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Introduction

This PhD thesis contains three chapters on competitive and cooperative behavior. Every
chapter makes use of laboratory experiments to study individuals’ behavior in strategic
situations relevant to the field of Economics. The three chapters offer experimental re-
sults, new insights, and methodological improvements; all contributing towards a better
understanding of prominent topics in experimental economics.

In Chapter 1, we look at market entry decisions, and more specifically, we provide
an explanation for people’s tendency to enter excessively in markets with winner-take-all
characteristics. In such markets, considerable payoffs are achievable but they are skewed
towards a handful of firms or individuals at the top, whereas others are usually left with
very little. Examples of the latter abound: network externalities create winner-take-all
markets, such as social networks or software in the IT industry; highly competitive mar-
kets with few slots, such as markets for CEOs, politicians, art performers, or athletes
often have these characteristics too. When entering such markets—for example, through
entrepreneurship—one usually forgoes steadier earnings in a standard market. In our
laboratory experiment, we tackle this question by comparing entry decisions between
standard market entry games and winner-take-all games. Both conditions have equivalent
expected payoffs, but payoffs are vastly more volatile in the winner-take-all condition. In
this situation, traditional decision-making models with risk aversion predict more entrants
in the standard market entry condition than the winner-take-all condition. However, in our
experiment, we observe the opposite with the winner-take-all condition resulting in sub-
stantially more entries. We explore three candidate explanations for excess entry: blind
spot, illusion of control, and joy of winning, none of which receive empirical support. We
provide a novel theoretical explanation for excess entry based on Cumulative Prospect
Theory and test it empirically. Our results suggest that excess entry into highly compet-
itive environments is not caused by a genuine preference for competing, but is instead
driven by probability weighting. Market entrants overweigh the small probabilities asso-
ciated with the high-payoff outcomes in winner-take-all markets, while they underweigh
probable failures.

In Chapters 2 and 3, we shift our attention towards cooperation, another widely studied
topic in experimental economics. In particular, we investigate cooperation in situations
where players repeatedly interact across multiple games; what we call “multigame con-
tact”. Although multigame contact offers great theoretical implications for cooperation
and finds applications in many real-life situations, multigame contact has received surpris-
ingly little attention. We propose and run a novel experimental design to study subjects’
behavior in the presence or absence of multigame contact.

Chapter 2 reports on an experiment where subjects play a pair of indefinitely repeated
prisoner’s dilemma games either with the same partner, or with two different partners.
In contrast to our theoretical prediction, we find no evidence that multigame contact in-
creases overall cooperation. Nonetheless, we observe that multigame contact system-
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atically affects behavior: subjects link their decisions across games when playing with
the same partner. Multigame contact proves to be a double-edged sword, as simultane-
ous cooperation and simultaneous defection in the two games are both more likely under
multigame contact. This suggests that the effects of multigame contact on cooperation are
more complicated in practice than theory would predict.

These results call for further evidence to better understand the mechanisms at play.
Chapter 3 builds on Chapter 2 and reports on a new experiment examining the effect
of multigame contact on cooperation. Subjects play two indefinitely repeated games,
a prisoner’s dilemma and a stag hunt game, either with the same partner, or with two
different partners. The second treatment dimension is the order of play within a round:
either the two games are played simultaneously, or the prisoner’s dilemma is played before
the stag hunt game. Contrary to the theoretical predictions, multigame contact does not
improve cooperation in the prisoner’s dilemma. When games are played simultaneously,
multigame contact even leads to less efficient outcomes. Non-credible threats can explain
why multigame contact does not help, or even harms cooperation, in our experiment.
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Chapter 1

Explaining Excess Entry in
Winner-Take-All Markets
VINCENT LAFERRIÈRE†, DAVID STAUBLI AND CHRISTIAN THÖNI

We report experimental data from standard market entry games and winner-take-
all games. At odds with traditional decision-making models with risk aversion,
the winner-take-all condition results in substantially more entry than the expected-
payoff-equivalent market entry game. We explore three candidate explanations for
excess entry: blind spot, illusion of control, and joy of winning, none of which re-
ceive empirical support. We provide a novel theoretical explanation for excess entry
based on Cumulative Prospect Theory and test it empirically. Our results suggest
that excess entry into highly competitive environments is not caused by a genuine
preference for competing, but is instead driven by probability weighting. Market en-
trants overweight the small probabilities associated with the high payoff outcomes in
winner-take-all markets, while they underweight probable failures.

1.1 Introduction
Empirical research finds that most start-ups fail within a few years. Using data on the
U.S. manufacturing sector, Dunne et al. (1988) report that 61.5% of newly established
plants exit the market after five years and 79.6% after 10 years. Mata and Portugal (1994)
confirm the high failure rates based on data of the Portuguese manufacturing industry.
Hamilton (2000) finds that the majority of people who enter self-employment face lower
expected earnings but higher variance than in a paid job. More recent evidence is barely
more encouraging. According to the U.S. Small Business Administration Office of Ad-
vocacy’s 2020 Frequently Asked Questions, the 10-year survival rate of new businesses
is 33.6%, and the 15-year survival rate is 25.7%.1

This excess entry is at odds with early findings in the experimental literature. Standard
experimental market entry games fail to find excess entry (see Rapoport et al., 1998;

†This chapter originates from a project that David Staubli and Christian Thöni started. I joined the
project later and was in charge, at first, of designing and running the new experiment (Section 1.5). Once the
data collected, I performed a large part of the new analysis and was heavily involved in writing Section 1.5
and rewriting the rest of the article. This chapter is a reproduction of the published article: Laferrière, V.,
Staubli, D., & Thöni, C. (2022). Explaining excess entry in winner-take-all markets. Management Science.

1https://cdn.advocacy.sba.gov/wp-content/uploads/2020/11/05122043/Small-Business-FAQ-2020.pdf
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Sundali et al., 1995). Instead, they find the number of market entrants to be in line with
Nash equilibrium predictions. As Kahneman (1988, p. 12) puts it, this tacit coordination
toward the Nash equilibrium “looked almost like magic”.

How come there is such a disconnect between empirical evidence from the laboratory
and from the field? Entrepreneurship in the real world deviates in two main respects from
the laboratory market entry game setting. First, in the real world, successful market entry
depends on entrepreneurial skills. Second, many markets in the real world feature winner-
take-all characteristics; that is, few competitors capture a very large share of the rewards
and the remaining competitors are left with very little. Examples for the latter abound:
network externalities create winner-take-all markets, namely in the IT industry, such as
for social networks (e.g. Facebook, Twitter) or software (e.g. operating systems). Also,
industries with one or only few slots display winner-take-all characteristics. Examples
are highly competitive environments like markets for CEOs or politicians. Finally, we see
a particularly high concentration of rewards for a few competitors in the entertainment
business, such as performing arts (music, dance, etc.) or sports (tennis, football, etc.).

More recent research on market entry in competitive environments has focused on
the role of beliefs about relative skill. Camerer and Lovallo (1999) report results from
laboratory experiments showing that overconfidence can drive excess entry in a setting
where market returns depend on skill. Moore and Cain (2007) build on Camerer and
Lovallo (1999) and manipulate the difficulty of the task to determine skill levels. They find
that skill-dependent market returns lead to excess entry only in the easy-task condition,
but not in the difficult-task condition. Moore et al. (2007), Dorfman et al. (2013), and
Cain et al. (2015) confirm the finding that competitions over easy tasks are most likely
to produce excess entry. Wu and Knott (2006) study aggregated market data on entry
decisions of entrepreneurs and find excess entry in markets where there is a high degree
of uncertainty about ability and low demand uncertainty. Comparing the evolution of
overconfidence between strategic and nonstrategic environments, Brilon et al. (2019) find
that overconfidence persists when subjects can strategically send signals about their skill
and opt out of competition (strategic). Overconfidence vanishes, however, when subjects
are forced to compete with each other and cannot strategically send signals (nonstrategic).
Morgan et al. (2016) allow subjects to make postentry investment decisions to investigate
the role of natural and strategic risk. They show that adding natural risk to market entry
leads to a slight increase in the frequency of market entry and to a much higher postentry
investment.2

In Danz (2020), subjects have to choose between a piece-rate compensation and a
competitive tournament after observing their competitors’ past performances. By ma-
nipulating ex-post information about their competitors’ previous tasks, Danz shows that
hindsight bias generates overplacement and increases subjects’ valuations of tournament
participation.

So far, the significant body of literature drawing on insight from behavioral economics
to explore the roots of entrepreneurship is inconclusive. There is no clear “smoking gun”
to account for the excess entry in the real world documented in the empirical literature
(see Åstebro et al., 2014, for a review).

Closest to our work is Fischbacher and Thöni (2008), who modify the payout scheme

2Experimental research has also found overbidding in rent-seeking contests (see Dechenaux et al.,
2015, for a review). Cason et al. (2020) show that efforts are consistently higher in winner-take-all contests
compared to contests with proportional prizes. Sheremeta (2018) explores multiple behavioral explanations
and finds impulsivity to be the primary driver of overbidding.
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to incorporate the winner-take-all characteristics of many real world markets. Deviating
from standard market entry games, they do not distribute the market evenly among the
entrants. Instead, they randomly determine a single winner who takes the entire market.
In this winner-take-all setting, they find excess entry well beyond Nash equilibrium pre-
dictions, absent any role for skill. However, since they do not contrast their results with
an expected-payoff-equivalent standard market entry game, their setting cannot single out
the winner-take-all feature as the cause of excess entry.

In this paper, we fill this gap by running both a winner-take-all game (WTA) and an
expected-payoff-equivalent standard market entry game (MEG). This allows us to iso-
late the effect of the winner-take-all feature. We find a large and statistically significant
treatment effect: the WTA condition creates more market entry than the MEG condi-
tion. This treatment effect is puzzling. As market entry in the WTA condition offers the
same expected payoff (henceforth, “expected payoff” always refers to “expected mon-
etary payoff”) but more variance than in the MEG condition, we would expect just the
contrary based on standard expected utility models with risk aversion.

We investigate a number of explanations for excess entry found in the literature. First,
we rule out utility curvature as an explanation. To account for excess entry into WTA mar-
kets, convexity of utility functions would be required, which is incompatible with findings
in the empirical literature. Then we find that neither wrong beliefs about other players’
entry probability (henceforth, “blind spot”, following Camerer and Lovallo, 1999), nor er-
roneous beliefs that one can influence random processes (“illusion of control”, see Langer,
1975) can explain the treatment effect. Furthermore, we address the possibility that the
competition-against-others structure of the WTA game provides an extra utility associated
with successful market entry (“joy of winning”). Running two additional conditions that
preserve the payoff consequences but eliminate the competitive element, we find that the
treatment effect does not disappear when the competitive element is removed.

We finally investigate a new approach to understand excess entry through the lens
of Cumulative Prospect Theory (CPT; Kahneman and Tversky, 1979, and Tversky and
Kahneman, 1992). We show that—depending on the parameter specifications—CPT can
be a powerful explanation for excess entry in winner-take-all markets. To explore the
predictive power of CPT, we ran an additional experiment where we estimate subjects’
CPT parameters and relate them to their entry behavior. Our parameter estimates are
in line with previous findings from the literature. We show that our pooled parameter
estimates are consistent with the treatment effect. The driver of the effect is the inverted S-
shaped weighting of cumulative probabilities. This translates into overweighting of small
probabilities of winning large payoffs in the winner-take-all game. Further, we classify
subjects as expected utility theory (EUT) types or CPT types using a finite mixture model
approach. Relating this classification to market entry behavior, we are able to show that
excess entry in the winner-take-all condition is primarily driven by CPT types.

Explaining excess entry by the biased perception of probabilities as described by the
weighting of cumulative probabilities (henceforth “probability weighting”) is promising
for mainly two reasons. First, the inverted S-shaped weighting function is a well estab-
lished finding of the behavioral economics literature (see Abdellaoui, 2000; Bruhin et al.,
2010a; Bruhin et al., 2018; Fehr-Duda & Epper, 2012; Fehr-Duda et al., 2011; Fennema
& Wakker, 1997; Harrison & Rutström, 2009; Wakker, 2010; G. Wu & Gonzalez, 1996).
Second, probability weighting offers a complementary explanation to overconfidence as
a driving force behind excess entry. This is important because there are environments in

3



which overconfidence is unlikely to arise (e.g. in competitions on difficult tasks).3 We
further show that the predictive success of probability weighting in a CPT framework
extends to strategic situations. Whereas there is a large number of experimental studies
on CPT applied to individual choice problems, empirical research on CPT preferences in
strategic contexts is surprisingly sparse.4

The remainder of the paper is organized as follows. The next section presents the
experimental design. Section 1.3 presents the main results. In Section 1.4 we investigate
explanations for the treatment effect: blind spot, illusion of control, and joy of winning.
In Section 1.5 we derive predictions for CPT and put the explanation to an empirical test.
Section 1.6 concludes.

1.2 Experimental design

1.2.1 The game
In our game, n players decide simultaneously whether to enter a market (Entryi = 1)
or to stay out (Entryi = 0). If a player decides to stay out, then she gets a fixed payoff
I . Staying out can be interpreted as earning a fixed payment for regular employment. In
our setting, n is equal to 14 and I is equal to 45 experimental currency units (ECUs). If
a subject enters the market, then her payoff depends on the number of market entrants
(E =

∑n
j=1 Entryj). The payoffs for entering the market follow the function described

in Table 1.1, where E is the number market entrants, Π(E) is the market payoff, and π(E)
is the market payoff divided by the number of entrants (= Π(E)/E).

Table 1.1: Payoff function for entrants, dependent on the number of entrants E

E 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Π(E) 100 130 155 175 190 200 205 209 212 214 215 215 215 215
π(E) 100 65 51.7 43.8 38 33.3 29.3 26.1 23.6 21.4 19.5 17.9 16.5 15.4

In the market entry game (MEG) condition, each entrant earns a payoff π(E). To
illustrate, if five players enter the market, then the market payoff is 190 and each entrant
earns 38. In the winner-take-all (WTA) condition, the market payoff is randomly assigned
to one entrant only. That is, one entrant earns Π(E), while all other entrants earn zero.
Each entrant receives the payoff of Π(E) with probability 1/E and zero otherwise. To
illustrate, if five players enter the market, then one randomly selected entrant gets the
total market payoff of 190 and the four other players get a payoff of 0. Each entrant has
a probability of 0.2 to be assigned the market payoff of 190. Consequently, given the
number of entrants, the expected payoff for market entry is the same in both conditions.

Similarly to the payoff function in Fischbacher and Thöni (2008), Π(E) is increasing
and concave in E. In our case, however, Π(E) flattens out at E = 11. In reality, total
market returns may or may not be increasing in the number of competitors. As argued

3Overconfidence about skill is far from being a ubiquitous phenomenon. It depends on subjects’ char-
acteristics (Schulz & Thöni, 2016), and whether the task is familiar or non-familiar to the subjects (Hoelzl
& Rustichini, 2005).

4Ernst and Thöni (2013) show that behavior in all-pay auctions is consistent with reference-dependent
utilities as proposed by CPT; Brünner et al. (2019) find evidence for CPT preferences in bidding behavior
in online auctions; Nguyen et al. (2016) relate prospect theory preferences to trust.
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by Frank and Cook (1995), more competitors may increase the market value for several
reasons. First, the winner in a competition with a large number of competitors will likely
perform better than the winner in a competition with a small number of competitors.
Thus, if not only relative but also absolute performance is rewarded, the winner’s prize
increases in E. This is plausible, for instance, in the music business or in sports with
absolute performance measures (e.g., world records in athletics). Second, particularly
in sports or the performing arts, more contestants increase public attention and media
coverage, which in turn increases the rewards for the top performers. The marginal effect
of an additional entry on market volume, however, is assumed to be decreasing. This
gives rise to strictly decreasing expected payoffs per entrant, Π(E)/E, as the number of
entrants increases. Due to limited potential market demand, an entrant therefore imposes
an externality on other entrants by lowering their expected payoffs.

1.2.2 Nash equilibria
In this section, we derive Nash equilibria in pure and in mixed strategies. We start with
the simplest case, assuming that players maximize their expected payoff. As the MEG
and WTA conditions are equivalent under this assumption, the following analysis holds
for both games. The pure-strategy Nash equilibria are straightforward. As long as there
are less than three entrants, it is a best response to enter. When three other players enter
the market, entry is no longer profitable, as a fourth entrant would forgo 45 and earn
π(4) = 43.8. Any permutation of three players entering the market and the other 11
players staying out constitutes a Nash equilibrium in pure strategies. For the symmetric
mixed-strategy Nash equilibrium, a player’s entry probability, p∗, must satisfy:

n∑
E=1

(
n− 1

E − 1

)
p∗

E−1

(1− p∗)n−Ev(E) = u(I), (1.1)

where v(E) = u(π(E)) in the MEG condition and v(E) = [1/E]u(Π(E)) + [(E −
1)/E]u(0) in the WTA condition. The condition equates the value of staying out (right-
hand side) to the value of entering the market if all other players enter the market with
probability p∗ (left-hand side). Assuming expected payoff maximization (linear u(), risk
neutrality) and inserting the parameters of our experimental setting for n, I , Π(E), and
π(E) yields p∗ = 0.25. If all players enter with probability p∗ and stay out with proba-
bility 1− p∗, then the expected number of market entrants is 3.52. Besides the symmetric
equilibrium, there are numerous asymmetric equilibria in mixed strategies. They feature
some players who always enter, some who always stay out, and some who randomize.
In any Nash equilibrium, the average number of entrants is between 3 and 3.80. The
former corresponds to the equilibrium in pure strategies and the latter corresponds to an
asymmetric Nash equilibrium in mixed strategies where four players enter with probabil-
ity 0.95 and the other ten player stay out. Any mixed-strategy Nash equilibrium implies
more market entrants than the pure-strategy equilibrium. This is because, in our param-
eterization, the third entrant in the pure-strategy equilibrium is clearly better off entering
than staying out and the fourth entrant is almost indifferent between entering and staying
out. For a detailed analysis of the Nash equilibria, we refer the reader to Fischbacher and
Thöni (2008).

The effect of risk preferences as explained by expected utility theory is straightfor-
ward. If we assume risk aversion (concave u()), then entry becomes less attractive in both
the MEG and WTA conditions and the equilibrium is characterized by fewer expected
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entrants. The effect is, however, stronger for the WTA condition and the theory predicts
more entrants in the MEG condition than in the WTA condition. The opposite is the case
for convex utility. We will analyze the equilibria under richer preference assumptions in
more detail in Section 1.5.

The asymmetric equilibria mentioned above are indicative for what happens if we
assume heterogeneous agents. We restrict our attention to a model with two types of
players and complete information. Consider a group with z risk-neutral players (linear
u()) and 14 − z risk-averse players (concave u()). Because Equation (1.1) cannot be
satisfied for both types of players at the same time, only one of the two types is willing to
play a mixed strategy in equilibrium. If z > 3, then there is an equilibrium in which the z
risk neutral players play a mixed strategy while the risk averse players do not enter. The
expected number of entrants would then be equivalent to the game with only z players,
and we can use Equation (1.1) to derive the entry probabilities. It turns out that the
expected number of entrants is fairly insensitive to changes in group size (as long as
z > 3), gradually decreasing from 3.80 for z = 4 to 3.52 for z = 14. If z = 3 then there
is no mixed-strategy equilibrium, while for z < 3 there are mixed-strategy equilibria in
which the risk neutral players always enter and (some of) the risk averse players use a
mixed strategy. The same logic applies if the group contains z players with risk appetite
(convex u()) and 14− z risk-neutral/risk-averse players.

1.2.3 Experimental procedures
We repeat the game for 20 periods in groups of size 14. We use a partner matching; that
is, subjects are allocated to groups of 14 at the beginning of the session and interact only
within this group during the session.5 For all groups, there are two phases: a phase of 20
periods in the WTA condition, and a phase of 20 periods in the MEG condition. To control
for order effects, about half of the groups played the WTA condition first and the MEG
condition second; for the remaining groups we reversed the order. In total, we observe
6,160 entry decisions from 154 subjects.

At the beginning of every period, we elicit subjects’ beliefs about how many other
subjects would enter the market (hereafter, we will refer to the entrants apart from the
subject considered as “other entrants”). We incentivize truthful revelation of beliefs by
rewarding a correct guess with five ECUs. Experimental research shows that belief ac-
curacy increases when correct beliefs are rewarded (see Gächter & Renner, 2010; Wright
& Aboul-Ezz, 1988). However, in order to keep subjects’ focus on the main game, the
reward for a correct belief is rather small compared with the payoffs of the game.6 In the
WTA condition, we use the computer to generate a uniformly distributed random number
between 0 and 100 for each subject. Among the subjects who chose to enter the market,
the one with the highest random number wins the winner-take-all competition and the
corresponding payoff. All competitors learn their random number and the random num-
ber of the winner in their group at the end of each period. In both conditions, subjects are
also informed about the number of other entrants at the end of each period. The strategies

5In the first session with 28 subjects we ran a stranger matching with two groups. The results are almost
identical for the two matching protocols.

6The design of our belief elicitation stage is deliberately kept simple. Eliciting full probability distri-
butions would require that subjects allocate probability mass across 14 outcomes (0–13 other entrants) in
each round. This would distract subjects from the main task. The downside of our method is that we elicit
only the mode of the distribution, which is consistent with a wide range of probability distributions. For a
discussion of elicitation methods and their biases see Armantier and Treich (2013).
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“market entry” and “staying out” are neutrally denoted as “Alternative A” and “Alternative
B”.

Subjects were paid out the sum of the payoffs of the 40 market entry decisions as
well as the rewards for the correct guesses on the number of other entrants. The accumu-
lated earnings in ECUs were converted to real money at the end of the experiment at an
exchange rate of CHF 1.5 (≈ USD 1.5) per 100 ECUs.

The sessions were run in the laboratory of the University of St. Gallen with undergrad-
uate students recruited with ORSEE (Greiner, 2015). The experiment was programmed
in z-Tree (Fischbacher, 2007). Subjects were randomly allocated to the sessions so that
they could not infer with whom they would interact. Sessions lasted between 70 and 80
minutes with an average pay per subject of CHF 37 (≈ USD 37).

1.3 Results
Figure 1.1 shows that the WTA condition results in more market entry compared with the
MEG condition. In phase 1 (phase 2) the average number of entrants across the 20 periods
is 6.42 (5.67) in the WTA condition and 4.41 (4.38) in the MEG condition. The treatment
effect is highly significant in both phases (p = 0.008, exact Wilcoxon-Mann-Whitney test
using group averages as observations). Additionally, we can analyze the treatment effect
within group. Pooling all groups across the two phases, the average number of entrants is
4.39 in the MEG condition and 6.08 in the WTA condition. An exact Wilcoxon signed-
rank test on the within-group treatment effect yields a p-value of 0.002. Compared with
the symmetric Nash equilibrium in mixed strategies (depicted by the horizontal lines in
Figure 1.1), we observe excess entry in both conditions and in both phases.
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Figure 1.1: Average number of entrants in the two conditions per phase.
The horizontal lines show the number of entrants predicted by the sym-
metric mixed-strategy Nash equilibrium with risk neutral players. Spikes
show 95% confidence intervals, clustered on group.

Figure 1.2 shows market entry over time. It displays the average entry frequency
across the 20 periods and both phases. The entry frequencies in both conditions become
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Figure 1.2: Frequencies of market entry in the two conditions per period
across phase 1 and phase 2 (average over all periods in parentheses). The
horizontal lines show the entry probability predicted by the symmetric
mixed-strategy Nash equilibrium with risk-neutral players.

somewhat lower over time. While there is some indication that the MEG converges to-
wards the predicted entry frequency, excess entry remains substantial in the WTA condi-
tion. In Table 1.2 we report linear probability models to test for time and order effects.
Model (1) shows that both within phase and between phases we observe a significantly
negative effect on entry. In Model (2) we interact period and the dummy for the second
phase with the treatment dummy. The results suggest that the negative trend across the 20
periods within a phase is mainly driven by the MEG condition, whereas the reduction in
entry frequency across phases is mainly driven by the WTA condition.

There is considerable heterogeneity in the entry behavior across subjects. The stan-
dard deviation of the individual number of entries over the 20 periods in the WTA condi-
tion is 6.41 (average individual number of entries is 8.68; data from both phases). About
25% of the subjects enter two or fewer times during the 20 periods, while 10% of the
subjects enter in every period. In the MEG condition, the standard deviation is somewhat
lower (5.48), and 30% of the subjects enter two or fewer times, while only 2.6% enter
in every period. For histograms of individual entry frequency see Figure 1.A.2 in the
appendix (p. 30).

Taken together, we observe excess entry relative to the Nash equilibrium in both con-
ditions. In the MEG condition, we observe a negative trend over time such that, in the last
periods, the average number of entrants is no longer significantly different from the pre-
diction (p = 0.453 in the final two periods, both phases). In the WTA condition, however,
the corresponding difference remains highly significant (p = 0.004).

Our results on the WTA condition replicate and confirm the findings of Fischbacher
and Thöni (2008), and our comparison with the expected-payoff-equivalent MEG condi-
tion allows us to identify the winner-take-all characteristics as the causal source of excess
entry. This is puzzling because—for any number of other entrants—market entry in the
MEG and WTA conditions offer the same expected payoff, but the latter comes with more
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Table 1.2: Linear probability models for entry

Dependent variable: Entry

(1) (2)

MEG −0.118∗∗ −0.116∗

(0.011) (0.042)
Period −0.003∗∗ −0.002

(0.001) (0.002)
Phase 2 −0.028∗ −0.053∗

(0.011) (0.023)
MEG × Period −0.003

(0.003)
MEG × Phase 2 0.051

(0.031)
Constant 0.482∗∗ 0.480∗∗

(0.021) (0.036)

F -test 38.0 44.3
Prob > F 0.000 0.000
R2 0.018 0.019
N 6,160 6,160

Notes: OLS estimates. Dependent variable is an indi-
vidual entry decision; independent variables are dum-
mies for the treatment (MEG) and phase 2, period,
and interactions. Robust standard errors, clustered on
matching group, in parentheses. + p < 0.1, ∗ p < 0.05,
∗∗ p < 0.01.

variance. Thus, the results are at odds with legions of studies showing that subjects gener-
ally display risk-averse behavior. Fischbacher and Thöni (2008) speculated that subjects
either have “illusion of control” or that they gain extra utility from the thrill of competition
in the WTA condition relative to the MEG condition. In the following, we present addi-
tional data analyses and new experimental measures to investigate candidate explanations
for the excessive entry behavior in the WTA condition relative to the MEG condition.

1.4 Candidate explanations for excess entry
In this section, we test the three hypotheses: blind spot, illusion of control, and joy of
winning. For the first, we make use of the beliefs elicited in the main experiment; for the
second and third, we present additional experimental measures.

1.4.1 Blind spot
In this section, we address the blind spot explanation, that is, excess entry due to miscali-
brated beliefs about other players’ entry probability in the two conditions. Both conditions
are strategic games: The fewer other players a particular player expects to enter, the more
attractive market entry becomes. The treatment effect could be caused by biased beliefs.
If players mistakenly believe that other players are less likely to enter in the WTA relative
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to the MEG condition, then the optimal response may be to enter more frequently in the
WTA than in the MEG condition. This could arise from wrong beliefs about other play-
ers’ risk preferences. As the WTA condition is subject to risk, overestimation of other
players’ risk aversion leads to underestimation of their entry probability.

To address the blind spot explanation we elicited the subjects’ beliefs about the num-
ber of other entrants. We define the variable Belief error as the actual number of other
entrants minus a subject’s belief about the number of other entrants. It is thus a measure
for the underestimation of the number of other entrants. Over the course of the 20 periods,
beliefs become more accurate and there is no systematic difference across conditions in
terms of belief accuracy.7 The blind spot explanation requires systematic underestimation
in the WTA condition. Figure 1.3 shows the mean belief error across the 20 periods for
the MEG and the WTA conditions. The mean belief error fluctuates around zero. That is,
on average subjects’ beliefs do not seem to be systematically biased.

-3
-2

-1
0

1
2

3

1 5 10 15 20

MEG WTA

B
el

ie
f e

rr
or

Period

Figure 1.3: The figure shows the mean belief error in the MEG and the
WTA conditions across the 20 periods (both phases). Positive (negative)
values indicate that subjects underestimate (overestimate) the number of
other entrants.

Table 1.3 shows ordinary least squares (OLS) regressions with the Belief error as the
dependent variable. The estimate of the constant in Model (1) reflects the average Belief
error across all subjects and all periods. The estimate indicates that subjects underes-
timate the number of other entrants by 0.095, which is not significantly different from
zero. On average, beliefs are therefore very accurate. The result in Model (2) indicates
that subjects underestimate the number of other entrants somewhat less—by 0.102—in
the WTA condition compared with the MEG condition (statistically insignificant). To
provide evidence for the blind spot explanation, we would need subjects to underestimate

7In the first five periods, the absolute difference between the realized number of entrants and the belief
is 2.08 on average, while in the last five periods the corresponding value is 1.64. If we regress the absolute
belief error on period, a dummy for the WTA condition, and a dummy for the second phase, then we
observe a negative coefficient for period (β = −0.028; p = 0.007), while the other two coefficients are not
significantly different from zero.
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the number of other entrants more strongly in the WTA condition. The negative sign of
the coefficient estimate goes therefore against the blind spot explanation.

Table 1.3: Explaining belief errors

Dependent variable: Belief error

(1) (2) (3)

WTA (β1) −0.102 0.265∗

(0.060) (0.084)
Entry (β2) 1.606∗∗

(0.177)
Entry × WTA (β3) −1.290∗∗

(0.263)
Constant (β0) 0.095 0.145∗ −0.358∗∗

(0.055) (0.060) (0.054)

F -test − 2.9 66.6
Prob > F − 0.124 0.000
R2 − 0.001 0.060
N 6,160 6,160 6,160

Notes: OLS estimates. The dependent variable is the belief error, number
of other entrants – beliefs. Robust standard errors, clustered on matching
group, are in parentheses. + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01.

This does not suffice to rule out the blind spot explanation. The result in Model
(2) is consistent with the following beliefs in the WTA condition: Those who enter fre-
quently underestimate the number of other entrants, and those who stay out overestimate
the number of other entrants (thereby keeping average beliefs unbiased). We investigate
this possibility by adding an interaction of the treatment dummy with the individual entry
decision in Model (3).

Table 1.4: Mean belief error as a function of the WTA dummy and the Entry dummy

WTA = 0 WTA = 1
Entry = 0 β̂0 = −0.358∗∗ β̂0 + β̂1 = −0.093

Entry = 1 β̂0 + β̂2 = 1.247∗∗ β̂0 + β̂1 + β̂2 + β̂3 = 0.222+

Notes: β̂j is the estimate of coefficient βj from Model (3) of Table 1.3. + p < 0.1, ∗

p < 0.05, ∗∗ p < 0.01.

Model (3) allows us to differentiate the effect of the beliefs by entry decision and
condition. Table 1.4 provides the respective coefficient estimates. We find that subjects
who enter in a given period display a positive belief error and subjects who do not enter
in a given period display a negative belief error. To tackle the blind spot explanation, we
look at the difference in belief errors between the MEG and WTA conditions only for
observations with Entry = 1. That is, we compare the lower-left cell and the lower-right
cell of Table 1.4. The difference is equal to β̂1+ β̂3 = −1.025. This indicates that entrants
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underestimate the number of other entrants more strongly by 1.025 in the MEG condition
compared to the WTA condition.

Again, the negative sign of the estimate, β̂1 + β̂3, goes against the blind spot expla-
nation. To substantiate blind spot as an explanation for the treatment effect, we would
need subjects to underestimate more strongly (or overestimate less strongly) the number
of other entrants in the WTA condition compared to the MEG condition. Thus, the treat-
ment effect cannot be explained by subjects erroneously underestimating the number of
entrants in the WTA condition. On the contrary, if anything, subjects’ beliefs strengthen
the puzzle.

1.4.2 Illusion of control
Subjects might believe they have some influence over the random process of the mar-
ket payoff in the WTA condition. Such an “illusion of control” (IOC; Langer, 1975)
might increase perceived profitability of market entry in the WTA condition. To investi-
gate whether IOC drives the treatment effect, we introduce a measure for IOC and relate
individual differences to market entry behavior.

We measure IOC with all participants after they completed the MEG and WTA phases.
We identify IOC by the willingness to pay for a particular lottery ticket over other lottery
tickets with the same objective winning probabilities. The 28 subjects in a session were
presented with 28 symbols such as “%”, “$”, or “@”. In the session, we had an urn
containing the complete set of symbols (28 cards), and subjects were told that two of the
28 symbols would be drawn at random. The two subjects with the respective symbols
won additional CHF 50 (which is significantly more than the average earnings per subject
in the main experiment).

After all subjects picked a symbol from the 28 symbols, they were informed that in
order to have a one-to-one matching between symbols and subjects we would have to
allocate the unchosen symbols to some of the subjects who chose the same symbols as
others. Before subjects knew whether their preferred symbol was chosen more than once,
all subjects had to indicate their willingness to pay to keep their symbol. Subjects were
endowed with 800 ECUs. We explained to the subjects that there would be a sealed-bid
second-price auction for their symbol and they were asked to submit a bid. We explained
to the subjects that, in this auction format, it would be optimal to bid exactly their will-
ingness to pay.

Objectively, every symbol has the same probability to be chosen at random, and sub-
jects are aware of that. Consequently, there is no objective reason to pay to keep a par-
ticular symbol instead of being allocated another as-yet-unchosen symbol. If subjects
nevertheless indicate a willingness to pay for their symbol, we interpret this as IOC.

On average subjects bid 114 ECUs with a standard deviation of 218. This implies
that there is substantial variance: 43% of the subjects display no willingness to pay at
all, 56% bid at most 5 ECUs, and 4% are willing to bid their full endowment of 800.
Relative to the extra pay for winning the lottery (CHF 50 = 3333 ECUs), the vast majority
of subjects have a rather low willingness to pay (see Figure 1.A.3 in the appendix, p. 31,
for a histogram of the bids).

What matters for our purpose, however, is whether our measure for IOC has predictive
power for excess entry. In Table 1.5, we use OLS regressions to investigate the effect on
(1) the individual entry frequency in the WTA condition, and (2) the treatment effect
(individual entry frequency in the WTA condition minus individual entry frequency in the
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MEG condition), both measured in percent. The results show that estimated coefficients in
both models are close to zero and far from significant. These results suggest that illusion
of control does not offer an explanation for excess entry.

Table 1.5: Excess entry and illusion of control

Dependent variable: Entry frequency (in %)

WTA WTA–MEG

Illusion of control 0.010 0.008
(0.016) (0.011)

Constant 42.290∗∗ 11.192∗∗

(1.899) (1.568)

F -test 0.4 0.4
Prob > F 0.555 0.524
R2 0.004 0.003
N 154 154
Notes: OLS estimates. The dependent variable is the individual entry fre-
quency in WTA, or the treatment effect (frequency of entry in WTA minus
frequency of entry in MEG). Both measures in percent. The independent vari-
able is the bid in the auction for the symbol. Robust standard errors, clustered
on matching group, are in parentheses. + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01.

1.4.3 Joy of winning
A main conjecture that Fischbacher and Thöni (2008) outline in their conclusion to ex-
plain excess entry is the thrill of winning a competition against others provided by the
WTA condition. In the literature, this phenomenon is often referred to as “joy of win-
ning”. The concept posits that winning a prize in a competitive environment generates
more utility than winning the same prize in a simple lottery. Researchers have argued
for the existence of joy of winning in contests and auctions. Studies include Amaldoss
and Rapoport (2009), Brookins and Ryvkin (2014), Dohmen et al. (2011), Goeree et al.
(2002), Herbst (2016), Herrmann and Orzen (2008), and Sheremeta (2010).

In our setting, the idea can be formalized by adding an extra payoff for the winner.
This payoff represents the nonpecuniary joy of winning against the other market entrants.
The mixed-strategy Nash equilibrium condition is then written as follows:

n∑
E=1

(
n− 1

E − 1

)
p∗

E−1

(1− p∗)n−E 1

E
[Π(E) + jow] = I. (1.2)

The main difference to Equation (1.1) is the term jow which is added to the winning pay-
off in the WTA condition. For simplicity, Equation (1.2) assumes linear utility functions.
Predicting WTA entry probabilities in the range of 0.405 to 0.458 (see Figure 1.2) would
require a jow term of about 80.

To address this potential explanation for excess entry, we run additional experimental
sessions with two alternative conditions. The conditions are designed to preserve the
monetary incentives of the WTA condition while eliminating the competitive element.
We replace the strategic WTA game by a non-strategic individual choice problem; that is,
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in both conditions, a subject’s payoff is independent of the decisions of the other subjects
in the room. Instead, they depend on the frequency distribution of the number of market
entrants as observed in the WTA condition in our main experiment (hereafter, “WTA
condition” always refers to the WTA condition of the main experiment as described in
Section 1.2.1).

The first treatment presents subjects with a situation where they have to form beliefs
about the market entry behavior of the participants in the WTA condition in the past. We
denote this treatment as AMB, for ambiguous winning probabilities. The second treat-
ment goes one step further and presents the subjects with objective winning probabilities
(OBJ) taken from the WTA condition.

In the AMB condition subjects decide in each of the 20 periods between Alternative A
and Alternative B. The payoff function is identical to the WTA condition: Alternative B
pays 45 ECUs for sure, while Alternative A pays either zero or a payoff which depends
on the number of entrants according to Table 1.1. The number of entrants, however, is
not decided in the game but is instead taken from the data of the WTA condition from
the main experiment. More precisely, we allocate each subject to a particular group of
14 subjects from a session with the WTA condition. In each period in which the subject
chooses Alternative A, we replace one of the entrants in the original data by the subject
in question to calculate the payoff in case of winning.8 The feedback about the random
numbers and the entry decisions is identical to the WTA condition; that is, the AMB
condition offers the same learning stimuli as the WTA condition. In addition, we also
elicited beliefs. Because the subject in question is not an entrant, we elicit beliefs about
the behavior of the group of 14 subjects from the WTA condition.

In the OBJ condition we go one step further towards individual choice and remove the
belief element. Subjects again have to decide between Alternative A and Alternative B in
20 rounds, and the payoff for Alternative B remains 45 ECUs. The payoffs for Alterna-
tive A are still determined by entry behavior in the WTA condition, but we communicate
the probability distribution of the entry behavior to the subjects. More precisely, in the
OBJ condition, we inform subjects about the absolute and relative entry frequencies in
the WTA condition. The information shown in Table 1.6 is presented to subjects in the
experimental instructions. It shows the absolute and relative frequencies of every possi-
ble number of market entrants observed in the WTA condition. The first row of the table
shows the number of market entrants; the second row replicates the market payoff for
each number of market entrants from Table 1.1. The interpretation is unchanged: if, for
instance, five players enter the market, the market payoff is 190. The third row shows
the number of times the respective number of market entrants was observed in the WTA
condition. For instance, in 35 rounds the number of market entrants was five.9

The forth row shows the relative frequency with which the respective number of mar-
ket entrants was observed in the WTA condition. For instance, in 19.4% of the rounds
(=35/180) the number of market entrants was five. In the instructions the table was ac-
companied by a histogram showing the relative frequencies as a visual aid.

8In one group from the WTA condition data there was one period with no entry at all. We treated this
case similar to the case with one entrant, i.e., the subjects who were allocated to this situation and chose
Alternative A received 100 ECUs. This holds also for the OBJ condition.

9The sum across all cells of the third row is 180 group/period outcomes. These stem from all sessions
of the main WTA experiment except the one session where we used a stranger matching. We dropped the
session with stranger matching because the instructions in the AMB and OBJ conditions explain that the
data stems from experiments using a partner matching. See the appendix (pp. 43–49) for the experimental
instructions.
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Table 1.6: Information about the entry frequencies in the OBJ condition.

Number of participants who chose A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Prize to win in ECU 100 100 130 155 175 190 200 205 209 212 214 215 215 215 215

Absolute number of rounds 1 0 1 8 20 35 51 30 15 13 2 4 0 0 0

Relative frequency in % 0.6 0 0.6 4.4 11.1 19.4 28.3 16.7 8.3 7.2 1.1 2.2 0 0 0

Notes. Information about the winning probabilities offered to the subjects in the OBJ condition. The table shows absolute and
relative frequency of the number of entrants based on the entry decisions in the WTA condition in the main experiment. Alternative
“A” stands for market entry.

Thus, not only are payoffs for Alternative A independent of the decisions of the other
subjects in the session, but, in the OBJ condition, subjects know the probability of each
possible number of entrants and the probability of winning the market payoff given any
number of entrants. This transforms the decision problem into a risky choice with com-
plete information about all contingencies.

We conducted two sessions with a total of 53 subjects, none of which participated
in the main experiment. All subjects had to read the original instructions of the WTA
condition in order to have the same information about the game as the subjects from the
main experiment. In addition, subjects received instructions detailing that they would
not be in a strategic situation with the other subjects currently present in the laboratory.
All subjects played 20 periods of the AMB condition followed by 20 periods of the OBJ
condition. The average payoff per subject in the additional experimental sessions was
CHF 31 (≈ USD 31).

The left panel of Figure 1.4 shows the frequency of Alternative A decisions in the
AMB condition compared with the entry frequency observed in phase 1 of the WTA
condition. The frequencies are very similar, with 0.458 in the WTA condition and 0.475
in the AMB condition (p = 0.741). The right panel of Figure 1.4 shows the frequency
of Alternative A decisions in the OBJ condition compared with the number of entrants in
Phase 2 of the WTA condition. The entry frequency in the objective probability condition
is 0.425, which is even somewhat higher than the 0.405 of the WTA condition (p = 0.741).

To sum up, we find no evidence that the risky alternative becomes less attractive if we
eliminate the competitive element, and we conclude that “joy of winning” is unlikely to
be a driver of excess entry.

1.5 Explaining excess entry with Cumulative Prospect The-
ory

After our unsuccessful empirical quest for the causes of excess entry, we redirected our
efforts to look for theoretical arguments that might help us understand why—contrary to
our intuition—the winner-take-all feature renders market entry more attractive compared
to the market entry game. This time we were successful: it turns out that Cumulative
Prospect Theory (CPT; Kahneman & Tversky, 1979; Tversky & Kahneman, 1992) cap-
tures the differences between the MEG and WTA conditions surprisingly well. As a first
step, we derive the Nash equilibria for CPT players. Next, we run new experimental ses-
sions in which we elicit subjects’ certainty equivalents for 40 two-outcome lotteries after
they completed the MEG and WTA phases. This additional task allows us to estimate
pooled CPT parameters. Finally, we compare actual entry decisions in both the MEG
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Figure 1.4: Left panel: Average entry frequency in phase 1 of the WTA
condition and frequency of Alternative A decisions in the ambiguous
probabilities condition (AMB). Right panel: Entry frequency in phase
2 of the WTA condition and frequency of Alternative A decisions in the
objective probabilities condition (OBJ). Spikes show the 95% confidence
intervals. In the WTA condition standard errors are clustered on group.

and the WTA conditions to theoretical predictions using our CPT parameter estimates.
We show that our parameter estimates for the curvature of the utility function and the
function to transform objective cumulative probabilities into subjective cumulative prob-
abilities (henceforth “weighting function”) can predict excess entry in the WTA condition.
The decisive component is probability weighting.

The adequacy of linear probability weights has already been questioned by Allais
(1953). Since then, a variety of non-linear functional forms for probability weights have
been suggested in the literature (Goldstein & Einhorn, 1987; Lattimore et al., 1992; Pr-
elec, 1998; Quiggin, 1982; Tversky & Kahneman, 1992). We use probability weighting
in the framework of CPT to make Nash equilibrium predictions in the MEG and WTA
conditions.10 To compute Nash equilibrium predictions under CPT we rewrite Equation
(1.1) as

m∑
k=1

ωku(xk) = u(I). (1.3)

The left-hand side describes the subjective value of market entry, where ωk is the decision
weight on outcome xk, u(xk) is the utility associated with outcome xk, and m is the
number of possible outcomes for an entrant. In a mixed-strategy Nash equilibrium the
expression on the left-hand side must be equal to the utility provided by staying out, u(I).
We use a two-parameter weighting function proposed by Goldstein and Einhorn (1987)

10For analysis of Nash equilibrium properties with (Cumulative) Prospect Theory decision making, see
Goeree et al. (2003), Keskin (2016), or Metzger and Rieger (2019).
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and Lattimore et al. (1992):11

h(Q, δ, γ) =
δQγ

δQγ + (1−Q)γ
, (1.4)

where Q is the objective cumulative probability and the parameter γ governs likelihood
sensitivity. If γ ∈ (0, 1), the function displays an inverted S-shaped pattern where small
cumulative probabilities are upweighted and large cumulative probabilities are down-
weighted (likelihood insensitivity). If γ > 1, then the function displays an S-shaped
pattern where low cumulative probabilities are downweighted and high cumulative prob-
abilities are upweighted (likelihood oversensitivity). Upweighting (downweighting) of
small cumulative probabilities leads to overweighting (underweighting) of small proba-
bility extreme outcomes. The parameter δ governs the elevation of the weighting function
(optimism/pessimism). If δ ∈ (0, 1), then the individual is pessimistic as she down-
weights the probability of high payoff outcomes and upweights the probability of low
payoff outcomes. Conversely, if δ > 1, then the individual is optimistic as she upweights
the probability of high payoff outcomes and downweights the probability of low payoff
outcomes. When γ = δ = 1 the weighting function is linear and the model boils down to
expected utility maximization with h(Q, 1, 1) = Q.

The decision weights in Equation (1.3) are weighted cumulative probabilities on out-
comes that are ordered by their payoff. If x1 ⩾ x2 ⩾ . . . ⩾ xm holds for the set of
possible realizations of x, then the subjective decision weights are:

ω1 = h(q1)− h(0)

ω2 = h(q1 + q2)− h(q1)
...

ωk = h(Qk)− h(Qk−1)
...

ωm = h(1)− h(Qm−1),

where qk denotes the probability that x is equal to xk and Qk =
∑k

j=1 qj denotes the
cumulative probability, that is the probability that x is greater than or equal to xk; h(Qk)
is the weighting function as defined in Equation (1.4) applied to the cumulative probability
Qk. By setting h(1) equal to one and h(0) equal to zero we have the subjective decision
weights sum up to one. To model utility curvature we use a constant relative risk aversion
(CRRA) utility function:

u(x, η) =

{
x(1−η)−1

1−η
, for η ̸= 1

ln(x), for η = 1
(1.5)

where x ⩾ 0 is the payoff and η measures CRRA. The parameter η determines the cur-
vature of the utility function: η > 0 corresponds to concave utility functions, η = 0 to
linear utility functions, and η < 0 to convex utility functions.12 Because negative payoffs

11The literature offers a wide range of specifications for the weighting function. We follow Gonzalez
and Wu (1999), who argue that the evidence in the domain of gains favors a weighting function with two
parameters.

12In standard expected utility models, risk preferences are directly related to the curvature of the utility
function. In a CPT framework risk averse behavior can be attributed to the utility function and/or the
probability weighting function. In what follows we will avoid the term risk aversion. Instead, we directly
refer to the curvature of the utility function or to probability weighting. For a discussion on risk aversion in
a CPT framework see e.g. Schmidt and Zank (2008).
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are not possible in our games we only formulate the utility in the domain of gains.13

What does this imply for Nash equilibrium predictions in the MEG and WTA condi-
tions? As market entry in the two conditions is subject to different levels of risk, the two
conditions cease to be equivalent in terms of Nash equilibrium predictions. In the follow-
ing we derive the symmetric mixed-strategy equilibria for the MEG and WTA conditions
separately.

1.5.1 MEG condition
In the MEG condition, the payoffs for market entry are determined by π(E) according to
Table 1.1. To compute the value of market entry, we order all possible payoffs associated
with market entry from the highest to the lowest:

X = {x1, x2, . . . , x14} = {π(1), π(2), . . . , π(14)}
= {100, 65, 51.7, 43.8, 38, 33.3, 29.3, 26.1, 23.6, 21.4, 19.5, 17.9, 16.5, 15.4}.

Here, xk is the payoff from entering the market if k−1 other players enter the market and
13−(k−1) other players stay out. Accordingly, qk denotes the probability of winning the
payoff associated with k− 1 other players entering and 13− (k− 1) other players staying
out. Given the number of entrants, the payoff is non-random in the MEG condition, i.e.,
there is only strategic risk.

The probabilities {q1, q2, ..., q14} depend on the entry probability p of the other play-
ers. The probability that k − 1 other players enter the market is:

qk =

(
13

k − 1

)
pk−1(1− p)13−(k−1), k = 1, . . . , 14. (1.6)

To obtain the Nash equilibrium predictions, we compute the decision weights ωk asso-
ciated with the probabilities qk. The symmetric Nash equilibrium in mixed strategies is
then the entry probability p∗ that solves Equation (1.3). The predicted number of market
entrants is obtained by multiplying the probability p∗ with the number of players.

The first part of Table 1.7 shows the expected number of entrants for selected values
of the three preference parameters. At the top left, we start with the benchmark case of
linear utility and linear probability weights, which results in 3.52 expected entrants (see
Section 1.2.2). Increasing concavity of the utility function (η) has hardly any effect on
entry, whereas increasing likelihood insensitivity (lowering γ) increases entry towards
four entrants. Finally, lowering optimism (δ) reduces entry somewhat.

1.5.2 WTA condition
In the WTA condition, the payoff of market entry is subject to two kinds of risk: (i) strate-
gic risk, originating from the behavior of other players, and (ii) natural risk, originating
from the random draw of the winner among the entrants. In our main model, we will
assume that players do not distinguish between natural and strategic risk. Consequently,

13In the instructions, we frame the decision situation clearly as choice between a secure and a risky gain.
Nevertheless, one could argue that the payoff from staying out (45) serves as a reference point, which would
introduce the possibility for losses in both games. In Appendix 1.A.1.1 (p. 27), we discuss the equilibria
for a reference point of 45 and loss aversion. It turns out that loss aversion reduces the expected number of
entrants very similarly to increasing concavity of the utility function. In the following we will restrict our
attention to the gains only version in the main text.
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Table 1.7: Predicted number of entrants in MEG and WTA

MEG WTA

η = 0 η = 0.1 η = 0.2 η = 0 η = 0.1 η = 0.2

γ = 1
δ = 1 3.52 3.49 3.47 3.52 2.79 2.22
δ = 0.8 3.31 3.29 3.26 2.59 2.09 1.69

γ = 0.75
δ = 1 3.74 3.70 3.66 6.14 4.38 3.05
δ = 0.8 3.47 3.43 3.39 4.08 2.84 1.99

γ = 0.5
δ = 1 4.18 4.10 4.03 14.00 10.44 6.64
δ = 0.8 3.78 3.71 3.64 10.01 6.39 3.55

Notes. Expected number of entrants in the symmetric mixed strategy equilibrium with CPT
preferences, for selected values of the three preference parameters η, γ, and δ.

we will treat the two sources similarly and apply probability weighting to the compound
objective probabilities.14 Some support for combining the two sources of risk comes from
our results from Section 1.4.3, where we report similar entry behavior in the OBJ condi-
tion compared to the WTA condition. We start by ordering the possible payoffs from the
highest to the lowest to compute the value of market entry. The set of possible payoffs is:

X = {x1, x2, . . . , x15} = {Π(14),Π(13), . . . ,Π(1), 0}
= {215, 215, 215, 215, 214, 212, 209, 205, 200, 190, 175, 155, 130, 100, 0}.

Thereby, 215 is the winner’s payoff for entering the market if 10, 11, 12, or 13 other
players enter; 214 is the winner’s payoff for entering the market if 9 other players enter.
Zero is the payoff for entering the market with any number of other players if the player
does not win the market payoff. The probabilities {q1, q2, ..., q15} associated with the set
of payoffs are:

qk =


(

13
13−(k−1)

)
p13−(k−1)(1− p)k−1 1

14−(k−1)
, for k = 1, . . . , 14

1−
14∑
j=1

qj, for k = 15.
(1.7)

Again, the symmetric Nash equilibrium in mixed strategies is the entry probability
p∗ that solves Equation (1.3). The right part of Table 1.7 shows the expected number of
entrants in the WTA condition. Starting with the 3.52 entrants in the benchmark case
(η = 0, γ = 1, δ = 1), we observe that the qualitative effects of the parameters are the
same as in the MEG condition. However, the magnitude of the changes is much larger.
For example, concavity of the utility function (η > 0) and pessimism (δ < 1) reduce
the number of entrants substantially. At the same time, likelihood insensitivity (γ < 1)
results in substantial excess entry. Table 1.7 gives us a feel of the parameters we need to
explain higher number of entrants in the WTA condition relative to the MEG condition.
Without probability weighting (γ = 1, δ = 1) the model reduces to standard expected

14Alternatively, one could assume that probability weighting applies to natural risk only. Our theoretical
results would not differ much, because most of the predicted treatment effect originates from the natural
risk part. Finally, probability weighting could only affect strategic risk. In this case (assuming linear utility)
the model would not predict any difference between the WTA and the MEG conditions. Appendix 1.A.1.2
(p. 28) provides a formal discussion on different variants of probability weighting.
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utility and does not permit to explain the treatment effect (unless, of course, we were
to assume convex utility, η < 0). Comparing the expected number of entrants across
conditions shows that the model can explain the treatment effect if γ is sufficiently low,
η is moderate, and δ is not too low. If we rule out (as most of the literature does) convex
utility, then our theoretical results show that the explanation for excess entry within CPT
must stem from probability weighting. Of the two parameters of the weighting function,
the main driver is γ. If γ < 1, then small probability events with very high and very low
payoffs gain weight. In the WTA condition, these are the high payoffs if one wins against
many competitors. The worst outcome in the WTA condition (losing against any number
of competitors) is underweighted, because it occurs with high probability. In the MEG
condition, overweighting occurs for both the best and the worst outcomes of market entry,
as both are small probability events.15

Thus, CPT can be a powerful explanation for excess entry into winner-take-all mar-
kets. Its predictive power, however, depends on the preference parameters. In order to
explore the predictive power of CPT, we ran new experiments. The experiments repli-
cate the design of WTA and MEG conditions, followed by an elicitation of a series of
certainty equivalents, which permits us to estimate CPT parameters. We compare our
estimated parameters to previous estimates from the literature and use our estimates to
evaluate the predictive power of CPT.

1.5.3 Experimental design
In a new experiment, we elicit subjects’ certainty equivalents for two-outcome lotteries
(CPT task) after they completed the MEG and WTA phases. We will label these new
observations as MEGCPT and WTACPT, respectively. Both the MEGCPT and WTACPT con-
ditions are identical to the main experiment. Again, we run the MEG condition first in
half of the sessions, reversing the order for the other half. We elicit the subjects’ cer-
tainty equivalents for 40 lotteries. Each lottery offers an amount x1 with probability p
and an amount x2 < x1 with probability 1 − p. Half of the lotteries were in the gain
domain (x1 > x2 ≥ 0), and the other half were corresponding lotteries in the loss domain
(0 ≥ x1 > x2). For each lottery in the loss domain, we endowed subjects with |x1|+ |x2|.
This ensures that subjects do not end up with a negative payoff, and it equalizes the ex-
pected payoff of a lottery in the loss domain to its counterpart in the gain domain. At
each screen, subjects are presented with a lottery on the left and with 20 rows of equally
spaced guaranteed outcomes ranging from x1 to x2 on the right. For each row, we ask
the subject if she prefers the lottery or the corresponding guaranteed outcome. We en-
force monotonicity; that is, subjects only choose the minimum certainty equivalent they
prefer to a lottery and the computer fills in the remaining rows accordingly. A subject’s
elicited certainty equivalent for a lottery is the arithmetic mean of the lowest guaranteed
amount preferred to the lottery and the highest guaranteed amount not preferred to the lot-
tery.16 Once a subject took the decisions on the 40 lotteries (they are allowed to go back
and forth), a lottery and a row were randomly chosen by the computer and the subject’s
payoff is determined based on her decision for the randomly chosen lottery and row.

15Alternatively, it would be possible to predict the treatment effect without inverted S-shaped probability
weighting. In a model with γ = 1 combined with optimism (δ > 1) players upweight the outcomes with
high payoffs and downweight the outcomes with low payoffs. In the main text we emphasize the model with
γ < 1 and δ < 1, because there is substantial empirical support for these parameter ranges (see discussion
in Section 1.5.4.1).

16See Table 1.A.3 in the appendix (p. 30) for the set of lotteries and pp. 50–54 for screenshots.
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In addition to the show-up fee of CHF 5, subjects were paid for both phases, as in the
main experiment. Furthermore, subjects received the payment for the CPT task. Subjects
received information about their payoff only after the CPT task. The exchange rate for
this task was CHF 1 per 3 ECUs.

The sessions were run online with undergraduate students from the University of Lau-
sanne and the EPFL (recruitment: ORSEE, Greiner, 2015; programming: oTree, Chen
et al., 2016). We ran ten sessions with a total of 134 subjects.17 This gives us 5,360 entry
decisions and 5,360 certainty equivalent elicitations. Sessions lasted between 47 and 100
minutes,18 with an average payoff per subject of CHF 43.

1.5.4 Results
Our new sessions replicate the findings on market entry behavior of the main experiment:
in the first (second) phase, we observe on average 6.49 (4.94) entrants in the WTACPT

condition and 4.86 (4.18) entrants in the MEGCPT condition. The treatment effect is sig-
nificant (p = 0.022, exact Wilcoxon signed-rank test).

We use the CPT task to estimate the preference parameters. Following the estima-
tion procedure for the single group case by Bruhin et al. (2010a), we estimate the CPT
parameters based on the lottery decisions in the gain domain. This procedure uses max-
imum likelihood to estimate the parameters based on the elicited certainty equivalents.
We account for two sources of heteroskedasticity in the error variances. First, the error
is proportional to the lottery’s range |x1 − x2|, since subjects faced 20 equally spaced
guaranteed outcomes for each lottery. Second, we account for heteroskedasticity between
individuals, as subjects may differ with respect to previous knowledge, attention span, or
ability.

We use the data elicited from the CPT task to perform parameter estimations. In a first
step, we perform pooled estimations of CPT parameters. Assuming homogeneity across
subjects, we confront market entry predictions using the parameters from the pooled es-
timations with the data on entry behavior in the MEGCPT and the WTACPT conditions. In
the second step, we relax the homogeneity assumption. We perform finite mixture model
estimations to group subjects into types and test whether entry behavior is related to the
type.

1.5.4.1 Pooled CPT estimations

Using the full sample, we find the following point estimates (standard errors) for the CPT
parameters: η̂ = 0.131 (0.031); γ̂ = 0.517 (0.023); δ̂ = 0.929 (0.049). Our results
are in line with previous estimates from the literature that use the same two-parameter
specification for the weighting function (Bruhin et al., 2010a; Bruhin et al., 2018; Fehr-
Duda et al., 2006; Fehr-Duda et al., 2011). Overall the estimates in these studies point to
a significantly inverted S-shaped weighting function and moderate pessimism. In terms of

17Due to no-shows and connection problems we did not always manage to get the desired group size. We
had one session each with 11, 12, and 13, while the remaining seven sessions had 14 subjects. Such vari-
ations in group size are not a problem for our analysis because the equilibrium predictions of the expected
number of entrants barely changes for group sizes between 11 and 14.

18The sessions’ durations varied substantively because subjects could go at their own pace in the CPT
task. Once a subject was done with this task, she would directly move to the final payment page. The
payment was done by bank transfer within a week.
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the utility function, most estimates indicate a curvature close to linearity, with moderate
deviations in both directions.

Given our parameter estimates, CPT predicts 3.92 entrants in the MEG condition and
7.28 in the WTA condition in the symmetric mixed-strategy Nash equilibrium. We can use
our estimates to illustrate why probability weighting produces such strong excess entry in
the WTA condition, even with a concave utility function. In the equilibrium of the WTA
game an entrant’s probability of getting the highest prize (215, winning among eleven or
more entrants) is 0.0055. The weight of these outcomes in the decision process is ten times
higher (0.059). Conversely, the probability of getting zero is 0.863, while the decision
weight attached to this outcome is downweighted to 0.736. In the MEG condition it is
also the case that the best outcome (100, being the sole entrant) is strongly overweighted.
However, in contrast to the WTA condition, there is also substantial overweighting of
the unprofitable outcomes of market entry (entry with six or more competitors). See
Figure 1.A.1 in the appendix (p. 29) for an illustration.

To gain an idea on the error margin of the predicted number of entries, we use a
bootstrap approach. Based on 1000 bootstrap samples, we estimate a distribution of CPT
parameters, which we use to predict the corresponding entry probabilities. Using these
probabilities allows us to derive a distribution of the expected number of entrants in the
MEG and WTA conditions. The left panel of Figure 1.5 shows the results. The horizontal
lines indicate the mean number of predicted entrants in the MEGCPT and the WTACPT

conditions, with the gray bands indicating the 95% confidence intervals. In the WTACPT

condition, we observe a number of entrants below the point prediction, but still within the
confidence interval. The low number of entrants in the WTACPT condition relative to the
Nash equilibrium prediction is mainly due to the low entry frequency when played in the
second phase. If we restrict the sample to the first phase, then the observed number of
entrants in the WTACPT condition is substantially higher (see Figure 1.A.4 in the appendix,
p. 33). In the MEGCPT, on the other hand, the observed number of entrants is above the
Nash equilibrium prediction.

1.5.4.2 Finite mixture model CPT estimations

The empirical literature on CPT preferences often finds evidence for substantial hetero-
geneity between subjects. However, CPT elicitation procedures like the one we use are
too imprecise to provide reliable estimates on an individual level (Monroe, 2020).19 To ac-
count for heterogeneity, we therefore identify types using a finite mixture model (FMM).
Again, we follow Bruhin et al. (2010a) estimation procedure for the two-group case. As
the authors explain, the idea is to assign an individual’s risk taking choices to either the
EUT group or the CPT group, each of the two groups being characterized by a distinct
vector of parameters. The assignment of each subject to one of the two groups is based
on the posterior probability of type-membership.20

19Table 1.A.4 in the appendix (p. 31) provides summary statistics of the individual CPT parameter
estimates and Table 1.A.5 (p. 32) shows OLS estimates of entry frequency in WTA on the individual prefer-
ence parameter estimates. All coefficient estimates have the expected sign: increasing utility curvature (η)
or likelihood sensitivity (γ) leads to less entry in WTA and increasing optimism (δ) leads to more entry in
WTA. However, none of the coefficients reach statistical significance.

20We refer to Bruhin et al. (2010a, 2010b) for a detailed explanation of the estimation procedure. Fig-
ure 1.A.5 in the appendix (p. 33) shows an histogram of individuals’ posterior probability of assignment
and Table 1.A.6 (p. 32) shows the FMM estimates. We elicited certainty equivalents in both the gain and
loss domains to keep the experimental design as close as possible to Bruhin et al. (2010a). For the param-
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Figure 1.5: Left panel: Average number of entrants in the two conditions
(bars with spikes indicating 95% confidence intervals); predicted number
of entrants (horizontal bar) and corresponding 95% confidence interval
(gray band). Right panel: Histogram of the number of entries during the
20 periods for subjects classified as expected utility maximizer (EUT) and
Cumulative Prospect Theory (CPT) types.

According to our FMM estimates, 117 out of the 134 subjects are classified as CPT
types and the remaining 17 as EUT types. With 13% of the subjects classified as EUT
types, the estimated share of EUT subjects in our subject pool is somewhat lower than in
Bruhin et al. (2010a) where the estimated share in the Zurich 2006 experiment is 22%.

The right panel of Figure 1.5 shows histograms of the number of times subjects of the
EUT type (upper part) and the CPT type (lower part) enter in the WTACPT condition. The
CPT types are less likely to enter very rarely (two or fewer times out of 20) and more
likely to enter very often (15 times or more). In order to test whether the CPT types differ
significantly from the EUT types, we regress the entry frequency (in percent) across the
20 periods of the WTACPT on the type dummy. Table 1.8 shows the two main results.
First, even for EUT types we observe entry frequencies above Nash equilibrium predic-
tions under the expected payoff maximizer assumption. Recall that while the predicted
entry frequency under the expected payoff maximizer assumption is 25 percent, players
of the EUT type who anticipate that the players of the CPT type enter more frequently
should respond by refraining from entering in the winner-take-all game. Our results do
not confirm this: The estimated entry frequency for EUT types (31.4 percent in Model 1)
is even above the 25 percent. Second, the frequency at which CPT types enter is about
15 percentage points higher than for EUT types in the WTACPT condition. The effect is
highly significant. In Model (2) we control for order effects, confirming the result that
entry is less frequent when the WTACPT condition is played after the MEGCPT condition.
The dummy for CPT types remains highly significant. These results suggest that, in line
with theory, excess entry is mainly driven by CPT types.

eter estimations, we only use the lotteries in the gain domain since we are interested in decision situations
between a secure and a risky gain (see Footnote 13).
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Table 1.8: Entry frequency and type.

Dependent variable: Entry frequency (in %)

CPT type 14.170∗∗ 15.087∗∗

(4.314) (4.591)
WTA in phase 2 −13.913∗

(4.558)
Constant 31.471∗∗ 36.381∗∗

(4.926) (3.590)

F -test 10.8 6.4
Prob > F 0.009 0.019
R2 0.027 0.083
N 134 134
Notes: OLS estimates. Dependent variable is the individual entry frequency
in the WTA condition (in %). Independent variables are a dummy for the
subject’s type according to the finite mixture model, and a dummy for the
WTA played after the MEG condition. Baseline case is the EUT type.
Robust standard errors, clustered on group, in parentheses. + p < 0.1,
∗ p < 0.05, ∗∗ p < 0.01.

1.6 Conclusion
In this study, we systematically explore potential causes of excess entry into markets.
Early experimental research showed that this phenomenon does not occur in standard
market entry games. More recently, researchers have shown that overconfidence can
create excess entry in games where the returns on market entry depend on skills. We
provide experimental evidence that a market modeled as a winner-take-all game with
a purely random determination of the winner creates strong excess entry relative to an
expected-payoff-equivalent market entry game. This means that excess entry can occur
even in environments where overconfidence in skills is irrelevant. We provide evidence
that the explanation for excess entry is probability weighting. In environments where
overconfidence about skill plays a role, the two biases—overconfidence and probability
weighting—presumably reinforce each other.

It is clear that utility curvature, which underlies standard decision-making models, is
unlikely to explain excess entry. If subjects display concave utility functions, then we
would expect less rather than more entry in the winner-take-all condition compared to
the market entry game. With additional data, we explore and discard a number of ex-
planations discussed in the previous literature. First, we show that wrong beliefs about
the number of other players entering the market (blind spot) cannot account for the treat-
ment effect. Second, we find no evidence that the treatment effect is driven by subjects
who fall victim to the erroneous belief that they can influence random processes (illu-
sion of control). Third, we find no evidence for explanations positing extra utility of
winning in a competitive environment (joy of winning). To address this explanation, we
ran an additional nonstrategic condition which preserves expected payoffs and risk of the
winner-take-all condition, but does not contain the competitive element. We find that the
number of market entrants remains virtually unchanged. In an additional treatment, we
even provide objective probabilities associated to market entry and still find similar lev-
els of excess entry. This latter result further strengthens the argument that it is not the
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additional complexity that comes with a strategic interaction that drives excess entry.
We identify probability weighting in accordance with Cumulative Prospect Theory

as a powerful explanation for the treatment effect. We compute Nash equilibria of the
standard market entry game and the winner-take-all condition. Under a broad range of
realistic parameters, the model predicts more entry in the winner-take-all condition than
in the market entry game. The effect is driven by the fact that the winner-take-all compe-
tition offers high stakes with low probabilities, while losing the competition is very likely.
Typical parameters for the probability weighting function lead to overweighting of the
profitable outcomes and underweighting of the bad outcome.

We ran an additional experiment, which allows us to estimate CPT parameters and
relate these estimates to entry behavior. The calibrated predictions are consistent with ob-
served entry behavior. In addition, the results of our finite mixture estimates suggests that
excess entry is mainly caused by subjects that can be classified as CPT type. Taken to-
gether, these results suggest that CPT is a useful descriptive theory not only for individual
choice problems, but also in situations involving strategic risk. In addition, the fact that
we observe very similar entry frequencies in our non-strategic conditions provides indica-
tive evidence that CPT probability weighting may be similarly applied to both natural risk
and strategic risk. In other words, moving from subjective belief-based risk to objective
probabilities (as in our OBJ condition) seems not to matter much for entry behavior and
may be explained with the same underlying probability distortion.

Should regulators or nudgers care about excess entry in winner-take-all games? Our
results provide a suggestive answer to that question. If excess entry was caused by non-
standard preferences, such as high-risk tolerance or strong non-monetary benefits from
winning the competition against others (joy of winning), then there would be little ground
for paternalistic interventions. Our results suggest that excess entry is not caused by such
preferences but is instead caused by probability weighting. It is conceivable that sub-
jects in our lab would not consciously choose to have decision weights that differ from
objective probabilities and, if made somehow aware of the discrepancy, would prefer to
use objective probabilities in their decision process. Thus, upcoming entrepreneurs or
hopeful young athletes might enter winner-take-all markets not only because of over-
confidence about their abilities but also due to a systematic overestimation of the small
winning probabilities. Consequently, a nudge to “objectify” probabilities might benefit
would-be competitors. We leave for future research to investigate the design and effec-
tiveness of such nudges. A much simpler policy conclusion is drawn by Frank and Cook
(1995) who argue that progressive consumption taxation might be an effective measure to
reduce the attractiveness of entry into winner-take-all markets.

For business executives who take investment decisions, our findings can provide guid-
ance. To gauge return prospects of an investment, anticipating the behavior of potential
competitors is crucial. Biased probability perception can account for skew-seeking be-
havior and thus attraction to winner-take-all markets through optimism and likelihood-
insensitivity. Åstebro et al. (2015) have documented optimism and likelihood insensitiv-
ity both among college students and business executives. Based on our findings, markets
with winner-take-all characteristics are likely to attract more competitors than the market
volume warrants. As formalized in the Porter’s Five Forces Framework (Porter, 1989), the
threat of entry is an important determinant of the attractiveness of an industry in terms of
its profitability. Our results suggest that an investment in a market where few competitors
capture a large share of the rewards is less attractive compared to markets with a more
equal share of rewards but the same expected return.
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Finally, our results provide us with a testable conjecture for further research on market
entry decisions. We compare two extreme payoff distributions—winner-take-all versus
equal payoffs for all entrants—and show that, counterintuitively, the riskier market attracts
more entry. Consequently, in real market entry data one should find more excess entry in
markets where the profits are skewed towards the top performers. In particular, excessive
entry of new firms and high failure rates should be less prevalent in sectors where payoffs
are relatively equal, arguably, for example, in hospitality, and more prevalent in sectors
like information technology.
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1.A Appendix

1.A.1 Cumulative Prospect Theory: Extensions
1.A.1.1 Loss aversion

Our main treatment of the WTA and MEG conditions with Cumulative Prospect Theory
(CPT) assumes that players’ reference points are zero and all payoffs in the game are
perceived as gains. Alternatively, we could assume that players have some reference
point r, relative to which they evaluate the monetary payoff x using the utility function:

u(x, η) =

{
1

1−η

(
(x− r)(1−η) − 1

)
, for x ⩾ r

1
1−η

(
−λ(r − x)(1−η) − 1

)
. else

(1.8)

For 0 < η < 1 this function is concave in the domain of gains and convex in the
domain of losses. We assume the CRRA parameter (η) is the same in both domains, and
we introduce a parameter for loss aversion (λ). Allowing for a different CRRA parameter
in the domain of losses has very similar effects as variations in λ. In contrast to the
solutions discussed in the main text, we now assume that the reference point is r =
45. Table 1.A.1 shows the predicted number of entrants for selected combinations of η,
γ, and λ (with δ=1). The results for linear utility and λ = 1 are identical to the ones
shown in Table 1.7. Increasing the CRRA parameter (η) while keeping λ = 1 reduces
predicted entry in the WTA condition, but not as much as in Table 1.7. This is due to
the fact that the utility function is convex in the domain of losses. Similarly to increasing
the CRRA parameter, loss aversion substantially reduces the attractiveness of the WTA
market, providing further support for the argument that probability weighting is the driver
for the treatment effect.

Table 1.A.1: Predicted number of entrants, reference point at 45.

MEG WTA

η = 0 η = 0.1 η = 0.2 η = 0 η = 0.1 η = 0.2

γ = 1
λ = 1 3.52 3.47 3.42 3.52 3.12 2.81
λ = 1.2 3.38 3.33 3.27 2.76 2.49 2.26
λ = 1.4 3.27 3.21 3.14 2.27 2.07 1.90

γ = 0.75
λ = 1 3.74 3.67 3.60 6.14 5.02 4.14
λ = 1.2 3.56 3.49 3.41 4.43 3.61 3.02
λ = 1.4 3.42 3.34 3.25 3.28 2.72 2.31

γ = 0.5
λ = 1 4.18 4.08 3.97 14.00 11.93 9.22
λ = 1.2 3.92 3.81 3.69 10.77 8.20 6.10
λ = 1.4 3.71 3.59 3.46 7.77 5.67 4.07

Notes. Expected number of entrants in the symmetric mixed strategy equilibrium with CPT
preferences with a reference point at 45, and for three levels of loss aversion (λ). We plot the
entries for δ = 1 and selected levels of η and γ.
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1.A.1.2 Natural vs. strategic risk

In the main text, we derive the CPT equilibria under the assumption that probability
weighting applies to the combination of natural and strategic risk. Applying probabil-
ity weighting only to one of the two sources of risk would change the prediction. As the
empirical literature on CPT almost exclusively deals with natural risk, it seems natural
to apply probability weighting only to this source of uncertainty. In the following, we
discuss two methods:

WTA, N1: Weighting natural risk conditional on number of entrants. Here we
simply assume that the player separates the strategic risk (ending up with E − 1 competi-
tors) from the natural risk conditional on the number of competitors (qE = 1/E). For
E = {2, 3, . . . , 14} we use Equation (1.4) to transform the objective winning probabili-
ties qE into weights. The low-probability high payoffs in the WTA markets have higher
weights than the objective probabilities, which produces higher number of expected en-
trants relative to the case with linear probabilities. The left part of Table 1.A.2 shows the
results. For comparison we also show the results of the MEG condition, which are not
affected by probability weighting, because there is only strategic risk. Comparing the re-
sults to our model in the main text (Table 1.7) shows that the predicted number of entrants
is very similar, suggesting that the inclusion of strategic risk is not a decisive factor when
we explain the treatment effect.

WTA, N2: Decomposing natural and strategic risk. From Equation (1.7), we can
write the cumulative probabilities of achieving an outcome at least equal to xk:

Qk =
k∑

j=1

(
13

13− (j − 1)

)
p13−(j−1)(1− p)j−1 1

14− (j − 1)
, for k = 1, . . . , 14

and Q15 = 1 where x15 = 0 is the outcome when a player enters and loses.
If we multiply and divide Qk by the objective probabilities of achieving an outcome

at least equal to xk, we can decompose natural and strategic risks in the following way:

Qk =

(
k∑

j=1

(
13

13− (j − 1)

)
p13−(j−1)(1− p)j−1

)
k∑

j=1

(
13

13−(j−1)

)p13−(j−1)(1−p)j−1

14−(j−1)

k∑
j=1

(
13

13−(j−1)

)
p13−(j−1)(1− p)j−1

 .

The first parenthesis on the right-hand side is the objective cumulative probability of fac-
ing at least k−1 competitors when entering. The second parenthesis is a weighted average
of the risk component of each outcome greater than or equal to xk. If we apply equation
Equation (1.4) only on the second parenthesis, then we can derive the decision weights
only applying probability weighting on the risk components. The right part of Table 1.A.2
shows the results. Using this method, we find again very similar number of entrants com-
pared to our model in the main text.
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Table 1.A.2: Predicted number of entrants in WTA, weighting natural risk only.

WTA, N1 WTA, N2

η = 0 η = 0.1 η = 0.2 η = 0 η = 0.1 η = 0.2

γ = 1
δ = 1 3.52 2.79 2.22 3.52 2.79 2.22
δ = 0.8 2.71 2.21 1.80 2.61 2.10 1.70

γ = 0.75
δ = 1 5.83 4.03 2.83 5.97 4.14 2.82
δ = 0.8 3.81 2.76 2.09 3.82 2.61 1.83

γ = 0.5
δ = 1 14.00 10.26 5.83 14.00 10.36 6.11
δ = 0.8 9.78 5.51 2.84 9.89 5.77 2.45

MEG 3.52 3.49 3.47 3.52 3.49 3.47

Notes. Expected number of entrants in the symmetric mixed strategy equilibrium with CPT
preferences and probability weighting applied to natural risk only, for selected values of the
three preference parameters η, γ, and δ. WTA, N1 and WTA, N2 refer to the two variants of
separating natural from strategic risk. If we weigh only strategic risk, the MEG predictions do
not vary in γ and δ.

1.A.2 Additional tables and figures
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Figure 1.A.1: Probability weighting function and outcomes in the MEG and WTA con-
ditions. The solid line shows the CPT probability weighting function (see Equation 1.4),
calibrated with our estimated parameters γ̂ = 0.517 and δ̂ = 0.929. Dots indicate all pos-
sible outcomes for an entrant in the MEG condition (left panel) and the WTA condition
(right panel). Due to space constraints not all dots are labelled with the respective payoff.
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Figure 1.A.2: Histograms of individual entry frequency. Num-
ber of times a subject entered the respective market during the
20 periods, left panel for the MEG condition, right panel for the
WTA condition. Data of both phases combined.

Table 1.A.3: Lotteries in the gain domain (x1, p;x2)

p x1 x2 p x1 x2 p x1 x2

0.10 20 10 0.95 40 10 0.50 10 0
0.50 20 10 0.05 50 20 0.50 20 0
0.90 20 10 0.25 50 20 0.05 40 0
0.05 40 10 0.50 50 20 0.25 40 0
0.25 40 10 0.75 50 20 0.95 50 0
0.50 40 10 0.95 50 20 0.10 150 0
0.75 40 10 0.05 150 50
Notes. The outcomes are denominated in CHF. Each lottery has its
counterpart in the loss domain. For example, the counterpart to the
first lottery (20, 0.10; 10) is (−10, 0.10;−20; e = 30) where e is
the endowment, which covers any losses and equalizes the expected
payoffs in both domains. These lotteries are the same as used in
Bruhin et al. (2010a) for the Zurich 2006 sessions.
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Figure 1.A.3: Histogram of individual bids in the second price
auction of the illusion of control experiment. Bids are rounded
up to multiples of 20.

Table 1.A.4: Summary statistics of the individual CPT parameter estimates.

Mean Median Std Dev Min Max

CRRA (η̂i) -0.106 0.071 1.483 -8.998 4.947
Likelihood sensitivity (γ̂i) 0.685 0.588 0.565 0.000 5.251
Optimism/pessimism (δ̂i) 1.115 0.915 1.109 0.000 9.984
Number of observations = 134
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Table 1.A.5: Entry frequency and individual CPT parameters.

Dependent variable: Entry frequency (in %)

WTA in phase 2 −14.020∗∗ −13.946∗∗

(4.076) (4.034)
η̂i −1.682∗ −2.274

(0.557) (2.211)
γ̂i −1.393

(5.949)

δ̂i 0.913
(3.216)

Constant 49.419∗∗ 49.263∗∗

(3.833) (4.888)

F -test 6.5 4.9
Prob > F 0.018 0.022
R2 0.060 0.061
N 134 134
Notes: OLS estimates. Dependent variable is the individual entry frequency
in the WTA condition (in %). Independent variables are a dummy for the
WTA played after the MEG condition and the individual estimates for the
three cumulative prospect theory parameters. Robust standard errors, clus-
tered on group, in parentheses. + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01.

Table 1.A.6: Finite mixture model estimates.

EUT type CPT type

Relative size 0.127 0.873
(0.029) (0.029)

CRRA (η̂) 0.080 0.141
(0.013) (0.034)

Likelihood sensitivity (γ̂) 0.471
(0.021)

Optimism/pessimism (δ̂) 0.930
(0.055)

Number of subjects 134
Number of observations 2680
Log likelihood -7875.8
AIC 15765.6
BIC 15806.9
Notes: Robust standard errors, clustered on subjects, in parentheses.
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Figure 1.A.5: Histogram of posterior probability of assignment to EUT type.
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1.A.3 Experimental instructions
This appendix section shows a translated version of the experimental instructions that
were handed out to subjects on paper (original instructions were in German or French).
First we show the instructions of the main experiments (pages 34 to 42), followed by the
instructions for the additional experiments described in section 1.4.3 (pages 43 to 49) and
in section 1.5.3 (pages 50 to 54).

General instructions for the participants 

You are about to participate in multiple economic experiments. The experiments are independent 
of each other. If you read the instructions carefully, you can, depending on your decisions, earn 
more or less money. It is therefore important to read the following instructions carefully.  

The instructions you received from us are solely for your private information. Communication with 
other participants is strictly forbidden during the course of the experiment. Please ask an instructor 
in case of any questions. If you don’t comply with those rules we will have to exclude you from 
the experiment including from any payments. 

During the experiment, your income will not be computed in Swiss francs but in points. The points 
that you earn during the experiment will be converted to Swiss francs and paid out in cash. The 
following exchange rate applies:  

1 point = 1.5 Swiss cents. 
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Instructions for experiment 1 

 

For this experiment you receive an endowment of 800 points, which corresponds to 12 Swiss 
francs.  

The experiment in which you are participating consists mainly of a lottery. The experimenter has 
a deck of 28 cards. On each of these cards there is one of the following 28 symbols:  

 

   #       E       *       +       €       J       %       $       O       ?       Q       ö       ¬       [ 

   |       ¦       §       =       ¢       7       !       (       A       £       @       Y       S       1 

 

The 28 symbols are now distributed to the participants. At the end of the experiment two cards will 
be drawn at random. The two participants with the corresponding symbols on their cards will 
receive 50 Swiss francs in addition to the earned points that will be converted to Swiss francs. 

To begin, you are prompted on the screen to choose one of those 28 symbols. Insert your choice 
and confirm with the OK-button. 

The probability is pretty high, though, that more than one person chooses the same symbol. This 
problem will be addressed on the second screen.  

In the cases where a particular symbol is chosen twice or more times we run an auction. The 
participant who wins the auction receives his or her desired symbol. To the other participants the 
computer will randomly assign another symbol which is not yet taken. For you to be able to 
participate in the auction we endowed you with 800 points. Though, the auction is not a “normal” 
auction where the participants progressively increase their bids. It works a bit differently:   

The auction we perform is a so-called second-price auction. In this type of auction every 
participant can make exactly one bid which the other participants don’t see. The bids are then 
compared with each other. As in “normal” auctions, the participant who made the highest bid gets 
the good, which in our case is the desired symbol. In contrast to “normal” auctions, however, the 
winner only pays the second highest bid. To illustrate, consider the following example:  

Suppose there are three participants A, B, and C who take part in the auctioning of symbol X. 
They make the following bids:  

- A bids x points 

- B bids y points 

- C bids z points 

Let z be the highest bid and x be the lowest bid: z > y > x. C wins the auction and receives 
symbol X. He or she pays for it the second highest bid which is y points. A and B receive another 
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symbol at random which is not chosen by any other participant. After the auction C’s account 
balance will be 800 minus y points and the account balance of A and B is 800 points each.  

If two or more participants make the same bid, the computer will decide randomly who wins the 
auction. The winner will then pay exactly his or her bid as the second bid is the same.  

The second-price auction has the following interesting property. It is optimal for every 
participant to bid exactly as much as the good is worth to him or her. The following example 
illustrates why:  

Suppose you are going to the sports store X to buy a skiing equipment set for a few hundred 
Swiss francs. You know exactly which one you want and you have already compared prices 
across different sports stores. Thus, you have already taken the decision to buy the skiing 
equipment set, that is, you will definitely buy it.  

Now, you are standing in front of the sports store and you see a crowd of people. A lady 
offers a voucher for sports store X with a value of 100 Swiss francs. Of course, she sells the 
voucher by means of a second-price auction. A few people are interested in the auction and 
the lady is distributing pieces of paper on which the bids should be written. How much should 
you bet now? Since you know that you are about to spend more than 100 Swiss francs in the 
sports store X, the 100 Swiss francs voucher is equivalent to 100 Swiss francs in cash. In a 
second-price auction it is therefore optimal for you to bid exactly 100 Swiss francs for the 
voucher. The explanation goes as follows:  

- If you bid less than 100 Swiss francs, say 90 Swiss francs, then someone who bids, for 
example, 91 Swiss francs will win the auction. But for 91 Swiss francs you would have 
been happy to buy the voucher. This reasoning holds for any bid below 100 Swiss francs.   

- If you bid more than 100 Swiss francs, say 105 Swiss francs, then you might end up 
paying too much for the voucher. For instance, if the second highest bid is 103 Swiss 
francs. This reasoning holds for any bid above 100 Swiss francs. It is never worth it to 
bit more than 100 Swiss francs. Not even if the second highest bid is less than 100 Swiss 
francs. In this case you could have bid just as well 100 Swiss francs to get the voucher at 
the same price as if you bid a higher price.  

This line of reasoning holds independently of the number of people bidding for the voucher. 
Thus, in a second-price auction it is always optimal to bid exactly as much as the good is 
worth to one.  

Back to the experiment: The assignment of symbols to participants for symbols that are chosen 
more than once will be settled by a second-price auction. To make sure that everyone is treated 
equally, everyone has to make a bid. The range of possible bids lies between 0 and 800. If you 
bid 0 you are, de facto, not participating in the auction. If your bid is above 0, you participate in 
the auction. This happens at a point in time where you don’t know yet whether your symbol was 
chosen multiple times. After everyone has chosen a symbol in the first step, you are shown the 
following screen:  
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On the top of the page the symbol that you have chosen will be displayed. Below, you must indicate 
how much of your endowment of 800 points you bid, if a second-price auction takes place. The 
range of possible bids is between 0 and 800 points.  

After inserting your bid, a screen will be displayed that informs you about the results. There are 
three possible cases: 

a) No one has chosen the same symbol as you. In this case you will keep your chosen symbol 
and you will not participate in any auction. You will therefore keep your endowment of 800 
points.  

b) Your symbol was chosen multiple times and your bid was the highest among all 
participants who have chosen the same symbol. In this case you receive your desired symbol 
and you pay the second highest bid which was made for your symbol. In case somebody else 
with the same symbol has made the same bid you will pay exactly the amount that you have 
bid.  

c) Your symbol was chosen multiple times but your bid was not the highest. In this case the 
computer will assign you randomly a symbol which is not yet taken. Since you didn’t win the 
second-price auction, you keep your endowment of 800 points.  

Memorize the symbol which you have chosen or the symbol which you were assigned, respectively. 
At the end of all experiments, there will be a random draw of a symbol to determine whether you 
win the lottery with your symbol.  
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Instructions for experiment 2 

 

The new experiment is split into 20 rounds. At the beginning of the experiment, the participants 
are split into two equally sized groups. The group composition remains unchanged for the whole 
experiment. It is thus the same in every round.  

Each member of a group has to make a choice between Alternative A and Alternative B at the 
beginning of each round. You can earn points depending on which alternative you choose and 
depending on the choices that the other participants of your group make. The rounds are identical 
and independent of each other throughout the experiment. That is, the number of points that you 
earn in a particular round depends only on the choices in this particular round. After the 20th round, 
all the points you earned during the experiment will be added up to your total payoff. 

 

Computing the payoff in one round 

In each round you must choose either Alternative A or Alternative B. If you choose Alternative A, 
your will participate in a prize competition with the participants of your group who also chose 
Alternative A. If you choose Alternative B you will not participate in the prize competition. 

 

Your payoff if you choose Alternative A  

All participants in a group who chose Alternative A participate in a prize competition where you 
have the chance to earn between 100 and 215 points. 

Whether you win the prize competition is a matter of chance. A random number generator will 
assign to each participant a number between 0 and 100. For each participant, every number between 
0 and 100 is equally likely. For the participants who have chosen Alternative A the random number 
will determine who wins the prize competition. The participant whom is assigned the highest 
number by the random number generator wins the prize competition. If you are the only participant 
of your group to choose Alternative A you win the prize competition in any case.  

Your payoff in the price competition depends in particular on whether you win the prize 
competition. If you don’t win the prize competition you get a payoff of zero points for this round. 
If you win the prize competition, then your payoff depends on how many competitors there are in 
the prize competition, that is, how many other participants also chose Alternative A. The more 
group members participate in the prize competition, the higher is the winner’s payoff. The 
following Table summarizes the payoff as a function of the number of number of other participants 
who chose Alternative A:  
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Number of competitors in 
the prize competition 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

Payoff for the winner [in 
points] 

100 130 155 175 190 200 205 209 212 214 215 215 215 215 

 

If, for instance, you and four other participants chose A and you are assigned the highest random 
number, then you receive 190 points and the other 4 participants receive zero points. 

 

Your payoff if you choose Alternative B 

If you choose Alternative B you don’t participate in the prize competition. You earn 45 points with 
certainty in the corresponding round. 

 

Detailed procedures of a round 

At the beginning of each round, you will see an input screen (Figure 1). On the left hand side of 
the header you see the number of the round you are currently in. On the right hand side of the 
header you see how much time you have left to make your choice.  

Your task on this screen is to make your choice for Alternative A or Alternative B in this round.  

Furthermore, you will be asked what choices you believe the other members of your group make. 
You are asked to indicate how many other members of your group you believe to choose 
Alternative A. Please note that you should indicate the number of other participants of your group 
who chose A, without counting yourself. If your estimate about the number of other group members 
to choose A turns out to be correct, you will get a bonus of 5 points for the corresponding round. 
Apart from that, your indicated estimate is inconsequential for the further procedure of the round.  

Once you have completed your inputs, please press the OK-button to confirm. 
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Figure 1: input screen 

 

Subsequently, the computer generates for each participant a random number between 0 and 100. 
All numbers are equally likely. The participants who chose Alternative B will be assigned a random 
number as well which, though, is not consequential for any payoff.  

For the participants who chose Alternative A, however, the random number determines whether 
you win the prize competition, that is, whether you earn a payoff between 100 and 215 points. Your 
random number will be displayed on the screen (Figure 2). Furthermore, it will be displayed how 
many participants chose Alternative A. Below you will see your payoff in this round and the 
indication, whether your estimate about the other group members’ choices was correct. If this is 
the case, you receive 5 additional points.  
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Figure 2: output screen. 
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Instructions for experiment 3 

 

The third experiment is identical to the previous one in terms of the procedures. Again, there are 
20 rounds to play. In each round you have to choose either Alternative A or Alternative B. The 
group composition is the same as in the previous experiment. The points you earn in this experiment 
will be added to the points that you earned in the experiments 1 and 3. The same exchange rate 
applies: 1 point will be converted to 1.5 Swiss cents and paid out at the end of the session.  

There is one important difference to experiment 2: 

The payoff for the participants who choose Alternative A are now determined in a different manner. 
There is no prize competition any more. Instead, everyone who chooses Alternative A receives the 
same number of points. As there is no prize competition anymore, there won’t be random numbers 
either. But the number of points that you receive under Alternative A still depends on the number 
of other participants who also choose Alternative A. The payoffs are summarized by the following 
Table: 

 

Number of other 
participants who choose A 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

Total payoff for all 
participants who choose A 

100 130 155 175 190 200 205 209 212 214 215 215 215 215 

 

If, for instance, you and four other participants choose Alternative A, then you get 175 points 
together. This payoff is equally distributed among those who choose Alternative A so that you 
receive a payoff of 43.75 (=175/4) points. 

Everything else remains the same. The payoff possibilities of Alternative B remain at 45. Again, 
you can earn 5 points by give a correct estimate of the number of other participants to choose 
Alternative A.  
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Instructions for experiment 1 

 

Welcome 

 

Welcome to our economic experiment. If you read the instructions carefully, you can, depending 
on your decisions, earn more or less money. It is therefore important to read the following 
instructions carefully.  

The instructions you received from us are solely for your private information. Communication with 
other participants is strictly forbidden during the whole experiment. Please ask an instructor in 
case of any questions. If you don’t comply with those rules we will have to exclude you from the 
experiment including from any payments. 

During the experiment, your payoff will not be computed in Swiss francs but in points. The points 
that you earn during the experiment will be converted to Swiss francs and paid out in cash. The 
following exchange rate applies:  

 

1 point = 1.5 Swiss cents. 
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Instructions for experiment (i) 

In this experiment we ask you to make choices between two alternatives, Alternative A and 
Alternative B. At the end of each round you receive a payoff (= a certain number of points) which 
depends on the alternative you choose.  

You have to make this choice in a total of 20 consecutive rounds. Those 20 rounds are identical 
and independent of each other in terms of their procedure. Thus, your payoff in a particular round 
depends solely on your choice in this particular round. After the 20th round, all points that you 
received during the 20 rounds will be added to your total payoff.  

 

Computing the payoffs in one round  

In each round you must choose either Alternative A or Alternative B. If you choose Alternative A, 
your payoff will be subject to randomness. If you choose Alternative B you will receive a fixed 
payoff of 45. 

If you choose Alternative A, then it will be determined randomly whether you receive a payoff 
which is higher than what you get under Alternative B or whether you receive a payoff of zero. 
The level and the probability of the possible payoffs are variable. 

The payoffs are determined based on data of a completed experiment with another group of 
students. These students have already received their payoffs and they are not participating in 
today’s experiment. To make sure you comprehend the decision situations of the participants of 
the completed experiment, we ask you to read the instructions of the already completed 
experiment. You find them in the attachment.   

 

+++++++++++++++++++++++++++++++++++++++++++ 

Please continue with the attachment (colored paper).  

+++++++++++++++++++++++++++++++++++++++++++ 

 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

Here we show the instructions for the WTA-condition of the main experiment 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

Please return now to the instructions of today’s experiment (white paper). 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
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+++++++++++++++++++++++++++++++++++++++++++++++++++++ 

After reading the attachment, please continue reading here. 

+++++++++++++++++++++++++++++++++++++++++++++++++++++ 

Today we are interested to know, what choices you would make in this situation. You will also 
face the choice between Alternative A and Alternative B. 

In contrast to the completed experiment, however, your payoff for Alternative A will not depend 
on other participants’ behavior in this room. Instead, we will use the data of the completed 
experiment to determine the level of your payoffs and their winning probabilities.  

For this sake, during the experiment, you will be assigned a data set of a group from the completed 
experiment. If, in a given round, you choose Alternative A your payoff will be subject to 
randomness. It will be determined based on the number of participants who chose Alternative A in 
the corresponding round of the completed experiment. The choices of all participants will be 
replicated by the computer. 

The prize is determined the same way as in the completed experiment:  

 

Number of 
participants in the 
assigned group who 
chose A 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Payoff [in points] 100 130 155 175 190 200 205 209 212 214 215 215 215 215 

 

Detailed procedures of a round 

At the beginning of each round an input screen will be displayed (Figure 1). Your task on this 
screen is to choose either Alternative A or Alternative B for this round. Furthermore, you will be 
asked what choices you believe the participants of the completed experiment made. More 
concretely, you are asked to indicate how many of the 14 members of the group which you are 
assigned to choose Alternative A in the corresponding round. If your estimate regarding the 
behavior of the participants in the completed experiment is correct, you will get a bonus of 5 points 
for this round. Apart from that, your indicated estimate is inconsequential for the further procedure 
of the round.  

 

Once you have completed your inputs, please press the OK-button to confirm. 
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Figure 1: input screen 

 

Subsequently, the computer will generate exactly as many random numbers as there are participants 
who chose Alternative A in this particular round of the completed experiment. You will be assigned 
one of those random numbers.   

If you have chosen Alternative A, then this random number will determine whether you receive 
the prize, that is, whether you earn a payoff between 100 and 215 points. Is your random number 
the highest of all generated random numbers, then you receive a payoff of between 100 and 215 
points. Otherwise you receive a payoff of zero.   

If, for instance, you choose Alternative A in a given round and five participants of the completed 
experiment chose Alternative A in this particular round, then five random numbers will be 
generated. The random number that you are assigned to must be the highest for you to win the prize 
of 190.  

The random numbers are also generated if you chose Alternative B. But they will be 
inconsequential for your payoff. 

The results of these procedures will be displayed on the output screen (Figure 2).  
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Figure 2: output screen 

 

By clicking the „continue“-button, you get to the next round where you will face the same choice 
situation again.  
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Instructions for experiment (ii) 

 

In this experiment you will face again choices between Alternative A and Alternative B. In this 
stage, however, we change the mechanism to determine your chances to win under Alternative A 
as well as your level of information. 

 

Computing your payoff in one round 

In each round you must choose either Alternative A or Alternative B. If you choose Alternative B, 
you will still get a payoff of 45. If you choose Alternative A you still get an uncertain payoff in the 
range of 0 to 215. Your winning chances are still based on the results of the already completed 
experiment.   

In contrast to the previous experiment, you will not be assigned to a particular group for all rounds. 
Instead, in every round you will be randomly assigned any round of any group. Furthermore, you 
will learn the full statistical distribution of the A and B choices of the completed experiment. 

Overall, 180 rounds were played in the completed experiment: Thereby the following distribution 
per round resulted: 
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Number of 
participants who 
chose A 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Price to win in 
points 

100 100 130 155 175 190 200 205 209 212 214 215 215 215 215 

Absolute number 
of rounds 

1 0 1 8 20 35 51 30 15 13 2 4 0 0 0 

Relative 
frequency in % 

0.6 0 0.6 4.4 11.1 19.4 28.3 16.7 8.3 7.2 1.1 2.2 0 0 0 

 

Now, in every round, one of those 180 rounds will randomly be drawn as a basis to determine 
your payoff profile under Alternative A. If you happen to get a round where no participant chose 
Alternative A, you will get a payoff of 100 for this round.   

 

Detailed procedures of a round 

Again, at the beginning of each round an input screen will be displayed.  

Your task is again to indicate for which of the two Alternatives A or B you choose in this round.  

Furthermore, we will still ask you to indicate your beliefs about the behavior of the participants 
of the completed experiment. Now you have to indicate how many of the 14 group members 
chose Alternative A in the randomly drawn round. If your belief is correct, you get a bonus of 5 
points. 

Once you have completed your inputs, please press the OK-button to confirm. 

Subsequently, the computer will again generate exactly as many random numbers as there are 
participants who chose Alternative A in this particular round of the completed experiment. You 
will be assigned one of those random numbers. If you have chosen Alternative A, then this random 
number will determine your payoff according to the same procedure as described above.  

The results of these procedures will be displayed on the output screen. The screens correspond to 
the ones of the previous experiment.  
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Figure 1: Decision screen
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Figure 2: Result screen
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Chapter 2

Multigame Contact: A Double-Edged
Sword for Cooperation
VINCENT LAFERRIÈRE†, JOAO MONTEZ, CATHERINE ROUX, AND

CHRISTIAN THÖNI

We study the effect of multigame contact on cooperation. In our experimental setup,
subjects play a pair of indefinitely repeated prisoner’s dilemma games either with the
same partner, or with two different partners. In contrast to our theoretical prediction,
we find no evidence that multigame contact increases overall cooperation. Nonethe-
less, we observe that multigame contact systematically affects behavior: subjects link
their decisions across games when playing with the same partner. Multigame contact
proves to be a double-edged sword, as simultaneous cooperation and simultaneous
defection in the two games are both more likely under multigame contact.

2.1 Introduction
Many strategic situations involve players repeatedly interacting across multiple games.
Even if each game is payoff-independent—in the sense that the payoffs accruing in each
stage game only depend on the actions chosen in that game—repeated games can become
strategically connected if players’ actions in one game depend on the outcome of another
game. For instance, some co-workers are also neighbors, and how loudly they play music
at home may influence how they collaborate at work. Likewise, spouses who are business
partners must still share household chores, and countries that are trading partners may
hold different views on human rights. These links can lead to meaningful differences in
strategies and outcomes.

Repeated interactions in a single game have been widely studied from both a theory
and an experimental perspective. Most relevant to our work is the recent experimental
literature on indefinitely repeated prisoner’s dilemmas studying the determinants of co-
operation.1 This literature has identified several factors that help determine the extent to

†This chapter is a joint project with Joao Montez, Catherine Roux, and Christian Thöni. I participated
in the design of the experiment, personally ran all experimental sessions, performed a large part of the data
analysis, and was heavily involved in writing the article.

1For a comprehensive overview, see Dal Bó and Fréchette (2018). Indefinitely repeated games are also
known as infinitely repeated games, with the former term being privileged to emphasize that in laboratory
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which players cooperate in these games, such as continuation probability (Dal Bó, 2005;
Duffy & Ochs, 2009; Normann & Wallace, 2012), experience (Dal Bó & Fréchette, 2011),
communication possibilities (Cooper & Kühn, 2014), monitoring structure (Aoyagi et al.,
2019; Camera & Casari, 2009), costly punishment (Camera & Casari, 2009; Dreber et al.,
2008), timing of play (Bigoni et al., 2015; D. Friedman & Oprea, 2012), and behavioral
spillovers (Bednar et al., 2012).2 However, we do not know if and how simultaneously
playing multiple indefinitely repeated prisoner’s dilemmas with the same partner (multi-
game contact) or different partners influences cooperation. We start to fill this gap.

The theoretical understanding of our subject has been a staple in industrial economics,
where it is well established that multimarket contact can increase collusive behavior
among firms in pricing games with a prisoner’s dilemma structure. The mechanism be-
hind this result, first formalized by Bernheim and Whinston (1990), is that firms can pool
their incentive constraints across markets, i.e., use the slack in the collusive incentives
in one market to compensate for the lack of collusive incentives in another market. This
reduces the critical discount factor that equalizes the long-term gains from continuing
collusion with the short-term gains from deviation followed by perpetual punishment.
Spagnolo (1999a) further shows that concavity in the players’ utility functions reinforces
this result: the critical discount factor for which collusion in all markets can be sustained
becomes even lower relative to the linear utility case. Some industry studies have found
evidence consistent with this hypothesis, but the endogeneity problem remains challeng-
ing to address in empirical work.3 This further motivates an experimental approach.

In this article, we set up a laboratory experiment where each subject simultaneously
plays a pair of indefinitely repeated prisoner’s dilemmas. Our main treatment comprises
the presence or absence of multigame contact. Multigame contact is present when a sub-
ject interacts with the same partner in both indefinitely repeated prisoner’s dilemmas, and
it is absent when the subject faces a distinct partner in each of the two games. We pair a
hard with an easy game such that the incentives to deviate from the most cooperative path
are higher in the former than the latter, and therefore the critical discount factor at which
cooperation is sustainable is higher in the hard than the easy game.

In this framework, theory predicts that multigame contact weakly increases the possi-
bilities for cooperation. We consider three discount factor conditions such that, in theory:
i) with the lowest discount factor, cooperation is possible in neither of the games with
and without multigame contact, ii) with the intermediate discount factor, cooperation is
possible in both games with multigame contact, but only possible in the easy game with-
out multigame contact, and iii) with the highest discount factor, cooperation is possible in
both games with and without multigame contact.

In contrast to the theoretical predictions, we find no evidence of multigame contact
facilitating overall cooperation in our experiment. Nonetheless, we find strong evidence
that subjects’ behavior in one game is influenced by what happens in the other game in
the presence of multigame contact, which is what the theory predicts. When playing with
the same partner, we observe that i) subjects tend to revert to uncooperative behavior in all

experiments such games are implemented using some random stopping procedure. The literature tends to
use the two terms interchangeably (Dal Bó & Fréchette, 2018; Fréchette & Yuksel, 2017).

2A related body of literature studies the behavioral effects of playing multiple repeated games with a
finite time horizon (Falk et al., 2013; Savikhin & Sheremeta, 2013).

3These industries include cement (Ghemawat & Thomas, 2008; Jans & Rosenbaum, 1997), telecom-
munications (Busse, 2000; Parker & Röller, 1997), radio (Waldfogel & Wulf, 2006), hotels (Fernandez &
Marin, 1998), airlines (Ciliberto & Williams, 2014; Evans & Kessides, 1994; Miller, 2010; Singal, 1996),
hospitals (Schmitt, 2018), and banking (Coccorese & Pellecchia, 2009; Heggestad & Rhoades, 1978).
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games in reaction to a deviation from cooperative behavior in a single game, and ii) co-
operation in the easy game is more strongly linked with cooperative outcomes in the hard
game. To the extent that people resort to uncooperative behavior at times, this implies
that punishment occurs more often than theory would predict, and—in this experiment—
the effect of multigame contact averages out.4 In summary, multigame contact acts as a
double-edged sword: it increases not only cooperation but also defection in both games
(and thus, cooperation in only one of the games becomes less likely).

The notion that linking games can have adverse effects has been previously explored
in a handful of theoretical and experimental papers. In a theoretical framework, Spagnolo
(1999b) studies the case where, with some probability, a player does not behave cooper-
atively in one of the two games, in which case linking the games may have an adverse
effect, not only for the players who link but also for the players who do not link. In
a setting with imperfect monitoring, Thomas and Willig (2006) show that strategically
linking multiple games may be disadvantageous because a mistaken deviation from coop-
eration in one game triggers punishments with uncooperative behavior in all games. The
losses due to this contagion outweigh the gains from strategic linkage when the level of
accuracy in monitoring the actions in one game is very low. In this case, players may
want to avoid linkages if they have the possibility to do so. Experimentally, Vespa and
Wilson (2019) observe contagion in a dynamic version of an infinitely repeated prisoner’s
dilemma with a high and low payoff state. Despite initial cooperation in the low state,
subsequent defection in the high state can reduce cooperation rates in the low state.

To further explore the mechanism, we set up a second experiment with a sequential
variant of the game, in which the cooperation-enhancing effect of multigame contact is
in theory strongly increased. We again find compelling evidence for linkage but no effect
on overall cooperation, and thus we conclude that multigame contact is indeed a double-
edged sword, being a benefit for some and a curse for others.

Our study contributes to experimental literature focusing on multimarket contact and
cooperation, which finds mixed results (Feinberg & Sherman, 1985, 1988; Freitag et al.,
2021; Güth et al., 2016; Modak, 2021; Phillips & Mason, 1992, 1996; Yang et al., 2016).
We improve on the existing literature in multiple ways. First, we build on recent method-
ological contributions by implementing indefinite repetition with a random stopping rule
instead of the commonly-used finite horizon (Dal Bó, 2005). Second, in our setup, the
subjects always interact in two games, with the variation being whether they interact with
the same or a different partner in each game. This stands in contrast to earlier papers that
compare a single-market to a multimarket environment with the same partner in every
market. Third, we vary the continuation probability. This is an important step since the
theoretical predictions on multimarket contact change with this parameter, which could
explain the mixed results found in the literature so far (as none of the papers has taken this
into account). Finally, we introduce a novel design that provides a stronger test of the the-
ory in a second experiment: the sequential variant of the game ensures—in theory—that
cooperation is possible with multigame contact for almost any discount factor.

The remainder of this article is organized as follows. Section 2.2 derives the theoreti-
cal predictions. Section 2.3 describes the experimental design. Section 2.4 discusses our
results. Finally, Section 2.5 briefly concludes.

4This result is reminiscent of Dreber et al. (2008), which finds—in a single prisoner’s dilemma setting—
that adding a costly punishment strategy increases the frequency of cooperation but does not significantly
change the average group payoff (since benefits are dissipated by the usage of the costly punishment option).
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2.2 Theory
In this section, we explain the theory underlying our experiment. In Section 2.2.1, we
investigate the effect of multigame contact in indefinitely repeated prisoner’s dilemmas
when players either choose their actions for both games at the same time or play the
games sequentially. In Section 2.2.2, we derive the theoretical predictions for the game
parameters used in our experiments.

2.2.1 Cooperation with multigame contact
Consider the stage game in Figure 2.1 where C stands for cooperation, and D for defec-
tion. The payoff matrix comprises four elements: the reward payoff from joint coopera-
tion (R), the temptation payoff earned from defection when the other player cooperates
(T ), the sucker’s payoff from cooperation when the other player defects (S), and the pun-
ishment payoff from mutual defection (P ). Under the restriction T > R > P > S, the
stage game is a prisoner’s dilemma, and (D,D) its unique Nash equilibrium.

Player 2

C D

Player 1
C R,R S, T

D T, S P, P

Figure 2.1: Payoff matrix of a single stage game

This stage game is repeated infinitely, and players discount the future with a common
discount factor δ ∈ (0, 1). If 2R > T + S, then a dynamic cooperative path with (C,C)
in every period dominates a path with alternating strategies (C,D) and (D,C) across
periods for every δ. In our experiment, we interpret δ as the probability with which the
game will continue into the next round t. In laboratory experiments, such games are
known as indefinitely repeated games, since players know the game stops after any period
with probability (1− δ) and they cannot infer for certain how long the game will last.

For sufficiently high discount factors, mutual cooperation (C,C) in every period can
be sustained as a subgame-perfect equilibrium. The lowest δ at which cooperation is
subgame perfect is achieved with the following grim trigger strategies: play C in every
t, and play D forever after any deviation from (C,C). This critical threshold for δ is
obtained by solving the incentive compatibility constraint below:

R

1− δ
≥ T +

δP

1− δ
⇔ δ ≥ T −R

T − P
(2.1)

The left-hand side of the first inequality denotes the present discounted payoff from coop-
eration in every period, whereas the right-hand side denotes the present discounted payoff
from deviation. This critical threshold is decreasing in R, and increasing in T and P .

Given that we are interested in the effect of multigame contact on cooperation, we turn
now our attention to a situation in which a player simultaneously engages in two indef-
initely repeated prisoner’s dilemmas and immediately learns the outcome of each stage
game she plays. Simultaneously playing the stage games of two identical indefinitely
repeated prisoner’s dilemmas (with either the same or different partners) does not affect
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the critical discount factor at which cooperation is sustainable (Bernheim & Whinston,
1990).5 We thus consider stage games with asymmetric payoffs, where we add a factor
z > 0 to the temptation payoff T in one game and subtract z from T in the other one
(see Figure 2.2). Because the gain from deviating from (C,C) in the game in which we
added z is higher than in the game in which we subtracted it, we call the former the hard
game and the latter the easy game. To keep a similar incentive structure to the stage game
above, we assume that T − z > R > P > S, and 2R > (T + z) + S.

Hard game Easy game

C D c d

C R,R S, T + z c R,R S, T − z

D T + z, S P, P d T − z, S P, P

Figure 2.2: Payoff matrices of the two stage games

In the absence of multigame contact, i.e., when facing a different partner in each
game, a player’s strategy in one game cannot affect the action of her partner in the other
game. Therefore, each game can be treated independently, and cooperation in each game
is respectively sustainable if:

δ ≥ (T + z)−R

(T + z)− P
= δhard, δ ≥ (T − z)−R

(T − z)− P
= δeasy (2.2)

Note that cooperation is easier to sustain in the easy than the hard game, i.e., δeasy < δhard.
Consider now the situation in which two players interact with each other in both the

easy and hard game, i.e., a situation with multigame contact. The two players may still
play these games as if they faced a different partner in each game, i.e., as if the games
were independent, and the critical discount factors would still be the ones presented above.
However, the two players may achieve cooperation in both games more easily if they link
the strategies, as discussed next. When facing the same partner, each player can use the
threat of punishment in both games following any deviation. This threat will pool the two
incentive constraints, which induces cooperation in both games if the following single
incentive constraint is satisfied:

2R

1− δ
≥ (T + z) + (T − z) +

δ2P

1− δ
⇔ δ ≥ T −R

T − P
= δpool (2.3)

The payoff from perpetual cooperation in both games is given by the left-hand side of the
first inequality. The payoff from defection followed by perpetual punishment is given by
the right-hand side: as punishment is expected to occur in both games regardless of the
form of deviation, a player who defects would optimally do so in both games simulta-
neously. Because δpool < δhard, cooperation in both games is indeed easier to sustain if
strategies are linked.

The most cooperative outcomes are achieved—using grim trigger strategies—as fol-
lows: for δ ≥ δhard, players should cooperate in each game separately, and thus linkage
becomes superfluous; for δpool ≤ δ < δhard players should link the strategies in the two
games; for δeasy ≤ δ < δpool players should not link the strategies to be able to cooperate

5Spagnolo (1999a) shows that this neutrality result hinges on the linearity assumption, as the critical
discount factor is reduced with multigame contact if utilities are concave.
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in at least the easy game; and for δ < δeasy players should not cooperate in either game
and again linkage becomes superfluous.

Note that the discount factors that enable cooperation in every period—as character-
ized above—remain unchanged if the indefinitely repeated game is preceded by a phase
in which the stage game is repeated with certainty a finite number of times (as we do in
our experiment, where subjects—at the outset—play two additional guaranteed rounds).

Next, we explain why linkage may not be optimal. Notice that for δeasy ≤ δ < δpool,
if a player expects her partner to use a grim trigger strategy with linkage following a
deviation in one game, her optimal response is to deviate immediately in both games since
the incentive constraint (2.3) is violated. In this case, cooperation will not be achieved in
either game. However, cooperation in the easy game alone is still achievable if players do
not link the grim trigger strategies, and instead play each game independently. So linkage
helps sustaining full cooperation for intermediate discount factors, but it may destroy
partial cooperation when the discount factor is sufficiently low. That is, in theory linkage
should be made conditional on the discount factor.6

Turning to our main treatment of the presence or absence of multigame contact, and
focusing on the most cooperative outcome, our theoretical predictions are summarized in
Figure 2.3 below: if δ < δeasy then in both cases—with and without multigame contact—
cooperation is not sustainable in either game; if δeasy ≤ δ < δpool, then cooperation is
only sustainable in the easy game in both cases; if δpool ≤ δ < δhard, then cooperation
is sustainable in both games in the presence of multigame contact whereas cooperation is
only sustainable in the easy game in the absence of it; and if δhard ≤ δ, cooperation is
sustainable in both games in the presence and the absence of multigame contact.

0Multigame
contact

δeasy coop. in easy δpool coop. in both games 1
δ

0No multigame
contact

δeasy coop. in easy δhard coop. in both 1
δ

Figure 2.3: Most cooperative outcomes

In light of the results of our initial experiment where the two games are played simul-
taneously, we decided to study a second setting in which the effect of multigame contact
on cooperation is theoretically reinforced by playing the two games sequentially. Each pe-
riod now comprises two stages: players first interact in the hard game and then—knowing
the outcome of that stage game—play the easy game (we focus on this sequence, since in
theory it has a stronger effect on the critical discount factor than the reverse order). In the
absence of multigame contact, cooperation is independent of playing the stage games se-
quentially or simultaneously, and thus there is no effect on the critical discount factors at
which cooperation is sustainable in the hard and easy game. However, in the presence of
multigame contact, the critical discount factor for joint cooperation in the hard and easy
game is lower when played sequentially rather than simultaneously, and it surprisingly
may be even lower than for the easy game alone.

The reason is twofold. First, when games are played sequentially, a partner who de-
fects receives the temptation payoff in at most one game, and thus she gains a lower benefit

6As discussed in the introduction, Spagnolo (1999b) and Thomas and Willig (2006) reach similar con-
clusions in settings with imperfect information.
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from deviation than in simultaneous play. Second, the punishment is weakly harsher: it
is harsher if she deviates in the hard game (as then she will see her punishment start im-
mediately within the same time period, i.e., in the second stage easy game), and it is the
same if she deviates in the easy game (as—like in the simultaneous case—the punishment
in both games then starts in the next time period). These considerations alter the incentive
constraint and make cooperation in both games sustainable for

δ ≥


T+z+P−2R

T+z−P
, if 2z + P −R ≥ 0,

T−z−R
T−z+R−2P

, otherwise.
(2.4)

The top case refers to the optimal deviation taking place in the hard game and the bottom
case in the easy game. If the games are not too asymmetric (i.e., z is not too large), this
critical discount factor for cooperation in both games is lower than the critical discount
factor for cooperation in the easy game alone.

Thus, with multigame contact, the consequences of linkage can be fundamentally
different with simultaneous and sequential play. With simultaneous play, linkage may be
beneficial for δ sufficiently high but it may need to be avoided for δ sufficiently low. On
the other hand, with sequential play, if games are not too asymmetric, there is no region
where linkage should be avoided.

2.2.2 Experimental predictions
To test the effect of multigame contact, we use the concrete parameterization of the stage
game payoffs seen in Figure 2.4. Numbers represent monetary payoffs in ECU (experi-
mental currency unit). We derive our predictions under the assumption that utilities are a
linear transformation of a player’s own monetary payoffs.

In our first experiment, we consider the simultaneous variant. If we compute the dif-
ferent critical discount factors discussed in Section 2.2.1, we obtain the following values
when the games are played simultaneously: δeasy = 0.11, δpool = 0.38, and δhard = 0.52.
We conduct sessions with three different continuation probabilities: δ ∈ {0.1, 0.5, 0.9}.
For δ = 0.1, the theory predicts no cooperation, both with and without multigame contact;
for δ = 0.9 cooperation in both games can be part of an equilibrium both with and without
multigame contact. For δ = 0.5, the beneficial effects of multigame contact should crop
up: whereas cooperation in the easy game is sustainable in both treatments, cooperation
in the hard game is only possible with multigame contact.

Hard game Easy game

C D c d

C 135, 135 45, 216 c 135, 135 45, 144

D 216, 45 60, 60 d 144, 45 60, 60

Figure 2.4: Payoff matrices of the experimental stage games

In our second experiment, we consider the sequential variant. As presented in Sec-
tion 2.2.1, with our particular payoffs, the optimal defection with multigame contact takes
place in the second stage, i.e., in the easy game (as 135+144 > 216+60). This lowers the

61



critical discount factor for cooperation in both games from δpool = 0.38 to δpool = 0.06.7.
All other critical discount factors are unaffected by moving from simultaneous to sequen-
tial play. This time, we conduct sessions with a single continuation probability: δ = 0.5.
The theoretical predictions based on subgame perfectness are therefore the same as be-
fore: whereas cooperation in the easy game is sustainable in both treatments, cooperation
in the hard game is only possible with multigame contact. However, in single repeated
prisoner’s dilemma experiments, not only subgame perfectness matters for cooperation,
but also the distance from this critical discount factor to the game’s discount factor seems
important (Dal Bó & Fréchette, 2018). We expect similar effects to be at work in a multi-
game contact setting, and thus to find a more significant effect of multigame contact on
full cooperation in the sequential relative to the simultaneous case.

The critical discount factors presented above were derived under the assumption that
other subjects are following cooperative grim trigger strategies, possibly with linkage.
However, subjects cannot be certain that the other players will use such strategies, and the
experimental literature based on single repeated games has shown that such strategic risk
matters. Following Blonski and Spagnolo (2015), the literature has adapted the concept of
risk dominance of Harsanyi and Selten (1988) by controlling for the critical discount fac-
tor at which grim becomes a best response when the other player randomizes with equal
probabilities between the strategies of grim and always defect. Experimentally, this more
stringent requirement seems to matter more for cooperation than subgame perfectness,
and the distance from this critical discount factor to the game’s discount factor remains
important (Dal Bó & Fréchette, 2018).

Our choice of parameters was such that for each of the three different continuation
probabilities δ ∈ {0.1, 0.5, 0.9}, the qualitative predictions remain the same if we consider
this notion of strategic risk rather than subgame perfection. Indeed, if we consider the
hard and easy game alone, we obtain 0.56 and 0.24 as these critical discount factors,
respectively. With multigame contact, this critical discount factor for full cooperation is
0.44 when the games are played simultaneously, and it is reduced to 0.12 when the games
are played sequentially (since strategic uncertainty is fully resolved after the very first
stage, i.e., the hard game).8

2.3 Experimental procedures
Subjects play a sequence of indefinitely repeated prisoner’s dilemmas. In every round,
each subject plays two prisoner’s dilemmas in parallel. Henceforth, we refer to the ex-
perimental implementation of the hard game as hard and the easy game as easy.9 We
call the combination of both indefinitely repeated prisoner’s dilemmas a supergame. The
first three rounds of a supergame are played for certain and, at the end of the third round,

7Playing the hard game first leads to a much lower critical discount factor than playing the easy game
first under multigame contact (0.06 vs. 0.35). Despite the theoretical argument in favor of our sequence,
we cannot rule out the notion that the opposite sequence could have a larger impact on cooperation due to
gradualism (see, e.g., Kartal et al., 2021)

8The idea that sequential play can reduce strategic uncertainty and thus foster cooperation has been
experimentally tested in Ghidoni and Suetens (2020), although in their case the subgame-perfect critical
discount factor remains unaffected.

9For half of the subjects, hard is always displayed on the left of the screen and easy on the right. The
order is reversed for the other half. We use neutral labels (A, B and X , Y ) for the actions in the games.
We randomize by subject whether they see A, B or X , Y as labels for hard or easy. See Appendix 2.A.3
(p. 76) for the experimental instructions and screenshots.
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a computerized stopping rule is introduced. From round three onward, the supergame
either proceeds to the next round with continuation probability δ, or it stops and subjects
move to a new supergame. After the termination of a supergame, subjects are randomly
rematched for the subsequent supergame. All of this information is common knowledge.

The main treatment variation manipulates multigame contact: within a supergame,
subjects either interact in both games with one partner (multigame contact, henceforth
1Partner) or they play hard with one partner and easy with another partner (no multi-
game contact, henceforth 2Partner).10 The matching in a supergame is fixed. The second
treatment variation is the expected length of the supergames. We implement three differ-
ent continuation probabilities: δ ∈ {0.1, 0.5, 0.9}.

The initial guaranteed rounds of play enable us to observe how subjects deviate and re-
act to deviations, which is especially helpful for low and intermediate continuation prob-
abilities where longer supergames are rare. These guaranteed rounds do not affect the
theoretical predictions in the parameter space considered in the experiment. While they
could affect subjects’ perceptions of the true continuation probability, this should equally
affect the treatments with one and two partners.11

We run our two-by-three factorial design as a between-subjects design, i.e., subjects
only play one of the six treatments. All subjects in a session play the same treatment.
Subjects in a session are randomly allocated to matching groups, which remain fixed
throughout the session. At the beginning of each supergame, the computer randomly
matches subjects with one or two partners from their matching group depending on the
treatment.12

In the second experiment, subjects play the two games in a sequence instead of simul-
taneously. The order of events within a round is as follows: subjects take their decision
simultaneously in hard, they are informed about the outcome in hard, they take their de-
cision in easy, and are finally informed about the outcome in easy. For the sequential
variant, we run only δ = 0.5, the most interesting case in the first experiment. Whereas
supergame durations were generated on the spot in the first experiment, we use the real-
izations of the six matching groups of the first experiment at δ = 0.5 in 1Partner for all
treatments of the second experiment to maximize comparability between the two experi-
ments. The rest of the experimental procedures is identical to the first experiment.13

Participants were paid out the sum of the payoffs of all rounds. During the experi-
ment, we measured earnings in ECUs and the exchange rate was 1,000 ECUs = CHF 1
(≈ USD 1.10). In addition, participants received a show-up fee of CHF 10 (≈ USD 11).
Sessions were run in the laboratory of the University of Lausanne (LABEX) with under-
graduate students from the University of Lausanne and the EPFL recruited with ORSEE

10Labels do not allow subjects to identify with whom they interact. The other subject in the game is
always labeled as “Your partner” in the treatments with one partner, and “Your partner 1” and “Your part-
ner 2” in the treatments with two partners. At the beginning of each supergame, we inform subjects that a
new partner or new partners 1 and 2 are randomly drawn.

11Several alternatives have been proposed in the literature to deal with these issues, including the block
method (Fréchette & Yuksel, 2017). Our methodological choice was driven by the desire to keep the
experimental instructions as simple as possible.

12See Appendix 2.A.2 (p. 81) for more details on the formation of matching groups and the stopping
procedure. Table 2.A.5 in the appendix (p. 82) provides detailed information on matching groups’ size and
supergames’ duration.

13Changes to the computer screens were kept minimal. They have the same structure as in the first
experiment, but at the beginning of the round the part of the screen for easy is shaded and inactive. It
becomes active when subjects have to take their decision in easy and the other part of the screen keeps
displaying the results in hard.
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(Greiner, 2015). The experiment was programmed in oTree (Chen et al., 2016). We ran
a pilot in May 2020; the sessions of the first experiment took place in September and
October 2020, while the sessions of the second experiment took place in May 2021.14

A total of 436 and 128 subjects participated in the first and second experiments, re-
spectively. We end up with six matching groups per treatment, except at the continuation
probability δ = 0.9, for which we have data from five matching groups in 1Partner and
five matching groups in 2Partner. Table 2.A.2 in the appendix (p. 76) provides detailed
information about the observations per treatment. The average payment per participant
was CHF 31 (≈ USD 34) and sessions lasted between 70 and 113 minutes. The designs
of both experiments and the hypotheses were pre-registered prior to data collection in two
OSF registries.15

2.4 Results
This section is organized in four parts. In Section 2.4.1, we investigate the effect of multi-
game contact on cooperation under simultaneous play in our first experiment. In Sec-
tions 2.4.2 to 2.4.3, we perform exploratory analyses on first-round behavior and strategic
linkage. Finally in Section 2.4.4, we present the results from our second experiment in
which the effect of multigame contact on cooperation should be particularly strong ac-
cording to theory.

2.4.1 Cooperation across treatments
The left panel of Figure 2.5 shows the mean cooperation rates with 95 percent confidence
intervals in hard and easy for each treatment across all rounds. The cooperation rate in a
game refers to the proportion of participants who choose to cooperate.

In line with the literature (Dal Bó & Fréchette, 2018), we observe an increase in coop-
eration rates for both games and for both partner treatments as the continuation probability
increases. Contrary to the theoretical predictions at δ = 0.5, we do not observe a higher
cooperation rate in 1Partner than 2Partner for hard (p = .394).16

Although the theory does not predict differences in any of the other comparisons, it is
clear that we may not want to take these predictions too literally. After all, we observe
quite some cooperation at δ = 0.1, as well as defection in δ = 0.9. Given this variation,
it seems reasonable to expect that the general mechanism of multigame contact should
also affect behavior in the remaining comparisons.17 For all other comparisons between
1Partner and 2Partner, we find no consistent difference in the average cooperation rates
(p > 0.589). This also holds for overall cooperation (pooling the actions of hard and
easy, p > .588 at any δ). We do not find interesting dynamic effects regarding the effect

14Data from the pilot were excluded from the analysis.
15First experiment: https://osf.io/u7hwe, second experiment (after analysis of the first experiment but

prior to data collection of the second one): https://osf.io/6qcjt
16Unless specified, we always report the exact p−values from Wilcoxon rank-sum tests on matching

group averages. The number of independent observations for each test comparing 1Partner and 2Partner is
twelve for each δ, except δ = 0.9, where we observe ten matching groups.

17Bruttel (2009) and Dal Bó and Fréchette (2018) argue that—rather than a stepwise increase—the dis-
tance between the implemented discount factor and the critical discount factor (δ∗) is a continuous predictor
of cooperation. For discount factors below δ∗, the cooperation rates are typically at a low level, whereas
above δ∗ cooperation gradually increases in δ.
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Figure 2.5: Cooperation rates by treatment. Mean cooperation rates and 95% confidence
intervals are computed using the matching group averages. The left panel shows the results
for all rounds; the right panel shows the first round in each supergame.

of multigame contact in any of the treatments. Figure 2.A.1 in the appendix (p. 77) shows
the cooperation rates over time. This leads to our first result:

Result 1: Multigame contact does not increase average cooperation.
Cooperation rates in both hard and easy are statistically indistinguishable between 1Part-
ner and 2Partner, and the same holds for overall cooperation.

However, average cooperation rates in hard and easy are only one way to investigate
potential differences between treatments. A first indication for a treatment difference
may manifest itself—at least at δ = 0.5—in the confidence intervals shown in Figure 2.5,
which are substantially larger in 1Partner.

In theory, multigame contact should foster cooperation in hard. More specifically,
simultaneous cooperation in hard and easy should be more prevalent in 1Partner than
2Partner. Although cooperation rates in hard do not differ between 1Partner and 2Part-
ner, simultaneous cooperation in both games may still be more prevalent under multi-
game contact if simultaneous defection in both games is more prevalent as well. After
all, defecting in both games is the reaction we expect after any deviation under multigame
contact.

To check whether multigame contact leads more often to situations of either simulta-
neous cooperation or defection in both games, we look at the outcome of the stage games.
We are interested in whether or not subjects reach a cooperative outcome in the stage
games. A cooperative outcome in hard (easy) refers to a situation in which both the sub-
ject and her partner in hard (easy) cooperate. The game outcomes are considered from
the perspective of each subject. Whereas game outcomes are identical from the perspec-
tive of a subject and her partner in 1Partner, this is not necessarily the case in 2Partner.
Figure 2.6 shows the outcome of the stage games by treatment. For each continuation
probability and for both 1Partner and 2Partner, we report the relative frequencies of four
outcomes: full defection occurs when a subject defects in both games and also face de-
fection in both games; partial cooperation occurs when a subject reaches a cooperative
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Figure 2.6: Outcome of the stage games by treatment for all rounds. Relative frequencies
of four categories of outcomes. Full defection: a subject defects in both games and faces
defection in both. Partial cooperation: cooperation of a subject and her partner for the game
only occurs in one of the two games (hard or easy). Full cooperation: a subject cooperates in
both games and faces cooperation in both. Other contains the remaining cases.

outcome in only one of the two games; full cooperation occurs when a subject reaches
a cooperative outcome in both games; the remaining category (other) contains cases in
which no cooperative outcome was reached despite some cooperative actions. This last
category contains only uncoordinated decisions and presumably reflects transitory states
towards cooperation or defection.18

At any continuation probability, the two extreme outcomes (full defection and full co-
operation) are more frequent in 1Partner than 2Partner. Conversely, partial cooperation
occurs approximately twice as often in 2Partner than 1Partner. To compare the distri-
bution of outcomes between 1Partner and 2Partner, we use Rao-Scott χ2-tests, which
correct for dependence within matching group (henceforth RS-test, Rao & Scott, 1984).
Leaving aside the other category, which occurs with similar frequencies across partner
treatments, we find statistically significant differences between 1Partner and 2Partner at
δ = 0.5 and δ = 0.9 (p < 0.041) but no at δ = 0.1 (p = 0.213).

The higher frequencies of extreme outcomes, at the cost of cooperation in a single
game, suggest that multigame contact is a double-edged sword; namely, a blessing for
some and a curse for others. Because we did not pre-register the hypothesis that multi-
game contact leads to more extreme outcomes, we will treat this as a tentative result at
this point. Our second experiment (Section 2.4.4) will replicate these results.

To investigate the effect of multigame contact in more detail, we now take a closer
18This would not be true if we also considered cooperative strategies in which players do not simultane-

ously cooperate in the same game. For example, subjects could take turns getting the temptation payoff in
hard (216) and/or in easy (144). Such strategies lead to a lower average payoff than the kind of strategies
we consider in Section 2.2, but they can still form a subgame-perfect Nash equilibrium for sufficiently high
continuation probabilities (see Stahl, 1991, for a characterization of subgame-perfect strategies in infinitely
repeated prisoner’s dilemma). Note that alternating is more attractive in hard than easy (average payoffs
per round of 130.5 and 94.5, respectively) and results in an average payoff per round close to simultaneous
cooperation (130.5 vs. 135). We checked for evidence of such strategies in our dataset and—similarly to
Dal Bó (2005) and Fréchette and Yuksel (2017)—we find little evidence of subjects consistently alternating.
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look at individual decisions. We separate our analysis into two parts: in Section 2.4.2,
we analyze decisions in the first round of each supergame and in Section 2.4.3 we use
behavior from round two onwards to investigate whether subjects link the two games
when playing with the same partner.

2.4.2 First-round behavior
Looking at the first round of each supergame is especially interesting since it allows us
to observe subjects’ behavior before it has been influenced by the partner’s or partners’
decisions.19 Cooperation rates in the first round of each supergame are often used as a
measure of subjects’ intention to cooperate (Dal Bó & Fréchette, 2018, p.90). The result
in Section 2.4.1 that multigame contact does not affect cooperation rates in both easy and
hard also holds when restricting to the first round in each supergame (see right panel of
Figure 2.5). Indeed, all comparisons between 1Partner and 2Partner are neither large nor
statistically significant (p > .420 at any δ).

How do subjects enter into a new supergame? As there are two stage games in which
subjects can either cooperate or defect, there are four possible decision pairs in each
round. We denote a decision pair by a capital letter for the decision in hard and a lower-
case letter for the decision in easy. For example, Dc means that a subject defects in hard
and cooperates in easy. In what follows, we pool Cd and Dc as it is difficult to rationalize
wanting to cooperate in hard but not in easy in the first round of a supergame, especially
for 1Partner. According to our theoretical predictions, we expect cooperation in none of
the games (Dd) for δ = 0.1 and full cooperation (Cc) for δ = 0.9 in both 1Partner and
2Partner. At δ = 0.5, cooperation is only sustainable in easy (Dc) in 2Partner, whereas
full cooperation (Cc) is sustainable in 1Partner.

Table 2.1: Subjects’ decision pair, first round of each supergame

δ = 0.1 δ = 0.5 δ = 0.9

1Part. 2Part. 1Part. 2Part. 1Part. 2Part.

Cc 0.45 0.42 0.60 0.54 0.70 0.64
Cd/Dc 0.29 0.33 0.16 0.25 0.15 0.14
Dd 0.26 0.25 0.24 0.21 0.15 0.22

N 1,970 3,770 1,488 2,812 330 500

Notes: Relative frequencies of subjects’ decision pair in the first round of each supergame. The first
letter (capital) of each pair refers to the decision in hard and the second (lowercase) to the decision in
easy. RS-tests for the difference between 1Partner and 2Partner yield p = .766 at δ = 0.1, p = .457
at δ = 0.5, and p = .504 at δ = 0.9.

Table 2.1 presents the relative frequencies of the decision pairs in the first round of
each supergame. While none of the comparisons in first-round decisions reaches signifi-
cance (see notes of Table 2.1), a few observations are worth mentioning. Cc is the modal

19Admittedly, this is strictly only true in the first round of the first supergame. Dal Bó and Fréchette
(2018) report that cooperation rates in the first round of later supergames are influenced by both the realized
duration of the previous supergames and the choices of the past subjects with whom one interacted. How-
ever, looking only at the very first round played does not allow us to observe experienced subjects. Dal Bó
and Fréchette (2018) also find that letting subjects gain experience with the environment is often required
for a treatment effect to appear. Since our main interest is the difference between 1Partner and 2Partner,
we will consider the first round of all supergames.
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decision pair in every treatment and always more frequent in 1Partner. This suggests that
many subjects try to instigate full cooperation, especially in 1Partner. At δ = 0.1 and
δ = 0.5, Cd/Dc occurs more often in 2Partner than in 1Partner. This is in line with our
theoretical prediction for δ = 0.5. Finally, with the exception of Dd at δ = 0.9, extreme
decision pairs (Cc and Dd) are always more frequent in 1Partner than 2Partner.

To conclude, Result 1 also holds when only considering the first round of each su-
pergame. On the other hand, the two extreme decision pairs (Cc and Dd) are more fre-
quent in 1Partner than 2Partner in almost all cases, which is consistent with the double-
edged sword we observed in Section 2.4.1. Assuming that a subject links her decisions
in the two games and/or believes that her partner does so under multigame contact, we
would draw the conclusion that the two possible paths forward would be either full co-
operation or full defection. In the first round of a supergame, this can only work through
anticipation, which may be one reason why the treatment differences remain statistically
weak. In order to investigate whether subjects indeed link the two games under multigame
contact, we now study subjects’ transitions between cooperation and defection.

2.4.3 Strategic linkage
The prediction that multigame contact helps to sustain simultaneous cooperation in both
games relies on the assumption that players link the two games when matched with a
single partner. If this link holds, then we should observe different reactions to the part-
ner’s or partners’ previous decisions between 1Partner and 2Partner. For the following
analysis we restrict our attention to situations where theory predicts different reactions.
Suppose that a subject cooperates in both games in round t− 1 but reaches a cooperative
outcome only in one of the two games. For 2Partner theory predicts that the subject will
continue cooperating in the one game and defect in the other. In contrast, the multigame
environment (1Partner) calls for deviation in both games (linkage).

Figure 2.7 shows heatplots with the decisions of a subject’s partner(s) in round t−1 of
a supergame on the horizontal axis and the subjects’ reaction in t on the vertical axis. We
restrict our attention to the cases in which the subject in question cooperated in both games
in round t−1. The figure shows the results for the treatments with δ = 0.5, for the results
with the other two continuation probabilities see Figure 2.A.2 in the appendix (p. 78). We
consider three situations depending on whether the partner(s) cooperated in hard (capital
letter) and easy (lowercase letter). In the left panel (1Partner), these decisions refer to the
subject’s partner, whereas in the right panel (2Partner) the first letter is the decision of the
partner in hard and the second is the decision of the partner in easy. Each cell reports the
mean proportion of the corresponding reaction (in percent) conditional on the decisions
of the partner(s). Cells within a column add up to 100 percent. The relative frequencies
of the partner’s or partners’ decisions are given in parentheses below the labels.

The left and right columns in each panel document how subjects react to either full
cooperation (Cc) or full defection (Dd). Observing the partner(s) choosing Cc or Dd
are both more likely in 1Partner than 2Partner (63 vs. 47 percent and 21 vs. 13 percent,
p = .009, RS-test). After Cc and Dd the modal reaction is to respond in kind, independent
of the treatment.

To investigate whether subjects in multigame contact link the two games the middle
column of each panel is most informative. This column shows how a subject having
played Cc reacts to Cd or Dc, namely cooperation in one game but not in the other.20

20For ease of exposition we pool Cd and Dc. The qualitative results do not change if we treat these two
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decisions. The coloring indicates frequencies, going from blue for values close to 0 up
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Observing uncoordinated decisions from the partner(s) is much less likely in 1Partner
than 2Partner (16 vs. 40 percent). Subjects’ reactions to Cd/Dc are significantly different
between 1Partner and 2Partner (p = .002, RS-test, indicated by the bold numbers in
Figure 2.7). Although the modal reaction is Cd/Dc in both treatments, it happens less
often in 1Partner than 2Partner (45 vs. 68 percent). Conversely, reacting with either Cc
or Dd are both almost twice as likely in 1Partner than 2Partner (25 vs. 15 percent for Cc
and 30 vs. 17 percent for Dd).

The treatments with δ = 0.1 and δ = 0.9 qualitatively confirm these patterns (see
Figure 2.A.2 in the appendix, p. 78). Compared to 2Partner, subjects in 1Partner are
more likely to deviate with full defection if they face Cc, and subjects are more likely to
fully defect when facing partial defection.

Linkage does not only imply reacting with full defection following any deviation by
the partner(s). By backward induction, linkage is also the optimal deviation under multi-
game contact and what a rational player would choose if she expects a deviation by the
partner in any game in the following round. To have a comprehensive measure for link-
age we should therefore consider all transitions out of Cc. In particular, we analyze how
likely it is for a subject to move from Cc to Dd (as opposed to Cd or Dc) and compare
these frequencies across 1Partner and 2Partner to identify the strength of linkage. Ta-
ble 2.2 shows the transition matrices for the decisions from round t − 1 to t at δ = 0.5
for 1Partner and 2Partner (see Tables 2.A.3 and 2.A.4 in the appendix, p. 79, for the
other continuation probabilities). For example, subjects who played Cc in the previous
round play Dd in the current round in 25 percent of the cases and Cd/Dc in 17 percent
of the cases under multigame contact. Conversely, in 2Partner subjects move to Dd in 18
percent and Cd/Dc in 35 percent of the cases.

cases separately.
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Our measure for the strength of linkage compares these relative frequencies across
treatments. In particular, we ask how much more likely it is that a subject who stops
cooperating chooses full defection (Dd). We can calculate this measure for linkage by
the ratio of the relative frequencies in the two treatments. For δ = 0.5 we get r =
(25/17)/(18/35) = 2.86, 95% CI: [1.47, 5.03].21 This means it is close to three times
more likely that a subject who stops cooperating moves to full defection (rather than
partial defection) under multigame contact compared to interactions in single games. Also
for the other two continuation probabilities we find very consistent and highly significant
results (for the transition matrices see Tables 2.A.3 and 2.A.4 in the appendix, p. 79). For
δ = 0.1 we get r = 2.85, 95% CI [1.64, 5.40]; for δ = 0.9 we get r = 3.56, 95% CI
[1.81, 6.06].

Table 2.2: Transition matrices t− 1 to t, δ = 0.5

1Partner 2Partner

t Cc Cd/Dc Dd Cc Cd/Dc Dd

t− 1
Cc 0.58 0.17 0.25 0.47 0.35 0.18
Cd/Dc 0.18 0.46 0.36 0.13 0.55 0.32
Dd 0.08 0.15 0.77 0.06 0.15 0.79

Notes: Transition matrices of the subjects’ decisions from round t− 1 to t at δ = 0.5. The
first letter (capital) of each pair refers to the decision in hard and the second (lowercase) to
the decision in easy. Each cell shows the relative frequency of the column decision pair at t
given the row decision pair at t− 1. Each row within a matrix adds up to one.

To summarize, we find no support for our hypothesis that multigame contact increases
cooperation in hard, but we find strong evidence of linkage in 1Partner at all three con-
tinuation probabilities. In line with Bernheim and Whinston (1990), this often enables
subjects to reach fully cooperative outcomes. However, linkage also frequently leads sub-
jects towards fully defective situations, which prevents multigame contact from producing
overall benefits. One reason why multigame contact did not increase overall coopera-
tion in our experiment may be that the shift in the critical discount factor was not strong
enough in our design. In order to give the theory the best shot we introduce a small change
in the sequencing of events, which has large effects on the critical discount factor under
multigame contact. We examine this new environment in our second experiment.

2.4.4 Powering multigame contact through sequential play
In this second experiment we explore a new design: instead of playing the two games
simultaneously, subjects play the two games in a sequence. First, both subjects take their
decision in hard, after which they learn the outcome of hard and proceed to easy. Recall
from the theory outlined in Section 2.2 that playing the two games sequentially rather
than simultaneously within a round has no impact on the sustainability of cooperation
in 2Partner. In 1Partner, the sequential variant of the game lowers the critical discount
factor necessary to sustain cooperation in both games substantially from 0.38 to 0.06.

The left panel of Figure 2.8 shows mean cooperation rates with 95% confidence in-
tervals for all the rounds. Contrary to the simultaneous case, the cooperation rate in hard

21We use a bootstrap with clustering on matching group (1000 repetitions) to estimate the 95% confi-
dence interval of ln(r). The confidence interval in the main text shows the exponentiated form.
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Figure 2.8: Left panel: cooperation rates by treatment; mean cooperation rates and 95%
confidence intervals for all the rounds. Right panel: outcome of the stage games by treatment
for all the rounds; relative frequencies of four categories of outcomes. See the captions of
Figures 2.5 and 2.6.

is now significantly higher in 1Partner than 2Partner (0.59 vs. 0.47, p = .026) and it
is almost indistinguishable from the cooperation rate in easy (1Partner, 0.59 and 0.61,
p = .937). On the other hand, the cooperation rate in easy is now slightly lower in 1Part-
ner than 2Partner (0.61 vs. 0.67, p = .310). In all situations, cooperation rates tend to
increase when moving from simultaneous to sequential games.22 From these results, we
conclude that the largest effect of moving from simultaneous to sequential games is—as
expected—the increase in cooperation in hard for 1Partner. Nevertheless, because coop-
eration rates have also increased in 2Partner, we do still not find significant improvements
in overall cooperation with multigame contact (0.60 vs. 0.57, p = .589).

The lack of clear beneficial effect from multigame contact is surprising as the imple-
mented continuation probability is significantly higher than the critical discount factor
required to sustain cooperation in hard for 1Partner.

The results of the second experiment clearly confirm the double-edged sword. The
right panel of Figure 2.8 demonstrates the move towards extreme outcomes in 1Partner.
In this case, full cooperation occurs twice as often in 1Partner than 2Partner and full
defection is almost 50 percent more likely in the former than the latter. Conversely, a
cooperative outcome in only one of the two games is four times more frequent in 2Partner
than 1Partner. The difference in the distribution of outcomes is highly significant (RS-
test, p = .000) and leads us to our second result:

Result 2: Multigame contact is a double-edged sword.
Subjects in 1Partner are significantly more likely to realize cooperative outcomes in both
or neither game, whereas subjects in 2Partner are more likely to realize partially cooper-
ative outcomes. On average, multigame contact fails to increase cooperation.

In Section 2.4.3, we evidenced linkage by showing that subjects in 1Partner react
more often with a coordinated decision in hard and easy following defection in one game

221Partner: from 0.42 to 0.59 in hard (p = .041) and from 0.57 to 0.61 in easy (p = .589). 2Partner:
from 0.37 to 0.47 in hard (p = .026) and from 0.55 to 0.67 in easy (p = .026).
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by the partner than subjects in 2Partner. We can perform a similar analysis on the data
of the second experiment. Again, we expect that a deviation by the partner in one game
will trigger defection in both games under multigame contact. When games are played
sequentially, a deviation in the first game (hard) should trigger in reaction in the same
round.

97

3

40

60

c
d

C
(75%)

D
(25%)

1Partner (n = 2,639)

90

10

73

27

c
d

C
(65%)

D
(35%)

2Partner (n = 4,043)

 in
 e

as
y 

at
 t

Su
bj

ec
t's

 d
ec

isi
on

 

Reaction after playing C in hard at t

      Partner's decision in hard at t

Figure 2.9: Reactions to observed decision in hard at t. Numbers in the
cells show the subject’s decision at t in percentage within each column; bold
numbers indicate significant differences for a given column between 1Partner
and 2Partner (RS-tests); numbers below the labels show the frequencies of
the partner’s or partners’ decisions. The coloring indicates frequencies, going
from blue for values close to 0 up to gold for values close to 100 percent.

Figure 2.9 shows how a subject having cooperated in hard (C) reacts in easy (c or d)
conditional on the partner’s decision in hard for a given round t. Cells within a column
add up to 100 percent and the relative frequencies of the partner’s decision are given in
parentheses below the labels. In most cases subjects cooperate in easy when observing
cooperation in hard (left columns). Although the point estimate is considerably larger in
1Partner (97 percent vs. 90 percent), there is no statistically significant difference between
the two treatments. However, we observe a large and statistically significant difference
between 1Partner and 2Partner in the reaction after facing defection in hard (indicated
by bold numbers, RS-test, p = .000). Whereas the modal reaction is to defect in 1Partner
(60 percent), the modal reaction in 2Partner is to cooperate (73 percent).23

In a next step, we will provide a more general test for linkage. In our previous analysis,
we did not control for possible time effects within and across supergames. Not control-
ling for such effects may explain why we observe different reactions in the right panel
of Figure 2.9 when we do not expect them if subjects in 2Partner treat the two games
independently.

In a broad sense, linkage between the two games can be understood as mutual depen-
dence of the decisions between the two games. We expect to observe linkage in 1Partner,
meaning that the decisions between hard and easy should be linked. Whereas cooperating

23Instead of focusing on the reaction to decisions in hard in the same round we could also look at the
reaction in easy to decisions in hard in the previous round. Figure 2.A.3 in the appendix (p. 80) shows
that the results are very similar, with subjects in 1Partner being significantly more likely to defect in the
subsequent game.
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only in easy is possible, cooperating only in hard under multigame contact is difficult to
rationalize. It follows that for a given round, a subject that reaches a cooperative outcome
in hard should then cooperate in easy. In 2Partner, there is no obvious reason to link
the two games and we cannot explain the decision in one game by the decision in the
other game. Most common strategies for repeated games condition the decision in a given
round on what happened in the game in the previous round. Therefore, the outcome of the
game in the previous round is presumably the best predictor for the decision to cooperate
without multigame contact. Indeed, cooperating is only attractive if the partner is also
willing to cooperate. Consequently, we should be able to explain the decision in easy by
the outcome in hard for 1Partner whereas the previous outcome in easy should be the best
predictor of cooperation in easy for 2Partner. We put this intuitive conjecture to a test in
a regression analysis.

Table 2.3: Linkage in the sequential games

Dep. var.: cooperation in easy (ct)

(1) (2) (3)

2Partner 0.052 0.073∗∗ 0.010
(0.044) (0.018) (0.037)

(C,C)t [cooperative outcome in hard] 0.205∗∗ 0.519∗∗

(0.046) (0.046)
(C,C)t × 2Partner −0.408∗∗

(0.046)
(c, c)t−1 [cooperative outcome in easy] 0.492∗∗ 0.186∗∗

(0.048) (0.054)
(c, c)t−1 × 2Partner 0.383∗∗

(0.066)
Constant 0.487∗∗ 0.140∗∗ 0.196∗∗

(0.057) (0.023) (0.028)
Time controls Yes Yes Yes

χ2-test 383.1 1574.0 2951.2
p 0.000 0.000 0.000
R2 0.081 0.433 0.463
N 13,076 9,796 9,796

Notes: Random effects estimates. Dependent variable is cooperation in easy. Independent variables
are a dummy for the treatments with two partners (with one partner as baseline case); (C,C)t indi-
cates a cooperative outcome in hard; (c, c)t−1 indicates a cooperative outcome in easy in the previous
round of the supergame. Time controls are dummies for the first and second round of the supergame
and the supergame round, as well as the overall round in the experiment. Robust standard errors,
clustered on matching group, in parentheses. + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01.

Table 2.3 shows the results of linear probability models. In all models, we report stan-
dard errors clustered on matching groups.24 In Model (1), we regress cooperation in easy
(ct) on the exogenous treatment variable 2Partner and the coefficient estimate confirms
the lack of differences in the cooperation rate in easy between the partner treatments. In

24We treat the matching group as the level of independent observation. This approach does not account
for static session effects (Fréchette, 2012). However, our inferential results are almost identical if we cluster
at the session level.
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all estimates, we control for time effects with dummies for the first and second round of
the supergame, the supergame round and the overall round. In Model (2), we add two
explanatory variables: (C,C)t indicates a cooperative outcome in hard in the same round
and (c, c)t−1 indicate a cooperative outcome in easy in the previous round. Both variables
predict a significantly higher likelihood to cooperate in easy, with the effect of the out-
come in easy being stronger than the link between hard and easy. To address the core
question of this analysis we need to check whether these coefficients react to multigame
contact. In Model (3) we interact (C,C)t and (c, c)t−1 with 2Partner, respectively. In
1Partner, the reaction to a cooperative outcome in hard is positive and large (0.519). The
highly significant and negative interaction term indicates that the link between hard and
easy is smaller for 2Partner (0.519− 0.408 = 0.111, p = .000). Having reached a coop-
erative outcome in easy in the previous round has a positive effect on cooperation in easy
in the following round, and this effect is much stronger in 2Partner.

Our second experiment strongly confirms that subjects link the two games in the pres-
ence of multigame contact. Although multigame contact seems to help to establish co-
operation in hard, overall the results do not suggest important improvements in terms of
cooperation. These findings lead us to our final result:

Result 3: Under multigame contact, subjects strategically link the two games.
In the presence of multigame contact, defection of other subjects is more likely to provoke
full defection in response. The link between cooperation in the hard game and cooperation
in the easy game is stronger in the presence of multigame contact.

2.5 Conclusion
According to a well-established theoretical argument, interacting on multiple fronts should
enable people to establish and maintain cooperation on all fronts more often. The idea is
to link the games and use any existing slack in the incentive constraint of some games to
enforce cooperation in the other.

Our experimental results suggest that things are more complicated in practice than
theory would predict. In our main treatment, even when the discount factor is such that
subjects should be able to cooperate in both games in the presence of multigame contact
but only cooperate in the easy game in the absence of multigame contact, we find that
on average subjects fail to reach any significant benefits from multigame contact. Our
experimental findings led us to conclude that multigame contact is a double-edged sword.

Although our results shed some light on the beneficial and detrimental effects of link-
ing the actions in one game to the outcome of the other, it remains a conundrum why the
negative effects of linkage cannot be avoided. After all, if linking the two games leads
to unfavorable outcomes, rational players should be able to unlink the two situations. In
other words, everything that is possible with single-game contact should also be possible
with multigame contact (and more).

The insight that subjects link even when they should not carries potential important
implications in a multitude of settings. Besides obvious applications in industrial organi-
zation and labor economics, the issue of undesirable linkage may have ramifications for
fields such as international relations and diplomacy. For instance, it has been shown that
linking independent policy games should not harm international cooperation (Spagnolo,
2001). In reality, we see that policy issues are often kept separate and in particular the
WTO even promotes the idea that countries should use sanctions against other countries
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in the same sector in which the violation took place. For example, the response to a vi-
olation in the area of patents should also relate to patents. Scholars have reacted to this
principle by highlighting that there are strategic reasons for linking trade and environ-
mental policies in multilateral negotiations and that global cooperation may be easier to
sustain when pursued through linked negotiations (see, for example, Barrett, 1994, and
Blackhurst and Subramanian, 1992). Our findings challenge this idea that linking differ-
ent separable policy issues into an overarching international agreement is advantageous
for cooperation. The relevance of all of these issues points to the need to create a body
of work that leads to a better understanding not only of the benefits but also the potential
costs of linkage.
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2.A Appendix

2.A.1 Additional tables and figures

Table 2.A.1: Cooperation as Subgame-Perfect Equilibrium (SPE) and Risk-Dominant (RD) strat-
egy

Simultaneous Sequential

Continuation prob. δ = 0.1 δ = 0.5 δ = 0.9 δ = 0.5

- 1Partner
- easy game - SPE & RD SPE & RD SPE & RD
- hard game - SPE & RD SPE & RD SPE & RD

- 2Partner
- easy game - SPE & RD SPE & RD SPE & RD
- hard game - - SPE & RD -

Simultaneous: δSPE
easy = 0.11, δRD

easy = 0.24, δSPE
pool = 0.38, δRD

pool = 0.44, δSPE
hard = 0.52, δRD

hard = 0.56

Sequential: δSPE
easy = 0.11, δRD

easy = 0.24, δSPE
pool = 0.06, δRD

pool = 0.12, δSPE
hard = 0.52, δRD

hard = 0.56

Table 2.A.2: Summary of the sessions

δ = 0.1, Sim. δ = 0.5, Sim. δ = 0.9, Sim. δ = 0.5, Seq.

1Part. 2Part. 1Part. 2Part. 1Part. 2Part. 1Part. 2Part.

Sessions 3 6 3 6 2 3 3 6
Matching gr. 6 6 6 6 5 5 6 6
Subjects 60 116 58 114 34 54 44 84
Decisions 6,030 11,754 5,924 11,574 3,752 5,800 4,496 8,580

Notes: Number of sessions, matching groups, subjects, and decisions by treatment. We count one
decision each time a subject has to take a decision in both games, i.e. this is equivalent to the total
number of rounds played by all the subjects.
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Table 2.A.3: Transition matrices t− 1 to t, δ = 0.1

1Partner 2Partner

t Cc Cd/Dc Dd Cc Cd/Dc Dd

t− 1
Cc 0.32 0.20 0.48 0.30 0.38 0.32
Cd/Dc 0.11 0.38 0.51 0.09 0.39 0.52
Dd 0.05 0.15 0.80 0.05 0.12 0.83

Notes: Transition matrices of the subjects’ decisions from round t− 1 to t at δ = 0.1. The
first letter (capital) of each pair refers to the decision in hard and the second (lowercase) to
the decision in easy. Each cell shows the relative frequency of the column decision pair at t
given the row decision pair at t− 1. Each row within a matrix adds up to one.

Table 2.A.4: Transition matrices t− 1 to t, δ = 0.9

1Partner 2Partner

t Cc Cd/Dc Dd Cc Cd/Dc Dd

t− 1
Cc 0.83 0.08 0.09 0.75 0.19 0.06
Cd/Dc 0.31 0.42 0.27 0.25 0.60 0.15
Dd 0.13 0.15 0.72 0.12 0.20 0.68

Notes: Transition matrices of the subjects’ decisions from round t− 1 to t at δ = 0.9. The
first letter (capital) of each pair refers to the decision in hard and the second (lowercase) to
the decision in easy. Each cell shows the relative frequency of the column decision pair at t
given the row decision pair at t− 1. Each row within a matrix adds up to one.
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Figure 2.A.3: Reactions to observed decision in easy at t− 1. Numbers in the
cells show the subject’s decision at t in percentage within each column; bold
numbers indicate significant differences for a given column between 1Partner
and 2Partner (RS-tests); numbers below the labels show the frequencies of
the partner’s or partners’ decisions. The coloring indicates frequencies, going
from blue for values close to 0 up to gold for values close to 100 percent.

80



2.A.2 Experimental procedures
2.A.2.1 Matching procedure

Subjects in a session are randomly allocated to matching groups and only interact with the
other subjects in their matching group. All matching groups (and therefore all subjects)
in a session play the same treatment. We vary matching group sizes (6 to 20 subjects)
across treatments to keep the number of times a subject interacts with another subject
in her matching group comparable. Because the lower the continuation probability, the
more supergames a subject plays, matching group size gets smaller as the continuation
probability increases. Similarly, subjects in 2Partner always interact with two different
partners, whereas subjects in 1Partner only interact with one partner at a time. There-
fore, 2Partner requires larger matching groups than 1Partner. See columns 4 and 5 of
Table 2.A.5 for information about the matching groups.

2.A.2.2 Stopping procedure and supergames’ duration

The first three rounds of a supergame are played for certain and at the end of the third
round, a computerized stopping rule is introduced. From round three onward, the su-
pergame either proceeds to the next round (with continuation probability δ), or it stops
and subjects move to a new supergame. Rather than randomly stopping after each round
greater or equal than 3, the computer generates a sequence of supergames at the beginning
of the session. The duration of each supergame is drawn from a geometric distribution
and a new supergame is added to the sequence up until the total number of rounds ex-
ceeds 100. We wanted to let matching groups within a session go through independent
sequences of supergame durations. Subjects in a matching group go through the same
sequence of supergames. At the end of each round, subjects have to wait until all the
subjects in their session, irrespective of their matching group, have taken their decisions
and observed the results before moving to the next round. This spreads out waiting out
times more evenly throughout the session.

Since the total number of rounds played by a matching group is random, matching
groups within a session do not necessarily finish at the same time. To avoid having sub-
jects in matching groups, which are not last to finish, wait on others and possibly infer
with whom they interacted, we make those matching groups play a last supergame of
finite duration. The duration of the matching group’s finite supergame is chosen to en-
sure that all matching groups within a session finish at the same time. To illustrate this,
consider matching groups 71 and 72 in Table 2.A.5, which were the only two in session
7. The computer drew 33 and 34 supergames summing up to 101 and 102 rounds for
matching groups 71 and 72, respectively. Since matching group 71 would have played
one round less than matching group 72, we add a supergame of one round to matching
group 71. Subjects who play a finite supergame are informed about the finite character of
the game and its duration. Data from these finite supergames are not part of the analysis.
To avoid any effects on the main part of the experiment we do not mention the possibility
of playing a supergame of finite length in the instructions.

For the second experiment, we did not generate the supergame durations on the spot,
but used the realizations of the six matching groups of the first experiment at δ = 0.5 in
1Partner for all treatments. The goal was to maximize comparability between the two
experiments.
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Table 2.A.5: Supergames’ duration by matching group

Treatment Match. gr. Supergames duration Statistics supergames
δ Si

m
.

2P ID Su
bj

.

3 4 5 6–
8

9–
11

12
+

N M
ea

n

M
in

M
ax

To
ta

l

Fi
ni

te

0.1 1

0

21 10 29 2 1 0 0 0 32 3.1 3 5 100 0
22 10 32 1 0 0 0 0 33 3.0 3 4 100 0
71 10 31 2 0 0 0 0 33 3.1 3 4 101 1
72 10 34 0 0 0 0 0 34 3.0 3 3 102 0

221 10 32 1 0 0 0 0 33 3.0 3 4 100 0
222 10 28 4 0 0 0 0 32 3.1 3 4 100 0

1

11 20 31 2 0 0 0 0 33 3.1 3 4 101 0
81 20 26 6 0 0 0 0 32 3.2 3 4 102 0

141 20 31 2 0 0 0 0 33 3.1 3 4 101 0
191 18 27 5 0 0 0 0 32 3.2 3 4 101 0
211 18 30 3 0 0 0 0 33 3.1 3 4 102 0
231 20 28 3 1 0 0 0 32 3.2 3 5 101 0

0.5

1

0

61 10 10 8 1 2 1 1 23 4.4 3 12 102 1
62 8 13 7 3 3 0 0 26 4.0 3 8 103 0

151 10 13 7 3 3 0 0 26 3.9 3 7 102 0
152 10 15 7 3 2 0 0 27 3.8 3 8 102 0
171 10 12 7 4 3 0 0 26 4.0 3 7 103 0
172 10 15 6 1 4 0 0 26 3.9 3 8 101 2

1

51 20 13 5 5 3 0 0 26 4.0 3 7 104 0
91 20 10 7 1 4 1 0 23 4.4 3 11 101 0

101 18 12 9 2 3 0 0 26 3.9 3 8 102 0
121 18 11 5 3 5 0 0 24 4.2 3 8 101 0
181 20 11 7 4 3 0 0 25 4.0 3 8 101 0
201 18 14 3 1 5 1 0 24 4.2 3 9 100 0

0

0

251 8 10 8 1 2 1 1 23 4.4 3 12 102 1
252 6 13 7 3 3 0 0 26 4.0 3 8 103 0
281 8 13 7 3 3 0 0 26 3.9 3 7 102 0
282 8 15 7 3 2 0 0 27 3.8 3 8 102 0
301 8 12 7 4 3 0 0 26 4.0 3 7 103 0
302 6 15 6 1 4 0 0 26 3.9 3 8 101 2

1

241 16 10 8 1 2 1 1 23 4.4 3 12 102 0
261 16 13 7 3 3 0 0 26 4.0 3 8 103 0
271 12 13 7 3 3 0 0 26 3.9 3 7 102 0
291 16 15 7 3 2 0 0 27 3.8 3 8 102 0
311 10 12 7 4 3 0 0 26 4.0 3 7 103 0
321 14 15 6 1 4 0 0 26 3.9 3 8 101 0

0.9 1

0

31 6 0 1 1 1 0 4 7 15.4 4 48 108 11
32 6 2 0 0 2 0 4 8 12.6 3 29 101 18
33 6 0 0 1 6 2 3 12 9.9 5 21 119 0

131 8 0 1 2 2 0 4 9 13.2 4 30 119 0
132 8 1 1 5 0 3 2 12 8.7 3 24 104 15

1

41 10 1 2 1 1 1 4 10 11.1 3 29 111 0
42 10 0 2 0 2 2 3 9 11.9 4 28 107 4

111 14 2 1 0 1 1 5 10 10.5 3 19 105 0
161 10 0 1 1 1 3 4 10 10.9 4 21 109 0
162 10 1 2 0 2 0 2 7 15.1 3 65 106 3

Notes. Summary of the supergames duration for each matching group. The first three columns show the
treatment played. 2P is a binary variable taking the value 1 for 2Partner and 0 for 1Partner. Sim. is a
binary variable taking the value 1 if the easy and hard games were played simultaneously and 0 if they
were played sequentially. The last digit of a matching group ID is its number in the session and the other
digits form the session ID (e.g., 21 refers to matching group 1 in session 2 and 222 refers to matching group
2 in session 22). There are up to 3 matching groups within a session. Subj. is the number of subjects in
the matching group. Columns 6 to 11 show frequencies of supergames duration for six selected intervals.
Columns 12 to 16 show summary statistics for supergame duration.
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2.A.3 Experimental instructions
The instructions were originally written in French. Depending on the treatment, minimum
changes were made to the instructions. Below you can see the translated instructions for
the treatment 2Partner at δ = 0.5 when both games are played simultaneously.

Instructions

General information

You are going to participate to a study financed by the Swiss National Science Foundation

(SNSF). Depending on your decisions, you will have the opportunity to earn a substantial

amount of money. Please read the following instructions carefully.

These instructions are exclusively reserved for your usage. You are not allowed to commu-

nicate with the other participants. If you violate this rule, you will be banned from the

experiment and receive no payment.

Throughout the study, we will not speak in CHF but in points. At the end of the study, your

gains will be converted to CHF. The exchange rate between CHF and points is CHF 1 =

1000 points. Once the study is finished, you will receive your gains in cash plus a show-up

fee of CHF 10.

The study is divided into matches. For each match, you are paired with two other randomly

drawn participants in the room. These participants are called your partners. You will interact

with these same two partners for several rounds. We will see later what determines the length

of a match. Once a match is over, two new partners are randomly drawn. The figure below

shows the difference between matches and rounds:

Match 1

rounds

1 2 3 …

Match 2

rounds

1 2 3 …

Match 3

rounds

1 2 3 … …

Figure 1: Matches and rounds

Your identity will never be revealed and you will never receive information about your partners.

You will play several matches and your partners will change between each match. You do

not know how many matches you will play.

1

83



Rules of the game

Below, you can see the decisions screen. The header shows the current match number as

well as the round number in the current match. Here you have the example of round 1 in

match 2.

Figure 2: Decisions screen

The body of the screen is divided into two parts by a vertical line. At each round, you have

two decisions to take. Specifically, you have to take one decision for the left part of the

screen and one for the right part. The two tables in the middle show the possible gains for

you and your partners. The decision for each table consists of choosing between the first line

and the second line. In the left table, click on the gray button A or B to choose the first or

second line. The decision is similar for the right part clicking the gray button X or Y. Your

partner 1 does the same either choosing column A or column B on the left part and your

partner 2 either chooses column X or column Y on the right part.

Each table contains four cells. The first number in blue of each cell is your gain for the round

if this cell is the result of your decision and the one of your partner. The second number in

black of each cell is your partner’s gain. The following lines shows the four possible cases

for the table on the left.

• You - A / Partner 1 - A → You - 135 Points / Partner 1 - 135 Points

• You - A / Partner 1 - B → You - 45 Points / Partner 1 - 216 Points

• You - B / Partner 1 - A → You - 216 Points / Partner 1 - 45 Points

• You - B / Partner 1 - B → You - 60 Points / Partner 1 - 60 Points

The reasoning is similar for the table on the right.

The tables on the very left and right parts of the screen remind you of your decisions and

those of your respective partner for each half of the screen. Only the decisions of the current

match are shown. Since the example is for round 1, the summary tables are still empty.

2
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To take your decisions, you have to click on the gray buttons for each of the two tables in the

middle. By clicking on a button, it becomes blue. Once you have taken your two decisions,

a green button ”Validate” appears in the lower right corner. By clicking this button, you

move to the results screen. This screen will inform you about the choice of each of your

partners. The results will be highlighted and your gain for each part will be displayed. If the

match continues, you move to the next decisions screen and play the same game with the

same two partners. If the match ends, a new screen will appear and inform you that two

new partners will be randomly drawn.

Length of a match

Finally, we are going to look what determines the length of a match.

Match 1

rounds

1 2 3 …

Match 2

rounds

1 2 3 …

Match 3

rounds

1 2 3 … …

A match lasts at least 3 rounds. That means you are going to interact at least three times

in a row with the same two partners.

From round 3 on, the match will stop randomly. More precisely, the match can stop at the

end of round 3 with a probability of 1 chance out of 2. If the game does not stop, you move

to a round 4 and there is again 1 chance out of 2 the match will stop at the end of round

4. The reasoning is identical for rounds 5 on, the match stopping at the end of each round

with 1 chance out of 2. The computer randomly determines the stopping of a match.

To summarize, a match lasts at least 3 rounds. Starting from the end of round 3, the match

stops at the end of each round with a probability of 1 chance out of 2.

The results screen will inform you whether the match continues or stops. Once a match is

over, you move to the next one. As a reminder, two new partners are randomly drawn for

the next match.

Make sure you understand the instructions. If something is not clear, please raise your hand

and the organizer will come to help.
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Chapter 3

Multigame Contact: There Can Be
More to Lose than to Win
VINCENT LAFERRIÈRE†

We report on an experiment examining the effect of multigame contact on cooper-
ation. Subjects play two indefinitely repeated games, a prisoner’s dilemma and a
stag hunt game, either with the same partner, or with two different partners. The sec-
ond treatment dimension is the order of play within a round: either the two games are
played simultaneously, or the prisoner’s dilemma is played before the stag hunt game.
Contrary to the theoretical predictions, multigame contact does not improve cooper-
ation in the prisoner’s dilemma. When games are played simultaneously, multigame
contact even leads to less efficient outcomes. Non-credible threats can explain why
multigame contact does not help, or is detrimental, in our experiment.

3.1 Introduction
Because of its importance for human interactions, cooperation is a prominent topic in
experimental economics. The most widely used game to study cooperation between two
individuals is the prisoner’s dilemma, especially its indefinitely repeated version. In the
prisoner’s dilemma, two players simultaneously decide whether to cooperate or not. This
simple binary choice allows us to study how subjects balance the short-term incentives
to defect and the long-term incentives to cooperate. A large body of literature focused
on cooperation in various situations and whether or not we can create environments that
foster cooperation.1

In this chapter, we build on Laferrière, Montez, et al. (2022) and provide further ex-
perimental evidence on a factor that—in theory—can foster cooperation between two in-

†Chapter 3 is a follow-up project based on Chapter 2 (henceforth, Laferrière, Montez, et al., 2022).
The concept of this experiment was developed jointly with Joao Montez, Catherine Roux, and Christian
Thöni. I worked on my own for the rest of the project; I designed the specifics of the experiment, ran all
experimental sessions, collected and cleaned the data, performed the data analysis, and wrote this chapter.

1Many factors affect cooperation in the prisoner’s dilemma, such as continuation probability (Dal Bó,
2005; Duffy & Ochs, 2009; Fréchette & Yuksel, 2017; Normann & Wallace, 2012), experience (Dal Bó &
Fréchette, 2011), communication possibilities (Cooper & Kühn, 2014), monitoring structure (Aoyagi et al.,
2019; Camera & Casari, 2009), costly punishment (Camera & Casari, 2009; Dreber et al., 2008), timing of
play (Bigoni et al., 2015; D. Friedman & Oprea, 2012), and behavioral spillovers (Bednar et al., 2012). See
Dal Bó and Fréchette (2018) for a comprehensive overview of the literature.
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dividuals: multigame contact. We consider a situation with multigame contact when two
individuals interact across multiple games. The theoretical foundations describing the ef-
fects of multigame contact on cooperation come from industrial economics. Bernheim
and Whinston (1990) show that two firms interacting in more than one market can sustain
collusive behaviors that are impossible to sustain when interacting with different firms
across markets. In a multimarket situation, behaviors in one market can now be rewarded
or punished in both markets; the two games become strategically connected. Collusive
behaviors emerge because a threat of future punishment disciplines short-term behaviors.
By improving the ability to punish, multimarket contact reduces the incentives to deviate,
which fosters collusive behavior. This intuition is directly applicable to the prisoner’s
dilemma as players face the same dilemma between the short- and long-term benefits. To
better understand how multigame contact can impact cooperation, we pair a prisoner’s
dilemma with a stag hunt game. With two obvious Nash equilibria in pure strategies,
one leading to a higher payoff for both players than the other, the stag hunt game offers
a simple way to punish or reward behaviors. The stag hunt game is also a staple in ex-
perimental economics (see Dal Bó et al., 2021, for a comprehensive overview) but, to
our knowledge, has never been paired with an indefinitely repeated prisoner’s dilemma to
study multigame contact.2

We set up a laboratory experiment where subjects play two indefinitely repeated
games in parallel: a prisoner’s dilemma and a stag hunt game. Our primary treatment is
the presence or absence of multigame contact. Multigame contact occurs when a subject
plays the two indefinitely repeated games with the same partner. There is no multigame
contact when a subject plays each game with a different partner. We add a second treat-
ment dimension: the order of play within a round. In the simultaneous treatment, subjects
take their decisions for the prisoner’s dilemma and the stag hunt game at the same time.
In the sequential treatment, they first take their decision in the prisoner’s dilemma, learn
the outcome of the game, and then take their decision in the stag hunt game.

The payoffs in each game and the critical discount factor we implement are such
that—in theory—cooperation in the prisoner’s dilemma is possible with multigame con-
tact but not without; this is true whether the games are played simultaneously or se-
quentially. In every treatment, we expect frequent coordination on the payoff-dominant
equilibrium in the stag hunt game.

In our experiment, we observe little cooperation in the prisoner’s dilemma but frequent
coordination on the payoff-dominant equilibrium in the stag hunt game without multi-
game contact. Counter to the theoretical predictions, multigame contact does not help to
increase efficiency, measured by the frequencies of cooperation in the prisoner’s dilemma
and coordination on the payoff-dominant equilibrium in the stag hunt game. When games
are played sequentially, we replicate the “double-edged sword” that Laferrière, Montez,
et al. (2022) find: multigame contact leads more often to situations where the efficient
outcome is either reached in both games at the same time or in none of them. When the
two games are played simultaneously within a round, multigame contact is even detri-
mental. It does not increase cooperation in the prisoner’s dilemma, while it decreases
coordination on the payoff-dominant equilibrium in the stag hunt game. This negative ef-
fect goes counter to the theoretical predictions that multigame contact can help to achieve

2Duffy and Fehr (2018) look at equilibrium selection when subjects play a sequence of indefinitely
repeated prisoner’s dilemmas followed by a similar sequence of stag hunt games (or vice versa). They find
that a precedent for efficient or inefficient play in one sequence does not carry over to the other. They
conclude that equilibrium selection depends more on strategic considerations than historical precedents.
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cooperation but never hurts.
A possible explanation for the absence of beneficial effects from multigame contact is

that, for it to be effective, subjects have to punish across games and this punishment has to
be credible. Since coordination on the payoff-dominant equilibrium in the stag hunt game
is very frequent without multigame contact, subjects in a situation of multigame contact
must be ready to sacrifice future payoffs in the stag hunt game to induce cooperation in
the prisoner’s dilemma. Since we observe that subjects do not always use the stag hunt
game to punish deviations in the prisoner’s dilemma, such strong punishments become
less credible and thus lose some disciplinary power. Therefore, there may be a trade-off
between a punishment’s credibility and its strength.

This chapter closely follows the novel experimental design in Laferrière, Montez, et
al. (2022), which improved on the previous literature on multimarket contact (Feinberg
& Sherman, 1985, 1988; Freitag et al., 2021; Güth et al., 2016; Modak, 2021; Phillips &
Mason, 1992, 1996; Yang et al., 2016). So far, the literature found mixed effects of multi-
game contact on cooperation. By pairing a prisoner’s dilemma and a stag hunt game, we
take a step towards understanding why the beneficial effects of multigame contact often
fail to materialize. This chapter also builds on the literature focusing on the effect of
punishment on cooperation (e.g., Carpenter, 2007; Egas & Riedl, 2008; Fehr & Gächter,
2002; Nikiforakis & Normann, 2008; Roux & Thöni, 2015). The fact that being able to
punish does not lead to more efficient outcomes is reminiscent of Dreber et al. (2008).
They make subjects play an indefinitely repeated prisoner’s dilemma but add a third strat-
egy to the stage game that allows subjects to punish their partner. In their experiment, this
new strategy increases the frequency of cooperation but does not increase average payoffs.
In all these experiments, the extended ability to punish either comes from a change in the
available strategies or by adding a costly punishment phase after the game outcomes are
revealed. By contrast, multigame contact allows us to study the effect of increasing the
ability to punish without modifying the games.

In what follows, Section 3.2 derives the theoretical predictions, Section 3.3 presents
the experiment, Section 3.4 discusses our results, and Section 3.5 briefly concludes.

3.2 Theory
This section presents the theory underlying our experiment. In Section 3.2.1, we analyse
the two games of interest without multigame contact. Section 3.2.2 provides an analysis
for situations with multigame contact and we derive the theoretical predictions for our
experiment in Section 3.2.3.

3.2.1 Without multigame contact
Figure 3.1 presents the two stage games of interest. In each period, players have to take
a decision in both games and we consider an infinite horizon. At any point in time, play-
ers discount the next period payoffs with a common discount factor δ ∈ (0, 1). Another
way to look at such a game is to consider δ as the probability to reach the next period,
which is usually how infinitely repeated games are implemented in laboratory experi-
ments (Murnighan & Roth, 1983; Roth & Murnighan, 1978). At any point in time, the
game continues—at least for another period— with probability δ or stops with probability
(1−δ). In this case, δ is called the continuation probability and it becomes an indefinitely
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repeated game. The theoretical predictions are identical whether we interpret δ as a dis-
count factor or a continuation probability. As a consequence, we first interpret δ as a
discount factor (infinitely repeated game), but when we derive the testable predictions in
Section 3.2.3 we interpret it as a continuation probability (indefinitely repeated game).

Prisoner’s dilemma Stag hunt game

C D stag hare

C R,R S, T stag r, r s, t

D T, S P, P hare t, s p, p

Figure 3.1: Payoff matrices of the two stage games

Without multigame contact, players are matched with a different player for each game.
Therefore, we can treat the two games independently; what happens in one game should
bear no influence on the other game. Note that this is only true if we assume that players’
utility function depends linearly on payoffs and/or utility is additive in the payoffs of each
game. Assuming, for example, strict concavity (convexity) in the utility function and
that payoffs in both games are perfect substitutes, a higher payoff in one game decreases
(increases) marginal utility in the other game, which then affects a player’s incentive in
the other game. For simplicity, we assume throughout the paper that utility is a linear
transformation of payoffs.3

In the prisoner’s dilemma, each player can either cooperate (C) or defect (D). R is
the reward payoff from joint cooperation, whereas P , the punishment payoff, results from
joint defection. In the asymmetric outcomes (C,D) and (D,C), the defecting player
receives the temptation payoff T , whereas the player who cooperates receives the sucker’s
payoff S. By imposing the following conditions on the payoffs, the stage game has a
prisoner’s dilemma structure with (D,D) being the only stage-game Nash equilibrium:
T > R > P > S. The following condition ensures that joint cooperation (C,C) is more
efficient than takings turns in getting the temptation and sucker’s payoffs when the game
is repeated: 2R > T +S. Although the stage game has a single Nash equilibrium (D,D),
cooperative equilibria emerge with infinite repetition if the discount factor is high enough
(J. W. Friedman, 1971). We want to find the minimum critical discount factor above
which reaching the most efficient outcome (C,C) in every round is part of a subgame-
perfect Nash equilibrium. It occurs when both players follow a grim trigger strategy:
starts with C in period 1, plays C if (C,C) was the outcome in the previous period,
or plays D forever otherwise. In other words, players revert to the stage-game Nash
equilibrium forever after any deviation from (C,C), which is the strongest punishment
possible. Therefore, joint cooperation forms a subgame-perfect Nash equilibrium if the
following incentive compatibility constraint holds:

R

1− δ
⩾ T +

δP

1− δ
⇔ δ ⩾

T −R

T − P
= δSPE

PD .

The left-hand side of the first inequality is the sum of discounted payoffs on the equilib-
rium path. The right-hand side is the sum of discounted payoffs when deviating; that is,
a player gets the payoff T in the period she deviates and the payoff P in all following

3See Spagnolo (1999a) for a discussion on the effect of concave utility functions in situations with
multigame contact.
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periods. Intuitively, the critical discount factor is increasing in the payoff a player gets
when deviating (T ) and the payoff on the punishment path (P ), and decreasing in the
payoff on the equilibrium path (R).

In the stag hunt game, each player has two pure strategies: stag and hare. By impos-
ing the following conditions on the payoffs, the stage game has a stag hunt structure: r >
t ⩾ p > s. There are two Nash equilibria in pure strategies (stag, stag) and (hare, hare)
with the former one being payoff dominant (Harsanyi & Selten, 1988) because r > p.
There is also a Nash equilibrium in mixed strategies where each player chooses stag with
probability (p− s)/(r− t+ p− s) and hare with probability (r− t)/(r− t+ p− s). In
contrast to the prisoner’s dilemma, infinite repetition of the stage game does not help to
reach more efficient Nash equilibria. The most efficient outcome (stag, stag) is already
a Nash equilibrium of the stage game. Therefore, both players choosing stag in every
period forms the most efficient Nash equilibrium of the repeated game and it is subgame
perfect. The stag hunt game is, in essence, a coordination problem. Although (stag, stag)
payoff dominates (hare, hare), playing stag comes at the risk of getting the lowest pay-
off s. Lowering s does not reduce the set of Nash equilibria in the stage game but makes
stag less attractive, especially if the payoff difference between the two Nash equilibria
in pure strategies is low (r − p). This consideration led Harsanyi and Selten (1988) to
propose risk dominance as a refinement concept to take into account how a Nash equilib-
rium is robust to strategic uncertainty.4 In a symmetric two-player game with two pure
strategies, like the stag hunt game, risk dominance has an intuitive explanation. We say
that stag (hare) is risk dominant if stag (hare) is the best response to the other player
mixing between stag and hare with probability one half. It follows that stag (hare) is
risk dominant if: r + s ⩾ (⩽) t+ p.5

Although risk dominance was developed as a refinement concept for static games with
multiple Nash equilibria, it is possible to extend the underlying idea to infinitely repeated
games. Before applying it to the prisoner’s dilemma as proposed by Blonski et al. (2011)
and Blonski and Spagnolo (2015), let us focus first on an infinitely repeated stag hunt
game. Thanks to the repetition, a player can take more risks in the first period because she
will be able to react to the other player’s move. Suppose the following trigger strategy:
start with stag in period 1, play stag if (stag, stag) was the outcome in the previous
period, or play hare otherwise. With this strategy, a player tries to coordinate on the
payoff dominant equilibrium but reverts to the “safe” equilibrium forever when faced
with hare. Both players following this strategy trivially forms a subgame-perfect Nash
equilibrium because every move is part of a stage-game Nash equilibrium. This strategy
can be compared with the “safest” strategy, which is to play hare in every period. It is
the safest strategy as it is the only one that guarantees never to get the lowest payoff (s).
By restricting to these two strategies, we are back in a situation where players have two

4When payoff dominance and risk dominance contradict, the authors first considered that payoff dom-
inance should prevail. After the publication of Aumann (1990), Harsanyi (1995) revised his stance and
agreed that risk dominance should prevail over payoff dominance in such situations.

5In order to get a continuous measure on how close to risk dominance a strategy is, more recent studies
(Dal Bó et al., 2021) have focused on the analog concept of the basin of attraction. To identify whether
stag (hare) is risk dominant, we look for the maximum probability of the other playing hare (stag)—
i.e. the basin of attraction stag (hare)—that still makes stag (hare) a best response. Because a player
is indifferent between the two pure strategies in the Nash equilibrium in mixed strategies, the basin of
attraction of stag (hare) is the same as the probability of the other player choosing hare (stag) in the
Nash equilibrium in mixed strategies. If the basin of attraction of stag (hare) is larger than one half, then
stag (hare) is risk dominant.
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strategies available and symmetric payoffs. Therefore, the proposed trigger strategy is
risk dominant if:

1

2

(
r

1− δ

)
+

1

2

(
s+

δp

1− δ

)
⩾

1

2

(
t+

δp

1− δ

)
+

1

2

(
p

1− δ

)
⇔ δ ⩾

t− r + p− s

t− s
= 1− r − p

t− s
= δRD

SH .

Unsurprisingly, when stag is risk dominant in the stage game, then the numerator, and
thus δRD

SH , is negative, meaning that the proposed trigger strategy is always risk dominant.
More interestingly, there is now a region of parameters for which the trigger strategy is
risk dominant, although stag is not risk dominant in the stage game. Intuitively, the less
attractive the payoff dominant Nash equilibrium is (r − p is small), or the riskier stag is
(t− s is large), the higher must be the critical discount factor.

In the prisoner’s dilemma, cooperation can emerge as subgame-perfect Nash equi-
librium through the use of trigger strategies for sufficiently high discount factors. By
restricting the set of strategies to the grim trigger strategy discussed above and the al-
ways defect strategy (plays D in every round), both strategies form subgame-perfect Nash
equilibria. Each strategy is the best response to the other playing the same strategy, and
we end up with a game similar to the stag hunt game: (grim trigger, grim trigger) payoff
dominates (always defect, always defect) with the former being riskier as a player takes
the risk of getting the lowest payoff S if the other player deviates. As Skyrms (2001,
p. 34) explains: “The Shadow of the Future has not solved the problem of cooperation in
the Prisoner’s Dilemma; it has transformed it into the problem of cooperation in the Stag
Hunt.” Although restricting to these two strategies seems arbitrary, Blonski et al. (2011)
and Blonski and Spagnolo (2015) provide intuitions and theoretical arguments justifying
these choices. always defect is the unique “safe” equilibrium as it is the only one that
guarantees never getting the lowest payoff (S). The grim trigger strategy is shown to be
the least “risky” strategy; that is, if any cooperative strategy risk dominates always defect,
then grim trigger also risk dominates always defect.6 The grim trigger strategy risk dom-
inates always defect if it is the best response to the other player choosing each strategy
with probability one half:

1

2

(
R

1− δ

)
+

1

2

(
S +

δP

1− δ

)
⩾

1

2

(
T +

δP

1− δ

)
+

1

2

(
P

1− δ

)
⇔ δ ⩾

T −R + P − S

T − S
= 1− R− P

T − S
= δRD

PD .

Again, the critical discount factor δRD
PD is increasing in T and P and decreasing in R.

Contrary to the critical discount factor for subgame perfection (δSPE
PD ), δRD depends on

the sucker payoff (S) and the relationship is negative. Intuitively, the higher this payoff is,
the less risky it is to try to establish cooperation. Note that risk dominance is always more
stringent than subgame perfection in the prisoner’s dilemma (δRD

PD > δSPE
PD ). Since the

6Note that we only consider cooperative strategies in which players coordinate on the most efficient out-
come (C,C). Other cooperative strategies could be considered, such as alternating between the outcomes
(C,D) and (D,C). Such cooperative paths are less efficient than the (C,C) path but can be sustained at
lower discount factors and can also be less risky. However, it is hard to imagine that subjects in a laboratory
experiment could coordinate on such complicated equilibria, especially without communication. Dal Bó
(2005), Fréchette and Yuksel (2017), and Laferrière, Montez, et al. (2022) look for such strategies in the
data and find very little evidence.
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interest of this paper lies in the effect of multigame contact and not on the determinants of
cooperation, we are going to choose a parameter space in which these two criteria agree.

3.2.2 With multigame contact
For games with a prisoner’s dilemma structure, Bernheim and Whinston (1990) show that
multigame contact can allow achieving simultaneous cooperation in both games at a lower
critical discount factor than without multigame contact and it never restricts players’ abil-
ity to cooperate.7 Their key insight is that players can link the two games, meaning that a
deviation from cooperation in one game can lead to punishment in both games. Enhanc-
ing players’ ability to punish makes deviations less attractive, which reduces the critical
discount factors required to achieve simultaneous cooperation in both games. Pairing a
prisoner’s dilemma and a stag hunt game provides an intuitive way to think about the ef-
fect of multigame contact on cooperation. The multiplicity of equilibria in the stag hunt
game gives a simple way to reward cooperation in the prisoner’s dilemma by playing the
efficient Nash equilibrium (stag, stag) or to punish defection with the payoff dominated
Nash equilibrium (hare, hare).8

Before deriving the critical discount factors for cooperation in the prisoner’s dilemma,
we have to make a distinction between two situations relevant to our experiment. Players
may take their decision simultaneously for both games and learn the outcome of each
game before moving to the next period, or players could play the two games sequentially
within a period; that is, taking their decision in one game and learning the outcome of
this game before playing the second one. Although this distinction makes no difference
without multigame contact—the two games being independent—this has implications for
the ability to punish with multigame contact.

When the two games are played simultaneously, we can construct a strategy similar
to the previous grim trigger to achieve cooperation in a subgame-perfect Nash equilib-
rium: plays C and stag in period 1, plays C and stag if the outcomes in the previous
period were (C,C) and (stag, stag), or play D and hare otherwise. Both players fol-
lowing this strategy forms a subgame-perfect Nash equilibrium if the following incentive
compatibility constraint holds:

R + r

1− δ
⩾ T + r +

δ(P + p)

1− δ
⇔ δ ⩾

T −R

T − P + r − p
= δSPE

Sim .

The left-hand side of the first inequality is the sum of discounted payoffs on the equi-
librium path and the right-hand side is the sum of discounted payoffs when deviating. In
this case, the optimal deviation is to deviate only in the prisoner’s dilemma because stag
is still the best response to the other player choosing stag in the stag-hunt stage game. The
last term on the right-hand side is the continuation payoff on the punishment path. The

7Multigame contact does not reduce the critical discount factor for simultaneous cooperation in both
games if the payoffs in one game are a linear transformation of the other game or if there is too much
asymmetry in the incentive to cooperate between the two games.

8This is reminiscent of Krishna et al. (1985) who look at finite repetition of a stage game that has
multiple Nash equilibria. In such situations, it may be possible to construct subgame-perfect Nash equilibria
of the repeated game in which players coordinate on a cooperative outcome, which is not itself a Nash
equilibrium of the stage game. However, the increase in cooperation is only limited in time as the game has
to converge back to a stage game Nash equilibrium by the end of the game. Such new equilibria can emerge
when pairing a prisoner’s dilemma and a stag hunt game, but we will focus our attention on the infinitely
repeated variant of the game.
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critical discount factor (δSPE
Sim ) is still increasing in T and P and decreasing in R. How-

ever, it is now decreasing in r and increasing in p, with r − p being the loss per period
in the stag hunt game after defection. Since this loss is positive—i.e., punishment has
increased—the critical discount factor to sustain cooperation in the prisoner’s dilemma
has decreased compared with the situation without multigame contact (δSPE

Sim < δSPE
PD ).

The beneficial effects of multigame contact on cooperation materialize in this lower criti-
cal discount factor.

We can again apply risk dominance to this situation by restricting our attention to the
grim trigger strategy proposed above and to the safe strategy consisting of always playing
D in the prisoner’s dilemma and hare in the stag hunt game, which guarantees never
getting the lowest payoffs (S and s). This new grim trigger strategy is risk dominant if it
is the best response to the other player choosing each strategy with probability one half:

1

2

(
R + r

1− δ

)
+

1

2

(
S + s+

δP + p

1− δ

)
⩾

1

2

(
T + t+

δP + p

1− δ

)
+

1

2

(
P + p

1− δ

)
⇔ δ ⩾

T −R + P − S + t− s− (r − p)

T − S + t− s
= 1− R− P + r − p

T − s+ t− s
= δRD

Sim.

We can compare the critical discount factor required for grim trigger to be the risk-
dominant strategy between the single prisoner’s dilemma case (without multigame con-
tact) to this new situation. Multigame contact leads to a lower critical discount factor
(δRD

Sim < δRD
PD) if:

R− P

T − S
⩽

r − p

t− s

Since T > R > P > S, the left-hand side is always strictly below one and the right-
hand side is larger than one if stag is risk dominant in the stag-hunt (r + s > t + p).
Therefore, if stag is risk dominant, then the grim trigger strategy for multigame contact
we proposed leads to a lower critical discount factor than without multigame contact.
This inequality can even hold when stag is not risk dominant if the parameters of the
prisoner’s dilemma are such that the left-hand side is low enough. Therefore, it is even
possible to reduce the critical discount factor that makes the grim trigger strategy risk
dominant (δRD

Sim < δRD
PD) by pairing the prisoner’s dilemma with a stag hunt game in

which stag is not a risk-dominant strategy of the stage game.
Moving to the sequential variant of the game, we only consider the case of playing the

prisoner’s dilemma before the stag hunt game within a period. This is the order leading to
the lowest critical discount factor and the one we run in our experiment. We will briefly
mention what could be expected in the reverse order. Since players observe the outcome of
the prisoner’s dilemma before taking their decision in the stag hunt game, they are able to
react to a deviation immediately. This further increases their ability to punish. If a player
considers deviating, she would nevertheless do it in the prisoner’s dilemma. Indeed, no
deviation is possible in the stag hunt game, because a stage-game Nash equilibrium is
played on and off the equilibrium path. The new incentive compatibility constraint for
subgame perfection is:

R + r

1− δ
⩾ T + p+

δ(P + p)

1− δ
⇔ δ ⩾

T −R− (r − p)

T − P
= δSPE

Seq .

This leads to an even lower critical discount factor (δSPE
Seq < δSPE

Sim ), because sequen-
tial choices have enhanced a player’s ability to punish without affecting the achievable
payoffs.
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Since players play one game after the other, a player’s strategy is revealed after the
first game. For grim trigger to be risk dominant, the following condition has to hold:

1

2

(
R + r

1− δ

)
+

1

2

(
S + p+

δP + p

1− δ

)
⩾

1

2

(
T + p+

δP + p

1− δ

)
+

1

2

(
P + p

1− δ

)
⇔ δ ⩾

T −R + P − S − (r − p)

T − S
= 1− R− P + r − p

T − S
= δRD

Seq .

The critical discount factor for risk dominance is again lower (δRD
Seq < δRD

Sim) because
a player who tries to establish cooperation, but faces deviation, can react in the same
period.

We have shown that whether we use subgame perfection or risk dominance as a cri-
terion for cooperation, multigame contact always leads to a lower critical discount fac-
tor for sustaining cooperation in the prisoner’s dilemma and coordination on the payoff
dominant Nash equilibrium in the stag hunt game at the same time. Moreover, this bene-
ficial effect is even more substantial when players observe the outcome of the prisoner’s
dilemma before playing the stag hunt game within a period. In theory, multigame contact
cannot hurt since players could always treat the two games independently if linking the
two games was not optimal. Anything achievable without multigame contact is achiev-
able with multigame contact and possibly more. We chose not to look into the reverse
order—to play the stag hunt game before the prisoner’s dilemma—as the effect on the
critical discount factor is weaker in the reverse order. Indeed, the critical discount factor
for subgame perfection, assuming players follow a grim trigger strategy, for the reverse
order of play is identical to the one for the simultaneous case. Intuitively, a player who
wants to deviate would do it in the prisoner’s dilemma (second game) and the punishment
would start in the next period, which is the same situation as the simultaneous case with
multigame contact.

3.2.3 Experimental predictions

Prisoner’s dilemma Stag hunt game

C D stag hare

C 135, 135 40, 228 stag 135, 135 50, 132

D 228, 40 60, 60 hare 132, 50 60, 60

Figure 3.2: Payoff matrices of the experimental stage games

Figure 3.2 presents the game parameters used in our experiment. Numbers represent
monetary payoffs in ECUs (experimental currency unit). The games share the same pay-
offs when players coordinate: 135 for coordinating on C or stag and 60 for D or hare.
The payoffs of the asymmetric outcomes differentiate the two games. In the prisoner’s
dilemma, the stage game payoff when deviating from cooperation is 228 for the player
who deviates and 40 for the other player. In the stag hunt game, choosing stag when the
other player chooses hare leads to a payoff of 50 and 132 for choosing hare against stag.

Without multigame contact, we obtain the following critical discount factors for the
infinitely repeated prisoner’s dilemma: δSPE

PD = 0.55 and δRD
PD = 0.60. In the stag hunt
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stage game, stag is not risk dominant because 135 + 50 < 132 + 60, but the critical
discount factor for the trigger strategy to be risk dominant is δRD

SH = 0.09. All these
critical discount factors apply to both simultaneous and sequential cases.

With multigame contact and simultaneous games, the critical discount factors for joint
cooperation in the prisoner’s dilemma and coordination on stag in the stag hunt game
decrease to δSPE

Sim = 0.38 and δRD
Sim = 0.44. These critical discount factors are even lower

when the games are played sequentially: δSPE
Seq = 0.11 and δRD

Seq = 0.20.
In our experiment, we implement all treatments with the continuation probability

δ = 0.5. Without multigame contact, joint cooperation in the prisoner’s dilemma can-
not be part of a subgame-perfect Nash equilibrium and the grim trigger strategy is not
risk dominant (δSPE

PD , δRD
PD > 0.5). Although stag is not risk dominant in the stage

game, the proposed trigger strategy of playing stag until hare is played is risk domi-
nant (δRD

SH < 0.5).
With multigame contact, joint cooperation can be sustained in a subgame-perfect Nash

equilibrium and the grim trigger is risk dominant for both simultaneous (δSPE
Sim , δRD

Sim <
0.5) and sequential cases (δSPE

Seq , δRD
Seq < 0.5).

If we assume that subjects coordinate on the most efficient equilibrium, we expect no
cooperation in the prisoner’s dilemma without multigame contact but cooperation with
multigame contact. Coordination on stag in the stag hunt game is expected in both cases.

Of course, it is optimistic to expect that subjects behave in such a binary way. Previ-
ous experiments on the indefinitely repeated prisoner’s dilemma (Bruttel, 2009; Dal Bó
& Fréchette, 2018) tend to show that the distance to the critical discount factor is a better
predictor. Below the critical discount factor, low cooperation rates should be expected
and cooperation rates tend to increase linearly as the distance above the critical discount
factor increases. Therefore, we expect low cooperation rates in the prisoner’s dilemma
without multigame contact and no difference between the simultaneous and sequential
cases. With multigame contact, cooperation rates in the prisoner’s dilemma should in-
crease and should be the highest when games are played sequentially. As stag can always
be sustained in a risk-dominant strategy, it’s prevalence should be high in all cases.

3.3 Experimental procedures
Subjects play a sequence of indefinitely repeated games that we call supergames. A su-
pergame consists of a random number of rounds and, in each round, a subject has to take
a decision for two games: a prisoner’s dilemma and a stag hunt game. Figure 3.2 in Sec-
tion 3.2.3 presents the two stage games. The first treatment dimension is the presence or
absence of multigame contact. If a subject plays both games with the same partner, there
is multigame contact (henceforth 1Partner). If she is matched with two different part-
ners for a supergame, there is no multigame contact (henceforth 2Partner). The second
treatment dimension is the order of play within a round. Subjects either take their two
decisions at the same time (henceforth Simultaneous) or they first take their decision in
the prisoner’s dilemma, observe the outcome, and then take their decision in the stag hunt
game (henceforth Sequential). We end up with a two-by-two factorial designs for a total
of four treatments. We use a between-subjects design; that is, subjects within a session
only play one of the four treatments.

Within a session, subjects are allocated to matching groups and only interact with oth-
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ers in their matching group.9 At the beginning of each supergame, a subject is randomly
matched with one or two partners from her matching group (stranger matching). For each
treatment, we have data from six matching groups. Subjects can never infer with whom
they interact. We use neutral labels to denote the partner or partners and the strategies.
Both games appear on the same screen and we randomize across subjects, whether the
prisoner’s dilemma or the stag hunt game appears on the left or the right of the screen.10

The first three rounds of a supergame are played with certainty and, at the end of the
third round, a random stopping procedure is introduced. The supergame continues with
probability δ = 0.5 or stops and this procedure is repeated for any subsequent round. Each
matching group of a treatment goes through an independent sequence of supergames du-
ration. Rather than drawing supergames duration on the spot, we generated six sequences
of supergames duration from a geometric distribution and we match the six sequences
to the six matching groups of each treatment. The goal is to maximize comparability
across treatments.11 Subjects play between 20 and 23 supergames for a total of at least 80
rounds.12 Table 3.A.2 in the appendix (p. 108) shows detailed information on the size of
the matching groups and the supergames’ duration.

The final payment of a participant is the total amount of ECUs earned for all the
rounds and a show-up fee of CHF 15 (≈ USD 17). 1,000 ECUs were equivalent to CHF 1
(≈ USD 1.1). Sessions were run in the laboratory of the University of Lausanne (LABEX)
with undergraduate students from the University of Lausanne and the EPFL recruited with
ORSEE (Greiner, 2015). The experiment was programmed in oTree (Chen et al., 2016).

We ran 18 sessions for a total of 340 subjects. Table 3.A.1 in the appendix (p. 107)
shows a summary of the sessions. A session lasted on average 85 minutes and the average
payment per participant was CHF 33 (≈ USD 36). The design of the experiment and the
hypotheses were pre-registered prior to data collection in an OSF registry.13

3.4 Results
This section is organized in three parts. First, we investigate the effect of multigame
contact on the frequency of cooperation in the prisoner’s dilemma and the frequency of
playing stag in the stag hunt game. Next, we analyze subjects’ behavior in the first round
of each supergame. In the final part, we examine the outcomes of the stage games and the
effects on the stag hunt game when cooperation in the prisoner’s dilemma breaks down.

9To keep constant the expected number of interactions with a given other subject, the size of a matching
group in 2Partner (16 to 22 subjects) is approximately twice the size as in 1Partner (8 to 10 subjects).

10See Appendix 3.A.2 (p. 109) for screenshots of the experiment in the instructions.
11Mengel et al. (2022) show that the realized length of early supergames has substantial impact on

cooperation rates in subsequent supergames. This could have strong implications for treatment comparison.
Using the same sequences for all treatments helps to mitigate this issue.

12In each sequence, we keep drawing matching groups until a total of 80 rounds is reached. Since
matching groups within a session go through independent sequences, they may not play the same total
number of rounds. To ensure that all matching groups within a session finish at the same time, we add a
last supergame of finite duration to those who are not first to finish. Data from the finite supergames are
removed from our analysis and subjects were not informed in advance that they could play a last finite
supergame. Therefore, they do not bear any influence on the rest of the data.

13https://osf.io/p5t2v
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3.4.1 Testing the predictions
The left panel of Figure 3.3 shows the frequency of cooperation (C) in the prisoner’s
dilemma (henceforth PD) and the frequency of stag in the stag hunt game (henceforth
SH) when looking at all the rounds. Contrary to the theoretical predictions, 1Partner
does not lead to more cooperation in PD than 2Partner. In Simultaneous, it even points
towards 1Partner reducing the frequency of C (0.33 vs. 0.40, p = .200) but the difference
is not statistically significant.14 In Sequential, C is slightly more frequent in 1Partner
(0.44 vs. 0.40, p = .748) but the difference is small and far from statistical significance.
Moving from Simultaneous to Sequential in 1Partner increases cooperation in PD (0.33
vs. 0.44, p = .262) but the difference is again not statistically significant. As expected,
there is no difference between Simultaneous and Sequential in 2Partner (0.40 vs. 0.40,
p = 1.000). Although we predicted no cooperation in 2Partner, it would be unrealistic to
assume that subjects would never try to cooperate. Subjects trying to cooperate 40% of
the time is almost the same estimates that Laferrière, Montez, et al. (2022) find in their
hard prisoner’s dilemma, which has almost identical theoretical critical discount factors as
the prisoner’s dilemma used in this experiment. The surprising finding is that playing the
two games with the same partner does not help to increase cooperation in the prisoner’s
dilemma and it even seems to hurt in Simultaneous.
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Figure 3.3: Frequency of cooperation (C) in the prisoner’s dilemma and stag in the stag hunt
game by treatment. Mean cooperation rates and 95% confidence intervals are computed using the
matching group averages. The left panel contains all the rounds; the right panel shows the first
round of each supergame.

Looking at the frequency of stag, we find lower frequencies in 1Partner than 2Partner
for both Simultaneous (0.68 vs. 0.79, p = .200) and Sequential (0.71 vs. 0.78, p = .262)
but the differences are not statistically significant. Unsurprisingly, stag is by large the

14Unless specified, we always report p−values from Wilcoxon rank-sum tests on matching group av-
erages. There are six matching groups per treatment and, therefore, 12 independent observations for each
test. Using the hard game in Laferrière, Montez, et al. (2022) as prior, we estimate a minimum detectable
effect of 10 percentage points difference in cooperation rates between 1Partner and 2Partner (80% power,
5% significance level).
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modal decision for all treatments meaning that subjects usually try to coordinate on the
efficient outcome in SH. Since repetition makes the (stag, stag) Nash equilibrium very
attractive, it is not surprising to observe high frequencies of stag in every treatment.

When looking at the evolution of cooperation in PD and stag in SH as subjects gain
experience, we find no interesting dynamics over time. Figure 3.A.1 in the appendix
(p. 107) shows the mean frequencies of C and stag for each supergame by treatment.
With the exception of the frequency of stag in 2Partner for Sequential, which slightly
increases over time, all estimates oscillate around the mean over time.

Overall, the supposed beneficial effects of multigame contact do not materialize in PD.
This is surprising because multigame contact allows—in theory—to sustain cooperation
at a much lower critical discount factor, especially in Sequential, which should translate
into a higher frequency of cooperation. This leads to the following result:

Result 1: Multigame contact does not increase cooperation in the prisoner’s dilemma
Playing the prisoner’s dilemma and the stag hunt game with the same partner rather than
with two different partners does not make cooperation in the prisoner’s dilemma more
frequent. It is true whether the two games are played simultaneously or if the prisoner’s
dilemma is played before the stag hunt game within a round.

Although multigame contact has little effect on average frequencies of C and stag,
there are reasons to expect it affects how subjects play the games. In Laferrière, Montez,
et al. (2022), the authors also find no average effect on the frequency of C but substantial
effects on subjects’ behavior and the distribution of game outcomes. To better understand
subjects’ behavior, we first restrict our attention to subjects’ decisions in the first round of
each supergame. Since subjects change partner or partners at the start of every supergame,
it allows to observe their decisions before being affected by their partner or partners’ de-
cisions.15 Moreover, most strategies for the prisoner’s dilemma discussed in the literature
condition a player’s decision on the previous round outcome. For such strategies, the
outcome in any period can be predicted from the outcome in the first round.

3.4.2 First-round behavior
The right panel of Figure 3.3 shows the frequency of cooperation (C) in PD and the fre-
quency of stag in SH when restricting to the first round of each supergame. The previous
observations based on all the rounds also hold when restricting to the first round of each
supergame. In Simultaneous, C is somewhat lower in 1Partner than 2Partner (0.47 vs.
0.60, p = .200) and the same holds for stag (0.82 vs. 0.88, p = .872) but none of the
comparisons are statistically significant. In Sequential, there are almost no difference be-
tween 1Partner and 2Partner for both C (0.64 vs. 0.62, p = .872) and stag (0.85 vs. 0.87,
p = .872).

In our experiment, subjects always have to take two decisions in a round, either simul-
taneously or one after the other. To better understand subjects’ behavior, it is not sufficient
to look at the average frequencies. Table 3.1 presents the relative frequencies of subjects’
decision pair in the first round of each supergame. A decision pair is the joint decisions in
PD and SH with the first letter (capital) referring to the decision in PD and the rest (low-
ercase) to the decision in SH. Since there are two stage games with two possible choices
in each, there are four possible decision pairs. To compare the distribution of decisions

15This is only true if we assume that a subject’s decisions in one supergame is not affected by what
happened in the previous supergames.
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Table 3.1: Subjects’ decision pair, first round of each supergame

Simultaneous Sequential

1Partner 2Partner 1Partner 2Partner

Cstag 0.45 0.58 0.57 0.58
Chare 0.02 0.02 0.07 0.03
Dstag 0.37 0.30 0.28 0.28
Dhare 0.16 0.10 0.08 0.11

N 1,102 2,468 1,228 2,348

Notes: Relative frequencies of subjects’ decision pair in the first round of each supergame. The first
letter (capital) of each pair refers to the decision in the prisoner’s dilemma and the rest (lowercase) to
the decision in the stag hunt game. RS-tests for the difference between 1Partner and 2Partner yield
p = .250 when games are played simultaneously and p = .514 when sequentially.

between 1Partner and 2Partner, we use Rao-Scott χ2−tests, which correct for depen-
dence within matching group (henceforth RS-test, Rao & Scott, 1984). Although the
comparison between 1Partner and 2Partner does not reach statistical significance neither
in Simultaneous (RS-test, p = .250) nor in Sequential (RS-test, p = .514), there are a few
observations worth mentioning. In Simultaneous, Cstag is surprisingly less frequent in
1Partner than in 2Partner and is the modal decision pair in both. Chare is almost never
observed in both treatments. It is reassuring as it would have been difficult to rationalize
wanting to cooperate in the prisoner’s dilemma while not wanting to coordinate on the
efficient equilibrium in the stag hunt game, the former being significantly riskier than the
latter. Finally, both Dstag and Dhare are more likely in 1Partner than 2Partner.

Moving from Simultaneous to Sequential, we predicted no difference in 2Partner as
we assume subjects treat the two games independently. The fact that the relative frequen-
cies are almost identical between those two treatments is consistent with our hypothesis.
It is for 1Partner that we predicted an increase in cooperation when moving from Simulta-
neous to Sequential. The grim trigger strategy we assumed to derive the critical discount
factors in Section 3.2.2 makes use of the stag hunt game as an additional mechanism to
punish deviations in the prisoner’s dilemma. Whereas playing Chare is difficult to ratio-
nalize in Simultaneous, it can be expected when games are played sequentially in 1Part-
ner. Indeed, the most notable difference between 1Partner and 2Partner in Sequential
is that Chare occurs more than twice as often in 1Partner than 2Partner. However, the
relative frequencies in Table 3.1 do not allow us to observe whether subjects in 1Partner
use the stag hunt game as a punishment mechanism to punish deviations in the prisoner’s
dilemma.

Table 3.2 shows subjects’ decision in Sequential restricting to the first round of each
supergame. Column 1 shows the frequency of C, which is the first decision subjects
have to take in the round. The frequencies are almost identical in 1Partner and 2Part-
ner. Columns 2 to 5 show the frequency of stag following all possible outcomes in the
prisoner’s dilemma. For example, column 3 (stag | (C,D)) shows the frequency of stag
following a prisoner’s dilemma in which the subject chose C and her partner chose D. The
game outcomes are always written from the perspective of the subject. In 1Partner, stag
is almost always played following the cooperative outcome (C,C) and the frequency of
stag is similar following the three other outcomes (0.74 to 0.78). These facts are consis-
tent with some use of trigger strategies that punish any deviation in the prisoner’s dilemma
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Table 3.2: Subjects’ decisions in Sequential, first round of each supergame

PD SH

C stag | (C,C) stag | (C,D) stag | (D,C) stag | (D,D)

1Partner 0.64 0.96 0.74 0.78 0.75
2Partner 0.62 0.98 0.88 0.76 0.72

Notes: Frequency of cooperation (C) in the PD and frequency of stag in SH conditional on the
outcome of PD in the first round of each supergame in Sequential. Frequencies computed using the
matching groups averages. RS-tests for the difference between 1Partner and 2Partner yield p = .838
for C, p = .351 for stag | (C,C), p = .014 for stag | (C,D), p = .825 for stag | (D,C), and
p = .546 for stag | (D,D).

by playing hare in the stag hunt game. It does not seem to matter whether the subject
and/or her partner defected in the prisoner’s dilemma, which suggests that some subjects
anticipate the fact that defection in the prisoner’s dilemma can lead to playing the payoff-
dominated equilibrium in the stag hunt game.

In 2Partner, we expect subjects to treat the two games independently. However, we
observe that stag is more frequent when a subject chose C in the prisoner’s dilemma (0.98
and 0.88) rather than D (0.76 and 0.72). To assume some heterogeneity between subjects
could explain these differences. As mentioned before, a subject willing to cooperate in
the prisoner’s dilemma should probably be willing to coordinate on the efficient Nash
equilibrium in the stag. This could also explain why stag is more frequent following
C than D but it cannot explain why stag is less likely following (C,D) than (C,C).
However, this difference is much larger in 1Partner than 2Partner, which are our main
treatments of interest. In fact, the difference in the frequency of stag following (C,D)
is the largest and only statistically significant difference between 1Partner and 2Partner
(RS-test, p = .014).

In the end, we observe that subjects in 1Partner are not more likely to start with coop-
eration in the prisoner’s dilemma than 2Partner; they may even be less likely in Simulta-
neous. In Sequential, there is a notable difference between 1Partner and 2Partner in the
frequency of stag after a subject tried to establish cooperation in the prisoner’s dilemma
but her partner did not. At least some subjects in 1Partner use the stag hunt game—as
predicted in theory—to punish defection in the prisoner’s dilemma. None of these obser-
vations suggest a beneficial effect of multigame contact on cooperation in the prisoner’s
dilemma and coordination on the efficient Nash equilibrium in the stag hunt game. There
are even some indications that multigame contact could be counterproductive. In the next
section, we extend the analysis to all the rounds by looking at the outcomes of the stage
games across treatments.

3.4.3 Outcomes of the stage games
To simplify the analysis, we restrict our attention to four possible outcomes of the stage
games. We consider that a subject has reached the efficient outcome in PD (SH) if both
the subject and her partner chose C (stag) in a given round; that is, the outcome is (C,C)
in PD ((stag, stag) in SH). Combining the two stage games results in four possible out-
comes. Either a subject reached the efficient outcome in PD and SH, only in PD, only in
SH, or in neither. Of course, the subject or her partner choosing C (stag) and the other
D (hare) is more efficient than both choosing D (hare). However, it is hard to imagine
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that such asymmetric outcomes can be sustained for more than one round. Since we are
interested in the ability of subjects to coordinate on efficient outcomes, we pool these
outcomes with the most inefficient ones (D,D) and (hare, hare).

In our experiment, the continuation probability is introduced at the end of round 3.
Therefore, rounds 1 and 2 differ from the others in the sense that subjects know they
will play at least another round after those two. It appears as a natural threshold for our
analysis. In what follows, we perform the same analysis on rounds 1 and 2 together and
on rounds 3 and further. The results are similar if we pool all the rounds together.

Table 3.3 shows the relative frequencies of the outcome of the stage games in rounds
1 and 2 of each supergame. Again, the differences between 1Partner and 2Partner are
not statistically significant, but the following is in particular worth noticing. In Simulta-
neous, the relative frequencies point towards 1Partner being detrimental to reach efficient
outcomes compared with 2Partner. All relative frequencies for efficient or partially effi-
cient outcomes (rows 1 to 3) are lower in 1Partner than 2Partner. In Sequential, reaching
the efficient outcome in the two stage games in a round is more likely in 1Partner than
2Partner, which supports some beneficial effect of multigame contact on cooperation in
the prisoner’s dilemma. However, this comes at the cost of reaching the efficient outcome
in only one of the two stage games less frequently and reaching the efficient outcome in
neither also more frequently. This is similar to what Laferrière, Montez, et al. (2022) ob-
serve when pairing two prisoner’s dilemmas with different incentives to cooperate. They
find that multigame contact both leads to more simultaneous cooperation in the two games
and simultaneous defection in the two games; they conclude that multigame contact is a
“double-edged sword” for cooperation.

Table 3.3: Outcome of the stage games in rounds 1 and 2 of each supergame

Rounds 1 and 2 Simultaneous Sequential

1Partner 2Partner 1Partner 2Partner

Efficient outcome . . .
. . . in PD and SH 0.19 0.28 0.38 0.29
. . . only in PD 0.02 0.05 0.02 0.06
. . . only in SH 0.45 0.47 0.32 0.45
. . . in neither 0.34 0.21 0.28 0.21

N 2,204 4,936 2,456 4,696

Notes: Relative frequencies of the outcome of the stage games in rounds 1 and 2 of each supergame. A
cooperative outcome in PD (SH) refers to a situation where both the subject and her partner in PD (SH)
cooperate. RS-tests for the difference between 1Partner and 2Partner yield p = .166 when games are
played simultaneously and p = .270 when sequentially.

Table 3.4 shows the relative frequencies of the outcome of the stage games in rounds
3 and further of each supergame. In Simultaneous, reaching the efficient outcome in both
stage games at the same time is now rare and almost as likely in both treatments, meaning
that many deviations occur once the continuation probability is introduced. However, the
relative frequency of reaching the efficient outcome in neither of the two stage games is
much larger in 1Partner than 2Partner. Whereas this is the modal outcome in 1Partner
(0.57), the modal outcome in 2Partner is to reach the efficient outcome only in SH (0.54).
The difference between 1Partner and 2Partner is now statistically significant (RS-test,
p = .047). It leads to the following result:
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Result 2: When the prisoner’s dilemma and the stag hunt game are played simulta-
neously within a round, multigame contact leads to less efficient outcomes.
Comparing 1Partner with 2Partner in Simultaneous, we find that the efficient outcome in
the prisoner’s dilemma is not reached more frequently in the former than the latter and
coordination on the payoff dominant Nash equilibrium in the stag hunt game is less likely
in 1Partner.

In Sequential, the results are a bit different with 1Partner resulting more often than
2Partner in an efficient outcome in both PD and SH (0.14 vs. 0.08) or in neither (0.52
vs. 0.34). The difference between the two treatments is statistically significant (RS-test,
p = .003). The fact that—with multigame contact—Sequential results more often than
Simultaneous in the efficient outcome in PD, especially in the early rounds, can be ex-
plained by the lower critical discount factor required for reaching the efficient outcome
in the former than the latter. In this case, this somewhat counterbalances the reduction in
coordination on the payoff dominant Nash equilibrium in SH.

Result 3: When the prisoner’s dilemma and the stag hunt game are played sequen-
tially within a round, multigame contact is a double-edged sword.
Comparing 1Partner with 2Partner in Sequential, we find that reaching the efficient out-
come in the prisoner’s dilemma and the stag hunt game at the same time or in neither of
those are both more likely in the former than the latter.

Table 3.4: Outcome of the stage games in rounds 3 and further of each supergame

Rounds 3 and further Simultaneous Sequential

1Partner 2Partner 1Partner 2Partner

Efficient outcome . . .
. . . in PD and SH 0.10 0.09 0.14 0.08
. . . only in PD 0.01 0.03 0.01 0.03
. . . only in SH 0.31 0.54 0.33 0.55
. . . in neither 0.57 0.35 0.52 0.34

N 2,086 4,746 2,322 4,486

Notes: Relative frequencies of the outcome of the stage games in rounds 3 and further of each su-
pergame. A cooperative outcome in PD (SH) refers to a situation where both the subject and her part-
ner in PD (SH) cooperate. RS-tests for the difference between 1Partner and 2Partner yield p = .047
when games are played simultaneously and p = .003 when sequentially.

To better understand the mechanisms leading to Results 2 and 3, we make use of
Table 3.5 and investigate the effects of cooperation in the prisoner’s dilemma breaking
down. We condition the analysis on having reached a cooperative outcome in PD (C,C)
and in SH (stag, stag) in the first round of a supergame (first row).16 As already ob-
served, reaching a cooperative outcome in both games in the first round is less frequent in
1Partner than 2Partner in Simultaneous (RS-test, p = .097). In Sequential, coordination
on the two efficient outcomes in the first round happens slightly more often in 1Partner
than 2Partner but the difference is far from statistical significance (RS-test, p = .570).

16For this whole analysis, we decided not look at supergames in which cooperation in PD emerge later
than the first round or at supergames starting with cooperation in PD but no coordination on (stag, stag)
in SH. Indeed, such occurrences are very rare encompassing only one to eight percent of the supergames
depending on the treatment and they would unnecessarily complicate the analysis.
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The second row shows the shares of supergames in which cooperation in PD breaks down
in later rounds when we condition on having reached (C,C) and (stag, stag) in the first
round. In Simultaneous, we see that cooperation in PD is significantly less likely to break
down in 1Partner than 2Partner (RS-test, p = .009). This suggests that multigame con-
tact may increase the stability of cooperation in PD. The point estimate for 1Partner is
also lower in Sequential (0.74 vs. 0.80) but the difference is much lower and far from
statistical significance (RS-test, p = .274).

Table 3.5: Effects of cooperation in the prisoner’s dilemma breaking down

Simultaneous Sequential

1Partner 2Partner 1Partner 2Partner

(C,C) and (stag, stag) in round 1. . . 0.19+ 0.31+ 0.40 0.33
. . . coop. in PD stops in round t > 1 0.54∗∗ 0.80∗∗ 0.74 0.81

Coop. in PD stops in round t . . .
. . . (stag, stag) in SH at t 0.80 0.86 0.36∗∗ 0.80∗∗

. . . (stag, stag) in SH after t 0.56 0.75 0.40∗∗ 0.76∗∗

. . . (C,C) in PD after t 0.05 0.04 0.04 0.06

Notes: The first row shows the relative frequencies of a cooperative outcome in PD and in Sh in the
first round 1 of a supergame. A cooperative outcome in PD (SH) refers to a situation where both
the subject and her partner in PD (SH) cooperate. The second row shows the fraction of supergame
starting with (C,C) and (stag, stag) in which cooperation stops in PD. The last three rows show the
relative frequencies of (stag, stag) and (C,C) after a breakdown of cooperation in PD. RS-tests for
the difference between 1Partner and 2Partner: + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01.

Under multigame contact, we assumed that cooperation breaking down in PD should
lead to coordination on the payoff dominated equilibrium (hare, hare) in SH as a pun-
ishment. In Simultaneous, the punishment should start in the following period and should
continue until the end of the supergame. In Sequential, the punishment should already
start in the same period. The third row of Table 3.5 shows the relative frequencies of
(stag, stag) in round t where t is the round when cooperation in PD stops. As expected,
we see high relative frequencies for both 1Partner and 2Partner in Simultaneous. Indeed,
we expect a subject who wants to deviate in PD at t to still choose stag in the round. In
Sequential, we see that cooperation breaking down in PD leads directly to less coordina-
tion on the payoff dominant equilibrium (stag, stag) (0.36 vs. 0.80; RS-test, p = .004).
Looking at the rounds after t (fourth row), we see a similar effect in Simultaneous al-
though not statistically significant (RS-test, p = .136). Coordination on (stag, stag)
stabilizes around 40 percent (1Partner) and 76 percent (2Partner) in Sequential after t
(RS-test, p = .004). The last row of Table 3.5 shows that once cooperation breaks down
in PD, it is very rare that subjects manage to reestablish cooperation.

The differences in the relative frequencies of (stag, stag) between 1Partner and 2Part-
ner demonstrate that at least some subjects do link the two games by using SH to punish
deviations in PD. However, this threat may not be strong or credible enough to deter
deviations. Using 2Partner as a benchmark, we see that the additional probability of
departing from (stag, stag) after cooperation breaking down in PD is approximately 25
percent in Simultaneous and 50 percent in Sequential for 1Partner.17 Result 2 suggests
that the threat of departing from (stag, stag) in Simultaneous is not credible enough to

17Simultaneous: 0.25 ≈ 1− 56
75 after t. Sequential: 0.55 ≈ 1− 36

80 at t and 0.47 ≈ 1− 40
76 after t
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discipline behavior in PD and may even have adverse effects in terms of efficiency. In
Sequential, we observed a double-edged sword, which suggests that the threat of depart-
ing from (stag, stag) has some ability to discipline behavior in PD but not enough to be
beneficial in terms of efficiency.

3.5 Conclusion
From a theoretical point of view, interacting in multiple games with the same partner—
what we call multigame contact—can expand the set of possible cooperative equilibria
compared with situations where players face a different partner in each game. The kind
of strategies usually used to achieve such equilibria are trigger strategies and make use
of a punishment threat, which is triggered when a player deviates from the agreed plan of
action. Intuitively, multigame contact help to achieve such equilibria because interacting
in multiple games with the same partner usually expands, but never decreases, a player’s
ability to punish. Facing a stronger punishment, therefore, means that deviations become
less attractive and players can reach cooperative equilibria at lower discount factors.

In this experiment, we pair two indefinitely repeated games: a prisoner’s dilemma
and a stag hunt game. Our treatment of interest is the difference in subjects’ behavior
between situations with and without multigame contact. Multigame contact occurs when
a subject plays the two indefinitely repeated games with the same partner and there is
no multigame contact if a subject plays each indefinitely repeated game with a different
partner. By its nature, the stag hunt game has the potential to help us better understand
whether subjects can benefit from this enhanced ability to punish. Indeed, the stag hunt
game has two obvious Nash equilibria in pure strategies, one leading to high payoffs
and the other one to low payoffs, which can be used to discipline others’ behaviors. We
also compare situations in which the two games are played simultaneously within each
round with situations in which the prisoner’s dilemma is played before the stag hunt game
within each round. This variation should—in theory—have implications in situations of
multigame contact but no implications without.

In our data, we do not observe that multigame contact increases efficiency, mea-
sured by the frequencies of cooperation in the prisoner’s dilemma and coordination on
the payoff-dominant equilibrium in the stag hunt game. When the two games are played
simultaneously within a round, multigame contact is even detrimental. It does not help
to increase cooperation in the prisoner’s dilemma while it increases the frequency of co-
ordination on the low payoff equilibrium in the stag hunt game. When games are played
sequentially within a round—the treatment that should lead to the most cooperation with
multigame contact—we replicate the “double-edged sword” found in Laferrière, Montez,
et al. (2022); that is, reaching the efficient outcome in the prisoner’s dilemma and the
stag hunt game at the same time or in neither of those are more frequent with multigame
contact. In this case, the beneficial and detrimental effects of multigame contact some-
what average out. Overall, there is evidence that at least some subjects punish across
games—i.e., subjects link the two games—with multigame contact, but this does not help
to increase cooperation in the prisoner’s dilemma.

It is difficult to explain why cooperation fails to increase with multigame contact in
our experiment, although, at least some, subjects seem to understand that they could ben-
efit from it. Without multigame contact, we observe low frequencies of cooperation in the
prisoner’s dilemma and high frequencies of coordination on the high payoff equilibrium
in the stag hunt game. Therefore, a subject in a situation of multigame contact may have
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a lot to lose in the stag hunt game if she decides to use it as a punishment mechanism
for the prisoner’s dilemma. In theory, this is ideal as the more there is to lose in the stag
hunt game—i.e., the stronger the punishment is— the less attractive becomes a devia-
tion in the prisoner’s dilemma. However, it only works if subjects think that punishment
across games is likely. Since subjects do not always punish across games with multigame
contact, such strong punishments become less credible, therefore, reducing the beneficial
effects of multigame contact. When games are played simultaneously within a round,
we found that multigame contact is even detrimental to cooperation. If we assume that
subjects find punishment across games unlikely and that some subjects still punish, then
multigame contact does not increase cooperation and reduces coordination on the payoff
dominant equilibrium in the stag hunt game. With simultaneous games, the chances of
being punished is not only function of the partner’s behavior, but also of the likelihood
of moving to a next round. When games are played sequentially, the chances of being
punished only depends on the partner’s behavior as the stag hunt game is played with
certainty after the prisoner’s dilemma. Therefore, the chances of being punished in the
sequential case increase compared with the simultaneous case, making deviations less at-
tractive. This could explain why we see some beneficial effects of multigame contact in
the sequential variant.

For games with symmetric payoffs, a subject who punishes her partner reduces not
only the partner’s future payoffs but also her own; the stronger the punishment, the more
future payoffs she has to sacrifice. At some point, the punishment could even be so strong
that it becomes not credible. Therefore, there may be a trade-off between a punishment’s
strength and its credibility. If true, then situations with moderate punishments may lead
to more cooperation than situations with strong possible punishments.
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3.A Appendix

3.A.1 Additional tables

Table 3.A.1: Summary of the sessions

Simultaneous Sequential

1Partner 2Partner 1Partner 2Partner

Sessions 3 6 3 6
Matching groups 6 6 6 6
Subjects 52 118 58 112
Decisions 4,290 9,682 4,778 9,182

Notes: Number of sessions, matching groups, subjects, and decisions by treatment. We count one
decision each time a subject has to take a decision in both games, i.e. this is equivalent to the total
number of rounds played by all the subjects.
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Figure 3.A.1: Frequencies of C and stag over time by treatment. The mean frequencies are com-
puted using the matching group averages for each supergame. We show the first 20 supergames,
which is the minimum total number of supergames played by each matching group.

107



Table 3.A.2: Supergames’ duration by matching group

Treat. Match. gr. Supergames duration Statistics supergames

Si
m

.

2P ID Su
bj

.

3 4 5 6 7 8+ N M
ea

n

M
in

M
ax

To
ta

l

Fi
ni

te

1

0

31 8 15 5 2 1 0 0 23 3.5 3 6 81 0
32 8 9 6 2 2 1 0 20 4.0 3 7 80 1
41 10 10 5 4 2 0 0 21 3.9 3 6 82 1
42 8 9 4 5 1 0 1 20 4.2 3 9 83 0
91 10 15 3 3 0 0 1 22 3.8 3 11 83 3
92 8 12 2 3 2 1 1 21 4.1 3 8 86 0

1

11 16 15 5 2 1 0 0 23 3.5 3 6 81 0
21 20 9 6 2 2 1 0 20 4.0 3 7 80 0
51 20 10 5 4 2 0 0 21 3.9 3 6 82 0
61 22 9 4 5 1 0 1 20 4.2 3 9 83 0
71 20 14 3 3 0 0 1 21 3.8 3 11 80 0
81 20 12 2 3 2 1 1 21 4.1 3 8 86 0

0

0

131 10 15 5 2 1 0 0 23 3.5 3 6 81 0
132 10 9 6 2 2 1 0 20 4.0 3 7 80 1
141 10 10 5 4 2 0 0 21 3.9 3 6 82 1
142 10 9 4 5 1 0 1 20 4.2 3 9 83 0
171 10 15 3 3 0 0 1 22 3.8 3 11 83 3
172 8 12 2 3 2 1 1 21 4.1 3 8 86 0

1

101 18 15 5 2 1 0 0 23 3.5 3 6 81 0
111 20 9 6 2 2 1 0 20 4.0 3 7 80 0
121 18 10 5 4 2 0 0 21 3.9 3 6 82 0
151 20 9 4 5 1 0 1 20 4.2 3 9 83 0
161 18 14 3 3 0 0 1 21 3.8 3 11 80 0
181 18 12 2 3 2 1 1 21 4.1 3 8 86 0

Notes. Summary of the supergames duration for each matching group. The first two columns show the treatment
played. 2P is a binary variable taking the value 1 for 2Partner and 0 for 1Partner. Sim. is a binary variable taking the
value 1 if the PD and SH games were played simultaneously and 0 if they were played sequentially. The last digit of
a matching group ID is its number in the session and the other digits form the session ID (e.g., 31 refers to matching
group 1 in session 3 and 141 refers to matching group 1 in session 14). There are up to 2 matching groups within a
session. Subj. is the number of subjects in the matching group. Columns 5 to 10 show frequencies of supergames
duration for six selected intervals. Columns 11 to 15 show summary statistics for supergame duration.
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3.A.2 Experimental instructions
The instructions were originally written in French. Depending on the treatment, minimum
changes were made to the instructions. Below you can see the translated instructions for
the treatment 2Partner when both games are played simultaneously.

Instructions

General information

You are going to participate to a study financed by the Swiss National Science Foundation

(SNSF). Depending on your decisions, you will have the opportunity to earn a substantial

amount of money. Please read the following instructions carefully.

These instructions are exclusively reserved for your usage. You are not allowed to commu-

nicate with the other participants. If you violate this rule, you will be banned from the

experiment and receive no payment.

Throughout the study, we will not speak in CHF but in points. At the end of the study, your

gains will be converted to CHF. The exchange rate between CHF and points is CHF 1 =

1000 points. Once the study is finished, you will receive your gains in cash plus a show-up

fee of CHF 15.

The study is divided into matches. For each match, you are paired with two other randomly

drawn participants in the room. These participants are called your partners. You will interact

with these same two partners for several rounds. We will see later what determines the length

of a match. Once a match is over, two new partners are randomly drawn. The figure below

shows the difference between matches and rounds:

Match 1

rounds

1 2 3 …

Match 2

rounds

1 2 3 …

Match 3

rounds

1 2 3 … …

Figure 1: Matches and rounds

Your identity will never be revealed and you will never receive information about your partners.

You will play several matches and your partners will change between each match. You do

not know how many matches you will play.

1
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Rules of the game

Below, you can see the decisions screen. The header shows the current match number as

well as the round number in the current match. Here you have the example of round 1 in

match 2.

Figure 2: Decisions screen

The body of the screen is divided into two parts by a vertical line. At each round, you have

two decisions to take. Specifically, you have to take one decision for the left part of the

screen and one for the right part. The two tables in the middle show the possible gains for

you and your partners. The decision for each table consists of choosing between the first line

and the second line. In the left table, click on the gray button A or B to choose the first or

second line. The decision is similar for the right part clicking the gray button X or Y. Your

partner 1 does the same either choosing column A or column B on the left part and your

partner 2 either chooses column X or column Y on the right part.

Each table contains four cells. The first number in blue of each cell is your gain for the round

if this cell is the result of your decision and the one of your partner. The second number in

black of each cell is your partner’s gain. The following lines shows the four possible cases

for the table on the left.

• You - A / Partner 1 - A → You - 135 Points / Partner 1 - 135 Points

• You - A / Partner 1 - B → You - 40 Points / Partner 1 - 228 Points

• You - B / Partner 1 - A → You - 228 Points / Partner 1 - 40 Points

• You - B / Partner 1 - B → You - 60 Points / Partner 1 - 60 Points

The reasoning is similar for the table on the right.

The tables on the very left and right parts of the screen remind you of your decisions and

those of your respective partner for each half of the screen. Only the decisions of the current

match are shown. Since the example is for round 1, the summary tables are still empty.

2
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To take your decisions, you have to click on the gray buttons for each of the two tables in the

middle. By clicking on a button, it becomes blue. Once you have taken your two decisions,

a green button ”Validate” appears in the lower right corner. By clicking this button, you

move to the results screen. This screen will inform you about the choice of each of your

partners. The results will be highlighted and your gain for each part will be displayed. If the

match continues, you move to the next decisions screen and play the same game with the

same two partners. If the match ends, a new screen will appear and inform you that two

new partners will be randomly drawn.

Length of a match

Finally, we are going to look what determines the length of a match.

Match 1

rounds

1 2 3 …

Match 2

rounds

1 2 3 …

Match 3

rounds

1 2 3 … …

A match lasts at least 3 rounds. That means you are going to interact at least three times

in a row with the same two partners.

From round 3 on, the match will stop randomly. More precisely, the match can stop at the

end of round 3 with a probability of 1 chance out of 2. If the game does not stop, you move

to a round 4 and there is again 1 chance out of 2 the match will stop at the end of round

4. The reasoning is identical for rounds 5 on, the match stopping at the end of each round

with 1 chance out of 2. The computer randomly determines the stopping of a match.

To summarize, a match lasts at least 3 rounds. Starting from the end of round 3, the match

stops at the end of each round with a probability of 1 chance out of 2.

The results screen will inform you whether the match continues or stops. Once a match is

over, you move to the next one. As a reminder, two new partners are randomly drawn for

the next match.

Make sure you understand the instructions. If something is not clear, please raise your hand

and the organizer will come to help.

3
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