc.

□

Expression (26) demonstrates that the regional features on one hand and the regional
spatial configuration on the other hand, whose interplay constitutes the study of spatial auto-
correlation, can be expressed by the same formalism, namely by means of kernels. Also,
(26) bears an obvious relationship to the weighted extension of the so-called RV coefficient
(Bavaud 2023), defined as the cosine similarity between the vectorized matrices KW and KX ,
namely
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Geographical Analysis A Kernel Approach to Spatial Autocorrelation

RVWX = RV =
Tr(KW KX )√

Tr(K2
W ) Tr(K2

X )
= 𝛿

Tr(KX )√
Tr(K2

W ) Tr(K2
X )

i.e. 𝛿 = RV

√
Tr(K2

W ) Tr(K2
X )

Tr(KX )
.

(27)
The original “random vector” RV coefficient has been proposed by Escoufier (1973) and Robert
and Escoufier (1976) as a symmetric, broadly applicable measure of similarity between two
multivariate configurations, boiling down to the square of the correlation for two univariate
configurations. Its significance testing, which has attracted numerous studies, can be directly
transposed into a significance testing procedure for 𝛿 (section Testing δ by invariant orthogonal
integration).

By the Cauchy–Schwarz inequality, RV ∈ [−1, 1], with RV ∈ [0, 1] if both KW and KX are
p.s.d. By contrast, and provided KX is p.s.d., 𝛿 ∈ [−1, 1] as a consequence of the Perron–Frobenius
theorem (see, e.g., Levin and Peres 2017), implying that all eigenvalues 𝜇

𝛼
of the reversible

W are real, and contained in [−1, 1]. In addition 𝛿 ∈ [0, 1] if both KW and KX are p.s.d.
Note in passing that while 𝛿 on one hand, and the RV and the Pearson correlation on
the other hand share the same range of values [−1, 1], they do it for completely different
reasons. In particular, taking too literally the analogy between 𝛿 and a correlation coefficient
arguably does more harm than good: in the simplest case of two univariate kernels, one finds
Tr(KX KY ) = cov2(x, y).

Alike the RV, the 𝛿 coefficient of spatial is a measure of similarity between a feature
configuration as depicted in Fig. 5 and a spatial configuration as depicted in Fig. 1. Yet,
taken alone, the value of 𝛿 is very little informative. In particular, as illustrated in Table 1, 𝛿
mechanically increases with Tr(W), and the knowledge of its expected value E(𝛿) under the null
hypothesis, as well as of its higher-order expected moments, provided in section Testing δ by
invariant orthogonal integration, is crucial to make 𝛿 helpful and interpretable.

Figure 5. Left: weighted MDS of the political configuration (f,DX ), whose first factor x̃1 roughly
expresses a political right-left gradient. Right: weighted MDS of the social configuration (f,DY ),
whose first factor x̃1 opposes aging departments (left) to departments with a large foreign
population and large natural balance (right).
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Geographical Analysis

Nonpositive semi-definite kernels
Obtaining factor coordinates permitting to visualize the features configuration by (19), or the
spatial configuration by (24) requires KX , respectively KW , to be p.s.d. By contrast, the possible
nonpositive semi-definite nature of KX and/or KW poses no difficulty whatsoever in defining and
testing the spatial autocorrelation index 𝛿 (26): in (16), D can very well represent a dissimilarity
matrix which is not squared Euclidean, and in (21), W can very well contain negative eigenvalues,
as it is the case for traditional off-diagonal spatial weights obeying Tr(W) = 0.

If KX is not p.s.d., the plain discarding of its negative eigenvalues, set to zero, is sometimes
advocated in MDS, and justified by the the fact that the resulting truncated matrix constitutes
the closest p.s.d. approximation of KX in the Frobenius norm (Higham 1988; Cheng and
Higham 1998). Another popular modification advocated in non-weighted MDS consists in
adding a constant squared Euclidean dissimilarity among all pairs of distinct objects (see, e.g.,
Borg and Groenen 2005). In the weighted setting, this boils down to consider the modified
kernel KX + c K0 where K0 is defined in (25) and c is not less than the absolute value of the
smallest eigenvalue of KX ; this modification seems to be optimal in the 2-norm (Higham 1988;
Cheng and Higham 1998). Finally, replacing the kernel by its matrix square K2

X evidently yields
a p.s.d. kernel, associated to a flattened configuration in which directions of large (resp. small)
dispersions are amplified (resp. downscaled).

If KW or equivalently W is not p.s.d., plain spectral truncation will in general ruin the
Markovian nature of the modified spatial weights. However, the modification s KW + (1 − s)K0,
or equivalently s W + (1 − s)In, we shall refer to as stayers mixing, possess many virtues: it
insures positive semi-definiteness, for s ∈ (0, 1∕(1 − 𝜇n−1)] (note that 1∕(1 − 𝜇n−1) ≥ 0.5), while
respecting the Markovian character of the modified transition matrix, which obtains as a mixture
of the original matrix (selected with probability s) and the pure stayers matrix W0 = In (selected
with probability 1 − s). Furthermore, stayers mixing possesses the pleasant property of keeping
the values of the standardized autocorrelation index z defined below in (41) unchanged, as
well as the expected skewness and excess kurtosis of 𝛿, as stated in Theorem 5 below. In
other words, the stayers mixing modification enables an Euclidean visualization of the spatial
configuration, without affecting the tests (normal or Cornish–Fisher) of spatial autocorrelation.
Finally, the simple iteration, already encountered and regularly used in this article when
needed, replaces the spatial weights matrix W by W2. This transformation enables Euclidean
spatial visualization, although flattened, respecting the reversible, weight-compatible Markovian
nature of the weights, and endowed with an intuitively simple geographical interpretation (“the
neighbors of the neighbors”).

A toy example
Consider a territory made of n = 4 regions with weights f⊤ = (0.4, 0.1, 0.3, 0.2) and characterized
by a single attribute x. In example A (Fig. 6, left), Markov transitions occur between distinct,

Figure 6. Left: spatial layout for examples A and B. Right: spatial layout for example C.
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Geographical Analysis A Kernel Approach to Spatial Autocorrelation

adjacent regions, with an intensity roughly proportional to the size of the common boundary.
In example B, either no transition occurs with probability 0.5, or a transition following the
previous scheme occurs with probability 0.5. In example C (Fig. 6, right), Markov transitions
occur between distinct, adjacent regions, with an intensity roughly proportional to the area of the
destination region. Numerically,

xA =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4

9

1

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

WA =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 1∕4 1∕2 1∕4

1 0 0 0

2∕3 0 0 1∕3

1∕2 0 1∕2 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

EA =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0.1 0.2 0.1

0.1 0 0 0

0.2 0 0 0.1

0.1 0 0.1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

xB =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

4

9

1

1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

WB =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1∕2 1∕8 1∕8 1∕4

1∕2 1∕2 0 0

1∕3 0 1∕2 1∕6

1∕4 0 1∕4 1∕2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

EB =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0.2 0.05 0.1 0.05

0.05 0.05 0 0

0.1 0 0.15 0.05

0.05 0 0.05 0.1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

xC =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

3

3

1

1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

WC =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0.6 0.4

0 0 0.6 0.4

0.8 0.2 0 0

0.8 0.2 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

EC =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0.24 0.16

0 0 0.06 0.04

0.24 0.06 0 0

0.16 0.04 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Spatial weights W are readily checked to be row-normalized. The corresponding exchange
matrices E = 𝚷W, whose components specify the joint probability to visit a pair of regions, are
symmetric with margins f, thus proving that W is weight-compatible and reversible.

By construction, the univariate feature kernels (16) contain a single nonzero, positive
eigenvalue. Also, the spatial kernel (21) turns out to be p.s.d. for configuration B, but not for
configurations A and C which involve negative eigenvalues. Computing the autocorrelation
indices (26) yields 𝛿A = 0.13 and 𝛿B = 0.57. Also, the minimal autocorrelation value is attained
with 𝛿C = −1, which can be proved to necessarily involve bipartite spatial networks, partitioning
the regions into two complementary sets of same importance, namely {1, 2} and {3, 4} in
Fig. 6 right, so that nonzero transitions necessarily occur between pairs of regions belonging to
complementary sets.

Note WB to result from the stayers mixture of WA with t = 0.5 (section Nonpositive
semi-definite kernels). As a consequence (Theorem 5), their standardized autocorrelation index
(41) coincide: zA = zB = 1.98, denoting positive autocorrelation, with a two-tailed p-value of
0.048 in the normal approximation test (44)). By contrast, zC = −0.37 (negative autocorrelation,
with p = 0.025).

Decompositions of 𝜹
𝛿 can be expressed as convex mixtures of Moran’s I . First, simple algebra demonstrates that, for
features dissimilarities DY of the form (35),

𝛿 =
∑p

k=1 var(yk)I(yk)
∑p

k=1 var(yk)
= 1
ΔY

p∑

k=1

var(yk)I(yk), (28)
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Geographical Analysis

where I(yk) denotes Moran’s associated to the kth feature, and var(yk) its variance. Also,

𝛿 =
∑n−1

𝛼=1 𝜆𝛼I(ŷ
𝛼
)

∑n−1
𝛼=1 𝜆𝛼

= 1
ΔY

n−1∑

𝛼=1

𝜆
𝛼
I(ŷ

𝛼
), (29)

where ŷi𝛼 = ui𝛼

√
𝜆
𝛼
∕
√

fi are the feature factorial coordinates in (19). In particular, the Moran
indices I(ŷ

𝛼
) coincide with the slopes of the corresponding Moran–Anselin regression lines (see

Fig. 2). Also, local indicators of spatial autocorrelation (Anselin 1995) 𝛿i can be constructed as
follow:

𝛿 =
n∑

i=1

fi 𝛿i where 𝛿i =
1

fiΔY

n∑

j=1

KW
ij KY

ij =
1
ΔY
(W BY )ii, (30)

where BY is the matrix of scalar products (15) associated to DY , and the last identity follows
form (21). Finally, 𝛿 can be further doubly decomposed into local and factorial components as

𝛿 = 1
ΔY

n∑

i=1

fi

n−1∑

𝛼=1

𝜆
𝛼
𝛿i𝛼 where 𝛿i𝛼 =

n∑

j=1

ui𝛼wijuj𝛼
√

fifj
. (31)

A direct approach to spatial autocorrelation in presence of geographic distances
Consider finally the frequent encountered case where space is specified by a matrix of symmetric
geographic distances D = (dij) ∈ R

n×n, such as road distances, travel costs or travel times,
obeying (11). Those distances are in general metric, that is, obey the triangular inequality, but
not squared Euclidean. In any case, the construction (16) of the feature kernel can be reused to
define a spatial kernel together with a spatial autocorrelation index 𝛿 (26) as

𝛿 =
Tr(K

D
KX )

Tr(KX )
where K

D
= −1

2

√
𝚷 H DH⊤

√
𝚷, (32)

without requiring any matrix of spatial weights. In particular,

Tr(K
D
) = Δ = 1

2

n∑

i,j=1

fifj dij =
n−1∑

𝛼=1

𝜇
𝛼

mesures the overall spatial dispersion, where {𝜇
𝛼
} denote the non-trivial eigenvalues of K

D
. In

general, some eigenvalues are negative (see Fig. 4 right), that is D is not squared Euclidean.
Again, if one wishes to visualize the geographical configuration by MDS, one can replace K

D

by K2
D
, whose effect is to transform 𝜇

𝛼
into 𝜇

2
𝛼
≥ 0 while keeping the eigenvectors of K

D

unchanged.
𝛿 in (32) is a perfectly valid index of spatial autocorrelation, whose expected moments and

significance testing are provided by Theorem 4 below (where KW is simply replaced by the
spatial kernel K

D
) and (45). However, its value clearly depends upon the units used to express

geographical distances: for instance, 𝛿 becomes a thousand times larger when D is measured
in meters rather than in kilometers, and 𝛿 ≤ 1 does not hold in general. To control for this
arbitrariness, let us replace D and K

D
by c D and c K

D
, respectively, where the positive parameter

c modulates the distance scale.
It is natural to investigate whether a matrix of spatial weights can be obtained from the c K

D

by inverting relation (21). This motivates the following definition:
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Geographical Analysis A Kernel Approach to Spatial Autocorrelation

Definition 2 Obtaining spatial weights from geographic distances Let W
D
= (wD

ij ) where

wD

ij = fj + c

√
fj

√
fi

KD

ij = (1 + c BD

ij )fj where c ∈ (0, c1] and c1 =
−1

min
ij

BD

ij

> 0, (33)

where B
D

is the matrix of scalar products (15) associated to D.

By construction, W
D

is a nonnegative, row-normalized, adjusted and reversible matrix of
spatial weights.

Illustration: political and social autocorrelation among French

departments

Consider the n = 94 continental French departments (that is excluding Corsica and overseas
territories). The inter-departmental binary adjacency matrix A = (aij) happens to yield a maximum
degree of maxi ai• = 10 (Seine-et-Marne), a minimum degree of mini ai• = 2 (Alpes-Maritimes,
Finistère, Haute-Savoie, Moselle, Pas-de-Calais, Pyrénées-Orientales), and an average degree of
a••∕n = 5.06.

Define the regional weights f as the corresponding proportion of voters in the 2022
presidential primary election (INSEE 2022). They range from mini fi = 0.0014 (Lozère) to
maxi fi = 0.037 (Nord).

The pair (f,A) permits to define the three weight-compatible, reversible spatial
weights of Definition 1: linearized diffusive weights Wa (8) (with t = t2, defined after
Theorem 2), Metropolis–Hastings weights Wb (9), and iteratively fitted weights Wc (10)
(with g = 0.001).

In addition, a fourth geographical distance weights W
D

can be derived from (33) (with c = c1)
by choosing D as the shortest-path distance on the adjacency graph of French departments, that
is, by defining dij = dji as the minimum number of crossed inter-departmental borders needed
to attain department j from department i. Its maximum turns out to be maxij dij = 11, attained
along the North-East South-West direction.

Among those four spatial weights, only Wa is p.s.d., and the first spatial coordinates (24),
resulting from the eigen-decomposition of KW in (21), are depicted in Fig. 1 (top left). The
other spatial weights are first squared, then treated similarly, with resulting spatial coordinates
depicted in Figs. 1 and 4.

Consider in addition three feature kernels, respectively, denoted KX , KY , and Kx, based
upon three squared Euclidean dissimilarities between departments D, namely:

(X) political data : the n × m contingency table N = (nik) counts the number of votes nik

obtained in department i for candidate k, among the m = 12 candidates of the 2022
presidential primary election (INSEE 2022). Define, here in what follows, the regional
weights f as the proportion of voters in each department, and define the squared Euclidean
political distance DX as chi-square dissimilarity between departments (see, e.g., Lebart,
Morineau, and Warwick 1984; Greenacre 2017), that is:

fi =
ni•
n••

, dX
ij =

m∑

k=1

n••
n•k

(
nik

ni•
−

njk

nj•

)2

. (34)
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Geographical Analysis

(Y) social data : the n × p matrix Y = (yik) contains p = 5 variables expressed by percentages:
“natural demographic balance,” “migratory demographic balance,” “population over 65,”
“foreign population,” and “inactive young people” around 2015 (INSEE 2022). Those
sociodemographic profiles directly serve in defining a rudimentary squared Euclidean
social distance DY between departments as

dY
ij =

p∑

k=1

(yik − yjk)2. (35)

The feature dissimilarities DX and DY are multidimensional: depicting all the nonzero
corresponding MDS coordinates (19) requires more than one dimension. In addition, one
considers the univariate case

(x) share of votes for the candidate Macron: denoted x ∈ R
n, with components xi =

ni Macron∕ni•, and corresponding dissimilarities dx
ij = (xi − xj)2.

Weighted MDS on the political dissimilarities DX above turns out to be equivalent to
Correspondence Analysis (see, e.g., Lebart, Morineau, and Warwick 1984; Greenacre 2017),
while weighted MDS social dissimilarities DY amont to weighted Principal Component Analysis.
Their optimal visualization in dimensions 𝛼 = 1, 2 is depicted in Fig. 5.

The corresponding values of the autocorrelation index 𝛿 (12) depend on both the set of
regional features and on the choice of spatial weights (Table 1). The larger Tr(W), the larger
𝛿 in general: here Tr(Wa) = 74.65, Tr(Wb) = 24.29, Tr(Wc) = 0.20 and Tr(W

D
) = 2.16 (the

tendency is however inverted between Wc and W
D
).

Testing 𝜹 by invariant orthogonal integration

As stated in the introduction, the two main strategies used to assess the significance of (univariate)
spatial autocorrelation, namely permutation tests and normal tests, are difficult to justify in the
weighted setting, where the distribution of features is bound to depend upon the region sizes (see
however, e.g., Tiefelsdorf and Griffith 2007; Chun 2008; Griffith 2010; Bavaud 2013; Zhang
and Lin 2016, and references therein for addressing some of the above issues).

Recently, Bavaud (2023) has proposed a new approach for testing the RV coefficient, the
invariant orthogonal integration, based on the simple rationale that, under the null hypothesis
H0 of absence of relationship between the two multivariate configurations at stake, any relative
orientation between the two nontrivial eigen-spaces is equally likely. Invariant orthogonal
integration, rooted in random matrix theory, involves integrating over Haar mesures on the
orthogonal groups, and the computation, under H0, of the integer moments of the form
E(Trq(KW KX )) in the present context, become rapidly entangled for growing q. Yet, those
moments have been successfully computed for q = 1, 2, 3, 4 (Bavaud 2023), permitting in turn
to compute the first moments (mean, variance, skewness, and excess kurtosis) of the RV
coefficient.

Although the computation of the above moments were initially proposed in the context of
p.s.d. kernels, nothing in the formalism prevents from dealing with negative eigenvalues. Also, as
the quantities in (27) relating RV and 𝛿 are simple constants unaffected by orthogonal integration,
moments for 𝛿 directly obtain in the following theorem:
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Geographical Analysis A Kernel Approach to Spatial Autocorrelation

Theorem 4 First moments of the 𝛿 coefficient, directly adapted from corollary 1 in (Bavaud 2023)
Under invariant orthogonal integration, the null expectation, variance, skewness and excess kurtosis
of 𝛿 (26) are, in order,

E(𝛿) =
Tr(KW )
n − 1

= Tr(W) − 1
n − 1

= 𝝁. (36)

Var(𝛿) = 2
(n − 2)(n − 1)2(n + 1)

[
(n − 1)Tr(K2

W ) − Tr2(KW )
]

[
(n − 1)Tr(K2

X ) − Tr2(KX )
Tr2(KX )

]

=
(37)

= 2
n2 − 1

[
Tr(W2) − 1 − (Tr(W) − 1)2

n − 1

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Var(I)

[
1

n − 2

(
n − 1
𝜈X

− 1

)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶𝜅X

= 2
(n − 2)(n + 1)

v(𝝁) v(𝝀)

𝝀
2
.

(38)

A(𝛿) =
E(𝛿3

c )

E
3
2 (𝛿2

c )
=

√
8(n − 2)(n + 1)
(n − 3)(n + 3)

a(𝝁)a(𝝀). (39)

IΓ(𝛿) =
E(𝛿4

c )
E2(𝛿2

c )
− 3 = 3 (n − 2)(n + 1)

(n − 4)(n − 3)(n − 1)n(n + 3)(n + 5)
{

4(n2 − n + 2) 𝛾(𝝁) 𝛾(𝝀) + (4n2 − 8n

+52)(𝛾(𝝁) + 𝛾(𝝀)) − 4(5n3 − 57n2 + 27n + 169)
(n − 2)(n + 1)

}
.

(40)

In the above expressions, 𝝁 denotes the vector of the n − 1 non-trivial eigenvalues of the
spatial kernel KW , identical to those of W, and 𝝀 denotes the vector of the n − 1 nontrivial
eigenvalues of the features kernel KX . The spectral moments, spectral variance, spectral skewness
and the spectral excess spectral kurtosis are respectively denoted as

𝝁q =
∑n−1

𝛼= 𝜇
q
𝛼

n − 1
, v(𝝁) =

∑n−1
𝛼= (𝜇

𝛼
− 𝝁)2

n − 1
= 𝝁2

c , a(𝝁) =
𝝁3

c

(𝝁2
c)

3
2

, 𝛾(𝝁) =
𝝁4

c

(𝝁2
c)2

− 3,

where 𝜇
c
𝛼
= 𝜇

𝛼
− 𝝁. Spectral moments for 𝝀 are defined analogously. By construction,

𝝁q =
Tr

(
Kq

W

)

n − 1
= tr

(
Kq

W

)
,

where tr(A) = Tr(A)∕(n − 1) denotes the normalized trace. Centered spectral moments
can be transformed into normalized traces, and conversely. Specificaly, 𝝁2

c = tr(K2
W ) −

tr2(KW ), 𝝁3
c = tr(K3

W ) − 3 tr(K2
W ) tr(KW ) + 2 tr3(KW ) and 𝝁4

c = tr(K4
W ) − 4 tr(K3

W ) tr(KW ) +
6 tr(K2

W ) tr2(KW ) − 3 tr4(KW ), thus permitting to express, if wished, identities (39) and (40) in
terms of traces of powers of KW and KX .
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Geographical Analysis

Identities Tr(Kq
W ) = Tr(Wq) − 1, resulting from (22), have been used in (36) and (38). The

centered autocorrelation index 𝛿c appearing in (39) and (40) and the standardized autocorrelation
index z appearing in Table 1 and (45) are respectively defined as

𝛿c = 𝛿 − E(𝛿) = 1
Tr
(KX )

(
Tr(KW KX ) −

Tr(KW ) Tr(KX )
n − 1

)
z = 𝛿 − E(𝛿)

√
Var(𝛿)

. (41)

Inequality 𝛿c > 0 (respectively 𝛿c < 0) characterizes positive (respectively negative) spatial
autocorrelation.

Next, the quantity 𝜈X in (38) denotes the effective dimensionality of the multivariate features,
defined as

𝜈X =
Tr2

(
KX

)

Tr
(
K2

X

) =
(∑

𝛼≥1𝜆𝛼

)2

∑
𝛼≥1𝜆

2
𝛼

= (n − 1)𝝀
2

𝝀
2
. (42)

Provided KX is p.s.d. (that is DX is squared Euclidean), the effective dimensionality ranges from
its minimal value 𝜈X = 1, attained for univariate features, to its maximum value 𝜈X = n − 1,
attained iff the dissimilarities are proportional to the weighted discrete distances (25). As a
consequence, the quantity 𝜅X = [(n − 1)∕𝜈X − 1]∕(n − 2) in (38) (behaving as 𝜅X ≅ 1∕𝜈X for n
large) ranges from its maximum value 𝜅X = 1 (univariate features) to its minimum value 𝜅X = 0
(incompressible configuration).

Finally, the quantity Var(I) in (38) exactly matches the expected null variance of the weighted
Moran’s I under normal approximation (see eq. (14) in Bavaud 2013), and identity

Var(𝛿) = Var(I) 𝜅X , (43)

in (38) says that, in comparison to the univariate case, the variance of the multivariate 𝛿 index,
depending only upon the spatial weights, is downsized by a factor 𝜅X ∈ [0, 1] depending only
upon the effective dimensionality 𝜈X of the regional features. By contrast, E(𝛿) = E(I) (see eq.
(12) in Bavaud 2013), that is the multivariate nature of 𝛿 does not affects its expected value
under H0.

Interestingly enough, one can demonstrate that Var(I) = 0 iff the spatial weights are a convex
mixture of the limit weights (4), that is iff W = s W0 + (1 − s)W∞ for some s ∈ [0, 1].

In the unweighted case, fi = 1∕n and reversibility then implies W = W⊤. The auxiliary
coefficients occurring in the derivation of Cliff and Ord (1981) pp. 35–36 under normal
assumption then read, assuming row-standardized spatial weights, S0 = n, S1 = 2 Tr(W2) and
S2 = 4n, yielding (in our notations) the well-known results (see p. 42 and eq. (2.35) in Cliff and
Ord 1981)

ECO(I) =
−1

n − 1
, VarCO(I) =

2
n2 − 1

[
Tr(W2) − n

n − 1

]
,

which exactly coincides with (36) and (38), under the additional and popular assumption, yet
much too restrictive in general, that spatial weights are off-diagonal, that is Tr(W) = 0.

Under normal approximation, the one-tailed significance of 𝛿 can be tested by rejecting the
hypothesis of absence of spatial autocorrelation at level 𝛼 if

z ≥ u1−𝛼 where z = 𝛿 − E(𝛿)
√

Var(𝛿)
and u1−𝛼 is the corresponding standard normal quantile.

(44)
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Geographical Analysis A Kernel Approach to Spatial Autocorrelation

The second-order Cornish–Fisher cumulant expansion permits to approximatively redress the
normal quantiles by taking into account the skewness and the “taildeness” of a non-normal distri-
bution (see, e.g., Kendall and Stuart 1977; Amédée-Manesme, Barthélémy, and Maillard 2019).
𝛿 is statistically significant at level 𝛼 if (one-tailed test)

z = 𝛿 − E(𝛿)
√

Var(𝛿)
⏟⏞⏟⏞⏟

z-score

≥ u1−𝛼
⏟⏟⏟

standard normal quantile

+ A(𝛿)
6
(u2

1−𝛼 − 1) + IΓ(𝛿)
24

(u3
1−𝛼 − 3u1−𝛼) −

A
2(𝛿)
36

(2u3
1−𝛼 − 5u1−𝛼)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

correction to the normal distribution

. (45)

Theorem 5 Invariance of z, A(𝛿) and IΓ(𝛿) under stayers mixing. Consider the modified spatial
kernel under stayers mixing K̃W = s KW + (1 − s)K0 for some s ∈ (0, 1], or equivalently W̃ = s W +
(1 − s)In, called lazy Markov chain for s=1/2. The resulting standardized autocorrelation index (41)
as well as the third and fourth expected moments (39) and (40) are invariant under the transformation:

z̃ = z Ã(𝛿) = A(𝛿) ĨΓ(𝛿) = IΓ(𝛿).

Proof. Under stayers mixing, the autocorrelation index (26) transforms as 𝛿 = s 𝛿 + (1 − s), and
the spatial eigenvalues as 𝜇

𝛼
= s 𝜇

𝛼
+ (1 − s). Also, E(𝛿) = s E(𝛿) + (1 − s) and v(�̃�) = s2v(𝝁), thus

proving z̃ = z. Furthermore, the standardized eigenvalues 𝜇s
𝛼
= (𝜇

𝛼
− 𝝁)∕

√
v(𝝁) are left unchanged,

and so are the spectral skewness a(𝝁) and excess spectral kurtosis 𝛾(𝝁), and finally the expected third
and fourth moments (39) and (40). □

Illustration, continued
The scree plots associated to the three feature kernels KX (first round of the 2022 presidential
election among the 94 French departments), KY (sociodemographic features) and Kx (votes for
Macron) are depicted in Fig. 7. They all display small effective dimensionality 𝜈, large skewness
a(𝝀) and huge excess kurtosis 𝛾(𝝀), as quantified in Table 2 left.

Fig. 8 depicts the scree plots associated to the three spatial kernels Ka, Kb and Kc

(Definition 1), displaying moderate skewness a(𝝁) and excess kurtosis 𝛾(𝝁) of either sign

Figure 7. Scree plots of the nontrivial eigenvalues of the p.s.d. feature kernels KX (left), KY

(middle) and Kx (right). They all display small effective dimensionality 𝜈, large skewness a(𝝀)
and huge excess kurtosis 𝛾(𝝀) (see Table 2 left).
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Geographical Analysis

Table 2. Spectral Moments and Other Quantities Entering in Theorem 4

𝝀 𝜈 𝜅 a(𝝀) 𝛾(𝝀)

X 0.00073 3.06 0.32 7.25 56.6
Y 0.59738 2.14 0.46 7.54 58.9
x 0.00002 1 1 9.49 88.0

E(𝛿) = 𝝁 Var(I) a(𝝁) 𝛾(𝝁)

Wa 0.7920 0.00078 -1.54 2.79
Wb 0.2504 0.00322 0.43 −1.10
Wc −0.0086 0.00486 0.28 −0.79
W

D
0.0124 0.000067 6.45 43.20

Note: Left: features kernels. Right: spatial weights of Definitions 1 and 2, as in Table 1.

Figure 8. Scree plots of the nontrivial eigenvalues of the spatial weighs Wa (left), Wb (middle)
and Wc (right), whose negative values characterize the non-p.s.d. nature of Wb and Wc. They all
display moderate skewness a(𝝀) and excess kurtosis 𝛾(𝝀), whose signs are however contrasted
(see Table 2 right): aa < 0; ab, ac > 0 and 𝛾a > 0; 𝛾b, 𝛾c < 0.

(Table 2 right). By contrast, the skewness and excess kurtosis associated to the scree graph of
K

D
(Fig. 4 right and Definition 2) are very large and positive.
Table 3 displays the expected skewness A(𝛿) (39) and the expected excess kurtosis IΓ(𝛿)

(40) for each combination between the feature kernels (rows) and the spatial kernels (columns).
As expected from the magnitude of the spectral moments of Table 2, they take on large values
(hence making the Cornish–Fisher correction important) only for the fourth spatial kernel under
consideration.

Finally, Table 4 displays the p-values, computed by the Keisan online calculator, of
the one-tailed significance test of the autocorrelation index 𝛿, namely pnormal under normal
approximation (44) and pCF under the Cornish–Fisher correction (45). Both are extremely small
by conventional testing standards. Also, pnormal and pCF only differ by a few orders of magnitude,
with the spectacular exception of the fourth spatial kernel (last block) where the difference is
huge. All this directly reflects the magnitude of the values A(𝛿) and IΓ(𝛿) in Table 3.

In general, pnormal < pCF, except for the boxed values of the first block, as a consequence of
the competition between A(𝛿) < 0, making a large positive z-score less probable, and IΓ(𝛿) > 0,
making it more probable.
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Geographical Analysis A Kernel Approach to Spatial Autocorrelation

Table 3. Expected Skewness A(𝛿) (39) and Excess Kurtosis IΓ(𝛿) (40) of the Autocorrelation
Index, under the Three Sets of Feature Kernels (rows) and the Four Spatial Weights (columns)
Described in Table 1.

Wa Wb Wc W
D

A(𝛿) IΓ(𝛿) A(𝛿) IΓ(𝛿) A(𝛿) IΓ(𝛿) A(𝛿) IΓ(𝛿)

X −0.331 0.289 0.093 −0.0095 0.060 0.0142 1.055 3.396
Y −0.344 0.300 0.097 −0.0098 0.062 0.0148 1.097 3.529
x −0.433 0.447 0.121 −0.0140 0.079 0.0227 1.381 5.244

Note: The null distribution of 𝛿 is slightly negatively skewed for Wa, very slightly platykurtic for Wb,
as well as positively skewed and strongly leptokurtic for W

D
.

Table 4. One-Tailed Significance Test of the Autocorrelation Index 𝛿, under the Three Sets of
Feature Kernels (rows) and the Four Spatial Weights Described in Table 1.

Wa Wb Wc W
D

pnormal pCF pnormal pCF pnormal pCF pnormal pCF

X 4 ⋅ 10−26 2 ⋅ 10−24 4 ⋅ 10−55 2 ⋅ 10−51 4 ⋅ 10−46 7 ⋅ 10−34 2 ⋅ 10−69 4 ⋅ 10−7

Y 4 ⋅ 10−15 2 ⋅ 10−17 7 ⋅ 10−28 2 ⋅ 10−24 2 ⋅ 10−19 2 ⋅ 10−18 4 ⋅ 10−32 2 ⋅ 10−5

x 9 ⋅ 10−9 2 ⋅ 10−11 5 ⋅ 10−13 2 ⋅ 10−11 2 ⋅ 10−11 8 ⋅ 10−10 6 ⋅ 10−48 2 ⋅ 10−5

Note: Here pnormal and pCF, respectively, denote the p-values under normal approximation (44) and
under the Cornish–Fisher correction (45).

Taking a step back, the main issues addressed in this article have been exemplified in
depth in sections Illustration: political and social autocorrelation among French departments
and Illustration, continued together with Tables and Figures, illustrating the computation of
various quantities at stake, as well as depicting configurations and Moran scatterplots. This
should hopefully encourage further analyses on new datasets and new contexts along the same
lines, but let us admit that the tangible progress demonstrated by our new proposal is not that
dramatic in the present example: in particular, the autocorrelation is here extremely significant
under both the normal approximation and the Cornish–Fisher correction, and the values of the
expected skewness and excess kurtosis are fairly moderate here – but this does not constitute a
general rule, of course: it is easy to design “realistic” feature configurations and spatial weights
possessing large spectral skewness and/or excess kurtosis.

Conclusion

This article addresses spatial autocorrelation, a time-honored theme of spatial analysis (see, e.g.,
the special issue, Volume 41, of Geographical Analysis, and the Editorial of Griffith 2009),
and revisits a few recurrent topics, such as the eigen-decomposition and visualization of
spatial weights, Moran–Anselin scatterplots and local indicators of spatial association, and the
null distribution of Moran’s I. It also, besides the weighted and multivariate generalizations,
presumably innovates by insisting on designing weight-compatible spatial weights, on using
a kernel-based formalism, and on proposing a new nonparametric procedure for testing the
significance of spatial autocorrelation, exact up to the fourth order.
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Many workers have in particular addressed the issue of the validity of the normal approxi-
mation for the null distribution of Moran’s I , or equivalently of the RV coefficient (see, e.g., Heo
and Ruben Gabriel 1998; Tiefelsdorf, Griffith, and Boots 1999; Tiefelsdorf 2002; Josse, Pagès,
and Husson 2008; Zhang et al. 2009; Westerholt 2022, and references therein). Expressions
(39) and (40) precisely provide a transparent framework for analyzing the possible causes for
nonnormality: the skewness and excess kurtosis turn out to symmetrically decompose into two
separated, distinct contributions, namely one contribution depending on the scree plot of the
feature kernel, and the other on the scree plot of the spatial kernel or spatial weights.

P.s.d. kernels constitute weighted similarity measures between observational units, and have
been systematically exploited in Machine Learning, to represent numeric and categorical data,
but also time series, strings and texts, networks, hard and soft clusterings, etc. (see, e.g., Lodhi
et al. 2002; Hofmann, Schölkopf, and Smola 2008; Guyon et al. 2010, and references therein).
Their amazing versatility and expressivity has been first identified in Classical Data Analysis
(see, e.g., De la Cruz and Holmes 2011; Purdom 2011, and references therein). In the present
context, to each kernel K corresponds a unique feature configuration (f,D) and vice versa, but
also a unique geographical configuration (f,D), as well as a family of spatial weights (33). As
demonstrated here, those fortunate circumstances permit to define and test spatial autocorrelation
by formally treating regional features and space on the same footing.

In the present approach, geographical space is primarily defined from a probability distribu-
tion f, measuring the importance of the regions, as well as a pair probability distribution E = 𝚷W
measuring the regional interaction, whose symmetry amounts in dealing with an unoriented
weighted network, equivalently specified by the symmetric spatial kernel KW . Considering
weight-compatible oriented networks E⊤

≠ E with E⊤1n = E1n = f has no direct influence on
the autocorrelation, since, as noticed ever since Cliff and Ord (1973) in their own formalism,
Tr(KX ,KW ) = Tr(KX ,

1
2
[KW +K⊤

W ]), unless the features kernel KX is asymmetric as well, in
which case a quantity of a new kind would emerge. The introduction of higher-order (triadic,
tetradic etc.) weight-compatible probability distributions could prove of interest in itself, in
particular regarding the issue of flow autocorrelation.

Since spatial kernels can also be obtained directly from geographic distances (33), the present
formalism contributes to extend and unify the conceptual and operational scope of geographical
space, and spatial autocorrelation in particular. In presence of a unique, invariant regional weights
f, the weight-compatibility requirement W⊤f = f, little or not addressed in the current literature,
may seem quite restrictive, but we insist again on its invaluable formal and conceptual benefits.
And, naturally, all the exposed material remains valid if one wishes to consider regions of equal
importance fi = 1∕n.

A great deal of modeling flexibility remains within the limits of the proposed formalism,
in particular regarding the treatment of geographic distances D = (dij): in definition (1), aij

can be replaced by any distance-deterrence function g(dij), where g(d) ≥ 0 is decreasing in d,
typically exponentially or algebraically. Conversely, the geographic distances dij in (32) can be
replaced by any increasing function h(dij) with h(d) ≥ 0 and h(0) = 0, such as the radial basis
transformation h(d) = 1 − exp(−𝜆d) with 𝜆 > 0.

Obtaining the exact distribution of 𝛿 under H0, using the newly proposed non-parametric
invariant orthogonal integration procedure, may reveal itself out of reach (Bavaud 2023). Yet,
the first four expected moments of 𝛿 can be exactly computed, thus granting a fairly precise
statistical significance testing procedure via the Cornish–Fisher expansion. Considering the first
two expected moments only amounts in resorting to the usual normal approximation, whose
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present extension to weighted observations endowed with multivariate profiles seems original in
itself.

[Correction added on 22 March 2024 after first online publication: On page 5, first paragraph,
W0 has been added to the start of the first sentence.]
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Endnote

1 Note that, throughout this article, the term “moments” will loosely refer to as the expected (un-)centered
and/or as the (un-)standardized moments of 𝛿 such as its mean, variance, skewness, or excess kurtosis-the
latter being, technically, its fourth standardized cumulant. By contrast, “spectral moments” will refer to
the observed moments of the kernel eigenvalues.
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