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Summary 

Differences in efficacy and safety of drugs among patients are a recognized problem in 

pharmacotherapy. The reasons are multifactorial and, therefore, the choice of a drug and its dosage 

for a particular patient based on different clinical and genetic factors is suggested to improve the 

clinical   outcome.   Four   drugs   are   currently   used   for   the   treatment   of   Alzheimer’s   disease:   three  

acetylcholinesterase inhibitors (donepezil, galantamine, rivastigmine) and the N-methyl-D-aspartate-

antagonist memantine. For these drugs, a high interindividual variability in plasma levels was 

observed, which might influence the response to treatment. The main objective of this thesis was to 

provide a better understanding of clinical and genetic factors affecting the plasma levels of 

antidementia drugs. Furthermore, the relationship between plasma levels, genetic variations and side 

effects was assessed. For this purpose, a pharmacogenetic study was conducted including 300 

patients from a naturalistic clinical setting. 

Analytical methods for the simultaneous measurement of antidementia drugs in plasma have been 

developed and validated using liquid chromatography methods coupled with mass spectrometry 

detection. Presently, these methods are used in the therapeutic drug monitoring service of our 

laboratory. The routine use of therapeutic drug monitoring for antidementia drugs cannot yet be 

recommended with the available data, but it may be beneficial for some patients in special clinical 

cases such as insufficient treatment response, side effects or drug interactions. 

Donepezil and galantamine are extensively metabolized by the liver enzymes cytochromes P450 

(CYP) 2D6 and 3A and are substrates of the drug transporter P-glycoprotein. The relationship of 

variations in genes affecting the activity of these metabolic enzymes and drug transporter (CYP2D6, 

CYP3A, POR, NR1I2, ABCB1) with donepezil and galantamine plasma levels was investigated. The 

CYP2D6 genotype appeared to be the major genetic factor involved in the pharmacokinetics of these 

two drugs. Thus, CYP2D6 poor metabolizers demonstrated significantly higher drug plasma levels 

than extensive metabolizers. Additionally, in the donepezil study population, the frequency of side 

effects was significantly increased in poor metabolizers. Lower donepezil plasma levels were 

observed in ultra rapid metabolizers, which might expose those patients to the risk of non-response. 

Memantine is mainly eliminated unchanged by the kidney, with implication of tubular secretion by renal 

transporters. A population pharmacokinetic model was developed to quantify the effects of clinical 

factors and genetic variations in renal cation transporters (SLC22A1/2/5, SLC47A1, ABCB1), and 

nuclear receptors (NR1I2, NR1I3, PPARG) involved in transporter expression, on memantine plasma 

levels. In addition to the renal function and gender, a genetic variation in the nuclear receptor 

Pregnane-X-Receptor (NR1I2) significantly affected memantine elimination. 

These findings suggest that an individualized therapy approach for antidementia drugs, taking into 

account clinical characteristics and genetic background of a patient, might increase efficacy and safety 

of the treatment. 
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Résumé 
Les différences interindividuelles  dans   l’efficacité  et   la   tolérance  des  médicaments  sont  un  problème  

connu en pharmacothérapie. Les raisons sont multiples, et le choix du médicament et de la dose, 

basé sur des facteurs cliniques et génétiques spécifiques au patient, peut contribuer à améliorer la 

réponse clinique. Quatre médicaments sont couramment utilisés dans le traitement de la maladie 

d’Alzheimer :   trois   inhibiteurs   de   l’acétylcholinestérase   (donépézil,   galantamine,   rivastigmine)   et   un  

antagoniste du récepteur N-méthyl-D-aspartate, la mémantine. Une forte variabilité interindividuelle 

dans les taux plasmatiques de ces quatre composés a été observée, ce qui pourrait influencer la 

réponse  au  traitement.  L’objectif  principal  de  ce  travail  de  thèse est de mieux comprendre les facteurs 

cliniques et génétiques influençant les taux des médicaments pro-cognitifs. En outre, des associations 

entre les taux, la variabilité génétique et les effets secondaires ont été recherchées. Dans ce but, 

300 patients sous traitement avec un médicament pro-cognitif ont été recrutés pour une étude 

pharmacogénétique. 

Des méthodes de dosage simultané de médicaments pro-cognitifs par chromatographie liquide 

couplée à la spectrométrie de masse ont été développées et validées. Ces méthodes sont 

actuellement utilisées dans le service de suivi thérapeutique de notre unité. Malgré le fait qu’un  suivi  

des taux sanguins des pro-cognitifs ne puisse pas encore être recommandé en routine, un dosage 

peut être utile dans des cas cliniques spécifiques, comme une réponse insuffisante, une intolérance 

ou une interaction médicamenteuse. 

Le donépézil et la galantamine sont fortement métabolisés par les cytochromes P450 (CYP) 2D6 et 

3A, et sont également substrats du transporteur P-glycoprotéine. Les associations entre les 

polymorphismes génétiques de ces enzymes, cofacteur, récepteur nucléaire et transporteur (CYP2D6, 

CYP3A, POR, NR1I2, ABCB1) et les taux de donépézil et de galantamine ont été étudiées. Le 

génotype du CYP2D6 a été montré comme le facteur génétique majeur impliqué dans la 

pharmacocinétique de ces deux médicaments. Ainsi, les métaboliseurs déficients du CYP2D6 ont 

démontré des taux plasmatiques significativement plus élevés comparé aux bons métaboliseurs. 

De plus, dans la population traitée avec le donépézil, la fréquence des effets secondaires était plus 

élevée chez les métaboliseurs déficients. Des taux plasmatiques bas ont été mesurés chez les 

métaboliseurs ultra-rapides traités avec le donépézil, ce qui pourrait être un facteur de risque à une 

non-réponse au traitement.  

La mémantine est principalement éliminée sous forme inchangée par les reins, et partiellement par 

sécrétion tubulaire grâce à des transporteurs rénaux. Un modèle de cinétique de population a été 

développé pour quantifier les effets des différents facteurs cliniques et de la variabilité génétique des 

transporteurs rénaux (SLC22A1/2/5, SLC47A1, ABCB1) et des récepteurs nucléaires (NR1I2, NR1I3, 

PPARG,   impliqués   dans   l’expression   des   transporteurs)   sur   les   taux plasmatiques de mémantine. 

En plus de la fonction rénale et du genre, une variation génétique dans le récepteur nucléaire 

Pregnane-X-Receptor (NR1I2) a  montré  une  influence  significative  sur  l’élimination  de  la  mémantine.   

Ces   résultats   suggèrent   qu’une   approche   thérapeutique   individualisée, prenant en compte des 

facteurs  cliniques  et  génétiques  du  patient,  pourrait  améliorer   l’efficacité  et   la  sécurité  du   traitement  

pro-cognitif. 
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Abbreviations 

Aβ    Amyloid-β 

AChE    Acetylcholinesterase 

AChEI    Acetylcholinesterase inhibitor 

ABC    ATP-binding cassette 

AD    Alzheimer’s  disease 

AE    Adverse event 

APOE    Apolipoprotein E 

APP    Amyloid precursor protein 

AUC    Area under the curve 

bp    Base pairs 

BuChE    Butyrylcholinesterase 

CAR    Constitutive androstane receptor 

Cav    Mean plasma concentration at steady-state 

Cmin     Minimum plasma concentration 

Cmax    Peak plasma concentration 

Ctrough    Minimum plasma concentration 

ChE    Cholinesterase 

CHUV    Centre hospitalier universitaire vaudois 

CL    Clearance 

CNS    Central nervous system 

CS    Calibration standard 

CV    Coefficient of variation 

CYP    Cytochrome P450 

DNA    Desoxy ribonucleic acid 

EM    Extensive metabolizer 

EMEA    European Medicines Agency 

FDA    Food and Drug Administration 

GWAS    Genome-wide association studies 

HPLC-MS   High performance liquid chromatography-mass spectrometry 

IS    Internal standard 

LLOQ    Lower limit of quantification 

mRNA    Messenger ribonucleic acid 

MRM    Multiple reaction monitoring 

NMDA    N-methyl-D-aspartate 

OCT    Organic cation transporter 

PCR    Real-time polymerase chain reaction 

P-gp    P-glycoprotein 

PM    Poor metabolizer 

POR    Cytochrome P450 oxidoreductase 



Abbreviations   

7 
 

PPAR    Peroxisome proliferator-activated receptor 

PXR    Pregnane-X-receptor 

QC    Quality control sample 

RXR    Retinoid-X-receptor 

SIM    Single ion monitoring 

SLC    Solute carrier 

SNP    Single nucleotide polymorphism 

SPE    Solid phase extraction 

t1/2    Elimination half-life 

tmax    Time to maximum peak plasma concentration 

TDM    Therapeutic drug monitoring 

ULOQ    Upper limit of quantification 

UPLC-MS/MS   Ultra performance liquid chromatography-tandem mass spectrometry 

UM    Ultrarapid metabolizer 

V    Volume of distribution
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1.1  Alzheimer’s  disease  and  pharmacological  treatment 
 

Over 100 years ago, Alois Alzheimer presented a case of a 51-year-old woman with mental 

degeneration at a congress in Germany.1 This was the first demonstration of the disease, which was 

later  named  Alzheimer’s  disease  (AD).  He  described  the  typical  characteristics  of  an  Alzheimer  patient  

with memory disturbances, disorientation, aphasia, delusions and unpredictable behavior as main 

clinical symptoms, and the neuropathological picture with plaques and neurofibrillary tangles, which 

we today know as hallmarks of the disease.1,2 

AD is the most common type of dementia, accounting for 50-60% of all cases, followed by vascular 

dementia, Lewy body dementia and mixed dementia (coexistence of AD and vascular dementia).1,3 

With the rapid increase of the aging population, dementia has become an important public health 

challenge. By 2005, the global prevalence of dementia was estimated to be as high as 24 million. The 

number of people affected is predicted to double every 20 years to 80 million by 2040.4 In Switzerland, 

it is estimated that currently around 110 000 people suffer from dementia.5 

As described by Alois Alzheimer, the typical features of AD are amyloid plaques caused by a gradual 

deposition of beta-amyloid   (Aβ)   peptides,   and   intraneuronal   neurofibrillary   tangles   formed   by  

aggregation of abnormally hyperphosphorylated tau proteins.1,6 However, it is suggested that several 

other pathogenic mechanisms also contribute to the AD pathophysiology, such as neurovascular 

dysfunction, cell-cycle dysregulation, inflammatory processes, oxidative stress, and mitochondrial 

dysfunction.6 The neuropathological lesions are leading to a degeneration of neurons and synapses. 

Thus, brain regions involved in learning and memory processes, including the temporal and frontal 

lobes of the cerebral cortex, are reduced in size in AD patients (Figure 1).7  

 

 

Figure 1: Alzheimer’s  disease  results  in  shrinkage  of  brain  regions  involved  in  learning  and  memory  (a)  which  is  
correlated with major reductions in cellular energy metabolism in living patients (red and yellow indicate high 
levels of glucose uptake) (b). Picture from Mattson MP, Nature, 2004;430(7000):631-9. 
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The current pharmacotherapy of AD is based on observed neurotransmitter disturbances, on one 

hand the cholinergic hypofunction and on the other hand the glutamatergic overstimulation of the 

postsynaptic N-methyl-D-aspartate (NMDA) receptors.8,9 To date, the three acetylcholinesterase 

inhibitors donepezil, galantamine and rivastigmine are licensed in Switzerland, which inhibit the 

enzyme acetylcholinesterase and thereby increase the level of acetylcholine in the synaptic clefts 

(Figure 2a).10,11 They are indicated for the treatment of mild to moderate AD. Moreover, the NMDA 

receptor antagonist memantine, acting against excessive receptor activation by glutamate, is licensed 

for moderate to severe AD (Figure 2b).10,12,13 The detailed mechanism of action of each antidementia 

drug is described in the review article at the end of the introduction chapter (Article I, Chapter 1.3). 

 

 

Figure 2: Mode of action of AD drugs. a. Acetylcholinesterase inhibitors are blocking the enzyme 
actylcholinesterase, responsible for the degradation of the neurotransmitter acetylcholine, thereby increasing the 
concentrations of acetylcholine in the synaptic cleft. N=nicotinic and M=muscarinic acetylcholine receptors. b. In 
AD, NMDA receptors channels are excessively stimulated by glutamate, which lead to constantly high intracellular 
calcium (Ca2+) levels. In turn, synaptic noise rises, impairing relevant signal detection such as learning. 
Memantine is a low affinity receptor antagonist blocking open NMDA receptor channels. The intracellular Ca2+ 
level and, therefore, the synaptic noise are decreased, which allows incoming signals to be detected. Pictures 
adapted from Wilkinson DG, Drugs Aging, 2004;21(7):453-78 and Parsons CG, Neuropharmacology, 
2004;430(7000):631-9. 
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Acetylcholinesterase inhibitors and memantine offer primarily symptomatic benefits regarding 

cognition and global change, and they might slow down, but do not prevent, the progression of the 

disease.6,14,15 Numerous disease-modifying approaches are under investigations. The majority of them 

are  targeting  the  production  and  clearance  of  Aβ  and  the  abnormal  aggregation  of  tau  filaments,  but  

also neuro-inflammatory pathways and oxidative stress are considered (Figure 3).6 Large multicentre 

trials conducted to study the efficacy of disease-modifying therapies did not provide the beneficial 

effects hoped for.14,16 It is expected that an early diagnosis of the disease, when no irreversible 

cognitive deficits are present, would lead to more positive results.14,16 However, since AD is a complex 

multifactorial disorder, the discovery of a sole cure is unlikely. A treatment strategy based on multiple 

targets, eventually combined with a symptomatic therapy, is more probable.6,14 Therefore, continued 

search for causative factors and new therapies, as well as for biomarkers for an early diagnosis, is 

required. 

 

 

Figure 3: Current   pharmacotherapeutic   targets   in   Alzheimer’s   disease.   Picture   from   Chopra   K,   Expert   Opin  
Pharmacother. 2011;12(3):335-50. 

 

1.2 General aspects of clinical pharmacology 

1.2.1 Pharmacokinetics and pharmacodynamics 
 

The objective of a pharmacological treatment is to administer effective drugs to patients while 

minimizing the occurrence of side effects. After drug application, there is an interplay between two 

overlaying processes: the pharmacokinetics, which refers to the time-course of the drug in the body, 

including absorption, distribution, metabolism and elimination, and the pharmacodynamics, which 

refers to the relationship between concentration and intensity of the therapeutic and adverse effects 
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(Figure 4).17 The basis of clinical pharmacology is the fact that the intensity of many pharmacological 

effects  depends  on  the  amount  of  drug  in  the  body  and  more  specifically  on  the  drug’s  concentration  

at the site of action.18 For numerous directly and reversibly acting drugs, it has been shown that the 

intensity and time course of the effect is correlated with the time course of the plasma 

concentrations.18 This direct relationship allows the prediction of the pharmacologic effects based on a 

patient’s  drug  plasma  concentration measurement. However, more complex correlations between the 

plasma concentration, concentration at the site of action and drug effects are possible.18 Examples are 

a time delay between the attainment of effective plasma concentrations and drug action due to a 

retarded distribution of the compound to the site of action or time consuming synthesis or degradation 

of an endogenous substance necessary for the drug effect.18 Moreover, for some drugs time-

dependent change in effect intensities without changes in drug concentrations occurs through 

phenomena known as tolerance or sensitization.18 

 

 

Figure 4: Relationship of pharmacokinetics and pharmacodynamics and factors affecting the two processes. PK= 
pharmacokinetics, PD= pharmacodynamics. Picture adapted from Derendorf H, Pharm Res, 1999;16(2):176-85.  

 

For most drugs, substantial differences in treatment response exist among patients due to inter-

individual variabilites in pharmacokinetics and pharmacodynamics. Therefore, a standard dose of a 

drug might not be suitable for every patient. Several factors influence the pharmacokinetics of a drug, 

including gender, body composition, diseases, medication, environmental factors (e.g. food or 

smoking) or genetic variants in metabolizing enzymes or drug transporters. Possible explanations for 

the pharmacodynamic variability are differences in drug receptor density or affinity, genetic factors and 

drug interactions (Figure 4).19  
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The development of a personalized pharmacotherapy is an approach to get closer to the aim of an 

optimal drug response with minimal side effects. It takes inter-individual variations in pharmacokinetics 

and   pharmacodynamics   into   account   in   order   to   administer   the   “right   drug”   at   the   “right   dose”   to   a  

particular patient. 

 

1.2.2 Pharmacogenetics 
 

The recognition that a part of the variability in drug response is inherited, and therefore predictable, 

created the field of pharmacogenetics fifty years ago.20 With the advances in sequencing and 

genotyping technologies and the completion of the Human Genome Project in 2003,21 the interest on 

pharmacogenetics increased sharply. The Human Genome Project was an international research 

effort to determine the sequence of the human genome, consisting of 3.2 billion base paires (bp), and 

to   identify   the   approximately   20’000   genes   that   it   contains.20,21 If two unrelated individuals are 

compared, they differ from one another by approximately 0.1% or 3 million bp.22 Of the DNA variants, 

90-95% are single nucleotide polymorphisms (SNP), which are single nucleotide substitutions 

occurring at a frequency of at least 1% in the population.20 Other DNA variants include nucleotide 

insertions, deletions, inversions and translocation, as well as copy number variations and variable 

number of tandem repeats.23 A specific set of genetic variations, occurring together on a single 

chromosome or on a part of a chromosome, is called a haplotype.22  

Currently, there are two main approaches to investigate the influence of genetic variations on drug 

response.24 The candidate gene approach consists in analyzing one or more genes in which variants 

could plausibly explain a given phenotype.24 Candidate genes may be in pharmacokinetic or 

pharmacodynamic pathways, for instance genes involved in drug metabolism, drug transport, drug 

targets or disease type. The second approach is based on genome-wide association studies (GWAS), 

in which the entire genome is screened for variations associated with a given phenotype.24 The 

increasing use of the term pharmacogenomics instead of pharmacogenetics reflects the trend towards 

GWAS.20 In this work, we investigated polymorphisms in candidate genes implicated in the 

pharmacokinetics of antidementia drugs. Moreover, we performed haplotype analyses to examine the 

combined effect of SNPs.  

Today, the use of genotyping to support clinical decisions about drug use is not widely practiced.25 In 

2010, only about 10% of the Food and Drug Administration (FDA) approved drugs contained 

pharmacogenomic information in their drug labels,26,27 thus, the potential has hardly been exhausted 

by now. In fact, pharmacogenetics is an emerging field with many challenges that have to be 

overcome, most importantly the proof of clinical utility with appropriate clinical trials, but also the cost-

effectiveness, ethical issues regarding genetic analyses and the acceptance of genotyping in clinical 

practice.24,25  
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1.2.2.1 Drug Metabolism 
 

The elimination of most drugs involves the participation of several families of drug metabolizing 

enzymes that convert hydrophobic drugs to more polar forms that are more readily excreted. The 

biotransformation can be divided in phase I and phase II metabolism. In phase I metabolic reactions a 

functional group is introduced into the parent molecule and in phase II metabolic reactions the parent 

molecule and phase I metabolites are further converted by conjugation with hydrophilic endogenous 

moieties.28 Phase I metabolism is primarily mediated by cytochrome P450 (CYP) enzymes, whereas 

phase II metabolism involves a larger number of enzyme families, including the UDP-

glucuronosyltransferases (UGTs), sulfotransferases (SULTs), N-acetyltransferases (NATs) and 

glutathione S-transferases (GSTs).28  

Around 90% of drugs are metabolized by enzymes of the CYP families 1 to 3.28 The genes of these 

enzymes are highly polymorphic and alleles leading to decreased or increased enzyme activity as well 

as   to   loss   of   function   have   been   described.  On   the   “Home  Page   of   the   Human  Cytochrome  P450  

Allele  Nomenclature  Committee”  known CYP alleles are listed and their impact on enzyme activity is 

indicated.29 In addition, genetic polymorphisms have been reported, that affect the activity of the 

cytochrome P450 oxidoreductase (POR).30 POR is a protein that transfers electrons from NADPH to 

the CYP enzymes and might, therefore, be a general limiting factor for drug metabolizing capacity.31 

Genetic variations influencing the activity of phase II enzymes have been described. It appears that 

they have less impact on drug clearance because phase I enzymes usually mediate the rate-limiting 

steps in overall drug biotransformation.28 However, it should be mentioned that they have been less 

studied than CYP enzymes.28 The importance of genetic variations in drug-metabolizing enzymes is 

reflected in the above-mentioned FDA list of pharmacogenomic biomarkers included in drug labels.27 

The majority of them concern enzymes of phase I or phase II metabolism.27 

While for some enzymes genotyping is a valuable tool to predict the phenotype (e.g. CYP2D6), for 

others the large inter-individual variability in enzyme activity could only be partially explained by 

genetic variations (e.g. CYP3A4) and phenotyping by probe drugs may be more appropriate.32-34 

Phenotyping describes the metabolic situation of the patient at the moment of the test and may be 

influenced by environmental factors such as comedications or smoking. Depending on the clinical 

question, this can be an advantage. In contrast, the results of genotyping have a lifetime value as they 

are not affected by environmental factors, and it can be carried out in any situation.32 

The acetylcholinesterase inhibitors donepezil and galantamine are mainly metabolized by the CYP2D6 

and CYP3A, whereas rivastigmine is metabolized by its target enzymes acetylcholinesterase and 

butyrylcholinesterase.11 Variations in the genes encoding CYP2D6, CYP3A and the cholinesterases 

have been investigated in some pharmacogenetic studies on these drugs. The current findings of 

these investigations are summarized in Article I. Memantine, in contrast, is only metabolized to a 

minor extent; it is mainly excreted unchanged by the kidneys.35 
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1.2.2.2 Drug transporter 
 

Many drugs are transported across biological membranes via passive diffusion at a rate related to 

their lipophilicity.36 However, a growing number of membrane transporters involved in the cellular 

uptake or efflux of a large variety of drugs has been characterized in almost all tissues, and their 

important role in drug delivery and disposition has been recognized (Figure 5).37 Likewise drug-

metabolizing enzymes, drug transporters are implicated in the detoxification systems of the body and 

may work in synergy. Uptake transporters help delivering the drugs to the metabolizing system, 

whereas efflux transporters help with excreting the drugs from the body and thereby decrease the load 

on detoxification enzymes.37 Moreover, the chemical modification of the drugs by the enzymes 

increases their hydrophilicity and provides the transporters with better substrates.37 There are two 

major transporter superfamilies, the solute carrier (SLC) and the ATP-binding cassette (ABC) families. 

SLC transporters allow the passage of drugs across the membrane by passive transport down their 

electrochemical gradients or by ion coupled symporters or antiporters, and the ABC transporters 

actively pump drugs out of the cells by using the energy of ATP hydrolysis.38 

 

 

Figure 5: Schematic representation of drug uptake and efflux transporters as determinants of drug disposition. 
Picture from Kerb R, Cancer Lett. 2006;234(1):4-33. 
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The field of pharmacogenetics began with a focus on drug metabolizing enzymes, but it has been 

extended to membrane transporters that influence drug absorption, distribution and excretion.37 Up to 

now, convincing evidence of functional relevance for most of the transporter variants is still emerging 

or equivocal.39 Several reasons are conceivable for the current lack of conclusive findings. First of all, 

the most common genetic variants in transporters do not result in severe consequences such as a 

complete loss of function. Therefore, the resulting phenotypes are more subtle than those observed 

for inactivating mutations in metabolizing enzymes.39 Furthermore, transporters show extensive 

overlap in their substrate specificity. It is therefore likely that other transporters can compensate for 

single failure.37 Finally, transporter expression shows strong inter-individual differences, probably due 

to the regulation by several upstream signal transduction pathways and to the influence of non-genetic 

factors, such as sex hormones.39 Taking this into account, a more integrative approach might be 

required, considering the interaction of uptake and efflux transporters, metabolizing enzymes and 

pathways involved in gene expression.37,39 

Donepezil and galantamine are substrates of the P-glycoprotein (P-gp) transporter,40,41 belonging to 

the ABC family. P-gp is located in tissues with excretory function, including intestine, liver and kidney, 

and the blood-brain-barrier.42 Memantine is a substrate of the organic cation transporter 2 (OCT2), 

which belongs to the SLC family.43 OCT2 is predominantly expressed in the kidney36 and might, 

therefore, play an important role in the renal elimination of memantine. For both transporters, genetic 

variants have been described that alter protein expression and/or function. More details on the current 

pharmacogenetic research on drug transporters with respect to antidementia drugs are reported in 

Article I. 

 

1.2.2.3 Nuclear Receptors 
 

It is recognized that nuclear receptors, such as the Pregnane-X-Receptor (PXR) or the constitutive 

androstane receptor (CAR), are involved in the gene expression regulation of metabolizing enzymes 

and transporters (Figure 6).44 Moreover, there is emerging evidence that polymorphisms in nuclear 

receptors influence the expression of CYPs, as it has been shown for CYP3A4 and CYP1A2.45-47 For 

example, in vitro studies revealed genetic variants in the regulatory region of NR1I2, encoding the 

nuclear receptor PXR, which are associated with inducible and constitutive CYP3A4 expression.45,47 

Furthermore, in vivo studies demonstrated the influence of genetic variants in NR1I2 on the 

pharmacokinetics of drugs that are CYP3A substrates.48-50 A similar effect of genetic variations in 

nuclear receptors on drug transporter expression might be hypothesized, potentially influencing drug 

disposition. 
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Figure 6: Schematic representation of the gene expression regulation by nuclear receptors, PXR serves as 
example. Following ligand binding, PXR forms a heterodimer with the Retinoid-X-Receptor (RXR) and 
subsequently binds to the PXR response elements in the target genes (Phase I and Phase II enzymes, 
transporters), inducing their expression. Picture adapted from Ma X, Expert Opin Drug Metab Toxicol. 2008 
Jul;4(7):895-908. 

 

To date, no pharmacogenetic studies have been published that investigated the influence of 

polymorphisms in genes of nuclear receptors on the pharmacokinetics of antidementia drugs. 

 

1.2.3 Dose optimization trough Therapeutic Drug Monitoring 
 

The determination of the optimal dosage for a given treatment is generally performed by relating the 

therapeutic response to the administered dose. However, the blood concentration of a drug can be a 

better predictor of the pharmacologic effect(s) than the dose, as it takes inter-individual differences in 

pharmacokinetic processes into account. Therefore, Therapeutic Drug Monitoring (TDM), the 

measurement and interpretation of drug concentrations, has found wide acceptance.51 It has been 

shown that by maintaining patients drug plasma concentrations in the target range through individual 

dose adaption, efficacy and safety of many treatments, including psychotropic drugs, can be 

improved.32,51 

Presently, no TDM analyses are performed for antidementia drugs in clinical routine. Even though little 

evidence exists, several factors indicate that TDM might be beneficial and in recent consensus 

guidelines, therapeutic ranges for these drugs have been proposed.32 A high inter-individual variability 

in response to treatment has been observed,52-54 which might partly be due to high inter-individual 

variabilites in plasma concentrations.55-57 In elderly people, the presence of comorbidities and multiple 

comedication leading to drug-drug interactions, as well as genetic variations in metabolizing enzymes 

and transporters, might be causes of the observed inter-individual variabilities in plasma 
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concentrations. Moreover, non-adherence to the treatment could be revealed by TDM, which is a 

particular problem in patients with cognitive deficits.58 

The clinical efficacy of TDM is strongly associated with appropriate pharmacokinetic interpretation of 

the drug measurement and is reflected by individualized dose recommendations.51 For this purpose, 

the understanding of the dose-concentration relationship is essential. Population pharmacokinetic 

analyses are an important tool in TDM. Using Bayesian modeling, the extent of variability in 

pharmacokinetic parameters in a population sample is investigated and factors influencing this 

variability are identified.59 In contrast to traditional pharmacokinetic studies, including healthy 

volunteers or highly selected patients, population pharmacokinetic analyses collect relevant 

pharmacokinetic information in patients who are representative of the target population and it 

recognize variability as important feature that should be quantified.59 Moreover, data from sparse 

blood sampling can be used. This enables pharmacokinetic investigations in special populations, such 

as elderly patients, where the number of samples to be obtained per subject is limited because of 

ethical and/or medical concerns.59 The population pharmacokinetic parameters provide a framework 

for optimum dosing strategies in a population, and the identified influencing factors allow the 

elaboration of dose recommendations in subgroup of patients.59 Moreover, the extent of unexplained 

variability is determined, which is important because the efficacy and safety of a drug may decrease 

as unexplainable variability increases.59 Finally, with an established population model, individual 

pharmacokinetic parameters of a patient can be estimated based on a random plasma concentration 

measurement. This information can further be used for dosage individualization in TDM.59 
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1.3 Article I: Pharmacodynamic, pharmacokinetic and pharmacogenetic aspects of drugs used 
in the treatment of Alzheimer’s  disease 
 

Summary 

The aim of this review is to summarize the pharmacodynamics and pharmacokinetics of the four 

commonly used antidementia drugs and to give an overview on the current knowledge of 

pharmacogenetics in this field.  

Donepezil, galantamine and rivastigmine are acetylcholinesterase inhibitors with different 

pharmacodynamic and pharmacokinetic profiles. Donepezil inhibits selectively the 

acetylcholinesterase and has a long half-life of 70 hours. Galantamine is also a selective 

acetylcholinesterase inhibitor, but modulates as well presynaptic nicotinic receptors. It has a half-life of 

6 to 8 h. Donepezil and galantamine are mainly metabolized by CYP2D6 and CYP3A4 in the liver. 

Rivastigmine   is   a   so   called   “pseudo-irreversible”   inhibitor of the actylcholinesterase and the 

butyrylcholinesterase. The plasma half-life of the drug is very short (1 to 2 h), but the duration of action 

is longer as the enzymes are blocked for around 8.5 h and 3.5 h, respectively. Rivastigmine is 

metabolized by esterases in liver and intestine. Memantine is a non–competitive low affinity antagonist 

of the NMDA receptor with a half-life of 70 h. Its major route of elimination is unchanged via the 

kidneys. 

Addressing the issue of inter-patient variability in treatment response might be of special importance 

for the vulnerable population taking antidementia drugs. Pharmacogenetic considerations might help 

to avoid multiple medication changes due to non-response and/or adverse events. Some 

pharmacogenetic studies conducted on donepezil and galantamine reported an influence of the 

CYP2D6 genotype on the pharmacokinetics of the drugs and/or on the response to treatment. 

Moreover, polymorphisms in genes of the cholinergic markers acetylcholinesterase, 

butyrylcholinesterase, choline acetyltransferase and paraxonase were found to be associated with 

better clinical response to acetylcholinesterase inhibitors. However, confirmation studies in larger 

collectives are necessary to establish evidence of which subgroups of patients will most likely benefit 

from antidementia drugs. 

 

 

Review article in preparation 
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Abstract 
 
With the aging population,   Alzheimer’s   disease   has   become   a   major   public   concern   in   developed  

countries. To date, the pharmacological treatment is symptomatic and based on the observed 

neurotransmitter disturbances. The four mainly used drugs are the acetylcholinesterase inhibitors 

donepezil, galantamine and rivastigmine, and the NMDA receptor antagonist memantine. 

Pharmacogenetic studies have been conducted to evaluate the influence of genetic predisposition on 

the inter-patient variability in response to antidementia drugs. Since comorbidities, drug interactions 

and non-compliance are substantial therapeutic problems in the aging population, pharmacogenetic 

considerations could be of special importance to avoid multiple medication changes due to non-

response and/or adverse events. In this review we give an overview on the pharmacodynamic and 

pharmacokinetic profiles of antidementia drugs and we summarize the current knowledge of 

pharmacogenetics in this field. 
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Introduction 
 
Dementia is a syndrome of acquired cognitive deficits, characterized by various central 

neurodegenerative and ischemic processes, sufficient to interfere with social and occupational 

functioning.1 With the rapid global increase of the aging population, dementia has become an 

important public health challenge. It is estimated that currently around 24 million people suffer from 

dementia worldwide.2,3 The prevalence of dementia is age-specific and almost doubles every 5 years, 

from approximately 1.5% in individuals aged 60-69 years to 40% in people aged over 90 years.2 

Alzheimer’s  disease  (AD)  is  the  most  common  type  of  dementia,  accounting  for  50-60% of all cases, 

followed by vascular dementia, Lewy body dementia and mixed dementia (coexistence of AD and 

vascular dementia).1,4 

AD is a complex multifactorial and polygenetic disease. The key features of AD are formations of 

amyloid plaques by oligomerisation of beta-amyloid (A) proteins and neurofibrillary tangles by 

aggregation of tau protein in the medial temporal lobe structures and cortical areas of the brain.4 

These neuropathological lesions are leading to a degeneration of neurons and synapses. It is 

estimated that this process already starts 20-30 years before onset of clinical symptoms.4 Increasing 

evidence exists that A proteins interfere with certain neurotransmitter systems, including the 

cholinergic and glutamatergic neurotransmission, known to have important roles in learning and 

memory. These findings provide a pathophysiological basis of the observed neurochemical deficits in 

AD.5 Over   20   years   ago,   the   “cholinergic   hypothesis”   was   formulated,   that   states   that   a   loss   of  

cholinergic function in the central nervous system (CNS) contributes significantly to the cognitive 

decline associated with advanced age and AD.6 The cholinergic hypofunction is linked to a reduction 

in a number of cholinergic markers such as the choline acetyltransferase (ChAT), muscarinic and 

nicotinic acetylcholine receptor binding as well as levels of acetylcholine (ACh) in the synaptic clefts.7 

In addition to the cholinergic hypofunction, the glutamate metabolism has an important impact on the 

cognitive functions of the brain.4,8 There is good evidence that glutamatergic overstimulation of the 

postsynaptic N-methyl-D-aspartate (NMDA) receptors is implicated in the pathogenesis of AD and may 

results in neuronal damage.8-10 

Up to date, mutations in the APP gene coding for the amyloid precursor protein (APP) and in the 

presenilin genes (PSEN1 and PSEN2), coding for proteins involved amongst others in APP 

cleavage,11 are known to be associated with the early-onset familial form of AD.12 In contrast, for the 

late-onset  sporadic  form  of  AD,  only  the  APOε4  allele  of  the  apolipoprotein  E  gene  (APOE), that codes 

for a protein   with   different   functions   including   lipid   homeostasis   and   Aβ   scavenging,   has   been  

recognized as major risk factor for the disease.4,12 However, with the advances in high-throughput 

genomic association studies, novel risk factors have been identified (e.g. gene variants in the clusterin 

gene (CLU), complement receptor type 1 gene (CR1), phosphatidylinositol-binding clathrin assembly 

protein gene (PICALM)), for review see 3,13,14). 

To date, the treatment of AD is based on the above mentioned disturbances of the neurotransmitters 

ACh and glutamate. Three acetylcholinesterase inhibitors (AChEIs) are currently used, namely 

donepezil, galantamine and rivastigmine, which are licensed for the treatment of mild to moderate AD. 
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Donepezil has as well the indication for treatment of severe stages of the disease in the US.15 

Additionally, rivastigmine is approved for the use in mild to moderate dementia associated with 

Parkinson’s   disease   by   regulatory   agencies   such   as   the   Food   and   Drug   Administration   (FDA),   the  

European Medicines Agency (EMEA) and SwissMedic.15-17 Tacrine, the first AChEI on market, is 

associated with serious side effects, including hepatotoxicity, and has largely been replaced with the 

other available AChEIs.18 The NMDA receptor antagonist memantine is licensed for moderate to 

severe AD and acts on the glutamate transmission. 

Meta-analyses report consistent benefits of antidementia drugs regarding cognition and global 

assessment in AD, but with small treatment effects.19-21 Depending on measurement scales and 

duration of study period, it has been shown that the proportions of responders to AChEIs and 

memantine were only 15-35% and around 30%, respectively.10,22-25 Furthermore, AChEIs have non 

negligible adverse effects that occur at a rate of 8% in excess to placebo, the most frequent are 

nausea, vomiting and diarrhea.21,24 Memantine is generally well tolerated with dizziness, headache, 

constipation, somnolence and hypertension as side effects with slightly higher incidence than 

placebo.26  

The person-to-person variability of a drug response is a major problem in clinical practice leading to 

therapeutic failure or adverse effects of drugs in individuals or subpopulation of patients.27 The source 

of this variability is likely to be manifold, but genetic variations in drug-metabolizing enzymes, drug 

transporters and drug receptors can have a significant impact. Comorbidities, drug-drug interactions, 

adverse reactions, and non compliance are important problems in the pharmacological management 

of elderly patients. 28 It would therefore be particularly useful for this population to avoid multiple 

medication changes due to non-response or side effects.28 Pharmacogenetic considerations for 

antidementia drugs could therefore be of special interest as its understanding might be beneficial for 

prediction of drug efficacy and toxicity in the individual patient. Even though some pharmacogenetic 

studies have been conducted on antidementia drugs, by now there is no strong evidence of which 

subgroups of patients have favorable response to treatment or are at higher risks to develop side 

effects. 

The aim of this review is to summarize the pharmacodynamics and pharmacokinetics of antidementia 

drugs and to give an overview on the current knowledge of pharmacogenetics in this field. 

 

 

1. Pharmacodynamics 
 
In Table 1 are summarized the pharmacodynamic properties of antidementia drugs. 

 

1.1 Acetylcholinesterase Inhibitors 
 
The main pharmacological action of donepezil, galantamine and rivastigmine is to decrease the 

breakdown of acetylcholine in the synapse through inhibition of cholinesterases. In humans, two major 

forms of cholinesterases (ChE) are found, AChE and butyrylcholinesterase (BuChE).29 In the CNS, the 
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AChE activity is higher than the BuChE activity, whereas in the periphery the BuChE is the 

predominant form.29,30 The principal function of the AChE is to terminate the action of acetylcholine by 

hydrolyzing it to acetate and choline.31 The brain AChE is present in two globular forms, the tetrameric 

G4 form and the monomeric G1 form.31 Whereas AChE is highly selective for ACh, BuChE is also able 

to metabolize various other molecules.32 The physiological function of the BuChE is not clear, but it is 

conceivable that it acts as a scavenger, detoxifying certain chemicals and thereby limiting their entry to 

the CNS.31 In the course of AD, a selective reduction of the AChE G4 form from the mild to the severe 

stage is seen, while the activity of the G1 form is relatively preserved.31,32 In contrast, the activity of 

BuChE remains unchanged or is even increased.30 

The three currently used cholinesterase inhibitors (ChEI) differ in their pharmacological properties. 

Donepezil is a non-competitive and rapidly reversible inhibitor with a 300-fold higher selectivity for 

AChE than for BuChE.33,34 Galantamine is as well a reversible inhibitor of AChE, but binds to the 

enzyme in a competitive manner.35 Its selectivity for AChE is 50-fold higher than for BuChE.36 In 

addition to the effect on the AChE, galantamine modulates presynaptic nicotinic receptors, thereby 

further enhancing cholinergic activity at the synapse.37,38 Rivastigmine is described as a 

“pseudoirreversible”   inhibitor   due   to   its   particular   interaction   with   the   ChEs.   Like   ACh,   rivastigmine  

undergoes hydrolysis by the enzyme, but leaves the esteratic site of the enzyme carbamylated and 

therefore inactivates the central AChE and BuChE up to 8.5 and 3.5 hours, respectively.39,40 For that 

reason, the short plasma half-life (t1/2) of approximately 1-2 hours does not influence the duration of 

the inhibitory effect.41 

In contrast to donepezil and galantamine, rivastigmine shows no selectivity for AChE over BuChE.40,42 

Because of a significant decrease in AChE activity in AD patients, an additional inhibition of BuChE 

might be beneficial.29,31 Another particularity of rivastigmine is its preferential inhibition of the AChE G1 

form.31,40 Differences between the three AChEIs are also seen in the central versus peripheral 

selectivity. In contrast to galantamine, donepezil and rivastigmine demonstrated a preferential 

inhibition of the central AChE.37,39,43 The different selectivities of the drugs, AChE over BuChE, G1 

over G4 form and central over peripheral, are thought to affect their efficacy and side effect profile.32 

However, meta-analyses do not reveal significant differences with respect to efficacy of the three 

AChEIs, but donepezil is associated with fewer side effects compared to rivastigmine and 

galantamine.20,21,24 Finally, recent in vitro and in vivo data show, that ChEIs not only increase ACh 

levels   in   the   synapses   but   could   as   well   modulate   APP   processing.   The   resultant   reduction   of   Aβ  

deposition might be important for delaying the progressive cognitive decline.44-47 

 

1.2 Memantine 
 
As NMDA receptor antagonist, memantine acts on the glutamatergic system. Glutamate is the major 

excitatory neurotransmitter binding to a family of ionotropic receptors, among others the NMDA 

receptor.48 It is recognized that blockade of NMDA receptors leads to impairment of learning 

processes while their over-activation leads as well to disturbances in learning and, in a further step, to 

neurotoxicity.48 Therefore, the homeostasis in the glutamatergic system is very important.48 Excessive 
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activation of NMDA receptors is thought to be involved in AD.5,48,49 It is supposed that the continuous 

activity of the receptors results in a raise of synaptic noise, impairing detection of relevant signals such 

as learning.48 In AD, magnesium, an endogenous inhibitor which normally works as filter to detect 

relevant signals, is too weak to serve this role.50 

Before introduction of memantine, clinical trials with NMDA receptors antagonists have failed due to 

high binding affinity towards NMDA receptors or unspecificity of the drugs leading to unacceptable 

side effects.49 Memantine has a more favorable side-effect profile because of its special features as 

non-competitive low affinity antagonist. Since it binds only to open channels, a pathological increased 

NMDA receptor activity, with resultant excessive channel openings, is inhibited to a greater extent 

than physiological receptor activity.51 Moreover, the low binding affinity ensures that the drug does not 

accumulate in the ion channels, and therefore, does not block subsequent synaptic 

neurotransmission.51 With these characteristics, memantine is thought to act as a slightly more 

effective surrogate for the intrinsic NMDA inhibitor magnesium.48 Clinical trials on memantine are 

focused on improvements in cognitive function and behavioral aspects, but memantine is potentially 

as well a neuroprotective agent.50,51  

Given the complementary mode of action, different studies were conducted to investigate the effect of 

concomitant administration of memantine with AChEIs. The majority of these studies revealed a 

beneficial effect of coadministration of the two drug classes on different measurement scales, also on 

a long-term basis.52-56 

 

 

2. Pharmacokinetics 
 
In Table 2 are shown the steady-state pharmacokinetic parameters of antidementia drugs. 

 

2.1 Donepezil 
2.1.1 Pharmacokinetic parameters and metabolism 
 
Donepezil is well absorbed with a bioavailability approaching 100% and peak plasma concentrations 

(Cmax) are achieved after 3-5 h.57,58 Food intake has no significant effect on the drug absorption.58 The 

drug demonstrates linear kinetic properties with a t½ of approximately 70 h indicating that once daily 

administration is appropriate and that steady-state conditions are reached within two to three weeks.59 

The mean serum protein binding of the compound is around 93% and the volume of distribution (V) is 

approximately 12 L/kg. 58,60,61 

Donepezil is metabolized hepatically by the enzymes cytochrome P450 (CYP) 3A4 and 2D6 and the 

primary route of elimination of the parent drug and the metabolites is renal.62 There are three 

suggested metabolic pathways: O-demethylation to the metabolites M1 and M2 followed by 

glucuronide conjugation to the metabolites M11 and M12, N-dealkylation to the metabolite M4 and as 

minor route N-oxidation to the metabolite M6.62,63 Unchanged donepezil was found to be the principal 

component in plasma and urine.62 The metabolite M1 (6-O-desmethyl-donepezil) is the only active 
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metabolite with a comparable potency in AChE inhibition as donepezil. In human plasma, M1 is only 

present at about 20% of the concentration of the parent drug.57 Moreover, in rats the transfer of M1 

into the brain as target organ is very low.64 Therefore, it is suggested that M1 does not significantly 

contribute to the pharmacological activity of the drug. 

Due to its CYP dependent metabolism, it is suggested that drug interactions via CYP3A4 and CYP2D6 

could be important. Two studies in healthy volunteers showed an influence of CYP inhibitors on 

donepezil plasma levels. The concurrent administration of ketoconazole, a strong CYP3A4 inhibitor, 

resulted in a significant increase in donepezil plasma concentrations, estimated to be 23-30% at 

steady state.65 Moreover, the coadministration of cimetidine, a CYP3A4 and CYP2D6 inhibitor, leaded 

to slightly higher Cmax and area under the curve (AUC) values (11-13% and 10%, respectively).66 In 

both studies the t1/2 and time to maximum peak plasma concentration (tmax) of donepezil were not 

significantly altered.65,66 The clinical significance of these interactions remains to be determined, but 

careful monitoring is recommended when donepezil is coadministrated with CYP3A4 and CYP2D6 

inhibitors. 

 

2.1.2 Effects of age, renal and hepatic impairment on the pharmacokinetics 
 
Results of a single dose study in healthy young volunteers (age 20-27 years) and elderly patients (age 

65-82 years) suggest that some of the pharmacokinetic parameters are affected by aging due to a 

slower absorption and a wider distribution of the drug.61 The t1/2, tmax and V in steady state conditions 

are significantly higher in the elderly than in the young. However, as the AUC, Cmax and the clearance 

(CL) did not differ between the two groups, modification of the dose in elderly does not appear to be 

necessary.61 

As donepezil and its metabolites are predominantly renally cleared, a rise in plasma concentrations 

could be expected in subject with impaired kidney function.67 Nevertheless, in a single and a multiple 

dose study with 5 mg donepezil daily, no significant differences in pharmacokinetic parameters were 

found between healthy controls and subjects with moderately to severely (CLcreat 7-30 mL/min/1.73m2) 

and moderately (CLcreat 17-33 mL/min/1.73m2) impaired renal function, respectively.67,68 Therefore, no 

dose adjustment is required for patients with moderate renal insufficiency. In contrast, at steady state 

mean values for AUC, t1/2, Cmax and the mean concentration at steady-state (Css) were significantly 

increased in subjects with impaired liver function (Child-Pugh grade A or B) compared with healthy 

controls.69 It is suggested that the administration of 5 mg donepezil daily is safe and well tolerated in 

patients with mild to moderate hepatic impairment.69 However, a doubling of the dose to 10 mg daily 

should be monitored. 

 

2.2 Galantamine 
2.2.1 Pharmacokinetic parameters and metabolism 
 
Galantamine is well and quickly absorbed with a bioavailability approaching 100%.70 Coadministration 

with food does not alter the total amount of absorbed drug substance, but tmax is delayed by 
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approximately 1.5 h and Cmax is decreased by 25%.71 Galantamine has a linear kinetic over a large 

dose range and a t½ of around 7 h.70,72,73 The V is 2.6 L/kg and the drug exhibits a low plasma protein 

binding of 17%.70,74 An extended-release (ER) formulation of galantamine was developed allowing 

once-daily drug administration. The immediate-release (IR) and the extended-release (ER) 

formulations are bioequivalent with respect to AUC and minimum plasma concentration (Cmin) for a 

daily dose of 24 mg. As expected, the ER formulation resulted in higher tmax values (4.4 h versus 1.2 

h) and Cmax values were reduced by 25%.72 

Approximately 30% of galantamine is excreted unchanged in the urine; the other part is metabolized 

through multiple pathways, primarily by O-demethylation by CYP2D6, O-oxidation by CYP3A4 and 

glucuronidation.75 After a single dose of 4 mg radiolabeled galantamine, the parent compound 

accounted for the bulk radioactivity in plasma.75 Beside, two major metabolites were found, namely the 

glucuronide of O-desmethyl-galantamine and the glucuronide of galantamine itself.75 In vitro it has 

been shown that O-desmethyl-galantamine is a more potent inhibitor of AChE than galantamine. 

However, the unconjugated metabolite was not detected in plasma and may not contribute to the 

pharmacological activity of the drug since it is immediately inactivated by glucuronidation.75,76 

The effect of the strong CYP2D6 inhibitor quinidine on the metabolism of galantamine was 

investigated.76 Four subjects received a single dose of 15 mg galantamine alone and 7 days later in 

combination with 250 mg quinidine. The inhibition of the O-demethylation pathway resulted in an 

almost complete suppression of the renal elimination of O-desmethyl-galantamine glucuronide. The 

urinary excretion of unchanged galantamine and other metabolites was consequently increased. 

Additionally, multiple dose pharmacokinetic studies showed an increase of the AUC by 40%, 30% and 

10% when galantamine was coadministrated with paroxetine (inhibitor of CYP2D6), ketoconazole 

(inhibitor of CYP3A34 and CYP2D6), and erythromycin (inhibitor of CYP3A4), respectively.77 Dose 

reduction may be required when galantamine is given with inhibitors of CYP2D6 and CYP3A4. 

 

2.2.2 Effects of age, renal and hepatic impairment on the pharmacokinetics 
 
A galantamine population pharmacokinetic study, including data from 15 clinical trials, showed a 

decreased galantamine CL with increasing age.78 In AD patients the CL was, on average, reduced by 

30% compared to healthy young subjects.78 In the same study, model simulations were conducted in 

AD patients with renal and hepatic impairment. No significant difference in galantamine plasma 

concentrations were found between patients with and without renal insufficiency (CLcreat 9-51 

mL/min).78 In contrast, their model investigating hepatic impairment showed a 60% reduction in 

metabolic CL among patients with moderate hepatic dysfunction (Child-Pugh grade B) and therefore 

higher apparent galantamine levels.78 These results are in line with the findings of a single dose study 

of 4 mg galantamine comparing healthy volunteers and subjects with mildly (Child-Pugh grade A) and 

moderately (Child-Pugh grade B) reduced hepatic function.74 No significant difference in CL was found 

in subjects with mild hepatic dysfunction, but the CL was reduced by 23% in subjects with moderate 

hepatic impairment.74 Consequently, dose titration should proceed cautiously in patients with 
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moderately impaired hepatic function and the use in patients with severely impaired liver function is 

not recommended. 

 

2.3 Rivastigmine 
2.3.1 Pharmacokinetic parameters and metabolism 
 
After oral administration, rivastigmine is rapidly and almost completely absorbed reaching maximum 

plasma concentrations within 1 h.79,80 Concomitant food slows the absorption, lowers Cmax by 30% and 

increases AUC by 30% compared to fasting conditions.39 Since it is supposed that the high peak 

plasma concentrations are related to gastrointestinal side effects, administration of rivastigmine with 

food is recommended for a better tolerability.39 Rivastigmine exhibits non-linear pharmacokinetics due 

to a capacity-limited elimination.39,79 Thus, the plasma level and AUC of the drug increase more than 

proportionally with increasing dose. Nonlinearity is also shown in the non proportional enhancement in 

absolute bioavailability of the drug. Following a single dose of 3 mg and 6 mg rivastigmine, the 

bioavailability is 35% and 70%, respectively.41,81 Rivastigmine has a very short t½ life of 1.5 to 2 h, 

therefore, steady state conditions are essentially reached by the second dose.39,41,79,80 The drug is 

widely distributed throughout the body with a V between 1.8 and 2.7 L/kg and about 40% is bound to 

plasma proteins.39,82 To improve the tolerability of rivastigmine and the patient compliance, a 

transdermal patch has been developed.83,84 This formulation shows beneficial pharmacokinetic 

characteristics as the patch gradually releases the drug substance over the 24 h application period. 

Findings of a comparison study of patch for 24 h and capsules b.i.d demonstrated a lowered Cmax by 

around 30% and a considerably later tmax (8 h versus 1 h), with a similar level of exposure.79 

Additionally, the continuous release of rivastigmine lowered the fluctuation between peak and trough 

plasma concentrations significantly.79,83 

Rivastigmine is extensively metabolized by cholinesterases in the liver and to a lesser extent in the 

intestine to NAP 226-90, an inactive and non-toxic metabolite.40,79,82 Renal excretion of the sulfate 

conjugate of NAP 226-90 is the primary route of elimination.40 After 24 h, the drug and the metabolite 

are almost completely excreted.39 Less of the metabolite NAP226-90 is formed following patch 

administration due to the lack of first-pass metabolism, and less inter-patient variability was observed 

for the treatment with the patch versus capsules.79,83,85 Hepatic microsomal enzymes are not involved 

to any significant extent in the metabolism of rivastigmine, making drug-drug interactions unlikely.80 

 

2.3.2 Effects of age, renal and hepatic impairment on the pharmacokinetics 
 
Findings of a study comparing pharmacokinetics in young and elderly healthy subjects demonstrated a 

slightly prolonged t1/2 in elderly persons (0.88-1.25h versus 0.80-0.99 h). However, another study in 

AD patients aged 50 to 92 years revealed no difference in drug absorption and exposure with age.39 A 

dose escalating study with 1-3 mg rivastigmine investigated the influence of renal and hepatic 

impairment on the pharmacokinetics of the drug. Compared to healthy controls, the AUCs of 

rivastigmine and its metabolite were 1.4 fold and 1.5 fold increased in patients with severe renal 
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impairment (CLcreat <10 mL/min).86 In patients with moderately severe liver cirrhosis, the AUCs of 

rivastigmine and NAP 226-90 were 2.3-fold higher and 0.8-fold lower compared to healthy 

controls.39,86 However, no specific dose recommendations are given for patients with renal and hepatic 

impairment, because of the clinical practice of dose titration according to tolerability of the drug.39,86 

 

2.4 Memantine 
2.4.1 Pharmacokinetic parameters and metabolism 
 
Memantine is well absorbed with a bioavailability close to 100%, reaching maximum plasma levels 

within 3-8 h.87 The drug exhibits linear pharmacokinetics in a wide dose range with a t1/2 between 60 

and 70 hours.88,89 Steady state conditions are attained within 11 days with plasma levels 3-4 times 

higher than Cmax following a single dose.89,90 The V is reported between 4 and 9 L/kg and the rate of 

plasma protein binding is approximately 45%.87,91 Memantine and its metabolites are mainly excreted 

via the kidneys with contribution of tubular secretion.87 In man, about 80% of the circulating 

memantine dose is present as the parent compound.92 Main metabolites are N-3,5-dimethyl-

gludantan, the isomeric mixture of 4- and 6-hydroxy-memantine, and 1-nitroso-3,5-dimethyl-

adamantane, none of which is active.92 Despite the fact that memantine undergoes hydroxylation and 

oxidation, typical CYP-catalyzed reactions, no contribution of these enzymes have yet been 

detected.93 However, it has been found that memantine is a potent and selective inhibitor of the 

CYP2B6 enzyme at clinically relevant concentration.93 Tubular secretion of memantine occurs via the 

renal cation transport system.87 Memantine has been shown to be a substrate of the organic cation 

transporter 2 (OCT2),94 which is predominantly expressed in human kidneys.95 Therefore, OCT2 might 

play an important role in memantine elimination. Urine pH has been shown to be a major determinant 

for the renal excretion of alkaline drugs like memantine.96 A clinical trial with healthy volunteers 

demonstrated a 7-10 fold higher renal CL in alkaline urine (pH 8) compared with acidic urine (pH 5).96 

To alkalize the urine the subjects received sodium bicarbonate, and for acidification ammonium 

chloride was administered. Nevertheless, in a more naturalistic approach measuring the urine pH of a 

representative  patient’s  population,  no  significant  effect  of  urine  pH  (pH  range  4.9-9) on memantine CL 

was found.91 

Co-medication with drugs which are eliminated via tubular secretion resulted in a lower CL of 

memantine.91 A competitive drug-memantine interaction at the OCT2 in the kidney could be a possible 

explanation, even though the memantine concentrations necessary for the interaction with OCT2 are 

higher than the therapeutic serum concentrations. However, it is conceivable that other renal 

transporters are implicated in the observed drug interactions.91 Another study investigated the 

pharmacokinetic interaction of memantine and glyburide/metformin.97 Healthy subjects received a 

single dose of memantine with and without previous administration of glyburide/metformin for 6 days. 

Although metformin is cleared renally via organic cation transporters, no pharmacokinetic interaction 

between metformin and memantine was found.97 
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2.4.2 Effects of age, renal and hepatic impairment on the pharmacokinetics 
 
Considering studies conducted in young and elderly healthy subjects, the pharmacokinetic parameters 

changed only slightly with age, most probably due to variations in body weight and fat.87 

Significant differences were seen in patients with moderate (CLcreat 30-49 mL/min) to severe (CLcreat 5-

29 mL/min) renal impairment compared to healthy subjects regarding AUC (increased by 60% and 

115%) and CL (decreased by 36% and 52%). In addition, t1/2 was enhanced by 95% in subjects with 

severe renal impairment.88 According to the prescription information, memantine dose can be 

increased up to the normal dose of 20 mg per day if 10 mg is well tolerated during the titration 

phase.92 In patients with severe renal impairment, half of the normal daily memantine dose is 

recommended. As memantine is metabolized only to a minor extent and into inactive compounds, no 

clinically relevant changes in pharmacokinetics are expected in patients with hepatic impairment.87 

 

 

3. Pharmacogenetics 
 
3.1 Acetylcholinesterase Inhibitors 
 
It is widely accepted that genetic variations in drug metabolizing enzymes contribute to therapeutic 

failures and adverse drug reactions. With regard to the metabolism of donepezil and galantamine, the 

liver enzymes CYP2D6 and CYP3A4 are interesting candidates for pharmacogenetic investigations.18 

Genetic polymorphisms in CYP2D6 are extensively studied in many different populations and over 80 

allelic variants have been described.98 Phenotypically four types of metabolizers can be distinguished 

with different frequencies in the Caucasian population: poor metabolizers (PM), intermediate 

metabolizers (IM), extensive metabolizers (EM) and ultrarapid metabolizers (UM) accounting for 

approximately 5-10%, 10-17%, 70-80% and 3-5%, respectively.99,100 The PM phenotype is 

characterized by the presence of two null alleles, which do not encode a functional protein. 

Consequently, they are unable to use the CYP2D6-dependent metabolic pathway for drug elimination 

which can lead to very high plasma concentrations and even toxicity. The CYP-dependent metabolism 

is as well limited in the IM phenotype, as they usually carry a null allele in combination with a reduced-

function allele. The EM phenotype is due to one or two alleles with normal function. By contrast, 

multiple gene copies are causing the UM phenotype.99,100 UMs typically exhibit decreased drug plasma 

concentrations at conventional doses and are therefore prone to a lack of response regarding drugs 

metabolized by CYP2D6. 

To our knowledge, only one clinical trial has been conducted investigating the impact of genetic 

variations in CYP2D6 on donepezil plasma concentrations. This steady-state study in 42 patients of 

Caucasian ethnicity included 2 UMs, 10 heterozygous EMs (one functional CYP2D6 allele) and 30 

homozygous EMs (two functional CYP2D6 alleles) receiving donepezil for at least 3 months.101 An 

impact of the CYP2D6 genotype on drug plasma concentrations is suggested since UMs had lower 

drug plasma concentrations compared to EMs, and homozygous EMs had lower plasma levels than 
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heterozygous   EMs.   However,   the   differences   in   plasma   concentrations   didn’t   reach   statistical  

significance, possibly because only a small number of subjects and no PMs were included.101 

Interestingly, heterozygous EMs showed a significantly better clinical response to treatment than 

homozygous EMs, as measured by change in the MMSE score (1.4 versus -1.3).101 Moreover, 

different clinical trials were carried out to evaluate the influence of the CYP2D6 genotype on the 

response to donepezil treatment. In a prospective study including 94 Spanish AD patients, the 

subjects were treated with a combination therapy consisting of donepezil and three other drugs (CDP-

choline, piracetam, nicergoline).28 The best responders were the EMs and IMs with a clear 

improvement of cognition after one year (MMSE change 2.2 and 1.1), and the worst responders were 

the PMs and UMs showing a progressive cognitive decline (MMSE change -2.7 and -1.4).28 In a 

prospective study including 127 Caucasian AD patients treated with donepezil, a significant higher 

frequency of patients with the G allele of the rs1080985 single nucleotide polymorphism (SNP) in 

CYP2D6 was found in non-responders compared to responders (60% versus 35%) after 6 months.102 

Since it has been reported that the G allele is associated with a higher enzyme activity and therefore a 

faster metabolism, it is thought that the poorer response to donepezil is due to lower plasma levels of 

the drug.102 The same group investigated 16 functional polymorphisms in CYP2D6 on the clinical 

response after 6 months of treatment with donepezil in a new cohort of 57 patients with mild-to-

moderate AD.103 A significant higher frequency of gene variants conferring decreased or absent 

enzyme activity was observed in responders than in non-responder patients (74% versus 37%). 

Finally, the clinical outcome in 171 Italian AD patients treated with donepezil, galantamine or 

rivastigmine was investigated in a prospective study taking into account genetic variations in CYP2D6 

and BCHE, encoding the BuChE.104 In this study population, no significant association was found 

between CYP2D6 and BCHE genotypes and response to treatment after one year for all three 

ChEIs.104 The discrepancy of the results regarding the impact of genetic variations in CYP2D6 on 

response to donepezil treatment might be due to different follow-up periods and to different 

approaches to classify responders and non-responders as well as prediction of the CYP2D6 

phenotypes from genotypes. However, since it is suspected that higher plasma levels could be 

associated with a higher response rate but possibly also with a higher frequency of side-effects, more 

studies are needed to clarify the influence of polymorphisms in CYP2D6 on plasma concentrations of 

donepezil and the clinical response. 

In three studies the impact of the CYP2D6 genotype on galantamine pharmacokinetics was assessed. 

In the first study, genotyping was performed in a subset of 356 patients included in two phase III 

clinical trials, among 336 EMs and 20 PMs.78 The population pharmacokinetic model indicated that the 

galantamine CL is reduced by 25% in PMs compared to EMs.78 In the second study, the metabolite 

profile was investigated in two EMs and two PMs after administration of a single low dose of 4 mg 

galantamine.75 There was a considerable difference regarding the CYP2D6 catalyzed O-demethylation 

between EMs and PMs. In EMs, six metabolites resulting from O-demethylation represented over 33% 

of the dose, whereas in PMs these metabolites accounted for only 5% of the dose. However, the lower 

level excretion of metabolites formed by O-demethylation in PMs was compensated by excretion of 

higher levels of unchanged galantamine and the N-oxid of galantamine. No apparent difference in 
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galantamine plasma levels was seen between EMs and PMs in these four subjects.75 In another study 

comparing galantamine pharmacokinetic parameters in 13 Japanese with 12 Caucasian healthy 

volunteers, one PM was identified in the Caucasian group.73 No apparent pharmacokinetic difference 

was seen in this subject. In none of these studies UMs were taken into account. 

Likewise CYP2D6, the second CYP implicated in the metabolism of donepezil and galantamine, the 

CYP3A4, demonstrates a large inter-individual variability in expression and activity. CYP3A4 is the 

major form of human cytochromes in the liver and it is also abundant in the intestine.105 To date, 

various genetic variations in CYP3A4 have been described, but their predictive information on protein 

expression or activity is limited.105 There is a large overlap in substrate specificity between the 

isoenzyme CYP3A4 and CYP3A5, therefore, it might be that donepezil and galantamine are to some 

extent as well metabolized by the latter. Compared to CYP3A4, CYP3A5 is expressed at a much lower 

level in the liver, but it has a wider tissue distribution.105 CYP3A5*3 is the most common allele in 

Caucasians with a frequency of 95% leading to a low expression of the enzyme. However, in 

homozygous carriers of the CYP3A5*1 allele, the CYP3A5 can contribute up to 50% of the CYP3A 

content in the liver and might therefore be important in drug metabolism.105 Furthermore, it has been 

shown that polymorphisms in the cytochrome P450 oxidoreductase (POR) or in the pregnane X 

receptor (PXR), a regulator of CYP3A transcription, could influence drug metabolism by CYP3A.106-108 

A study in 54 Caucasian AD patients has been conducted to investigate the influence of different 

CYP3A4 and CYP3A5 alleles on the plasma levels and the clinical outcome of donepezil.109 The 

results suggest that the investigated genetic variants of CYP3A4 and CYP3A5 do not play a pivotal 

role in the variability in donepezil metabolism. In contrast, an influence of polymorphisms in the 

ABCB1 gene on donepezil concentrations and response to treatment was found. ABCB1 codes for the 

membrane transporter P-Glycoprotein (P-gp), which has a large substrate overlap with CYP3A4 and is 

implicated in absorption, distribution and excretion of many drugs.110 Patients homozygous for the 

ABCB1 1236T/2677T/3435T haplotype showed a tendency towards a better clinical response and 

lower  plasma  concentrations.  However,  the  differences  didn’t  reach  statistical  significance.109  

Associations of genetic variations in ACHE, encoding the AChE, and BCHE with response to AChEI 

treatment were studied in a few clinical trials. These investigations could be especially interesting for 

rivastigmine since AChE and BuChE are the target enzymes and at the same time the main 

metabolizing enzymes for this agent. In an Italian study population of 461 AD patients, gene frequency 

distributions of one SNP in ACHE and two SNPs in BCHE, as well as one SNP in the gene of ChAT, 

were investigated.111 Additionally, the association of these SNPs with response to either donepezil or 

rivastigmine treatment was assessed in a subset of 171 patients. It was found that carriers of the 

ACHE rs2571598 AA genotype receiving rivastigmine showed a slightly better response to treatment 

evaluated by the MMSE score changes (-1.62 for G/G, -2.71 for G/A and -1.03 for A/A). In contrast, no 

association was seen in patients treated with donepezil. Additionally, no influence of the K-variant of 

BCHE (rs1803274), which leads to a lower enzyme expression, was seen on the treatment effect.111 

This result is in agreement with the above mentioned study investigating genetic variations in CYP2D6 

and BCHE in a cohort of 171 Italian AD patients treated for one year with donepezil, rivastigmine or 

galantamine.104 However, in a retrospective analysis in 114 Caucasian AD patients younger than 75 
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years, a differential response to rivastigmine regarding BCHE genotype was found.112 On different 

measurement scales wild-type BCHE carriers had a better response to rivastigmine treatment 

compared to donepezil, whereas the treatment response was similar within carriers of the K-allele.112 

Furthermore, polymorphisms in other cholinergic markers were studied regarding responsiveness of 

patients to AChEI therapy. The influence of six polymorphisms in CHAT, encoding the enzyme 

responsible for ACh biosynthesis, was studied in 121 patients recruited in Northern Ireland and 

receiving an AChEI. The SNP rs733722, lying in a putative promoter region of the gene and appearing 

with a frequency of 33%, showed to be a marker of response to AChEI treatment.113 Carriers of two T 

alleles had a significant smaller change in MMSE/year than subjects carrying at least one copy of the 

C allele (-0.18 versus -1.84).113 Paraxonase-1 (PON-1) is an arylesterase with multiple biological 

functions, showing high inter-individual differences in activity.114 It is known that the PON1 192Q/R 

polymorphism (rs662) is influencing the activity of the enzyme.114 Interestingly, this enzyme is also a 

potent endogenous cholinesterase inhibitor.114 Therefore, it might be that PON-1 interacts 

synergistically with drugs inhibiting ChEs.114 A study investigated the PON1 192Q/R polymorphism 

(rs662) in 73 Caucasian patients treated with donepezil or rivastigmine.114 The R allele was present in 

44% of patients that responded to treatment, while its frequency was only 26% among non-

responders, thus, suggesting that carriers of the R allele have more treatment benefits than Q allele 

carriers.114 However, these results could not be confirmed by a recent study, investigation this 

polymorphism in 101 Polish patients.115 Furthermore, phenotypic screening of the constitutive m1 

muscarinic acetylcholine receptor activity (CHRM1) was done in a cohort of 74 individuals, including 

48 diagnosed with primarily AD and stratified by their treatment response to AChEIs.116 The authors 

concluded that the m1 receptor gene is not highly polymorphic in the human population suggesting 

that genetic variation within this gene is not a contributing factor to the clinical variability in treatment 

with AChEIs.116 Further studies are needed to clarify the impact of SNPs in cholinergic markers on 

response to treatment with AChEIs. 

In contrast, many pharmacogenetic studies were conducted to evaluate the impact of the lipoprotein 

APOE genotype on treatment response to AChEIs. There are three major polymorphic forms of APOE, 

ε2  (Cys112,  Cys158),  ε3  (Cys112,  Arg158)  and  ε4  (Arg112,  Arg158),  which  differ  from  one  another  by  

one amino acid substitution.117 The   APOε4   allele   is   known   to   be   a   major   risk   factor   for   the  

development of AD. APOE plays various roles in the CNS, it is proposed to influence the amyloid-β  

metabolism, lipid homoeostasis, synaptic activity, response to cellular injury, and 

neuroinflammation.117 Since it is suggested that the integrity of the cholinergic system vary between 

carriers of the different APOE alleles, it was suggested that the APOE genotypes might be a predictor 

for the quality and size of drug response.118 However, the results of the pharmacogenetic studies are 

conflicting and the majority of the studies report no association of the APOE genotype with donepezil, 

rivastigmine or galantamine treatment response.119-128  
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3.2 Memantine 
 
Given the large inter-individual differences in plasma levels and the concentration dependent 

probability of adverse events of memantine,87,88,91 it would be beneficial to understand the 

demographic and genetic factors influencing this variability. To our knowledge, no pharmacogenetic 

studies have been conducted on memantine. The high inter-individual variability could partly be due to 

differences in renal elimination as memantine is mainly excreted unchanged via the kidneys.87 Since it 

is suggested that OCT2 is an important transporter involved in the active secretion of memantine, 

genetic variation in this transporter might cause inter-individual differences in the renal CL of the drug. 

In vitro data have revealed genetic variations in SLC22A2, coding for OCT2, altering protein function 

and expression.129-133 The most common coding polymorphism 808G>T (rs316019), occurring at a 

frequency of 10 to 15% in different ethnics, has been investigated in several pharmacokinetic studies 

of metformin and in one clinical trial of cisplatin, both agents renally excreted by OCT2.134-138 The 

results of these studies are divergent, thus, up to now no conclusion can be drawn for the predictive 

effect of this SNP on metformin and cisplatin pharmacokinetic parameters. However, plasma 

concentrations of memantine could be influenced by genetic variations in OCT2 or other renal 

transporters. More studies are requested to elucidate the impact of polymorphisms in drug 

transporters on pharmacokinetics of renally eliminated drugs.  

 

 

4. Conclusion 

The current treatment of AD is based on the observed neurotransmitter disturbances: the cholinergic 

hypofunction and the glutamatergic overstimulation of NMDA receptors. Donepezil, galantamine and 

rivastigmine are AChEIs, increasing the level of ACh in the synaptic clefts. The three drugs have 

different pharmacodynamic and pharmacokinetic profiles, therefore, efficacy and tolerability may not 

be identical in the individual patient and a change from one AChEI to another might be beneficial. 

Donepezil is a selective AChEI and has a t1/2 of 70 h, therefore, once-daily dosing is applied. The drug 

is mainly metabolized by CYP2D6 and CYP3A4 in the liver. Galantamine is as well a selective AChEI 

but modulates as well presynaptic nicotinic receptors. It has a t1/2 of 6 to 8 h, but once daily dosing is 

possible by administration of the ER formulation. Galantamine is metabolized hepatically by the 

CYP2D6  and  CYP3A4.  Rivastigmine  is  a  so  called  “pseudo-irreversible”  inhibitor  of  AChE  and  BuChE.  

The plasma t1/2 of the drug is very short (1 to 2 h), but the duration of action is longer as the AChE and 

the BuChE are blocked for around 8.5 h and 3.5 h, respectively. Oral formulations of the drug have to 

be given twice a day, whereas the patch allows a once-daily administration. Rivastigmine is 

metabolized by esterases in liver and intestine. Memantine is a non–competitive low affinity antagonist 

of the NMDA receptor, inhibiting the pathological excessive channel openings. It has a t1/2 of around 

70 h, a once daily dosing is therefore sufficiently. Mematine is only metabolized to a minor extent, the 

major route of elimination is unchanged via the kidneys. 
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Pharmacogenetic studies addressing the issue of inter-patient variability in response to antidementia 

drugs  might  be  valuable  to  develop  a  “personalized  pharmacotherapy”  with  the potential to maximize 

the benefit of therapy and to minimize side effects. This approach could be of special importance for 

the population taking antidementia drugs, since it is vulnerable to comorbidities, polypharmacy and 

non-compliance. Some pharmacogenetic studies conducted on donepezil and galantamine reported 

an influence of the CYP2D6 genotype on the pharmacokinetics of the drugs as well as on the 

response to treatment. Moreover, polymorphisms in genes of the cholinergic markers AChE, BuChE, 

ChAT and PON-1 were found to be associated with better clinical response to AChEIs. However, 

confirmation studies in larger collectives are necessary to establish evidence of which subgroups of 

patients will most likely benefit from antidementia drugs. 

 

 

Acknowledgement 
We thank the editorial assistance of Mrs K. Powell Golay and the bibliographical help of Mrs E. Ponce.  

 

  



Chapter 1: Introduction   

39 
 

Reference List 
 
1. Qaseem A, Snow V, Cross JT, Jr., et al. Current pharmacologic treatment of dementia: a clinical 
practice guideline from the American College of Physicians and the American Academy of Family 
Physicians. Ann Intern Med. 2008;148(5):370-8. 
2. Qiu C, De Ronchi D, Fratiglioni L. The epidemiology of the dementias: an update. Curr Opin 
Psychiatry. 2007;20(4):380-5. 
3. Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurol 2011;7(3):137-
52. 
4. Blennow K, De Leon MJ, Zetterberg H. Alzheimer's disease. Lancet. 2006;368(9533):387-403. 
5. Francis PT, Ramirez MJ, Lai MK. Neurochemical basis for symptomatic treatment of Alzheimer's 
disease. Neuropharmacology. 2010;59(4-5):221-9. 
6. Terry AV, Jr., Buccafusco JJ. The cholinergic hypothesis of age and Alzheimer's disease-related 
cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol 
Exp Ther. 2003;306(3):821-7. 
7. Schliebs R, Arendt T. The significance of the cholinergic system in the brain during aging and in 
Alzheimer's disease. J Neural Transm. 2006;113(11):1625-44. 
8. Riederer P, Hoyer S. From benefit to damage. Glutamate and advanced glycation end products in 
Alzheimer brain. J Neural Transm. 2006;113(11):1671-7. 
9. Wilcock GK. Memantine for the treatment of dementia. Lancet Neurol. 2003;2(8):503-5. 
10. Reisberg B, Doody R, Stoffler A, et al. Memantine in moderate-to-severe Alzheimer's disease. N 
Engl J Med. 2003;348(14):1333-41. 
11. Obulesu M, Somashekhar R, Venu R. Genetics of Alzheimer's disease: an insight into presenilins 
and apolipoprotein e instigated neurodegeneration. Int J Neurosci. 2011;121(5):229-36. 
12. Crentsil V. The pharmacogenomics of Alzheimer's disease. Ageing Res Rev. 2004;3(2):153-69. 
13. Sleegers K, Lambert JC, Bertram L, et al. The pursuit of susceptibility genes for Alzheimer's 
disease: progress and prospects. Trends Genet. 2010;26(2):84-93. 
14. Bettens K, Sleegers K, Van Broeckhoven C. Current status on Alzheimer disease molecular 
genetics: from past, to present, to future. Hum Mol Genet. 2010;19(R1):R4-R11. 
15. FDA Approved Drug Products. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm 
(last access Dec 2011). 
16. European Medicine Agency Search for medcines. 
http://www.ema.europa.eu/ema/index.jsp?curl=/pages/home/Home_Page.jsp (last access June 2011)  
17. Documed SA, Basel, Switzerland. Compendium Suisse des Medicaments. 
http://www.compendium.ch/ (last access Dec 2011). 
18. Jann MW, Shirley KL, Small GW. Clinical pharmacokinetics and pharmacodynamics of 
cholinesterase inhibitors. Clin Pharmacokinet. 2002;41(10):719-39. 
19. McShane R, Areosa Sastre A, Minakaran N. Memantine for dementia (review). The Cochrane 
Collaboration. 2009(1):1-20. 
20. Raina P, Santaguida P, Ismaila A, et al. Effectiveness of cholinesterase inhibitors and memantine 
for treating dementia: evidence review for a clinical practice guideline. Ann Intern Med. 
2008;148(5):379-97. 
21. Birks J. Cholinesterase inhibitors for Alzheimer's disease (review). The Cochrane Collaboration. 
2009(1):1-19. 
22. Raschetti R, Maggini M, Sorrentino GC, et al. A cohort study of effectiveness of 
acetylcholinesterase inhibitors in Alzheimer's disease. Eur J Clin Pharmacol. 2005;61(5-6):361-8. 
23. Mega MS, Masterman DM, O'Connor SM, et al. The spectrum of behavioral responses to 
cholinesterase inhibitor therapy in Alzheimer disease. Arch Neurol. 1999;56(11):1388-93. 
24. Lanctot KL, Herrmann N, Yau KK, et al. Efficacy and safety of cholinesterase inhibitors in 
Alzheimer's disease: a meta-analysis. CMAJ. 2003;169(6):557-64. 



Chapter 1: Introduction   

40 
 

25. Clerici F, Vanacore N, Elia A, et al. Memantine in moderately-severe-to-severe Alzheimer's 
disease: a postmarketing surveillance study. Drugs Aging. 2009;26(4):321-32. 
26. van Marum RJ. Update on the use of memantine in Alzheimer's disease. Neuropsychiatr Dis Treat. 
2009;5:237-47. 
27. Meyer UA. Pharmacogenetics and adverse drug reactions. Lancet. 2000;356(9242):1667-71. 
28. Cacabelos R, Llovo R, Fraile C, Fernandez-Novoa L. Pharmacogenetic aspects of therapy with 
cholinesterase inhibitors: the role of CYP2D6 in Alzheimer's disease pharmacogenetics. Curr 
Alzheimer Res. 2007;4(4):479-500. 
29. Giacobini E. Selective inhibitors of butyrylcholinesterase: a valid alternative for therapy of 
Alzheimer's disease? Drugs Aging. 2001;18(12):891-8. 
30. Wilkinson DG, Francis PT, Schwam E, Payne-Parrish J. Cholinesterase inhibitors used in the 
treatment of Alzheimer's disease: the relationship between pharmacological effects and clinical 
efficacy. Drugs Aging. 2004;21(7):453-78. 
31. Weinstock M. Selectivity of cholinesterase inhibition - Clinical implications for the treatment of 
Alzheimer's disease. CNS Drugs. 1999;12(4):307-23. 
32. Lane RM, Potkin SG, Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in 
dementia. Int J Neuropsychopharmacol. 2006;9(1):101-24. 
33. Kosasa T, Kuriya Y, Matsui K, Yamanishi Y. Inhibitory effects of donepezil hydrochloride (E2020) 
on cholinesterase activity in brain and peripheral tissues of young and aged rats. Eur J Pharmacol. 
1999;386(1):7-13. 
34. Villalobos A, Blake JF, Biggers CK, et al. Novel benzisoxazole derivatives as potent and selective 
inhibitors of acetylcholinesterase. J Med Chem. 1994;37(17):2721-34. 
35. Farlow MR. Clinical pharmacokinetics of galantamine. Clin Pharmacokinet. 2003;42(15):1383-92. 
36. Thomsen T, Kewitz H. Selective inhibition of human acetylcholinesterase by galanthamine in vitro 
and in vivo. Life Sci. 1990;46(21):1553-8. 
37. Scott LJ, Goa KL. Galantamine: a review of its use in Alzheimer's disease. Drugs. 
2000;60(5):1095-122. 
38. Maelicke A, Schrattenholz A, Samochocki M, et al. Allosterically potentiating ligands of nicotinic 
receptors as a treatment strategy for Alzheimer's disease. Behav Brain Res. 2000;113(1-2):199-206. 
39. Polinsky RJ. Clinical pharmacology of rivastigmine: a new-generation acetylcholinesterase 
inhibitor for the treatment of Alzheimer's disease. Clin Ther. 1998;20(4):634-47. 
40. Kennedy JS, Polinsky RJ, Johnson B, et al. Preferential cerebrospinal fluid acetylcholinesterase 
inhibition by rivastigmine in humans. J Clin Psychopharmacol. 1999;19(6):513-21. 
41. Hossain M, Jhee SS, Shiovitz T, et al. Estimation of the absolute bioavailability of rivastigmine in 
patients with mild to moderate dementia of the Alzheimer's type. Clin Pharmacokinet. 2002;41(3):225-
34. 
42. Jann MW. Rivastigmine, a new-generation cholinesterase inhibitor for the treatment of Alzheimer's 
disease. Pharmacotherapy. 2000;20(1):1-12. 
43. Bryson HM, Benfield P. Donepezil. Drugs Aging. 1997;10:234-9. 
44. Lenzken SC, Lanni C, Govoni S, et al. Nicotinic component of galantamine in the regulation of 
amyloid precursor protein processing. Chem Biol Interact 2007;165(2):138-45. 
45. Pakaski M, Kalman J. Interactions between the amyloid and cholinergic mechanisms in 
Alzheimer's disease. Neurochem Int. 2008;53(5):103-11. 
46. Zimmermann M, Gardoni F, Marcello E, et al. Acetylcholinesterase inhibitors increase ADAM10 
activity by promoting its trafficking in neuroblastoma cell lines. J Neurochem. 2004;90(6):1489-99. 
47. Giacobini E. Cholinesterases: new roles in brain function and in Alzheimer's disease. Neurochem 
Res. 2003;28(3-4):515-22. 
48. Parsons CG, Stoffler A, Danysz W. Memantine: a NMDA receptor antagonist that improves 
memory by restoration of homeostasis in the glutamatergic system--too little activation is bad, too 
much is even worse. Neuropharmacology. 2007;53(6):699-723. 



Chapter 1: Introduction   

41 
 

49. Sonkusare SK, Kaul CL, Ramarao P. Dementia of Alzheimer's disease and other 
neurodegenerative disorders--memantine, a new hope. Pharmacol Res. 2005;51(1):1-17. 
50. Danysz W, Parsons CG. The NMDA receptor antagonist memantine as a symptomatological and 
neuroprotective treatment for Alzheimer's disease: preclinical evidence. Int J Geriatr Psychiatry. 
2003;18(Suppl 1):S23-S32. 
51. Lipton SA. Pathologically activated therapeutics for neuroprotection. Nat Rev Neurosci. 
2007;8(10):803-8. 
52. Tariot PN, Farlow MR, Grossberg GT, et al. Memantine treatment in patients with moderate to 
severe Alzheimer disease already receiving donepezil - A randomized controlled trial. Jama: Journal 
of the American Medical Association. 2004;291(3):317-24. 
53. Dantoine T, Auriacombe S, Sarazin M, et al. Rivastigmine monotherapy and combination therapy 
with memantine in patients with moderately severe Alzheimer's disease who failed to benefit from 
previous cholinesterase inhibitor treatment. Int J Clin Pract. 2006;60(1):110-8. 
54. Atri A, Shaughnessy LW, Locascio JJ, Growdon JH. Long-term course and effectiveness of 
combination therapy in Alzheimer disease. Alzheimer Dis Assoc Disord. 2008;22(3):209-21. 
55. Lopez OL, Becker JT, Wahed AS, et al. Long-term effects of the concomitant use of memantine 
with cholinesterase inhibition in Alzheimer disease. J Neurol Neurosurg Psychiatry. 2009;80(6):600-7. 
56. Farlow MR, Alva G, Meng X, Olin JT. A 25-week, open-label trial investigating rivastigmine 
transdermal patches with concomitant memantine in mild-to-moderate Alzheimer's disease: a post hoc 
analysis. Curr Med Res Opin. 2010;26(2):263-9. 
57. Shintani EY, Uchida KM. Donepezil: an anticholinesterase inhibitor for Alzheimer's disease. Am J 
Health Syst Pharm. 1997 Dec 15;54(24):2805-10. 
58. Mihara M, Ohnishi A, Tomono Y, et al. Pharmacokinetics of E2020, a new compound for 
Alzheimer's disease, in healthy male volunteers. Int J Clin Pharmacol Ther Toxicol. 1993;31(5):223-9. 
59. Rogers SL, Cooper NM, Sukovaty R, et al. Pharmacokinetic and pharmacodynamic profile of 
donepezil HCl following multiple oral doses. Br J Clin Pharmacol. 1998;46 (Suppl. 1):7-12. 
60. Tiseo PJ, Rogers SL, Friedhoff LT. Pharmacokinetic and pharmacodynamic profile of donepezil 
HCl following evening administration. Br J Clin Pharmacol. 1998;46 (Suppl 1):13-8. 
61. Ohnishi A, Mihara M, Kamakura H, et al. Comparison of the pharmacokinetics of E2020, a new 
compound for Alzheimer's disease, in healthy young and elderly subjects. J Clin Pharmacol. 
1993;33(11):1086-91. 
62. Tiseo PJ, Perdomo CA, Friedhoff LT. Metabolism and elimination of 14C-donepezil in healthy 
volunteers: a single-dose study. Br J Clin Pharmacol. 1998;46 Suppl 1:19-24. 
63. Matsui K, Taniguchi S, Yoshimura T. Correlation of the intrinsic clearance of donepezil (Aricept) 
between in vivo and in vitro studies in rat, dog and human. Xenobiotica. 1999;29(11):1059-72. 
64. Matsui K, Mishima M, Nagai Y, et al. Absorption, distribution, metabolism, and excretion of 
donepezil (Aricept) after a single oral administration to Rat. Drug Metab Dispos. 1999;27(12):1406-14. 
65. Tiseo PJ, Perdomo CA, Friedhoff LT. Concurrent administration of donepezil HCl and 
ketoconazole: assessment of pharmacokinetic changes following single and multiple doses. Br J Clin 
Pharmacol. 1998;46 (Suppl 1):30-4. 
66. Tiseo PJ, Perdomo CA, Friedhoff LT. Concurrent administration of donepezil HCl and cimetidine: 
assessment of pharmacokinetic changes following single and multiple doses. Br J Clin Pharmacol. 
1998;46 (Suppl 1):25-9. 
67. Nagy CF, Kumar D, Cullen EI, et al. Steady-state pharmacokinetics and safety of donepezil HCl in 
subjects with moderately impaired renal function. Br J Clin Pharmacol. 2004;58 (Suppl 1):18-24. 
68. Tiseo PJ, Foley K, Friedhoff LT. An evaluation of the pharmacokinetics of donepezil HCl in 
patients with moderately to severely impaired renal function. Br J Clin Pharmacol. 1998;46 (Suppl 
1):56-60. 



Chapter 1: Introduction   

42 
 

69. Reyes JF, Vargas R, Kumar D, et al. Steady-state pharmacokinetics, pharmacodynamics and 
tolerability of donepezil hydrochloride in hepatically impaired patients. Br J Clin Pharmacol. 2004;58 
(Suppl 1):9-17. 
70. Bickel U, Thomsen T, Weber W, et al. Pharmacokinetics of galanthamine in humans and 
corresponding cholinesterase inhibition. Clin Pharmacol Ther. 1991;50(4):420-8. 
71. Jones RW, Cooper DM, Haworth J, et al. The effect of food on the absorption of galanthamine in 
healthy elderly volunteers. Br J Clin Pharmacol. 1996;42:671P-P. 
72. Zhao Q, Janssens L, Verhaeghe T, et al. Pharmacokinetics of extended-release and immediate-
release formulations of galantamine at steady state in healthy volunteers. Curr Med Res Opin. 
2005;21(10):1547-54. 
73. Zhao Q, Brett M, Van ON, et al. Galantamine pharmacokinetics, safety, and tolerability profiles are 
similar in healthy Caucasian and Japanese subjects. J Clin Pharmacol. 2002;42(9):1002-10. 
74. Zhao Q, Iyer GR, Verhaeghe T, Truyen L. Pharmacokinetics and safety of galantamine in subjects 
with hepatic impairment and healthy volunteers. J Clin Pharmacol. 2002;42:428-36. 
75. Mannens GS, Snel CA, Hendrickx J, et al. The metabolism and excretion of galantamine in rats, 
dogs, and humans. Drug Metab Dispos. 2002;30(5):553-63. 
76. Bachus R, Bickel U, Thomsen T, et al. The O-demethylation of the antidementia drug 
galanthamine is catalysed by cytochrome P450 2D6. Pharmacogenetics. 1999;9:661-8. 
77. Trademark Galantamine Extended-Release Capsules. 
http://www.accessdata.fda.gov/drugsatfda_docs/label/2004/021615lbl.pdf (last access June 2011)  
78. Piotrovsky V, Van Peer A, Van Osselaer N, et al. Galantamine population pharmacokinetics in 
patients with Alzheimer's disease: modeling and simulations. J Clin Pharmacol. 2003;43(5):514-23. 
79. Lefevre G, Sedek G, Jhee SS, et al. Pharmacokinetics and pharmacodynamics of the novel daily 
rivastigmine transdermal patch compared with twice-daily capsules in Alzheimer's disease patients. 
Clin Pharmacol Ther. 2008;83(1):106-14. 
80. Cutler NR, Polinsky RJ, Sramek JJ, et al. Dose-dependent CSF acetylcholinesterase inhibition by 
SDZ ENA 713 in Alzheimer's disease. Acta Neurol Scand. 1998;97(4):244-50. 
81. Gobburu JV, Tammara V, Lesko L, et al. Pharmacokinetic-pharmacodynamic modeling of 
rivastigmine, a cholinesterase inhibitor, in patients with Alzheimer's disease. J Clin Pharmacol. 
2001;41(10):1082-90. 
82. Spencer CM, Noble S. Rivastigmine. A review of its use in Alzheimer's disease. Drugs Aging. 
1998;13(5):391-411. 
83. Mercier F, Lefevre G, Huang HL, et al. Rivastigmine exposure provided by a transdermal patch 
versus capsules. Curr Med Res Opin. 2007;23(12):3199-204. 
84. Cummings J, Lefevre G, Small G, Appel-Dingemanse S. Pharmacokinetic rationale for the 
rivastigmine patch. Neurology. 2007;69(4 Suppl 1):S10-S3. 
85. Lefevre G, Buche M, Sedek G, et al. Similar rivastigmine pharmacokinetics and 
pharmacodynamics in Japanese and white healthy participants following the application of novel 
rivastigmine patch. J Clin Pharmacol. 2009;49(4):430-43. 
86. Schran HF. The effects of renal and hepatic impairment on the disposition of the 
acetylcholinesterase inhibitor SDZ ENA 713. Pharm Res. 1996;13(PPDM 8143):S-428. 
87. EMEA. Memantine Scientific Discussion. 
http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-
_Scientific_Discussion/human/000378/WC500029674.pdf (last access Dec 2011). 
88. Periclou A, Ventura D, Rao N, Abramowitz W. Pharmacokinetic study of memantine in healthy and 
renally impaired subjects. Clin Pharmacol Ther. 2006;79(1):134-43. 
89. Liu MY, Meng SN, Wu HZ, et al. Pharmacokinetics of single-dose and multiple-dose memantine in 
healthy chinese volunteers using an analytic method of liquid chromatography-tandem mass 
spectrometry. Clin Ther. 2008;30(4):641-53. 



Chapter 1: Introduction   

43 
 

90. Mobius HJ, Stoffler A, Graham SM. Memantine hydrochloride: pharmacological and clinical profile. 
Drugs Today (Barc). 2004;40(8):685-95. 
91. Kornhuber J, Kennepohl EM, Bleich S, et al. Memantine pharmacotherapy: a naturalistic study 
using a population pharmacokinetic approach. Clin Pharmacokinet. 2007;46(7):599-612. 
92. EMEA. EPAR (european public assessment report) Axura. 
http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-
_Product_Information/human/000378/WC500029678.pdf (last access Dec 2011). 
93. Micuda S, Mundlova L, Anzenbacherova E, et al. Inhibitory effects of memantine on human 
cytochrome P450 activities: prediction of in vivo drug interactions. Eur J Clin Pharmacol. 
2004;60(8):583-9. 
94. Busch AE, Karbach U, Miska D, et al. Human neurons express the polyspecific cation transporter 
hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol 
Pharmacol. 1998 Aug;54(2):342-52. 
95. Ciarimboli G. Role of organic cation transporters in drug-induced toxicity. Expert Opin Drug Metab 
Toxicol. 2011 Feb;7(2):159-74. 
96. Freudenthaler S, Meineke I, Schreeb KH, et al. Influence of urine pH and urinary flow on the renal 
excretion of memantine. Br J Clin Pharmacol. 1998;46(6):541-6. 
97. Rao N, Chou T, Ventura D, Abramowitz W. Investigation of the pharmacokinetic and 
pharmacodynamic interactions between memantine and glyburide/metformin in healthy young 
subjects: a single-center, multiple-dose, open-label study. Clin Ther. 2005;27(10):1596-606. 
98. Human cytochrome P-450 allele nomenclature. http://www.cypalleles.ki.se (last access February 
2012). 
99. Zanger UM, Raimundo S, Eichelbaum M. Cytochrome P450 2D6: overview and update on 
pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch Pharmacol 2004;369(1):23-37. 
100. Zhou SF. Polymorphism of human cytochrome P450 2D6 and its clinical significance: Part I. Clin 
Pharmacokinet. 2009;48(11):689-723. 
101. Varsaldi F, Miglio G, Scordo MG, et al. Impact of the CYP2D6 polymorphism on steady-state 
plasma concentrations and clinical outcome of donepezil in Alzheimer's disease patients. Eur J Clin 
Pharmacol. 2006;62(9):721-6. 
102. Pilotto A, Franceschi M, D'Onofrio G, et al. Effect of a CYP2D6 polymorphism on the efficacy of 
donepezil in patients with Alzheimer disease. Neurology. 2009;73(10):761-7. 
103. Seripa D, Bizzarro A, Pilotto A, et al. Role of cytochrome P4502D6 functional polymorphisms in 
the efficacy of donepezil in patients with Alzheimer's disease. Pharmacogenet Genomics 
2011;21(4):225-30. 
104. Chianella C, Gragnaniello D, Maisano Delser P, et al. BCHE and CYP2D6 genetic variation in 
Alzheimer's disease patients treated with cholinesterase inhibitors. Eur J Clin Pharmacol. 
2011;67(11):1147-57. 
105. Dobrinas M, Eap CB. Cytochrome P4503A pharmacogenetics. HIV PGX. 2007;2(2):1-5. 
106. Siccardi M, D'Avolio A, Baietto L, et al. Association of a single-nucleotide polymorphism in the 
pregnane X receptor (PXR 63396C-->T) with reduced concentrations of unboosted atazanavir. Clin 
Infect Dis. 2008;47:1222-5. 
107. Oneda B, Crettol S, Jaquenoud Sirot E, et al. The P450 oxidoreductase is associated with 
CYP3A activity in vivo as measured by the midazolam phenotyping test. Pharmacogen Genomics. 
2009;19(11):877-83. 
108. Oleson L, von Moltke LL, Greenblatt DJ, MH C. Identification of polymorphisms in the 3'-
untranslated region of the human pregnane X receptor (PXR) gene associated with variability in 
cytochrome P450 3A (CYP3A) metabolism. Xenobiotica. 2010;40(2):146-62. 
109. Magliulo L, Dahl ML, Lombardi G, et al. Do CYP3A and ABCB1 genotypes influence the plasma 
concentration and clinical outcome of donepezil treatment? Eur J Clin Pharmacol. 2011;67(1):47-54. 



Chapter 1: Introduction   

44 
 

110. Hodges LM, Markova SM, Chinn LW, et al. Very important pharmacogene summary: ABCB1 
(MDR1, P-glycoprotein). Pharmacogenet Genomics 2011;21(3):152-61. 
111. Scacchi R, Gambina G, Moretto G, Corbo RM. Variability of AChE, BChE, and ChAT genes in the 
late-onset form of Alzheimer's disease and relationships with response to treatment with Donepezil 
and Rivastigmine. Am J Med Genet B Neuropsychiatr Genet. 2009;150B(4):502-7. 
112. Blesa R, Bullock R, He Y, et al. Effect of butyrylcholinesterase genotype on the response to 
rivastigmine or donepezil in younger patients with Alzheimer's disease. Pharmacogenet Genomics. 
2006;16(11):771-4. 
113. Harold D, Macgregor S, Patterson CE, et al. A single nucleotide polymorphism in CHAT 
influences response to acetylcholinesterase inhibitors in Alzheimer's disease. Pharmacogenet 
Genomics. 2006;16(2):75-7. 
114. Pola R, Flex A, Ciaburri M, et al. Responsiveness to cholinesterase inhibitors in Alzheimer's 
disease: a possible role for the 192 Q/R polymorphism of the PON-1 gene. Neurosci Lett. 
2005;382(3):338-41. 
115. Klimkowicz-Mrowiec A, Marona M, Spisak K, et al. Paraoxonase 1 gene polymorphisms do not 
influence the response to treatment in Alzheimer's disease. Dement Geriatr Cogn Disord. 
2011;32(1):26-31. 
116. Weiner DM, Goodman MW, Colpitts TM, et al. Functional screening of drug target genes: m1 
muscarinic acetylcholine receptor phenotypes in degenerative dementias. Am J Pharmacogenomics. 
2004;4(2):119-28. 
117. Verghese PB, Castellano JM, Holtzman DM. Apolipoprotein E in Alzheimer's disease and other 
neurological disorders. Lancet Neurol. 2011;10(3):241-52. 
118. Poirier J, Delisle MC, Quirion R, et al. Apolipoprotein E4 allele as a predictor of cholinergic 
deficits and treatment outcome in Alzheimer disease. Proc Natl Acad Sci U S A. 1995;92(26):12260-4. 
119. Winblad B, Engedal K, Soininen H, et al. A 1-year, randomized, placebo-controlled study of 
donepezil in patients with mild to moderate AD. Neurology. 2001;57(3):489-95. 
120. Rigaud AS, Traykov L, Latour F, et al. Presence or absence of at least one epsilon 4 allele and 
gender are not predictive for the response to donepezil treatment in Alzheimer's disease. 
Pharmacogenetics. 2002;12(5):415-20. 
121. Aerssens J, Raeymaekers P, Lilienfeld S, et al. APOE genotype: no influence on galantamine 
treatment efficacy nor on rate of decline in Alzheimer's disease. Dement Geriatr Cogn Disord. 
2001;12(2):69-77. 
122. Greenberg SM, Tennis MK, Brown LB, et al. Donepezil therapy in clinical practice: a randomized 
crossover study. Arch Neurol. 2000;57(1):94-9. 
123. Farlow M, Lane R, Kudaravalli S, He Y. Differential qualitative responses to rivastigmine in APOE 
epsilon 4 carriers and noncarriers. Pharmacogenomics J. 2004;4(5):332-5. 
124. Suh GH, Jung HY, Lee CU, et al. Effect of the apolipoprotein E epsilon4 allele on the efficacy and 
tolerability of galantamine in the treatment of Alzheimer's disease. Dement Geriatr Cogn Disord. 
2006;21(1):33-9. 
125. Bizzarro A, Marra C, Acciarri A, et al. Apolipoprotein E epsilon4 allele differentiates the clinical 
response to donepezil in Alzheimer's disease. Dement Geriatr Cogn Disord. 2005;20(4):254-61. 
126. Kanaya K, Abe S, Sakai M, et al. Changes in cognitive functions of patients with dementia of the 
Alzheimer type following long-term administration of donepezil hydrochloride: relating to changes 
attributable to differences in apolipoprotein E phenotype. Geriatr Gerontol Int 2010;10(1):25-31. 
127. Raskind MA, Peskind ER, Wessel T, et al. Galantamine in AD: A 6-month randomized, placebo-
controlled trial with a 6-month extension. Neurology. 2000;54(12):2261-8. 
128. Blesa R, Aguilar M, Casanova JP, et al. Relationship between the efficacy of rivastigmine and 
apolipoprotein E (epsilon4) in patients with mild to moderately severe Alzheimer disease. Alzheimer 
Dis Assoc Disord. 2006;20(4):248-54. 



Chapter 1: Introduction   

45 
 

129. Fujita T, Urban TJ, Leabman MK, et al. Transport of drugs in the kidney by the human organic 
cation transporter, OCT2 and its genetic variants. J Pharm Sci. 2006;95(1):25-36. 
130. Leabman MK, Huang CC, Kawamoto M, et al. Polymorphisms in a human kidney xenobiotic 
transporter, OCT2, exhibit altered function. Pharmacogenetics. 2002;12(5):395-405. 
131. Ogasawara K, Terada T, Motohashi H, et al. Analysis of regulatory polymorphisms in organic ion 
transporter genes (SLC22A) in the kidney. J Hum Genet. 2008;53(7):607-14. 
132. Kang HJ, Song IS, Shin HJ, et al. Identification and functional characterization of genetic variants 
of human organic cation transporters in a Korean population. Drug Metab Dispos. 2007;35(4):667-75. 
133. Zolk O, Solbach TF, Konig J, Fromm MF. Functional characterization of the human organic cation 
transporter 2 variant p.270Ala>Ser. Drug Metab Dispos. 2009;37(6):1312-8. 
134. Wang ZJ, Yin OQ, Tomlinson B, Chow MS. OCT2 polymorphisms and in-vivo renal functional 
consequence: studies with metformin and cimetidine. Pharmacogenet Genomics 2008;18(7):637-45. 
135. Chen Y, Li S, Brown C, et al. Effect of genetic variation in the organic cation transporter 2 on the 
renal elimination of metformin. Pharmacogenet Genomics 2009;19(7):497-504. 
136. Tzvetkov MV, Vormfelde SV, Balen D, et al. The effects of genetic polymorphisms in the organic 
cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clin Pharmacol 
Ther. 2009;86(3):299-306. 
137. Filipski KK, Loos Wj, Verweij J, Sparreboom A. Interaction of cisplatin with human organic cation 
transporter OCT2. Clin Pharmacol Ther. 2008;83(PI-29):S17-S8. 
138. Song IS, Shin HJ, Shim EJ, et al. Genetic variants of the organic cation transporter 2 influence 
the disposition of metformin. Clin Pharmacol Ther. 2008;84(5):559-62. 
139. Zhao Q, Tang XC. Effects of huperzine A on acetylcholinesterase isoforms in vitro: comparison 
with tacrine, donepezil, rivastigmine and physostigmine. Eur J Pharmacol. 2002;455(2-3):101-7. 
140. Yao C, Raoufinia A, Gold M, et al. Steady-state pharmacokinetics of galantamine are not affected 
by addition of memantine in healthy subjects. J Clin Pharmacol. 2005;45(5):519-28. 
 

  



Chapter 1: Introduction   

46 
 

Table 1: Pharmacodynamic properties of antidementia drugs. 

 

Cholinesterase inhibitors 

NMDA-

receptor
a
 

antagonist 

References 

Drug  Donepezil Galantamine Rivastigmine Memantine  

Mode of 

action 

Mode of 

inhibition 

Non-

competitive, 

rapidly 

reversible  

Competitive, 

rapidly 

reversible  

Non-

competitive, 

very slowly 

reversible  

Uncompetitive, 

low-affinity 

NMDA-

receptor 

antagonist  

32,51 

AChE/BuChEb 

selectivity 
300  50  1   

33,34,36,42 

Brain versus 

peripheral 

selectivity 

Yes  No  Yes  

31,34,40 

ACh isoform 

selectivity 
None   None   G1>G4  

31,32,40,139 

nAChRc 

modulation  
No  Yes  No  

32 

Major 

side 

effects 

 Nausea, vomiting, diarrhea  Dizziness, 

headache, 

constipation, 

somnolence, 

hypertension  

21,24,26 

 

a) NMDA-receptor=N-methyl-D-aspartate-receptor  

b) AChE=acetylcholinesterase, BuChE=butyrylcholinesterase 

c) nAChR=nicotinic acetylcholine receptor  
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Table 2: Steady-state pharmacokinetic parameters of antidementia drugs. 

 

a) The new dosage of 23 mg has recently been approved by the FDA for the treatment of 

moderate to severe AD. 

b) The half-life of the drug is short, but the duration of action is longer as the acetylcholinesterase 

and butyrylcholinesterase are inhibited for 8.5 h and 3.5 h, respectively, through its pseudo-

irreversible mechanism.  

c) cap=capsule, IR= immediate release, ER=extended release formulation 

average±SD. 

Drug Donepezil Galantamine Rivastigmine Memantine References 

Daily dose 
5-10 mg, 23 

mga 
16-24 mg 6–12 mg 10-20 mg  

Bioavailability 100%  100%  
35% (3 mg),  

70 % (6 mg)  
100%  41,57,70,87 

Protein binding  93%  17%  40%  45%  61,74,81,87 

t1/2  70 h 6-8 h  
1.5-2 hb (capc),  

3.4 hb (patch)  

60-70 

 

41,59,60,70,72,73

,79,80,88,89 

tmaxss  4 h  
1 h (IRc),  

4-5 h (ERc)  

1 h (capc), 

8 h (patch)  
3-8 h  60,72,79,87,140 

Cmaxss
d 

[ng ml
-1

] 

 

61 ± 10 

(10 mg/d)  

53±10  

(ERc 16 mg/d)  

30±13  

(capc 12 mg/d),  

7.9±2.9 

(patch 9.5 mg/24h)  

70-180  

(20 mg)  
60,79,91,140 

AUCss
d
 [ng h ml

-1
] 

 

 

1128±196  

(10 mg/d)  

830±177 

(ERc 16 mg/d)  

191±140 

(capc 12 mg/d), 

127±41  

(patch 9.5 mg/24h)  

386 ± 59  

(5mg)  
60,79,89,140 

CLtot
 
[L h

-1
] 10±2.5  20±5  120  5-10    81,91,96,140 

V
 
[L kg

-1
] 12 ± 2 L/kg  2.64 L/kg  1.8–2.7 L/kg  4-9   60,70,82,87,91 

Metabolism 

Hepatic 

(CYP2D6, 

CYP3A4, UGT)  

Hepatic 

(CYP2D6, 

CYP3A4, UGT)  

Esterases in liver 

and intestine  

Metabolized 

to a minor 

extent  

40,62,63,76,82,87 

Kinetics Linear  Linear  Non-linear  Linear  41,58,59,70,89 

Steady State 14-21 d  6 d 1 d 11 d 39,59,72,89 
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2.1 General objectives 
 

The objectives of this thesis are to determine pharmacogenetic factors influencing the treatment with 

antidementia drugs, focusing on drug-metabolizing enzymes and transporters. For this purpose, a 

clinical study was initiated in collaboration with different psychiatric and geriatric hospitals, outpatient 

centers and nursing homes in the cantons of Vaud, Geneva and Fribourg. Moreover, analytical 

methods have to be developed for the measurement of plasma concentrations of antidementia drugs 

in the study participants and for further use in our TDM service. 

 

2.2 Specific objectives 

2.2.1 Analytical methods 
 

The specific aims of the analytical chemistry part of the thesis are: 

 to develop a high performance liquid chromatography method with mass spectrometry detection 

(HPLC-MS) for the plasma level determination of antidementia drugs in the study participants 

(Article II, Chapter 3), 

 to transfer the HPLC-MS method to the newly acquired ultra performance liquid chromatography 

system coupled with tandem mass spectrometry (UPLC-MS/MS) for the use in the routine TDM 

service of our laboratory (Article III, Chapter 3) 

 

2.2.2 Pharmacogenetic study on antidementia drugs 
 

The specific aims of the pharmacogenetic study are: 

 to determine genetic factors influencing donepezil steady-state plasma concentrations by 

analysis of polymorphisms in CYP2D6, CYP3A, POR and NR1I2 genes, and to investigate the 

relationship of plasma concentrations and the occurrence of side effects (Article IV, Chapter 4), 

 to determine genetic factors influencing the clearance of memantine by a population 

pharmacokinetic analysis including polymorphisms in genes of organic cation transporters and 

nuclear receptors and to investigate the relationship of memantine plasma concentrations and the 

occurrence of side effects (Article V, Chapter 4), 

 to determine genetic factors influencing galantamine steady-state plasma concentrations by 

analysis of polymorphisms in CYP2D6, CYP3A and POR genes, and to investigate the 

relationship of plasma concentrations and the occurrence of side effects (Article VI, Chapter 4). 
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2.2.3 Review article 
 

The specific aims of the review article are to perform an extensive literature research on the current 

knowledge on pharmacodynamics, pharmacokinetics and pharmacogenetics of antidementia drugs 

and to summarize it for publication in an international journal (Article I, Chapter 1). 
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3.1 Clinical Study 
 

A naturalistic cross-sectional study was conducted during the period from December 2008 to March 

2011. At different psychiatric and geriatric hospitals, outpatient centers and nursing homes in the 

cantons of Vaud, Geneva and Fribourg, 303 patients were enrolled receiving for at least one month a 

treatment with the following antidementia drugs at a stable dose: donepezil (n=129), galantamine 

(n=27), rivastigmine (n=44) and memantine (n=108). One blood sampling was carried out to measure 

the steady-state plasma concentration of the drug, to conduct genetic analyses and to determine 

potential renal and hepatic impairment. Additionally, concomitant diseases, comedication, 

consumption of grapefruit, alcohol and tobacco and the presence of adverse events related to the 

antidementia treatment were recorded. The study was approved by the local ethic committees and 

written informed consent was obtained from all study participants or their legal tutors.  

 

3.2 Analytical Methods 
 

For the quantification of drugs in plasma, reliable and reproducible analytical methods are required. 

Liquid chromatography coupled to mass spectrometry is the most specific and sensitive technique that 

is presently used for drug concentration measurements. In this work, a reverse phase HPLC-MS 

method was developed and subsequently transferred to the newly acquired UPLC-MS/MS system. 

 

HPLC-MS is a powerful technique for the separation and quantification of analytes dissolved in a 

liquid. The injected sample is transported by the mobile phase through a column containing the 

stationary phase. Through interaction with the stationary phase, the analytes are retained on the 

column and, depending on their chemical properties, are eluted from the column at characteristic 

retention times. The analytes are conducted to the MS detector, where they are ionized in the source 

and analyzed in an electromagnetic field according to their mass-to-charge ratio. The UPLC-MS/MS 

technology offers several benefits compared to HPLC-MS. A shortened run time and a higher 

resolution are achieved by the use of smaller columns packed with sub-2-µm particles in combination 

with a system that allows to work at high pressures and with low dispersion. Moreover, the MS/MS 

detector increases the specificity of the method. Since two mass spectrometer selections are involved 

in the detection, separated by a collision cell where a fragmentation of the molecule takes place, the 

MS/MS determines specifically the mass of the analyte and its characteristic fragment. 

 

To analyze drugs in plasma, a sample clean-up is needed prior to injection into the chromatography 

system. Through the sample preparation, interfering substances as well as particles or proteins that 

could precipitate in the system are removed from the matrix, thus, the quality of the results are 

improved, and the instrument performance and column life time are prolonged. In this work, a sample 
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preparation by solid phase extraction (SPE) was used for the HPLC-MS procedure, whereas the 

increased specificity allowed a simple protein precipitation for the UPLC-MS/MS procedure. 

 

It is important that the applied bioanalytical methods are well characterized and fully validated. The 

objective of a method validation is to give guarantees that measurements performed in routine will be 

close to the unknown true value of the sample and inside acceptance limits that were set according to 

the intended application of the method.60 In this work, the method validations were conducted in 

accordance  with   the   international  guidelines  of   the  FDA,   the  EMEA  and   the   “Société  Française  des  

Sciences  Techniques  Pharmaceutiques”.60-62 The decision to accept a bioanalytical method is based 

on different validation parameters, including accuracy, precision, selectivity, matrix effects and stability 

of the compounds in the biological matrix and in the working solutions.  

Once the analytical method has been validated, its accuracy and precision should be regularly 

monitored to ensure that the method continues to perform satisfactorily during routine use. Therefore, 

internal quality control samples are added to each  run  of  patients’  samples  and  external  quality  control  

samples are analyzed several times per year. 

 

Details of the development and validation of the HPLC-MS and UPLC-MS/MS procedures for the 

simultaneous determination of antidementia drugs are described in Article II and III (Chapter 3.4 and 

3.5). 

 

3.3 Genetic Methods 
 

In this work, the patients were genotyped for selected SNPs by real-time polymerase chain reaction 

(PCR)  with  5’-nuclease allelic discrimination assays, also known as TaqMan SNP genotyping assays. 

With the PCR technique, a selective enrichment of a specific DNA sequence by a factor of one million 

is feasible.63 PCR amplification involves two oligonucleotide primers that flank the DNA segment to be 

amplified and repeated cycles of heat denaturation of the DNA, annealing of the primers to their 

complementary sequences and extension of the primers with a thermostable DNA polymerase.63 

Since the two resulting extension products are also complementary to and capable of binding primers, 

each successive cycle essentially doubles the amount of DNA synthesized in the previous cycles, 

leading to an exponential accumulation of the specific target fragment over the approximately 40 

cycles used in a PCR reaction.63 

For genotyping with the TaqMan technique, two differentially labeled fluorescent TaqMan probes are 

added to the PCR reaction, that are designed as perfect matches to either of the two allelic variants 

(Figure 7).64 During each amplification cycle, the TaqMan probes hybridize to its complementary target 

region   and,   during   the   primer   extension   step,   is   cleaved   by   the   5’-nuclease activity of the DNA 

polymerase. Thereby, the quencher and fluorescent reporter are separated. As a result, the reporter 
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fluorescent signal can be measured quantitatively for each of the two allele-specific TaqMan probes. 

The fluorescent intensity increases with each subsequent amplification cycle.64 

 

 

Figure 7: a.The  5’-nuclease activity of the polymerases used in the PCR reaction cleaves the TaqMan probes 
during the amplicon extension step, which separates the detecable reporter fluorophore (R) from the quencher 
(Q). b. The emitted fluorescence is measured at each PCR cycle for the two TaqMan probes. Homozygous 
subjects for the allele 1, heterozygous subjects and homozygous subjects for the allele 2 can be differentiated. 
Picture adapted from Koch WH, Nat Rev Drug Discov, 2004;3(9):749-61. 
 

CYP2D6 gene deletion or multiplication (CYP2D6*5 and CYP2D6*xN) was determined by the 

CYP2D6 TaqMan copy number assay. For this analysis, two labeled TaqMan probes are used, one 

probe detects a sequence in the target gene, whereas the other probe detects a sequence on a gene 

that is known to exist in only two copies in the genome. By relative quantification of the emitted 

fluorescence, the number of CYP2D6 gene copies is assigned. Moreover, the presence of gene 

multiplication was confirmed by long PCR analyses followed by amplicon separation through gel 

electrophoresis, according to the method of Løvlie et al.65 In patients with multiple gene copies, an 

additional amplicon with a specific length is detected, corresponding to a sequence of the CYP2D6-

CYP2D6 intergenetic region. 
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3.4 Article II: Simultaneous determination of antidementia drugs in human plasma for 
therapeutic drug monitoring 
 
Summary 
In this article, an HPLC-MS method for the quantification of antidementia drugs in human plasma is 

described. The analytical method allows the simultaneous determination of donepezil, galantamine, 

rivastigmine and its major metabolite NAP 226-90, and memantine at therapeutic concentrations, with 

lower limits of quantifications at 1 ng/mL or 2 ng/mL. The analytical procedure met the validation 

criteria of international guidelines and showed to be reliable and reproducible in the following 

analyses. It was successfully applied to the plasma samples of the 300 participants of the 

pharmacogenetic study as well as to external quality control samples and samples of other 

laboratories with known concentrations. 

 

 

 

 

 

Article published in Therapeutic Drug Monitoring 2011, 33: 227-238 
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Abstract 

Backgrounds: A simple liquid chromatography mass spectrometry method was developed and 

validated for the simultaneous determination of antidementia drugs including donepezil, galantamine, 

rivastigmine and its major metabolite NAP 226-90, and memantine.  

Methods: A solid phase extraction procedure with a mixed-mode sorbent was used to isolate the 

drugs from 0.5 mL human plasma. Reverse-phase chromatographic separation of the compounds was 

obtained with a gradient elution of an ammonium acetate buffer at pH 9.3 and acetonitrile and the 

analytes were detected by mass spectrometry in the single ion monitoring mode.  

Results: The method was validated according to the recommendations of the FDA, including 

assessment of trueness (-8.0 to +10.7 %), precision (repeatability: 1.1 to 4.9%, intermediate precision: 

2.1 to 8.5 %), selectivity and matrix effects variability (<6%), as well as short- and long-term stability in 

plasma. The calibrated ranges were comprised between 1 ng/mL to 300 ng/mL (rivastigmine and 

memantine) and 2 ng/mL to 300 ng/mL (donepezil, galantamine and NAP 226-90).  

Conclusions: The   method   was   successfully   applied   to   patients’   samples   and   might   contribute   to  
evaluate whether a Therapeutic Drug Monitoring (TDM) guided dose adjustment of antidementia drugs 

could contribute to minimize the risk of adverse reactions and to increase the probability of efficient 

therapeutic response. 

 

1. Introduction 

Alzheimer’s   disease   (AD)   is   the   most   frequent   type   of   dementia   among   elderly   people.   It   is  

characterized by a progressive cognitive and functional decline associated with neuropathologic 

lesions and neurochemical alterations such as a cholinergic deficit and glutamatergic overstimulation 

of postsynaptic N-methyl-D-aspartate (NMDA) receptors. The neurochemical changes in AD are the 

basis for the symptomatic treatment with the four drugs currently used. Donepezil, galantamine and 

rivastigmine are inhibitors of the acetylcholinesterase, increasing the concentration and duration of 

action of acetylcholine in the brain, whereas memantine, an NMDA-antagonist, reduces the 

glutamatergic overstimulation.1,2 The chemical structures of the four drugs and the major metabolite of 

rivastigmine, NAP 226-90, are presented in Fig. 1. 

Even though the benefit of Therapeutic Drug Monitoring (TDM) of antidementia drugs still remains to 

be demonstrated, several factors indicate that TDM might be useful for these drugs.3 Patients taking 

antidementia drugs show a high inter-individual variability in their response to treatment,4-6 which might 

partly be due to the observed inter-individual differences in plasma concentrations triggered by 

variations in drug metabolism and elimination.7-9 Donepezil and galantamine are metabolized by the 

cytochrome P450 3A (CYP3A) and 2D6 (CYP2D6) enzymes, known for their high inter-individual 

differences in activity10-12. Genetic variations in the CYP2D6 have been shown to influence plasma 

levels of these two drugs.7,13 In contrast, variability in renal elimination accounts probably for the inter-
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individual differences in plasma concentrations of memantine, since it is mainly excreted unchanged 

by the kidneys.14 It is supposed that genetic variations in transporters involved in the active tubular 

secretion of the drug could have an impact on its plasma levels.15,16 Rivastigmine is extensively 

metabolized by cholinesterases to NAP 226-90, an inactive and non-toxic metabolite. However, this 

inactive metabolite is an indicator of the extent of metabolism of rivastigmine, in particular of the first 

pass effect, and therefore it might be beneficial to quantify NAP 226-90 in the plasma.17 Moreover, 

comorbidities, primarily renal and hepatic impairment, and polymedication leading to drug interactions, 

make elderly people susceptible to changes in plasma levels of the drugs. All these factors let assume 

that an individually adapted dosage through monitoring of the plasma concentrations might be 

beneficial for patients treated with antidementia drugs. Furthermore, non-adherence to the therapy 

due to the decline in cognitive function is a particular problem in geriatric patients.18 Detected by TDM, 

this problem could be overcome by supervision of drug intake. 

Up to now, no method has been published that allows the simultaneous quantification of the four 

commonly used antidementia drugs in plasma. However, different chromatographic methods are 

described to determine the single compounds in human blood, sometimes with their related 

metabolites. Although some methods are described using gas chromatography,19,20 the majority uses 

liquid chromatography coupled with tandem mass spectrometry,21-31 ultraviolet (UV)32,33 or 

fluorescence detection.12 In case of mass spectrometry (MS), the analysis is mostly done by 

electrospray in the positive mode (ESI+)21,23,26,27 rather than by atmospheric pressure chemical 

ionization.22,31 Several different extraction procedures are described in the literature comprising of 

liquid-liquid extraction,26,32 solid phase extraction (SPE)21,24,33 and protein precipitation.23 Moreover, 

one capillary electrophoresis method using UV detection has been published, describing the 

simultaneous determination of galantamine, rivastigmine and NAP 226-90 for drug monitoring.34 The 

use of isotope-labeled internal standards to increase the robustness of the method is described in two 

of the published methods.25,29 Since most of these analytical methods are developed for 

pharmacokinetic studies after single doses,21,22,26-28,32,33 the covered concentration ranges are narrow 

and would not be adequate for TDM in steady state conditions of different dosages, where a large 

range of plasma concentrations is expected. 

The objective of the present work was to develop and validate a rapid and sensitive LC-MS method for 

the simultaneous determination of antidementia drugs in human plasma for the routine use in a TDM 

laboratory. The compounds were detected by MS in ESI+ mode, which is reported to be sensitive to 

matrix effects.35,36 Therefore, a mixed-mode cation exchange SPE, a powerful clean-up procedure, 

was chosen to isolate the drugs from the plasma prior to analysis. Furthermore, for three of the five 

compounds isotope-labeled standards were used for quantification, known to effectively normalize 

matrix effects.37 The method was successfully validated according to the guidelines of the Food and 

Drug Administration (FDA) and applied to samples of a real population treated with antidementia 

drugs. 
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2. Experimental 

2.1 Chemicals and reagents 

The drugs were kindly provided by their manufacturers: donepezil HCl by Eisai Co., Ltd (Tokyo, 

Japan), galantamine HBr by Janssen-Cilag (Beerse, Belgium), memantine HCl by Merz 

(Frankfurt/Main, Germany), rivastigmine hydrogen tartrate and its metabolite NAP 226-90 by Novartis 

(Basel, Switzerland). The internal standards (IS) [2H7]-donepezil, [13C,2H3]-galantamine HCl, [13C2,2H6]-

memantine HCl and [2H6]-rivastigmine hydrogen tartrate (not used in the final method) were purchased 

from Alsachim (Strasbourg, France). Lichrosolv® HPLC-grade acetonitrile, hydrochloric acid (37%) and 

ortho-phosphoric acid (85%) were purchased from Merck (Darmstadt, Germany). Ammonium 

hydroxide (25%), ammonium acetate for MS, formic acid for MS and physostigmine hemisulfate 

(eserine) were bought from Sigma-Aldrich (Steinheim, Germany). Ultrapure water was obtained from a 

Milli-Q® RG with a QPAQ2 column system (Millipore, Billerica, MA, USA). All chemicals were of 

analytical grade. For the preparation of calibration standards (CS) and quality control (QC) samples 

and the evaluation of matrix effects, more than 10 different batches of human plasma from outdated 

blood  donation   units  were   obtained   from   the  Hospital’s   blood   transfusion   center   (CHUV,   Lausanne,  

Switzerland). 

2.2 Equipment 

The liquid chromatography system consisted of an Agilent Series 1100 LC equipped with a binary 

pump and a 100-vial autosampler (Agilent Technologies, Waldbronn, Germany), with a measured 

dwell volume of 1.05 mL. Data handling and instrument control were performed by the Chemstation 

software B.01.01 (Agilent Technologies). The chromatographic system was coupled to an Agilent 

Series 110 MSD single quadrupole mass spectrometer (Agilent Technologies) equipped with an 

electrospray ionization interface operated in positive ionization mode (ESI+). Chromatographic 

separations  were  performed  on  an  XBridge  C18  column  (2.1  x  100  mm;;  3.5  μm)  (Waters,  Milford,  MA,  

USA)  equipped  with  an  XBridge  C18  cartridge  (2.1  x  10  mm;;  3.5  μm).  Analyses  were  carried  out  in  an  

air conditioned room at 22°C. 

2.3 Stock and working solutions 

Stock solutions of the analytes were prepared at 1 mg/mL (as base) by dissolving the adequate 

amount of the pure analyte in methanol and were stored at -20°C. By dilution of the stock solutions 

with 0.01 N HCl,  working  solutions  at  100  μg/mL  were  obtained  and  were  stored  at  -20°C. Calibrators 

(CS) and quality control (QC) samples were prepared independently by spiking blank plasma at 

different concentrations with freshly made dilutions of the working solution at 0.1, 1 and 10 g/mL. CS 

and QC were analyzed immediately or stored at -20°C until analysis. The stock solutions of the IS 

were prepared at 1 mg/mL in methanol and stored at -20°C. They were combined to give a single IS 

working  solution  at  0.5  μg/mL  that was likewise stored at -20°C. 
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To competitively inhibit the enzymatic in-vitro hydrolysis of rivastigmine to its metabolite NAP 226-90 

by  plasma  cholinesterases,  50  μL  of  a  0.002  M physostigmine solution was added to every 1 mL of 

plasma and used for the preparation of CS and QC samples.29 

2.4 Sample preparation 

Plasma  samples  (500  μL)  were mixed  with  50  μL  of  IS  solution  and  diluted  with  500  μL  of  a  4%  ortho-

phosphoric   acid   solution.   1000   μL   of   the  mixture   were   loaded   onto   an   Oasis   MCX   10  mg   96-well 

extraction plate (Waters, Milford, MA, USA) previously conditioned and equilibrated with 500 μL  

acetonitrile  and  500  μL  water.  Subsequently,  two  washing  steps  were  performed  with  500  μL  of  a  2%  

formic   acid   solution   followed   by   500   μL   acetonitrile.   The   compounds  were   then   eluted  with   500   μL  

acetonitrile/ammonium hydroxide 25% (80:20, v/v). After each step a low vacuum was applied until the 

wells were dry. The extracted samples were evaporated (N2 flow,  40°C)  and  reconstituted  in  250  μL  of  

the mobile phase at initial conditions, namely 50 mM ammonium acetate at pH 9.3 and acetonitrile 

(80:20, v/v), prior to injection into the chromatographic system. 

2.5 LC-MS conditions 

To set up the parameters for chromatographic separation, the HPLC modeling software OSIRIS 

Version 4.1 (Datalys, Grenoble, France) was used. The most suitable separation was achieved at a 

flow rate of 0.3 mL/min with a mobile phase composed of 50 mM ammonium acetate in ultrapure water 

adjusted to pH 9.3 (solution A) and acetonitrile (solution B) using the following stepwise elution 

program with an overall run time of 15 min: 20% of B maintained for 1 min, 33% of B at 1.4 min, 41% 

of B at 2.4 min, 56% of B at 4.2 min and a hold of 80% of B from 4.9 min to 6.5 min. The gradient was 

followed by rinsing with 90% of B from 6.7 to 8.2 min and a reconditioning step at the initial conditions 

from  9.2  to  15  min.  Of  each  sample  5  μL  were  injected. 

Detection was performed in the selected ion monitoring (SIM) mode for the singly charged positive 

ions at m/z 380.1 (donepezil), 288.1 (galantamine), 206.1 (rivastigmine), 121.1 (NAP 226-90), 180.1 

(memantine), 387.2 [2H7]-donepezil, 292.1 [13C,2H3]-galantamine and 188.2 [13C2,2H6]-memantine. 

Nitrogen was used as nebulizing gas at 20 psi and as drying gas at a temperature of 350°C and a flow 

rate of 12 L/min. Capillary voltage was set at 1250 V and the fragmentor voltage at 150 V, 130 V, 160 

V, 140 V and 100 V for donepezil, galantamine, rivastigmine, NAP 226-90 and memantine, 

respectively. Dwell time for each ion was 24 ms. In Table 1 the optimized individual fragmentor 

settings are listed together with the m/z-ratios of the compounds.  

2.6 Method validation 

The method validation was based on the guidelines for Bioanalytical Method Validation published 

online by the FDA,38 as well as on the recommendations of   the  “Société  Française  des  Sciences  et  

Techniques   Pharmaceutiques”.39 The draft version of the guidelines for method validation of the 

European Medicines Agency (EMEA) was also taken into consideration.40 

2.6.1 Selectivity, carry-over and psychiatric co-medication 
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Method selectivity was ascertained by analyzing 10 blank plasma batches for interfering peaks at 

retention times of the analytes. Possible carry-over effects were assessed by injecting blank plasma 

samples after the highest calibration standard at 300 ng/mL. 

Additionally, the following psychiatric drugs, and some of their metabolites, were extracted and 

analyzed with the same method to investigate the influence of potential co-medication: amitriptyline, 

amisulpride, aripiprazole, atomoxetine, dehydro-aripiprazole, bupropion, 3-hydroxy-bupropion, 

caffeine, chlorpromazine, citalopram, desmethyl-citalopram, clomipramine, desmethyl-clomipramine, 

clopenthixol, clozapine, N-oxid-clozapine, norclozapine, desipramine, duloxetine, fluoxetine, 

norfluoxetine, flupenthixol, fluvoxamine, haloperidol, imipramine, loxapine, maprotiline, mianserin, 

desmethyl-mianserin, midazolam, 1-hydroxy-midazolam, mirtazapine, 8-hydroxy-desmethyl-

mirtazapine, moclobemide, N-oxid-moclobemide, 3'-oxo-moclobemide, morphine, nicotine, 

nortriptyline, olanzapine, paroxetine, quetiapine, reboxetine, risperidone, 9-hydroxy-risperidone, 

sertindole, dehydro-sertindole, sertraline, desmethyl-sertraline, sulpiride, trimipramine, desmethyl-

trimipramine, trazodone, venlafaxine, O-desmethyl-venlafaxine, N-desmethyl-venlafaxine, N-O-di-

desmethyl-venlafaxine and ziprasidone. In case of similar retention times as the antidementia drugs, 

suppression of the signal was assessed by comparing peak area of the analyte at 100 ng/ml alone 

with the peak area of the analyte when injected with the potential interfering compound at a high 

therapeutic concentration. 

2.6.2 Matrix effects and recovery 

Primarily, matrix effects were investigated qualitatively by simultaneous post-column infusion of the 

analytes and IS into the MS detector during chromatographic analyses of 6 different blank plasma 

extracts, water and mobile phase.35,41 The analytes and their IS were infused at a concentration of 1 

μg/mL   and   a   flow   rate   of   2   μL/min.   The   chromatographic   signal   of   each   analyte   was   carefully  

examined to ascertain that there is no signal suppression or enhancement at the retention time due to 

interfering substances. 

Subsequently, matrix effects and recovery were assessed quantitatively at low (10 ng/mL) and high 

concentration levels (150 ng/mL for donepezil, rivastigmine and NAP 226-90, 300 ng/mL for 

galantamine and memantine) and at 50 ng/mL for the IS based on the approach of Matuszewski.42 

The following three sets of samples were prepared:  

(A): Pure standard solution samples of the analytes and IS in the SPE reconstitution solvent 

(acetonitrile/buffer 20:80) injected directly onto the column 

(B): Duplicates of plasma extract samples from 6 different sources spiked with the analytes and IS 

after extraction 

(C): Duplicates of plasma samples from 6 different sources (same as B) spiked with the analytes and 

IS before extraction. 
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The matrix effect (ME) was evaluated for each analyte and IS by calculating the ratio of the peak area 

in the presence of the matrix (samples spiked after extraction) to the peak area in absence of the 

matrix (pure standard) and expressed in percentage (ME = B/A). The recovery of extraction (RE) in 

the matrix was determined by comparing the peak area of the pre-extraction spiked (C) to the post-

extraction spiked samples (B) (RE = C/B). The overall process efficiency (PE), taking into account ME 

and RE, was assessed by calculating the ratio of the peak area of the pre-extraction spiked samples 

to the peak area of the pure standard (PE = C/A). Of all three parameters, the variability between the 

different plasma batches was evaluated and expressed as coefficient of variation (CV %). 

2.6.3 Trueness and precision 

Three validation series were carried out to examine trueness and precision of the method. CS were 

set in duplicate at 4 levels and QC samples in quadruplicate at 8 different levels covering the expected 

range of concentrations in patients.9,11,17,43 CS 1, 20, 100, 300 ng/mL for memantine and rivastigmine 

and 2, 20, 100, 300 ng/mL for donepezil, galantamine and NAP 226-90; QC 2, 5, 20, 50, 100, 200, 

300 ng/mL for donepezil, 1, 2, 5, 20, 50, 100, 200, 300 ng/mL for memantine and rivastigmine and 2, 

4, 10, 20, 50, 100, 200, 300 ng/mL for galantamine and NAP 226-90. Calibration curves were freshly 

prepared and established for each batch considering the peak area ratio of the analytes and their IS. 

[2H7]-donepezil, [13C,2H3]-galantamine and [13C2,2H6]-memantine were used as IS for their target 

analyte, whereas [13C,2H3]-galantamine was also found to be a suitable IS for rivastigmine and NAP 

226-90. The QC samples were analyzed against the calibration curve of the same run and the 

trueness of the obtained value was expressed as percentage of the nominal value. Repeatability 

(intra-day variance) and intermediate precision (sum of intra-day and inter-day variances) were 

calculated and expressed as coefficients of variation (CV %).44 In accordance to the above-mentioned 

guidelines, the lower limit of quantification (LLOQ) for each analyte was determined by the lowest QC 

concentration  with  a  trueness  and  precision  of  ≤20%. 

To  establish  a  procedure  if  patients’  plasma  levels  exceed  the  concentration of the highest calibration 

standard at 300 ng/mL, the trueness and precision of a three-fold dilution of spiked plasma at 600 

ng/mL was assessed. The dilution was carried out with blank plasma. 

2.6.4 Stability 

Stability of the compounds in plasma was assessed by spiking 5 different blank plasma batches at low 

(2ng/mL for memantine and rivastigmine, 4 ng/mL for donepezil, galantamine and NAP 226-90) and 

high concentration (250 ng/mL). Different sets of aliquots were quantified after storage at ambient 

temperature and at 5°C up to 72 hours, at -20°C for 3 months, and after one to three freeze-thaw 

cycles. The variations in drug concentrations were expressed as percentage of the initial concentration 

found in the samples analyzed immediately after preparation.  

Furthermore, the post-preparative stability was assessed by leaving the processed samples up to 24 h 

at room temperature as well as 48 h at 5°C before reanalysis. The calculated concentrations after 

immediate analysis and after storage of the same samples were compared. 
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Finally, the stability in spiked whole K-EDTA blood was tested at 100 ng/mL for donepezil, 

galantamine and memantine and at 10 ng/mL and 250 ng/mL for rivastigmine and NAP 226-90 by 

leaving the samples up to three days at room temperature. To stop the in vitro degradation of 

rivastigmine  by  plasma  cholinesterases,  10  μL  of  a  physostigmine  solution  at  0.01  M was added to 

every 1 mL of blood. 

 

3. Results and Discussion 

3.1 Solid-phase extraction 

To extract the basic drugs from the plasma, a solid phase extraction procedure with a mixed-mode 

sorbent was chosen, since the combination of hydrophobic interactions and cation-exchange leads to 

an enhancement of selectivity. The use of different organic solvents as well as different washing steps 

was investigated. Satisfactory results regarding recovery, repeatability and selectivity were obtained 

by using a generic protocol with acetonitrile as organic solvent and formic acid as washing solution. 

The recoveries, presented in Table 2, were comprised between 88 and 98% with good repeatability 

(CVs between 1 and 6%). By evaporation of the elution solvent and reconstitution of the drugs in the 

mobile phase, a twofold concentration step was performed, allowing the quantification of lower plasma 

concentrations. Moreover, the peak shape was thereby improved compared to the injection of the pure 

elution solvent or the elution solvent diluted with water (50:50). The selected SPE procedure is rapid 

and could be easily automatable,  using  500  μL  of  plasma. 

3.2 Optimization of chromatographic and MS conditions 

Different mobile phase compositions were assessed on reverse phase columns using acetonitrile or 

methanol and buffers ranging from pH 3 to pH 10. For the studied drugs, acidic conditions were less 

suitable than basic conditions, as the more polar bases, namely NAP 226-90 and galantamine, were 

eluted rapidly therefore increasing the risk of interferences with unretained matrix components. 

Moreover, the peak shapes were better in basic conditions. These observations are in agreement with 

literature reports.45,46 The most suited chromatographic separation of the five compounds was 

achieved by a gradient elution using as mobile phase an ammonium acetate buffer 50 mM at pH 9.3 

and acetonitrile as organic solvent. As stationary phase, an XBridge C18 column was selected due to 

the satisfactory selectivity results and its stability under basic conditions. Three different 

concentrations of ammonium acetate buffer (20 mM, 50 mM and 100 mM) were tested. Interestingly, 

the concentration of the buffer had an important influence on the selectivity with the most satisfactory 

result at 50 mM. In addition, the higher concentration of ammonia acetate increased the reproducibility 

of the chromatographic separation with increasing age of the column. With the selected LC conditions, 

the overall run time was 15 min. The typical retention times of the analytes are listed in Table 1 and a 

chromatogram of a QC plasma sample of the 5 compounds and the IS at 50 ng/mL is shown in Fig. 2. 
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The use of pure isotope-labeled internal standards is highly recommended in LC-MS analysis in order 

to compensate signal suppression or enhancement due to matrix components and variability in 

extraction procedure.37,47 In the described method the isotope-labeled IS [2H7]-donepezil, [13C,2H3]-

galantamine and [13C2,2H6]-memantine were used for quantification of their corresponding co-eluting 

analytes, whereas [13C,2H3]-galantamine was also chosen as IS for rivastigmine and NAP 226-90 for 

the following reasons: the fragment ions of rivastigmine and NAP 226-90 were used for quantification 

as they had a higher intensity than the molecule ions, allowing an increase in sensitivity for the two 

compounds. Since [2H6]-rivastigmine and rivastigmine have the same fragment ion at m/z 206, the 

deuterated   standard   couldn’t   be   used   as   IS   for   rivastigmine.   Moreover,   for   the   metabolite   of  

rivastigmine, NAP 226-90, no isotope-labeled standard was commercially available. Thus, after having 

verified that there is no signal suppression from galantamine on [13C,2H3]-galantamine at the highest 

CS at 300 ng/mL, [13C,2H3]-galantamine was used as IS for rivastigmine and NAP 226-90. The 

following MS settings were evaluated to find the optimal ionization conditions: nebulizing gas pressure 

(20-60, selected 20 psi), drying gas temperature (200-350, selected 350°C), drying gas flow rate (7-

13, selected 12 L/min) and capillary voltage (1250-4000, selected 1250 V).  

3.3 Validation 

3.3.1 Selectivity, carry-over and psychiatric co-medication 

No peaks from endogenous compounds were observed at the drugs retention time in any of the 10 

blank plasma extracts evaluated. However, a slight carry-over effect of 0.1% for donepezil was 

observed. With the highest CS at 300 ng/mL, this memory effect is acceptable as it corresponds to 

less than 20% of the concentration at LLOQ. For the other compounds, no carry-over was detected.  

Due to several co-morbidities, patients taking antidementia drugs often receive multiple co-

medications that could potentially lead to analytical interferences. Therefore, the influence of possible 

psychiatric co-medication on the determination of plasma levels of antidementia drugs was assessed. 

For this purpose, several antidepressant and antipsychotic drugs, and some of their metabolites, were 

extracted with the same method and their retention time was recorded. Four substances co-eluted 

with the compounds of interest, namely donepezil with bupropion, rivastigmine with risperidone, and 

memantine with 3-hydroxy-bupropion and 9-hydroxy-risperidone. However, they were distinguished by 

MS detection and no clinically significant signal suppression was observed for the antidementia drugs 

when injected with these compounds. Since the co-medication of elderly patients is not restrained to 

psychiatric drugs, the present assessment of interferences is not exhaustive and during routine use of 

the method, special attention should be paid to this issue. Nevertheless, it is supposed that, for 

donepezil, galantamine and memantine, the co-eluting isotope-labeled internal standards normalize 

the signal suppression. 

3.3.2 Matrix effects  

By means of direct infusion of the drug substances and the IS into the MS detector during analysis of 

6 different blank plasma batches, qualitative signal suppression and enhancement was assessed. No 
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interferences were apparent at the retention times of the analytes and IS. In Fig. 3 the corresponding 

chromatograms are presented. 

In the quantitative assessment of interfering plasma components, slight matrix effects were observed 

ranging from 85 to 114%. When normalized by their co-eluting isotopic-labeled IS, the matrix effects 

were considerably smaller ranging from 91 to 104% (data not shown). However, even more important 

than having low matrix effects, is having a low variability of these effects between the different plasma 

batches. With the selected extraction procedure this aim was achieved, as the variability between the 

6 different plasma sources never exceeded 5%. The results are reported in Table 2. 

Finally, the process efficiencies, describing the overall recovery taking the extraction recovery and the 

matrix effects into account, were comprised within 82 and 111% with CVs ranging from 1 to 6%.  

3.3.3 Trueness and precision 

Three validation series were performed on three different days. Eight CS were used for each 

compound covering the range from 1 to 300 ng/mL for donepezil, memantine and rivastigmine and 

from 2 to 300 ng/mL for galantamine and NAP 226-90. Different calibration curve models were tested 

and the following four point calibration curves were selected: 1, 20, 100 and 300 ng/mL for 

rivastigmine and memantine using a quadratic regression model and a linear regression weighted by 

1/x, respectively; 2, 20, 100, 300 ng/mL for donepezil, NAP 226-90 and galantamine using a quadratic 

regression model for donepezil and linear regression models for NAP and galantamine weighted by 

1/x2 and 1/x, respectively.  

The trueness, repeatability and intermediate precision of the back calculated QC samples are reported 

in Table 3. For all QC samples, the determined trueness met the acceptance criterion of ±15% (LLOQ 

±20%); except for donepezil at 1 ng/mL the trueness was 128%. However, the criterion for donepezil 

was met at 2 ng/mL. Overall, the repeatability and intermediate precision did not exceed the required 

limit   of   ≤15%   (LLOQ   ≤20%).   Consequently,   the   LLOQ   was   set   at   1   ng/mL   for   rivastigmine   and  

memantine and at 2 ng/mL for donepezil, NAP 226-90 and galantamine. For rivastigmine and its 

metabolite a low LLOQ is mandatory given the short half life of the drug.17 By contrast, for the other 

three drugs the LLOQ is well below the expected therapeutic concentrations of patients. The 

corresponding accuracy profiles with acceptance limit (= 30%), and with upper and lower -

expectation tolerance intervals ( = 90%) calculated for each compound in the dosing range are 

shown in Fig. 4. 

Three-fold dilutions of spiked plasma at concentrations exceeding by two-fold the highest calibration 

levels were found to be in the accepted range of the accuracy profile (not shown in Fig. 4). This 

indicates that plasma samples containing antidementia drugs above the highest level of calibration 

can be adequately diluted with blank plasma prior to LC-MS analysis. 

To assess linearity of the method, a linear regression model was applied to the recalculated QC 

concentrations vs. theoretical concentrations. The following slopes 0.983, 0.983, 1.024, 0.986 and 
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0.990, and intercepts 0.389, 1.745, -0.721, 2.302 and 1.445 were found for donepezil, galantamine, 

rivastigmine, NAP 226-90 and memantine, respectively. The corresponding determination coefficients 

were 0.991, 0.998, 0.996, 0.995, 0.999, indicating that the developed method was linear for the tested 

compounds. 

3.3.4 Stability 

As reported in Table 4, the stability of the analytes in plasma was confirmed at room temperature and 

at 4°C up to 72 h as well as at -20°C for three months. The variation over time of each analyte was 

well within the required range of ±15% of the initial concentration. Furthermore, all of the analytes 

were found to have a good stability in plasma even after three freeze and thaw cycles. The stability of 

the compounds in the extracted samples was ascertained by leaving the vials for 24 h at room 

temperature and for 48 h at 5°C. 

To establish shipping conditions, the stability of the drugs in whole K-EDTA blood left at room 

temperature up to three days was investigated. The stability up to 72 h was confirmed for donepezil 

and galantamine, as well as for rivastigmine when physostigmine was immediately added to the blood 

samples to inhibit enzymatic breakdown. In contrast, NAP 226-90 was found to be unstable in whole 

blood with a mean decrease for the high concentration of -15% after 8 h and -38% after three days. 

For the determination of the metabolite NAP 226-90, a rapid centrifugation is necessary to stop the 

degradation process. Interestingly, for memantine an increase of 17% and 20% was observed after 

two and three days, respectively. Therefore, a centrifugation step within 24 h is preferable for the 

precision of the measurement. A possible explanation of this raise could be the hemolysis of blood 

cells during storage and therefore a release of drug substance into the plasma. A deeper investigation 

of this phenomenon would be outside the scope of the present work. 

 

4. Clinical Application 

The presence of several comorbidities, drug interactions due to polypharmacy, and variations in drug 

metabolism are possible factors leading to the high inter-individual variability in plasma levels 

observed in patients treated with antidementia drugs. Since a lack of clinical response or the presence 

of adverse events could be due to non-optimal plasma levels of the drugs, TDM might be a valuable 

tool to individually adapt the dosage of antidementia drugs. The developed analytical method showed 

to be reliable and sensitive for monitoring plasma concentrations of antidementia drugs. It is currently 

applied to samples from participants of a pharmacogenetic study investigating the influence of genetic 

variations in drug metabolizing enzymes and drug transporters on the plasma concentrations of 

antidementia drugs. Some examples of measured plasma levels are shown in Table 5. Additionally, a 

representative  patient’s  chromatogram  for  each  drug  is  shown  in  Fig.  5. 
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5. Conclusion 

A simple LC-MS method for the simultaneous quantification of donepezil, galantamine, rivastigmine 

and its metabolite, and memantine was developed and validated according to the FDA guidelines. The 

drugs were extracted from plasma by a simple SPE procedure, hereby removing efficiently 

endogenous interfering components from the matrix. The HPLC-MS method allows a fast 

quantification of the five compounds over a concentration range usually measured in patients, which 

was confirmed by applying the method to real  patients’  samples.   
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Figure 1: Chemical structures of the antidementia drugs and the metabolite NAP 226-90. 

 

 

Figure 2: Selected ion monitoring chromatogram of a QC plasma sample at 50 ng/ml for all 

compounds and IS.  
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Figure 3: Chromatogram of 6 blank plasma extracts with post-column infusion of the analytes.  



Chapter 3: Methods   

78 
 

 

 

Figure 4: Accuracy profiles within the acceptance limit (=  30%), and with upper and lower -

expectation tolerance intervals ( = 90%) for each compound in the dosing range. 
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Figure 5: Representative chromatograms of patients receiving different antidementia drugs a) 

donepezil (60 ng/ml), b) galantamine (73 ng/ml), c) rivastigmine (5 ng/ml, NAP 226-90 3 ng/ml) and d) 

memantine (108 ng/ml).  
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Table 1: Indivual MS settings and typical retention times of the analytes. 

 [M+H]+ 

(m/z) 
Fragment 
ion (m/z) 

Fragmentor 
Voltage (V) 

tR (min)b 

Donepezil 380.1a   150 9.0 

Rivastigmine 251.1 206.1a 160 7.8 

     

NAP 226-90 166.1 121.1a 140 3.7 

Galantamine 288.1a  130 4.8 

Memantine 180.1a 163.1 100 7.4 

[2H7]-donepezil 387.2a  150 8.9 

[13C,2H3]-galantamine 292.1a  130 4.7 

[13C2,2H6]-memantine 188.2a 171.2 100 7.4 

a) Used for quantification of the compound 
b) tR: Retention time 

 

 

Table 2: Matrix effects (ME), extraction recovery (RE), process efficiency (PE) 

 Nominal 
conc. (n=6) 

ME % 
(%CV) 

RE % 
(%CV) 

PE% 
(%CV) 

Donepezil 10 104 (2) 95 (3) 98 (2) 
 150 114 (5) 97 (6) 111 (2) 

Rivastigmine 10 101 (1) 93 (1) 95 (1) 

 150 107 (2) 90 (4) 97 (3) 

NAP 226-90 10 104 (1) 96 (3) 99 (3) 

 150 107 (2) 96 (3) 103 (2) 

Galantamine 10 85 (2) 96 (1) 82 (2) 

 300 106 (1) 93 (1) 98 (2) 

Memantine 10 98 (2) 88 (2) 86 (3) 

 300 103 (2) 93 (5) 96 (5) 

[2H7]-donepezil 50 99 (2) 98 (3) 97 (3) 

[13C,2H3]-galantamine 50 106 (1) 94 (2) 100 (2) 

[13C2,2H6]-memantine 50 101 (3) 93 (4) 94 (6) 
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Table 3: Trueness and precision of QC samples determined by repeated analysis in quadruplicates 
in three different series 

 Nominal conc 
(ng/ml) 

Trueness 
(%) 

Precision (%)  

  Repeatability Intermediate 
precision 

Donepezil 2 110.7 2.7 5.5 
 5 104.3 1.8 6.3 
 20 105.3 4.4 6.3 
 50 100.1 2.9 4.0 
 100 97.6 1.5 6.2 
 200 97.7 1.7 8.3 
 300 98.8 4.9 8.5 
 600/3 91.9 4.6 7.2 

Rivastigmine 1 99.7 2.0 4.3 
 2 98.0 2.0 5.3 
 5 99.6 1.8 2.1 
 20 100.4 2.7 3.1 
 50 100.2 2.6 3.8 
 100 99.6 2.1 3.6 
 200 101.2 3.3 4.9 
 300 102.7 4.9 6.4 
 600/3 92.6 6.2 7.2 

NAP 226-90 2 103.2 3.7 8.0 
 4 103.1 3.0 3.9 
 10 103.6 2.1 3.9 
 20 104.4 3.8 4.1 
 50 103.8 2.8 2.7 
 100 103.1 1.6 4.6 
 200 102.2 2.4 6.5 
 300 95.2 2.6 3.4 
 600/3 93.6 4.9 5.3 

Galantamine 2 92.0 3.1 6.4 
 4 92.1 3.4 3.1 
 10 100.4 2.9 7.2 
 20 109.7 4.1 4.7 
 50 105.7 1.9 2.6 
 100 107.2 1.7 4.6 
 200 105.7 2.5 3.1 
 300 100.2 2.3 3.1 
 600/3 98.4 5 4.4 

Memantine 1 94.1 4.0 4.1 
 2 99.3 2.9 3.7 
 5 102.8 3.1 3.7 
 20 106.3 3.3 5.1 
 50 103.8 1.8 1.8 
 100 103.9 1.1 1.3 
 200 101.4 2.4 2.1 
 300 98.4 2.1 2.1 
 600/3 94.0 4.7 5.3 
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Table 5: Examples of plasma levels measured in three patients per drug dosage. 

 Calibrated 
range (ng/ml) 

Therapeutic 
range (ng/ml) 

Plasma level  
Median (range) 
(ng/ml) 

Daily dose 
 (mg/d) 

Donepezil 2 - 300 30 – 753 27 (19 – 29) 5 

   58 (34 - 59) 10 

Rivastigmine 1 - 300 unknown 5 (5 – 14) 9.5 (patch) 

NAP 226-90   5 (3 – 12)  

Rivastigmine   5 (1 – 22) 9 (capsule) 

NAP 226-90   3 (2 – 7)  

Galantamine 2 - 300 30 – 1003 44 (38 – 84) 16 

   73 (35 – 103) 24 

Memantine 1 - 300 Unknown9 63 (15 – 75) 10 

   146 (82 – 163) 20 
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3.5 Article III: Simultaneous determination of antidementia drugs in human plasma: Procedure 
transfer from HPLC-MS to UPLC-MS/MS 
 

Summary 
In this article, the transfer of the HPLC-MS method for the simultaneous determination of antidementia 

drugs to UPLC-MS/MS is described. The UPLC-MS/MS procedure allows to reduce the required 

amount of plasma, to use a simplified sample preparation, and to obtain a higher sensitivity and 

specificity with a much shortened run-time. The UPLC-MS/MS method was successfully validated. 

Moreover, a method comparison was performed with patients’   samples, showing similar results 

between the HPLC-MS and UPLC-MS/MS procedures.  

Plasma concentration measurements of antidementia drugs have recently been added to the 

accredited analyses proposed by our TDM service. Because of its numerous advantages, the 

analyses are performed by the UPLC-MS/MS procedure reported in this article. However, the HPLC-

MS method can be used as a backup method.  
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Abstract 

A previously developed high performance liquid chromatography mass spectrometry (HPLC-MS) 

procedure for the simultaneous determination of antidementia drugs, including donepezil, 

galantamine, memantine, rivastigmine and its metabolite NAP 226-90, was transferred to an ultra 

performance liquid chromatography system coupled to a tandem mass spectrometer (UPLC-MS/MS). 

The drugs and their internal standards ([2H7]-donepezil, [13C,2H3]-galantamine, [13C2,2H6]-memantine, 

[2H6]-rivastigmine) were  extracted  from  250  μL  human  plasma  by  protein  precipitation  with  acetonitrile.  

Chromatographic separation was achieved on a reverse phase column (BEH  C18  2.1x50mm;;  1.7μm)  

with a gradient elution of an ammonium acetate buffer at pH 9.3 and acetonitrile at a flow rate of 0.4 

mL/min and an overall run time of 4.5 min. The analytes were detected on a tandem quadrupole mass 

spectrometer operated in positive electrospray ionization mode, and quantification was performed 

using multiple reaction monitoring. The method was validated according to the recommendations of 

international guidelines over a calibration range of 1-300 ng/mL for donepezil, galantamine and 

memantine, and 0.2-50 ng/mL for rivastimgine and NAP 226-90. The trueness (86-108%), 

repeatability (0.8-8.3%), intermediate precision (2.3-10.9%) and selectivity of the method were found 

to be satisfactory. Matrix effects variability was inferior to 15% for the analytes and inferior to 5% after 

correction by internal standards. A method comparison was performed  with  patients’  samples  showing  

similar results between the HPLC-MS and UPLC-MS/MS procedures. Thus, this validated UPLC-

MS/MS method allows to reduce the required amount of plasma, to use a simplified sample 

preparation, and to obtain a higher sensitivity and specificity with a much shortened run-time. 

 

1. Introduction 

Four drugs are currently used for the symptomatic treatment of dementia, the acetylcholinesterase 

inhibitors donepezil, galantamine and rivastigmine, and the N-methyl-D-aspartate (NMDA) receptor 

antagonist memantine. The chemical structures of the four antidementia drugs and the major 

metabolite of rivastigmine, NAP 226-90, are presented in Figure 1. 

Therapeutic drug monitoring (TDM) is a well known tool for optimization of pharmacotherapy. By 

maintaining  patients’  drug  plasma  concentrations  in  the  target  range  through  individual  dose  adaption,  

efficacy and safety of many treatments, including psychotropic drugs, can be improved.1,2 Even though 

little evidence exists, several factors indicate that TDM might also be beneficial for antidementia 

drugs.1 A high inter-individual variability in response to treatment has been shown,3-5 which might 

partly be due to the high inter-individual variabilites in plasma concentrations.6-8 In elderly people, the 

presence of comorbidities and multiple comedication leading to drug-drug interactions, as well as 

genetic variations in metabolizing enzymes and transporters, might be causes of the observed inter-

individual variabilities in plasma concentrations. Moreover, non-adherence to the treatment could be 

revealed by TDM, which is a particular problem in patients with cognitive deficits.9 
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We previously published a high performance liquid chromatography mass spectrometry (HPLC-MS) 

procedure for the simultaneous determination of the four antidementia drugs in human plasma for 

TDM.10 To our knowledge, no other analytical methods allowing the simultaneous quantification of all 

four drugs have been published. However, several HPLC-MS/MS methods are described quantifying 

single compounds, sometimes with their metabolites, in human plasma.11-21 Sample preparation was 

performed using solid phase extraction (SPE), liquid-liquid extraction (LLE) or protein precipitation. 

In the present study, we aimed to transfer the previously developed HPLC-MS method to an ultra 

performance liquid chromatography system coupled to a tandem mass spectrometer (UPLC-MS/MS) 

to analyze the compounds by the most sensitive and specific methodology today available with a 

minimized run time per sample and a simplified extraction procedure of the drugs from plasma. UPLC 

technology has demonstrated significant advantages with respect to speed, sensitivity and 

resolution,22 and detection by tandem MS further increases the sensitivity and specificity of the 

method. The UPLC-MS/MS procedure was fully validated and its performance evaluated by 

comparing   the   results   of   patients’   plasma   concentration   measurements   obtained   by   UPLC-MS/MS 

with the results previously obtained by HPLC-MS. The UPLC-MS/MS procedure is presently used in 

our laboratory for TDM in patients receiving antidementia drugs. 

 

2. Experimental 

2.1 Chemicals and Reagents 

The drugs were kindly provided by their manufacturers: donepezil HCl by Eisai Co., Ltd (Tokyo, 

Japan), galantamine HBr by Janssen-Cilag (Beerse, Belgium), memantine HCl by Merz 

(Frankfurt/Main, Germany), rivastigmine hydrogen tartrate and its metabolite NAP 226-90 by Novartis 

(Basel, Switzerland). The internal standards (IS) [2H7]-donepezil, [13C,2H3]-galantamine HCl, [13C2,2H6]-

memantine HCl and [2H6]-rivastigmine hydrogen tartrate were purchased from Alsachim (Strasbourg, 

France). Biosolv® UPLC-grade acetonitrile, ammonium acetate (puriss p.a. for mass spectrometry) and 

physostigmine hemisulfate (eserine) were bought from Sigma-Aldrich (Buchs, Switzerland). Ultrapure 

water was obtained from a Milli-Q® RG with a QPAQ2 column system (Millipore, Billerica, MA, USA). 

All chemicals were of analytical grade. For the preparation of calibration standards (CS) and quality 

control (QC) samples and the evaluation of matrix effects, more than 10 different batches of human 

plasma  from  outdated  blood  donation  units  were  obtained  from  the  hospital’s  blood  transfusion  center  

(CHUV, Lausanne, Switzerland). 

2.2 Equipment 

The liquid chromatography system consisted of a Waters Acquity UPLC instrument equipped with a 

binary pump and a 96-vial autosampler (Waters, Milford, MA, USA). Chromatographic separation was 

performed  on  a  BEH  C18  column  (2.1  x  50  mm;;  1.7  μm)  (Waters)  equipped  with  a  BEH  C18  cartridge  

(2.1   x   5   mm;;   1.7   μm).   Analyses   were   carried   out   in   an   air   conditioned   room at 22°C and the 
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autosampler was kept at 8°C. The chromatographic system was coupled to a tandem quadrupole MS 

(TQD) (Waters) equipped with an electrospray ionization interface operated in positive ionization mode 

(ESI+). Data acquisition handling and instrument control were performed by the Masslynx software 

version V4.1 (Waters). 

2.3 Stock and Working Solutions 

Stock solutions of the analytes were prepared at 1 mg/mL (as base) in methanol and stored at -20°C. 

By dilution of the stock solutions with 0.01  N  HCl,  working  solutions  at  100  μg/mL  were  obtained  and  

likewise stored at -20°C. CS and QC samples were prepared independently by spiking blank plasma 

at different concentrations with freshly made dilutions of the working solution at 0.01, 0.1, 1 and 10 

g/mL in 0.01 N HCl. CS and QC samples were analyzed immediately or stored at -20°C until 

analysis. The stock solutions of the IS were prepared at 1 mg/mL in methanol and stored at -20°C. 

They were diluted with acetonitrile to give a single IS working solution  at  0.25  μg/mL  ([2H7]-donepezil, 

[13C,2H3]-galantamine, [13C2,2H6]-memantine)   and   0.075   μg/mL   ([2H6]-rivastigmine), respectively. To 

inhibit the enzymatic in-vitro hydrolysis of rivastigmine to its metabolite NAP 226-90 by plasma 

esterases,  100  μL  of  a 0.001 M physostigmine solution was added to every 1 mL of plasma used for 

the preparation of CS and QC samples.19 

2.4 Sample Preparation 

Plasma  samples  (250  μL)  were  mixed  with  50  μL  of  IS  solution  and  750  μL  acetonitrile  were  added  for  

protein precipitation. The samples were vortex-mixed, sonificated for 30 s, and centrifuged for 10 min 

at 16000 x g (12610 rpm) on an Eppendorf Centrifuge 5430 (Eppendorf AG, Hamburg, Germany). The 

supernatants  (900  μL)  were  transferred  into  polypropylene  tubes  and  evaporated  to  dryness  (N2 flow, 

45°C).  The  solid  residues  were  reconstituted  in  100  μL  of  the mobile phase at initial conditions (buffer-

acetonitrile 80:20, v/v), vortex-mixed and again centrifuged for 10 min at 16000 x g. Finally, the 

supernatants  (90  μL)  were  transferred  into  glass  vials  prior  to  injection  into  the  UPLC  MS/MS  system. 

2.5 UPLC-MS/MS conditions 

The stationary phase used in HPLC and UPLC method development was based on the same 

technology. Thus, the established HPLC gradient, using an ammonium acetate buffer (pH 9.3; 50 mM 

for HPLC and 20 mM for UPLC) (solution A) and acetonitrile (solution B) as mobile phase, was 

translated to UPLC conditions by means of the HPLC calculator tool of the University of Geneva, 

Switzerland.23 The obtained UPLC conditions were further improved and a suitable separation was 

achieved at a flow rate of 0.4 mL/min using the following stepwise elution program with an overall run 

time of 4.5 min: 20% of B maintained for 1.7 min, gradient to 35% of B from 1.7 to 1.75 min, hold at 

35% of B from 1.75 to 2.2 min, gradient to 80% of B from 2.2 to 2.9 min, hold at 80% of B from 2.9 min 

to 3.5 min. The gradient was followed by rinsing with 95% of B from 3.7 to 4.0 min and a 

reconditioning  step  at  initial  conditions  from  4.2  to  4.5  min.  Of  each  sample  5  μL  were  injected. 
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Detection was performed using three multiple reaction monitoring (MRM) functions with the following 

transitions (Table 1): function 1 m/z 166.0→121  (NAP  226-90),  288.1→213  (galantamine),  292.1→213  

([13C,2H3]-galantamine); function 2 m/z 180.1→163  (memantine),  188.1→171  ([13C2,2H6]-memantine), 

251.0→206   (rivastigmine),   257.0→206   ([2H6]-rivastigmine); function 3 m/z 380.2→91   (donepezil),  

387.2→98  ([2H7]-donepezil). For each function the dwell times were automatically assigned (Table 1). 

Nitrogen was used as desolvation gas at a flow rate of 800 L/h and a temperature of 400°C, and argon 

as collision gas at a flow rate of 0.35 mL/min. Source temperature was set at 150°C and capillary 

voltage at 3 kV. The cone voltage and the collision energy were optimized for all of the compounds 

separately  by  direct  infusion  of  a  solution  at  1  μg/mL  in  0.01  N  HCl  into  the  MS/MS  at  a  flow  rate  of  10  

μL/min   and   in   combined mode with the mobile phase (60% solution A/40% solution B). The cone 

voltage was tested in MS scan mode (values from 10 to 60 eV) and the collision energy in product 

scan mode (values from 5 to 50 eV). The settings producing the highest signal intensities of parent 

and product ions were retained (Table 1).  

2.6 Method Validation 

The  method  validation  was  based  on  the  recommendations  of  the  “Société  Française  des  Sciences  et  

Techniques  Pharmaceutiques”  and  on  the  two  guidelines  for  bioanalytical  method  validation published 

online by the US Food and Drug Administration and by the European Medicines Agency.24-26 

2.6.1 Selectivity, carry-over and psychiatric comedication 

Method selectivity was ascertained by analyzing plasma extracts from 10 batches of blank plasma for 

interfering peaks at the retention time of the analytes and IS. Moreover, carry-over effects were 

investigated by determining the peak area of the compounds in blank plasma injected after spiked 

samples at three different concentrations over the calibration range (donepezil, galantamine, 

memantine at 75, 150 and 300 ng/mL; rivastigmine, NAP 226-90 at 12, 24 and 50 ng/mL). 

Additionally, blank plasma was spiked with the following psychiatric drugs and some of their 

metabolites, and analyzed by the same procedure to investigate the influence of potential 

comedication: amitriptyline, amisulpride, aripiprazole, atomoxetine, dehydro-aripiprazole, bupropion, 3-

hydroxy-bupropion, caffeine, chlorpromazine, citalopram, desmethyl-citalopram, clomipramine, 

desmethyl-clomipramine, clopenthixol, clozapine, N-oxid-clozapine, norclozapine, desipramine, 

duloxetine, fluoxetine, norfluoxetine, flupenthixol, fluvoxamine, haloperidol, imipramine, loxapine, 

maprotiline, mianserin, desmethyl-mianserin, midazolam, 1-hydroxy-midazolam, mirtazapine, 8-

hydroxy-desmethyl-mirtazapine, moclobemide, N-oxid-moclobemide, 3'-oxo-moclobemide, morphine, 

nicotine, nortriptyline, olanzapine, paroxetine, quetiapine, reboxetine, risperidone, 9-hydroxy-

risperidone, sertindole, dehydro-sertindole, sertraline, desmethyl-sertraline, sulpiride, trimipramine, 

desmethyl-trimipramine, trazodone, venlafaxine, O-desmethyl-venlafaxine, N-desmethyl-venlafaxine, 

N-O-di-desmethyl-venlafaxine and ziprasidone. In the case of a similar retention time to the 

antidementia drugs, suppression of the signal was assessed by comparing the peak area of the 

analyte at 100 ng/mL (donepezil, galantamine, memantine) and 10 ng/mL (rivastigmine, NAP 226-90) 
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alone with the peak area of the analyte when injected with the potential interfering compound at a high 

therapeutic concentration. 

2.6.2 Matrix Effects, Extraction Recovery and Process efficiency 

Primarily, matrix effects were examined qualitatively by simultaneous post-column infusion of the 

analytes and IS into the MS/MS detector during chromatographic analyses of 6 different blank plasma 

extracts and mobile phase.27,28 The compounds were infused at a concentration of 50 ng/mL 

(donepezil, galantamine, memantine), 10 ng/mL (rivastigmine, NAP 226-90) and 100 ng/mL (IS) with a 

flow  rate  of  10  μL/min,  corresponding  to  the  lower  end  concentration  signal  response  of  the  analytes.  

Signal suppression or enhancement at the retention time of the analytes was investigated. 

Subsequently, matrix effects, recoveries of extraction and process efficiencies were assessed 

quantitatively at low (donepezil, galantamine, memantine at 3 ng/mL; rivastigmine, NAP 226-90 at 0.6 

ng/mL) and high (donepezil, galantamine, memantine at 250 ng/mL; rivastimine, NAP 226-90 at 40 

ng/mL) concentration based on the approach of Matuszewski.29 Three sets of samples were 

processed as follows:  

(A): Pure standard solution samples of the analytes and IS in the reconstitution solvent (buffer-

acetonitrile 20:80, v/v) injected directly onto the column. 

(B): Duplicates of plasma extract samples from 6 different sources spiked with the analytes and IS 

after extraction. 

(C): Duplicates of plasma samples from 6 different sources (same as B) spiked with the analytes and 

IS before extraction. 

For calculations, the mean peak area of the duplicates was used. The matrix effect (ME) was 

evaluated for each analyte and IS by calculating the ratio of the peak area in the presence of the 

matrix (samples spiked after extraction) to the peak area in absence of the matrix (pure standard) and 

expressed in percentage (ME = B/A). The recovery of extraction (RE) was determined by comparing 

the peak area of the pre-extraction spiked (C) to the post-extraction spiked samples (B) (RE = C/B). 

The overall process efficiency (PE), taking into account ME and RE, was assessed by calculating the 

ratio of the peak area of the pre-extraction spiked samples to the peak area of the pure standard (PE = 

C/A). Of all three parameters, the variability between the different plasma batches was evaluated and 

expressed as coefficient of variation (CV%). A value   ≤15%  was   considered   satisfactory.   The   same  

parameters and respective CVs were calculated considering the IS-normalized peak areas for each 

analyte. 

2.6.3 Trueness and Precision 

Three validation series were performed on independent days to determine the trueness and precision 

of the method. Duplicates of CS and quadruplicates of QC samples were set at 8 different levels 

covering the expected range of concentrations in patients:8,30-32 1, 2, 5, 20, 50, 100, 200, 300 ng/mL 
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for donepezil, galantamine and memantine, and 0.2, 0.5, 1, 2, 5, 10, 20, 50 ng/mL for rivastigmine and 

NAP 226-90. Results were based on the peak area ratio of the analytes and their IS. [2H7]-donepezil, 

[13C,2H3]-galantamine, [2H6]-rivastigmine and [13C2,2H6]-memantine were used as IS for their respective 

analyte, whereas [2H6]-rivastigmine was additionally used for the metabolite of rivastigmine NAP 226-

90. The QC samples were analyzed against the calibration curve of the same run and the trueness of 

each concentration level was expressed as percentage of the theoretical value. Precision was 

estimated by means of repeatability (intra-day variance) and intermediate precision (sum of intra-day 

and inter-day variances) and expressed as coefficients of variation (CV%).33 Accuracy profiles within 

the  acceptance  limits  (λ=±30%)  and  with  β-expectation  tolerance  intervals  (β=90%)  were  established  

for each compound.33,34 Moreover, the linearity of the method was assessed applying a regression 

model to the recalculated QC concentrations versus theoretical concentrations. 

In each validation run, four QC samples at 600 ng/mL (donepezil, galantamine, memantine) and 100 

ng/mL (rivastigmine, NAP 226-90)   were   included   to   assess   dilution   integrity   in   case   of   a   patient’s  

plasma concentration exceeding the highest CS. The trueness and precision of these samples were 

determined carrying out a two-fold dilution with blank plasma prior to extraction.  

2.6.4 Stability 

The stability of all compounds in plasma and whole blood was assessed previously using the HPLC-

MS procedure.10 The in vitro degradation of rivastigmine was stopped by addition of the esterase 

inhibitor physostigmine to the samples. In the present study, additional tests were performed to 

investigate the stability of rivastigmine and NAP 226-90 in whole blood and plasma collected in 

commercially available blood sampling tubes containing sodium fluoride (1 mg NaF, 1.2 mg K-EDTA 

per mL), another esterase inhibitor.35 Whole blood and plasma of 5 different persons were spiked with 

rivastigmine and NAP 226-90 at low (2 ng/mL) and high (20 ng/mL) concentration and different sets of 

aliquots were prepared. The stability was assessed after storage at ambient temperature for 24 h, 48 h 

and 72 h. In addition, a set of plasma aliquots was stored for 2 weeks at -20°C to investigate a longer 

storage in the freezer before analysis. The stability was evaluated by calculating the percentage of the 

initial concentration in the different aliquots. 

 Furthermore, the post-preparative stability was assessed for all compounds by leaving the processed 

samples up to 48 h on the autosampler at 8°C before reanalysis.  

2.7 Method comparison between HPLC-MS and UPLC-MS/MS 

Several   patients’   samples   (33   for   galantamine,   40   for   donepezil,   memantine   and   rivastigmine),  

previously quantified by HPLC-MS, were reanalyzed in different series by the described UPLC-MS/MS 

procedure. For NAP 226-90,  instability  was  observed  in  patients’  samples after storage for more than 

one year and multiple thaw/freeze cycles, therefore, aliquots of 28 spiked plasma samples with 

concentrations covering the dosage range were analyzed with both procedures to perform the 

comparison. For all analytes, the correlation between the two methods was tested by a Passing-
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Bablok fit36,37 and the mean bias was assessed by Bland-Altman plots38 (Analyze-it, Microsoft Excel 

2007). 

 

3. Results and Discussion 

3.1 Sample preparation 

In the original HPLC-MS  method,   the   drugs  were   isolated   from  500  μL  plasma  by  SPE,  which   is   a  

powerful procedure to obtain clean extracts. However, the higher specificity of the UPLC-MS/MS 

compared to HPLC-MS allows the analysis of less clean extracts with satisfactory results. Therefore, 

the extraction procedure was simplified and a protein precipitation with acetonitrile was used with the 

advantages of a faster sample preparation and lower costs. In addition, the amount of required plasma 

was  reduced   to  250  μL.  The  extraction  recoveries  were  comprised  between  77%  and  96%,  with   the  

exception of memantine and [13C2,2H6]-memantine for which the recoveries were between 46% and 

54% (Table 2). Moreover, the repeatability was good for all compounds with CVs below 11% for the 

analytes and IS alone, and below 6% when the analyte/IS ratios were considered.  

3.2 Transfer of Chromatographic Conditions and Optimization of MS/MS Conditions 

The chromatographic conditions of the HPLC method with an overall run time of 15 min were 

translated to the UPLC system using the HPLC calculator tool from the University of Geneva.23 The 

gradient was then optimized to achieve a satisfactory separation of the compounds. Compared to the 

original method, the concentration of the ammonium acetate buffer at pH 9.3 was reduced from 50 

mM to 20 mM and instead of an X-Bridge column (2.1x100  mm;;  3.5  μm),  a  BEH  C18  column  (2.1  x  50  

mm;;  1.7  μm)  was  used,  which  is  based  on  the  same  stationary  phase  technology  but  packed  with  sub-

2  μm  particles.  Elution  was  realized  at  a  flow  rate  of  0.4  mL/min  and  the  overall  run  time  was  4.5  min.  

The retention times of the analytes are listed in Table 1 and a chromatographic profile of a QC plasma 

sample at the lower limit of quantification (LLOQ) is shown in Figure 2. 

To improve the robustness of an analytical method, it is highly recommended to use isotope-labeled IS 

for quantification.39,40 They compensate for signal alterations due to matrix effects and for variability in 

the extraction procedure. In the described method, isotope-labeled IS were used for donepezil, 

galantamine, rivastigmine and memantine, co-eluting with their respective analyte. For NAP 226-90, 

[2H6]-rivastigmine was used as IS after verification of the absence of signal suppression of rivastigmine 

on [2H6]-rivastigmine at the highest calibration level. 

To find optimal ionization conditions, different settings of the cone voltage and of the collision energy 

were evaluated for each analyte. Satisfactory results were obtained with cone voltage values between 

20 and 45 eV and collision energy values between 15 and 35 eV (Table 1). The detection was 

performed in MRM mode using three different functions, each of which monitored one or two analytes 

with their respective IS. Compared to the method using a unique MRM function, the variability of 

replicate injections was improved and the sensitivity was increased due to the higher dwell times. 
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3.3 Validation 

3.3.1 Selectivity, Carryover and Comedication with Psychoactive Drugs 

No  peaks  from  endogenous  compounds  were  observed  at  the  analytes’  retention  times  in  any  of  the  

10 blank plasma extracts evaluated. Moreover, no significant cross talk was observed between the 

isotope-labeled IS and the parent compounds. Injection of blank plasma after three different 

concentrations over the calibration range revealed no significant carry-over effects for all substances 

with the exception of donepezil. Even though different needle washes were investigated, a carry-over 

of 0.15% persisted for this analyte. The peak area of the carry-over should quantitatively represent 

less than 20% of the peak area of the analyte at LLOQ.26 To meet this criterion, a blank sample has to 

be   injected   after   the   highest   CS   and   between   two   subsequent   injections   of   donepezil   patients’  

samples. 

Patients taking antidementia drugs frequently receive multiple comedication due to several 

comorbidities. Since comedication may potentially lead to analytical interferences, the influence of 

psychoactive drugs on the determination of antidementia drugs was assessed. For this purpose, 

plasma samples spiked with several antidepressant and antipsychotic drugs, and some of their 

metabolites, were analyzed with the same procedure. The retention times of the psychoactive drugs 

were recorded. Six substances coeluted with the compounds of interest, namely donepezil with 

bupropion, clopenthixol and dehydro-sertindole, rivastigmine with desmethyl-citalopram and 1-

hydroxy-midazolam and NAP 226-90 with nicotine. All coeluting substances were distinguished by 

MS/MS detection and no significant signal suppression was observed for the antidementia drugs when 

injected with these compounds. However, the use of comedication in elderly patients is not restrained 

to psychoactive drugs, thus, special attention has to be paid to this issue during routine use of the 

method. Nevertheless, by the use of the highly specific UPLC-MS/MS technology and of isotope-

labeled IS compensating for potential signal suppression, the risk of analytical inferences with 

comedication has been minimized. 

3.3.2 Matrix Effects 

The detection by MS in ESI mode is known to be sensitive to matrix effects, which refers to signal 

enhancement or suppression by endogenous compounds present in the biological matrix.22,28 Matrix 

effects were qualitatively studied by the means of direct infusion of the analytes and IS into the MS/MS 

detector during analysis of six different blank plasma extracts. At the retention time of the analytes, 

signal suppression was observed for donepezil and [2H7]-donepezil, and signal enhancement for 

memantine and [13C2,
2H6]-memantine, whereas no interferences were detected for the other 

compounds (data not shown). Additionally, matrix effects were assessed quantitatively by comparing 

the peak area of the analytes and IS in the pure standard solution and in six different plasma batches 

spiked at low (3 times LLOQ) and high (80% upper limit of quantification (ULOQ)) concentration. The 

findings of the post-column infusion experiment were confirmed by the quantitative assessment, which 

revealed matrix effects of 79% and 81% for donepezil and [2H7]-donepezil, and 110% and 105% for 

memantine and [13C2,2H6]-memantine, respectively, at low concentration (Table 2). However, when the 
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ratios analyte/IS were used for calculation, the matrix effects were considerably smaller for donepezil 

and memantine (98%-105%), showing the compensating effect of the isotope-labeled IS. For the other 

compounds, the matrix effects were comprised between 92% and 103%, and between 95% and 102% 

when the analyte/IS ratios were considered (Table 2). Even more important than absolute matrix 

effects, is to have a low variability of these effects between the different plasma batches. This aim was 

achieved with CVs inferior to 15% for the compounds alone and inferior to 5% for the ratios analyte/IS 

(Table 2). 

Finally, the process efficiencies, representing the combined effects of extraction recovery and matrix 

effects, were also found to be satisfactory with values ranging from 93% to 109% and CVs inferior to 

7% for the analyte/IS ratios (Table 2). 

3.3.3 Trueness and Precision 

Three different validation series were performed on independent days. Eight CS were initially used for 

each compound covering the range from 1 to 300 ng/mL for donepezil, galantamine and memantine, 

and from 0.2 ng/mL to 50 ng/mL for rivastigmine and its metabolite NAP 226-90. Different calibration 

models were tested and the following four-point calibration curves were selected: 1, 20, 100 and 300 

ng/mL for donepezil (quadratic regression model weighted 1/x), galantamine (linear regression model 

weighted 1/x2) and memantine (linear regression model weighted 1/x), and 0.2, 2, 20 and 50 ng/mL for 

rivastigmine and NAP 226-90 (linear regression model weighted 1/x in both cases).  

The QC samples were analyzed against the calibration curve of the same run and the trueness, 

repeatability and intermediate precision at each concentration level were determined (Table 3). In 

accordance to the above-mentioned guidelines, the QC samples were within the specifications. The 

determined trueness met the acceptance criterion of 10015% (LLOQ 20%) with values comprised 

between 86% and 108%. Moreover, the values for repeatability and intermediate precision met the 

requirements of CVs 15% (LLOQ 20%) with values inferior to 8.3% and 10.9%, respectively. 

Consequently, the LLOQs were set at 1 ng/mL for donepezil, galantamine and memantine, and at 0.2 

ng/mL for rivastigmine and NAP 226-90. The higher sensitivity of the UPLC-MS/MS technology 

compared to the HPLC-MS allowed to reduce the LLOQs of rivastigmine and NAP 226-90. Therefore, 

the calibration ranges were modified as follows to better correspond to the low concentrations 

observed in patients: from 1 to 300 ng/mL (rivastigmine) and 2 to 300 ng/mL (NAP 226-90) in HPLC-

MS to 0.2 to 50 ng/mL (both analytes) in UPLC-MS/MS. 

The accuracy  profiles   for  each  compound   in   the  dosing   range  with  β-expectation tolerance intervals 

(β=90%)  are  presented  in  Figure  3.  All  accuracy  profiles  are  within  the  set  acceptance  limits  of  ±30%  

with the exception of NAP 226-90. A possible reason for the larger profile of NAP 226-90 might be the 

lack of a coeluting isotope-labeled IS which would compensate for variabilities in the extraction 

procedure and matrix effects. The larger accuracy profile of NAP 226-90 is probably not of clinical 

significance as NAP 226-90 is an inactive and non-toxic metabolite. However, NAP 226-90 was 

introduced in the method because it is an indicator of the extent of rivastigmine metabolism. 
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The dilution integrity was confirmed by a twofold dilution of QC samples at concentrations exceeding 

twofold the highest calibration level. The trueness and precision of the diluted samples met the 

acceptance criteria of 10015%   and   CVs   ≤15%,   therefore,   plasma   sample   of   patients   containing  

antidementia drugs at concentrations exceeding the ULOQ can be adequately diluted with blank 

plasma before analysis. 

Furthermore, a linear regression model was applied to the recalculated QC concentrations versus 

theoretical concentrations to assess the linearity of the method. The following slopes 0.995, 0.973, 

0.953, 1.005 and 0.867 and intercepts 0.200, 2.223, 0.332, 0.270 and 0.037 were obtained for 

donepezil, galantamine, memantine, rivastigmine and NAP 226-90, respectively. The corresponding 

determination coefficients were 0.997, 0.994, 0.953, 0.996 and 0.989, indicating that the developed 

method was linear for the tested compounds. 

3.3.4 Stability 

As previously described, the analytes were stable in plasma for 72 h at room temperature, up to 3 

months at -20°C and after three freeze/thaw cycles. Moreover, the drugs were stable in K-EDTA whole 

blood for at least 24 h at room temperature, with the exception of NAP 226-90 for which a rapid 

degradation was observed.10 Rivastigmine is metabolized to NAP 226-90 by esterases that are 

present in blood and plasma. To stop the in-vitro degradation of rivastigmine after blood sampling, the 

esterase inhibitor physostigmine was added to the samples. NaF is another known esterase inhibitor35 

and, in contrast to physostigmine, it is used in commercial blood sampling tubes to inhibit glucose 

degradation. For TDM of rivastigmine, using commercially available blood sampling tubes would be 

more convenient. Therefore, the stability of rivastigmine and NAP 226-90 in whole blood and plasma 

collected in NaF containing blood sampling tubes was tested over a period of 72 h at room 

temperature. The degradation of rivastigmine remained below 20% under the following conditions: up 

to 72 h in whole blood and 48 h in plasma at room temperature, and up to 2 weeks in plasma at -20°C 

(Table 4). The concentration of the metabolite NAP 226-70 increased proportionally to the decrease in 

rivastigmine concentration. Compared to physostigmine, the inhibition by NaF is less strong and thus 

the degradation of rivastigmine more rapid. For reasons of convenience, blood sampling tubes 

containing NaF could be used. However, to assure better precision of the measurement, the samples 

should be frozen as soon as possible. 

Since a new extraction procedure was used, the post-preparative stability was retested with the 

UPLC-MS/MS method. All analytes were found to be stable in the injection solution up to 48 h at 8°C 

with values between 86% and 110% of the initial concentration (Table 4). 

3.4 Method comparison between HPLC-MS and UPLC-MS/MS 

A method comparison was performed by analyzing samples previously measured by HPLC-MS by the 

newly developed UPLC-MS/MS procedure. The Passing-Bablok regression equations and 

corresponding plots are presented in Figure 4. The 95% CI included the value 1 for the slope and the 

value zero for the intercept for donepezil, galantamine and memantine, indicating no statistically 
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significant difference between the methods. In contrast, the slope of rivastigmine and NAP 226-90 did 

not include the value 1, meaning that there is a proportional difference between the two methods. 

However, the mean bias obtained by the Altman-Bland plots were found to be small with 10.9% (95% 

CI 5.9% to 15.9%) and -5.6% (95% CI -7.3% to -3.9%) for rivastigmine and NAP 226-90, respectively. 

These differences may not be of clinical relevance and are possibly due to the time difference 

between the tests, the use of different stock solutions and the modified calibration ranges for 

rivastigmine and NAP 226-90. 

 

4. Conclusion 

The procedure developed on HPLC-MS for the determination of antidementia drugs in human plasma 

was successfully transferred to UPLC-MS/MS. Sample preparation was simplified by using protein 

precipitation instead of SPE and, due to the higher sensitivity of the tandem MS, the required amount 

of  plasma  was  reduced  from  500  μL  to  250  μL.  The  calibration  ranges  of  rivastigmine  and  NAP  226-90 

were modified, with a decreased LLOQ of 0.2 ng/mL, to better correspond to plasma concentrations 

observed in patients. Moreover, the run time was shortened from 15 min to 4.5 min. The procedure 

was fully validated according to the recommendations of international guidelines. A method 

comparison between HPLC-MS and UPLC-MS/MS was performed showing similar results between 

the two procedures. Both methods are reliable and can be used for TDM in patients receiving 

antidementia drugs. However, the UPLC-MS/MS method is preferable with respect to specificity, 

sensitivity and speed and is presently used in the routine TDM service in our laboratory. 
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Figure 1: Chemical structures of the analytes. 
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Figure 2: Chromatogram of a QC plasma sample at LLOQ (1 ng/mL donepezil, galantamine, 

memantine, 0.2 ng/mL rivastigmine, NAP 226-90, 50 ng/mL [2H7]-donepezil, [13C,2H3]-galantamine, 

[13C2,2H6]-memantine and 15 ng/mL [2H6]-rivastigmine). 
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Figure 3: Accuracy   profiles   within   the   acceptance   limit   (λ=±30%)   and   with   upper   and   lower   β-

expectation  tolerance  intervals  (β=90%)  for  each  compound  in  the  dosing  range. 
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Figure 4: Passing-Bablok fits of the comparison between UPLC-MS/MS and HPLC-MS. In the plots 

the regression lines (solid line), the 95% confidence intervals for the regression line (dashed lines, 

values in brackets) and the identity lines (x=y, gray line) are shown. 
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Table 1: MRM parameters and retention times of the analytes and IS. 

 Parent 
(m/z) 

Fragment 
(m/z) 

Cone  

voltage  

(eV) 

Collision  

energy  

(eV) 

Dwell time 
(ms) 

tR  

(min)a 

Function 1 (0-2.4 min)       

NAP 226-90 166 121 20 15 171 1.5 

Galantamine 288 213 30 25 171 1.9 

[13C,2H3]-galantamine 292 213 30 25 171 1.8 

Function 2 (2.5-3.2 min)       

Memantine 180 163 30 15 128 2.9 

[13C2,2H6]-memantine 188 171 30 15 128 2.8 

Rivastigmine 251 206 20 15 128 3.0 

[2H6]-rivastigmine 257 206 20 15 128 3.0 

Function 3 (3.2-4.5 min)       

Donepezil 380 91 45 35 261 3.4 

[2H7]-donepezil 387 98 45 35 261 3.4 
a tR: Retention time. 



 

Table 2: M
atrix effects (M

E
), recovery of extraction (R

E) and process efficiency (PE) 

 
C

oncentration 
(ng/m

L) 
M

E %
 (C

V%
a) 

n=6 

R
E %

 (C
V%

 a) 

n=6 

PE %
 (C

V%
 a) 

n=6 
 

Low
 

H
igh 

Low
 

H
igh 

Low
 

H
igh 

Low
 

H
igh 

D
onepezil 

3 
250 

79 (4) 
90 (4) 

95 (6) 
79 (4) 

75 (9) 
72 (7) 
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Table 3: Trueness and precision of quality control samples in quadruplicates determined in three 

different validation series. 

 Nominal 
Concentration 
(ng/mL) 

Trueness (%) 
Precision (%) 

 Repeatability Intermediate 
precision 

Donepezil 1 95.5 3.3 4.0 
 2 99.2 2.3 2.3 
 5 93.1 2.9 9.1 
 20 104.0 2.8 4.1 
 50 100.8 1.8 5.0 
 100 98.3 0.8 4.7 
 200 101.0 2.1 6.1 
 300 99.1 2.1 3.8 
Galantamine 1 99.2 5.5 7.2 
 2 100.0 6.0 6.0 
 5 99.6 3.3 5.1 
 20 103.4 3.7 5.0 
 50 104.7 3.0 3.3 
 100 105.1 4.9 6.4 
 200 102.0 3.2 4.6 
 300 95.8 4.7 6.0 
Rivastigmine 0.2 92.0 6.5 6.5 
 0.5 96.0 4.5 4.5 
 1 101.8 3.6 4.4 
 2 105.9 3.1 5.7 
 5 107.2 2.4 5.9 
 10 105.9 4.1 7.9 
 20 107.7 4.0 5.7 
 50 100.0 2.4 5.5 
NAP 226-90 0.2 89.0 4.6 6.4 
 0.5 88.2 6.1 8.0 
 1 91.2 5.1 5.7 
 2 88.7 2.6 7.1 
 5 86.4 1.8 6.7 
 10 86.2 1.9 6.0 
 20 88.7 4.7 10.9 
 50 89.6 1.8 4.3 
Memantine 1 106.8 4.1 6.9 
 2 102.6 8.3 8.3 
 5 97.5 3.3 3.3 
 20 100.0 4.5 4.9 
 50 94.9 2.1 3.2 
 100 93.2 2.6 3.7 
 200 95.5 3.8 4.3 
 300 95.4 2.2 2.4 
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4.1 Article IV: Relationship of genetic variants in CYP2D6, CYP3A, POR, NR1I2 and ABCB1 
genes with steady-state donepezil plasma concentrations 
 
Summary 
In this article, the results of the pharmacogenetic study in patients treated with donepezil are 

described. The large inter-individual variability in donepezil plasma concentrations, reported in 

previous studies, was confirmed. The relationship of genetic variations in CYP2D6, CYP3A, POR, 
NR1I2 and ABCB1, and of other clinical factors, with donepezil steady-state plasma concentrations 

was investigated in 129 older patients treated with this drug. The CYP2D6 genotype appeared to be 

the major genetic factor contributing to the variability in plasma concentrations. Thus, CYP2D6 

homozygous extensive metabolizers demonstrated significantly lower plasma concentrations than 

heterozygous extensive metabolizers and poor metabolizers, and higher plasma concentrations than 

ultrarapid metabolizers. Moreover, significantly higher plasma concentrations were observed in NR1I2 
rs1523130T carriers, which might be due to a lower CYP3A expression in these patients. Finally, the 

POR*28T allele was associated with lower donepezil concentrations in CYP2D6 extensive 

metabolizers, which is in line with the higher CYP3A activity described in carriers of this allele. These 

findings contribute to a better understanding of donepezil pharmacokinetics and might help, with 

further research, to improve clinical effectiveness and tolerance of the treatment. 

 

 

 

Article in preparation 
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ABSTRACT 

Background: A large interindividual variability in plasma concentrations was observed in patients 

treated with donepezil, the most frequently prescribed antidementia drug. Donepezil is mainly 

metabolized by the enzymes CYP2D6 and CYP3A, and it is a substrate of the P-glycoprotein. We 

aimed to study the relationship of genetic variants influencing the activity of these enzymes and 

transporter, and of other clinical factors, with donepezil steady state plasma concentrations. 

Methods: In this naturalistic cross-sectional study, 129 older patients treated with a constant dose of 

donepezil were included. The patients were genotyped for polymorphisms in CYP2D6, CYP3A, POR, 
NR1I2 and ABCB1 genes, and donepezil steady state plasma concentrations were determined. 

Results: The CYP2D6 genotype appeared to be the major genetic factor contributing to the variability 

in plasma concentrations. Thus, significant differences were found between CYP2D6 homozygous 

extensive metabolizers and heterozygous extensive metabolizers, poor metabolizers and ultrarapid 

metabolizers with median dose-adjusted plasma concentrations of 4.7 versus 5.3 (p=0.037), 6.3 

(p=0.005) and 2.6 (p=0.005) ng/ml·mg, respectively. Significantly higher plasma concentrations were 

observed in NR1I2 rs1523130T carriers (p=0.005), potentially having a lower CYP3A expression. 

Moreover, the POR*28 was associated with lower donepezil concentrations in CYP2D6 extensive 

metabolizers (p=0.018).  

Conclusions: Genetic variations, primarily in CYP2D6, significantly influenced donepezil plasma 

concentrations and might therefore have an impact on the efficacy and safety of the treatment.  

 

INTRODUCTION 

Donepezil is an acetylcholinesterase inhibitor widely used in the symptomatic treatment of Alzheimer’s  

disease (AD). The inhibition of the acetylcholinesterase increases the level of acetylcholine in the 

synaptic cleft and thus compensates the cholinergic deficit observed in the AD pathology. Cholinergic 

adverse events (AE) are common and include gastrointestinal problems, dizziness, insomnia, fatigue 

and muscle cramps.1 Several studies reported a large variability in drug response to donepezil among 

AD patients,2,3 which might partly be due to the observed interindividual differences in plasma 

concentrations of the drug.4 On one hand, these differences could be triggered by genetic variations in 

enzymes and transporters implicated in drug metabolism and elimination. On the other hand, in elderly 

patients, the presence of multiple comorbidities and polypharmacy resulting in drug-drug interactions 

might lead to changes in plasma concentrations. 

Donepezil is metabolized in the liver by the cytochromes P450 (CYP) 2D6 and 3A. 6-O-desmethyl-

donepezil is the only active metabolite with a comparable potency in AChE inhibition as donepezil. It 

is, however, only present at around 20% of the concentration of the parent drug.5 Coadministration of 

drugs inhibiting CYP2D6 and CYP3A has been found to increase plasma concentrations of donepezil, 

showing the importance of these two enzymes in donepezil metabolism.6,7  
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Phenotypically, four types of CYP2D6 metabolizers can be distinguished: poor (PM), intermediate 

(IM), extensive (EM) and ultrarapid metabolizers (UM). Underlying genetic variations defining the 

CYP2D6 phenotypes are well known.8 One clinical trial reported a non significant influence of the 

CYP2D6 genotype on donepezil plasma concentrations.4 However, this study enrolled a small number 

of subjects (n=42) without any PM. Several studies also investigated the influence of genetic variations 

in CYP2D6 on response to donepezil treatment. Although discrepant, results from these studies 

suggest that patients with CYP2D6 genotypes associated with no or low activity (i.e. leading to higher 

plasa concentrations) may have better clinical outcomes.9-12 

The predictive information of genetic variations in CYP3A on enzyme activity is more limited.13 CYP3A 

stands for a group of isozymes, namely CYP3A4, CYP3A5 and CYP3A7, which have a large overlap 

in substrate specificity. A clinical trial investigated the association of different CYP3A4/5 

polymorphisms on plasma concentrations and therapeutic outcome of donepezil. The results suggest 

no major impact of genetic variants in CYP3A4/5 on donepezil metabolism.14 Furthermore, donepezil 

is a substrate of the P-glycoprotein (P-gp),15 a membrane transporter implicated in drug absorption, 

distribution and excretion. Several polymorphisms in the ABCB1 gene, coding for P-gp, have been 

shown to influence its activity.16 In the above mentioned study, patients homozygous for the ABCB1 

1236T/2677T/3435T haplotype showed a tendency toward lower plasma concentrations.14 

Genetic variations in other genes than CYP3A4/5/7 could influence CYP3A activity. The cytochrome 

P450 oxidoreductase (POR) is a protein that transfers electrons from NADPH to microsomal CYP 

enzymes and might, therefore, be a general limiting factor for drug metabolizing capacity.17 Many 

polymorphisms in the POR have been described, some of them changing the activity of the enzyme in 
vitro. The results of an in vivo study suggest a 1.6-fold increase in CYP3A activity among homozygous 

carriers of the common POR*28 allele.17 Furthermore, the Pregnane X receptor (PXR) regulates the 

expression of detoxifying drug-metabolic enzymes and transporters, including CYP3A4 and P-gp.18 

PXR is a nuclear receptor encoded by the NR1I2 gene and is activated by a variety of xenobiotics and 

endogenous ligands. In vitro studies revealed genetic variants in the regulatory region of NR1I2 
associated with inducible and constitutive CYP3A4 expression.19,20 

In the present study, we investigated the effect of genetic variations in CYP2D6, CYP3A4/5/7, POR, 

NR1I2 and ABCB1 on steady state donepezil plasma concentrations in a group of 129 older patients 

treated with donepezil. The relationship between plasma concentrations and genotypes on recorded 

side effects was also investigated. 

 

METHODS 

Study design and participants 

This cross-sectional study was conducted at four hospitals (Lausanne, Geneva, Marsens, Aigle) and 

in affiliated nursing homes. A total of 129 patients treated with donepezil for at least one month with a 
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stable dose were included. 89% of the participants were inpatients and 11% were outpatients. One 

blood sampling was performed to measure donepezil plasma concentration, to evaluate renal and 

hepatic function (standard clinical laboratory tests: ALT, ASP, AP, GGT, bilirubin, urea, creatinine), 

and to extract DNA for the genetic analyses. The presence of adverse events, reported by the 

patients, doctors and/or nurses, was registered. Additionally, concomitant diseases, comedication, 

consumption of grapefruit, alcohol and tobacco were recorded. 

The study was approved by the local ethics committees (Lausanne University Hospital, Geneva 

University Hospital, Cantonal Ethic Committee Fribourg) and conducted according to the Good Clinical 

Practices. Written informed consent, including consent for genetic analysis, was obtained from all 

patients or their legal representative. 

Plasma concentration determination and estimation of trough concentration 

Blood samples were collected on average 14 hours after medication intake (range: 1-28 hours) in 

EDTA blood tubes. After centrifugation, the plasma was stored at -20°C until analysis. Donepezil 

plasma concentrations were determined by high performance liquid chromatography coupled with 

mass spectrometry, as previously described.21 

Trough concentrations at 24 hours after drug intake were estimated by the means of the following 

equation: Ctrough=Cmeasured*e-((ln2/t1/2)*dt). According to literature, t1/2 was considered as 70 hours 22-25 and 

dt as the time between medication intake and blood sampling. The maximal plasma concentration is 

reached around four hours after drug intake.23-25 In patients in the first two hours of the absorption 

phase (n=12), the measured plasma concentration was regarded as trough concentration. In patients 

in the second part of the absorption phase (n=9), the above-mentioned equation was used to calculate 

the trough concentration assuming that most of the drug substance was already absorbed. Since 

linear pharmacokinetics of donepezil has been demonstrated, the estimated trough concentration was 

corrected for each patient by the daily donepezil dose.23 

Genotyping 

Genomic DNA was extracted from EDTA blood samples with the FlexiGene DNA extraction kit and the 

QIAamp DNA Blood Mini Kit (QIAGEN, Hombrechtikon, Switzerland) according to the manufacturer’s  

protocols. The following SNPs were detected by real-time  polymerase  chain  reaction  with  5’-nuclease 

allelic discrimination assays (ABI PRISM 7000; Applied Biosystems, Rotkreuz, Switzerland) according 

to   previous   studies   or   manufacturer’s   instructions:17,26 CYP2D6*3 (rs35742686), CYP2D6*4 

(rs3892097), CYP2D6*6 (rs5030655), CYP3A4*1B (rs2740574), CYP3A4 rs4646437C>T, CYP3A5*3 
(rs776746), CYP3A7*1C (2262T>A and 2270T>G), POR*28 (rs1057868), NR1I2 rs1523130, NR1I2 
rs2472677, NR1I2 rs7643645, ABCB1 2677G>T (rs2032582), ABCB1 3435C>T (rs1045642), ABCB1 
1236C>T (rs1128503). Gene deletion (CYP2D6*5) and duplication/multiplication (CYP2D6*xN) were 

analyzed by TaqMan copy number assay and long PCR, respectively, as previously described.26 

Internal quality control samples of known genotype were included in all analyses.  
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Statistical Analysis 

Group comparisons were performed with the non-parametric Wilcoxon and Kruskal-Wallis rank sum 

tests   for  continuous  variables  and  with   the  Fisher’s  exact   test   for  categorical  variables.  Associations  

between continuous variables were tested with the Spearman rank-order correlation coefficients (rs). 

Multiple regression analyses were performed using the log-transformed value of the dose-adjusted 

estimated trough concentration as dependent variable whereas age, gender, comedication and 

genetic polymorphisms were considered as independent variables. The adjusted values of R2 obtained 

from the regression models are reported as a measure of the explained variability. Haplotypes were 

inferred using the R software (version 2.11.1).27 All tests were two-sided  and   a  P   value   ≤0.05  was  

considered statistically significant. Analyses were performed using STATA software (version 11.2; 

StataCorp, College Station, Texas, USA). 

 

RESULTS 

Study population 

A total of 129 patients fulfilled the inclusion criteria of one month treatment with a stable daily dose of 

5 mg (n=45) or 10 mg (n=84) donepezil. Of these, 127 were taking the drug once daily whereas two 

were splitting it into two intakes. The sample consisted of 37 (29%) men and 92 (71%) women with a 

mean (±SD) age of 84±6 years (range 62-99 years). All but one of the participants were Caucasians. 

The patients were diagnosed with AD (n=85), mixed dementia (n=24), vascular dementia (n=5) and 

Lewy body dementia (n=2). In 13 subjects, the type of dementia was not specified. The patients 

received on average (±SD) 7±3 (range 0-13) concomitant drugs. No patient had moderate or severe 

hepatic impairment. Demographic and clinical characteristics are shown in Table 1. 

Donepezil concentration variability and relationship with demographic factors 

The calculated trough plasma concentrations ranged from 8-72 ng/ml and 13-105 ng/ml among 

patients receiving 5 mg and 10 mg donepezil per day, respectively. The estimated trough plasma 

concentration  corrected  by  the  dose  ranged  between  1.3  and  14.4  ng/ml•mg,  with  a  11-fold variability 

(Table 1). Female patients displayed significant higher dose-adjusted plasma concentrations 

compared to males   (median   5.3   versus   4.4   ng/ml•mg,   p<0.001)   (Table   2).   Age   (rs=0.12, p=0.2), 

smoking (p=0.4), elevated alcohol consumption (p=0.5) and impaired renal function (rs=-0.05, p=0.6) 

were not significantly associated with dose-adjusted donepezil concentrations. 

Six patients (4.7%) were taking strong CYP2D6 inhibitors (paroxetine n=3, levopromazine n=2 and 

fluoxetine n=1) and two patients (1.6%) strong CYP3A inhibitors (amiodarone n=1, diltiazem n=1).28,29 

All but one of these patients were CYP2D6 EMs. The subject taking fluoxetine as comedication was 

genotyped as CYP2D6 PM and was, therefore, not considered as receiving a CYP2D6 inhibitor in the 

statistical analyses. Interestingly, this patient had the highest dose-adjusted donepezil concentration of 

the  group   (14.4  ng/ml•mg),  a   finding   that  might  be   related   to   the  additive  effect  of   the  CYP2D6  PM  
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status and the moderate inhibition of CYP3A by fluoxetine. Subjects receiving strong CYP2D6 and 

CYP3A inhibitors demonstrated higher dose-adjusted donepezil concentrations compared to the rest 

of the cohort, although the difference was at the limit of significance for CYP2D6 inhibitors (median 6.9 

versus   5.0   ng/ml•mg,   p=0.059)   and   not   significant   for   CY3A   inhibitors   (5.8   versus   5.0   ng/ml•mg,  

p=0.391) (Table 2). Four patients, among one CYP2D6 PM, taking CYP3A inducers (prednisone n=3, 

pioglitazone n=1) had lower dose-adjusted   plasma   concentrations   (median   3.8   versus   5   ng/ml•mg,  

p=0.15), but this difference did not reach statistical significance.  

Relationship between genotypes and donepezil plasma concentrations 

CYP2D6 genotypes 

Genotype frequencies are shown in Table 3. Allele and genotype frequencies are in agreement with 

previous reports in Caucasians.26,30 CYP2D6 homozygous EMs (homEMs) (n=65) displayed 

significantly lower dose-adjusted plasma concentrations compared to heterozygous EMs 

(hetEMs)(n=55)  and  PMs  (n=7)  (median  4.7  versus  5.3,  p=0.031  and  versus  6.3  ng/ml•mg,  p=0.026,  

respectively). Moreover, the UMs (n=2) presented significantly lower dose-adjusted plasma 

concentrations  than  homEMs  (median  2.6  versus  4.7  ng/ml•mg,  p=0.03)  (Figure  1,  Table 2).  

CYP3A4/5/7, POR, NR1I2 genotypes 

The observed genotype frequencies are presented in Table 3. They are in agreement with reported 

results17,19,31 and no deviation from Hardy-Weinberg equilibrium was observed (p>0.05). In the 

Caucasian subsample (n=128), linkage disequilibrium was observed between CYP3A4*1B and 

CYP3A4 rs4646437   (D’=1,   r2=0.18), CYP3A4*1B and CYP3A5*3 (D’=1,   r2=0.32), and between 

CYP3A4 rs4646437 and CYP3A5*3 (D’=0.76,  r2=0.34), which is in line with previous studies.31 NR1I2 
rs2472677 was moderately linked to NR1I2 rs1523130   (D’=0.24, r2=0.05) and NR1I2 rs7643645 

(D’=0.57,  r2=0.27). 

No association was found between CYP3A4/5/7 single nucleotide polymorphisms (SNP) or haplotypes 

and dose-adjusted donepezil plasma concentrations. Similarly, no influence was observed when the 

sample was stratified by CYP2D6 metabolizer status to take into account the potential confounding 

effect of this genotype. In contrast, a tendency toward lower plasma concentrations was observed in 

patients carrying one or two POR*28 alleles (p=0.105). When only CYP2D6 EMs were considered, the 

difference reached statistical significance (median CC 5.2 versus CT/TT   4.7   ng/ml•mg,   p=0.038)  

(Table 2). Interestingly, the effect was more pronounced in CYP2D6 hetEMs than in homEMs (data 

not shown). 

Carriers of the NR1I2 rs1523130 CC genotype had significantly lower dose-adjusted drug 

concentrations than carriers of CT/TT  genotypes  (median  4.5  versus  5.2  ng/ml•mg,  p=0.021)   (Table  

2). The relationship was also observed taking only CYP2D6 EMs into account (p=0.038) (Table 2). 

Neither NR1I2 rs2472677 and NR1I2 rs7643645 polymorphisms nor NR1I2 haplotypes were 

associated with donepezil kinetics, even when considering the different CYP2D6 genotypes. 
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ABCB1 genotypes 

The ABCB1 genotype frequencies are presented in Table 3. No deviation from Hardy-Weinberg 

equilibrium was observed (p>0.05). Linkage disequilibrium was noted between ABCB1 3435CT and 

2677GT   (D’=0.80,   r2=0.47),   3435CT   and   1236CT   (D’=0.75,   r2=0.40) and between 2677GT and 

1236CT   (D’=0.86,   r2=0.72). Genotype frequencies and linkage disequilibrium are consistent with 

previous reports.31,32 

The SNPs ABCB1 3435C>T and 2677G>T were not found to be significantly related to dose-adjusted 

donepezil concentrations (p=0.927 and p=0.141). However, a trend toward lower plasma 

concentrations was observed in patients carrying the ABCB1 1236CT/TT genotypes (median CC 5.6 

versus  CT/TT  4.8  ng/ml•mg,  p=0.084).  Moreover,   a   trend   toward  higher  plasma  concentrations  was  

measured in patients carrying the haplotype ABCB1 3435T/2677G/1236C (n=29) compared to non-

carriers   (n=100)   (median   5.2   versus   5.0   ng/ml•mg,   p=0.084).   When   the   sample   was   stratified   by  

CYP2D6 EM status, the associations between donepezil concentrations and the ABCB1 2677G>T and 

1236G>T polymorphisms, as well as the haplotype 3435T/2677G/1236C, reached statistical 

significance (median 2677G>T GG 5.7  versus  GT/TT  4.7  ng/ml•mg,  p=0.046;; 1236C>T CC 5.7 versus 

CT/TT   4.7   ng/ml•mg, p=0.024; carriers 3435T/2677G/1236C 5.4 versus non-carriers   4.9   ng/ml•mg,  

p=0.021) (Table 2). 

Multivariate genotype analysis 

In multiple regression analyses, the combined effect of different covariates (age, gender, comedication 

with CYP2D6/CYP3A inhibitors and/or CYP3A inducers) and genotypes on dose-adjusted donepezil 

concentrations was assessed. Age, female gender and moderate and strong CYP2D6 inhibitors were 

significantly related to higher dose-adjusted donepezil plasma concentrations (p=0.014, p=0.005, 

p=0.007, respectively) (Table 4). For CYP3A inducers, a trend toward lower plasma concentrations 

was observed (p=0.072) while the influence of CYP3A inhibitors was not significant (p=0.287). 

Moreover, the CYP2D6 genotypes and the SNP NR1I2 rs1523130 were significantly related to the 

plasma concentrations (homEMs versus hetEMs, PMs and UMs, p=0.037, p=0.005, p=0.005, 

respectively, NR1I2 rs1523130 p=0.005). Neither the investigated polymorphisms in ABCB1 and 

CYP3A4/5/7, the allele POR*28 nor the SNPs NR1I2 rs2472677 and NR1I2 rs7643645 had a 

significant impact. The model explained 25% of the variability of dose-adjusted donepezil 

concentrations. 

When excluding CYP2D6 PMs and UMs and considering only CYP2D6 EMs in the model, the 

covariates age, gender and CYP2D6 inhibitors and the SNP NR1I2 rs1523130 were significantly 

related to donepezil plasma concentrations (p=0.048, p<0.001, p=0.009 and p<0.001, respectively), 

which is in agreement with the multivariate model including all CYP2D6 genotypes (Table 4). In 

addition, the relationship of the allele POR*28 with plasma concentrations was significant in the 

CYP2D6 EM subgroup (p=0.018), which is in line with the univariate analysis. The model explained 

22% of the variability of dose-adjusted donepezil concentrations in CYP2D6 EMs.  
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Furthermore, multiple regression analyses were performed including the haplotype ABCB1 
3435T/2677G/1236G instead of the ABCB1 polymorphisms. The influence of the haplotype was 

significant in the CYP2D6 EM subgroup analysis (p=0.024), but not in the whole sample (p=0.081), 

which is in agreement with the univariate analyses. Both models explained 26% of the variability of 

dose-adjusted donepezil concentrations. 

Finally, the proportions of explained variability by models including all analyzed genetic 

polymorphisms and models including only CYP2D6 genotypes were compared. The explained 

variabilities were only slightly higher in the complete models with values of 25% (all genetic 

polymorphisms and covariates) versus 23% (CYP2D6 genotypes and covariates) and, excluding the 

covariates, with 8% (all genetic polymorphisms) versus 6% (CYP2D6 genotypes). This suggests that 

the functional alleles of CYP2D6 accounted for the major part of the genetically determined variability 

in donepezil pharmacokinetics. 

Relationship between plasma concentration and genotypes on adverse events (AE) 

57% of the patients reported no AE while 43% experienced at least one AE. Among them 14% had 

gastrointestinal problems (nausea, vomiting, diarrhea, anorexia), 16% dizziness, 11% headache, 8% 

insomnia, 20% fatigue, 6% muscle cramp, 13% accidents (falls) and 11% pain. No difference in 

frequencies was seen between patients receiving 5 mg and 10 mg donepezil per day. No significant 

association was found between donepezil plasma concentrations and the presence of AEs. However, 

when CYP2D6 PMs or patients with strong CYP2D6 inhibitors were compared with the rest of the 

cohort,  the  former  had  significantly  more  AEs  (75%  (n=9)  versus  40%  (n=46)  ≥1  AE,  p=0.029),  which  

might be due to the trend toward higher donepezil trough plasma concentrations in this group (median 

(IQR) 55 (40-68) versus 41 (25-56) ng/ml, p=0.078). Additionally, a tendency toward more AEs was 

observed in carriers of the ABCB1 3435T/2677G/1236C haplotype (59% (n=17) versus 38% (n=38) 

with  ≥1  AE,  p=0.059), which might as well be due to higher donepezil trough plasma concentrations 

(median (IQR) 50 (30-63) ng/ml versus 41 (25-56) ng/ml, p=0.102). 

 

DISCUSSION 

There is a large interindividual variability in the response to acetlycholinesterase inhibitors, with 

responder rates as low as 15-35%.3,33,34 Since a concentration-response effect has been reported for 

donepezil,35 differences  in  therapeutic  outcome  could  be  related,  to  some  extent,  to  the  drugs’  plasma  

concentrations. In this study, an 11-fold variability in dose-adjusted donepezil plasma concentrations 

was observed, which confirmed the results of a previous report.4  

The CYP2D6 genotype appeared to be the major genetic factor influencing dose-adjusted donepezil 

plasma concentrations. In the study sample, 7 CYP2D6 PMs, 55 hetEMs, 65 homEMs and 2 UMs 

were included. Even though considerable overlaps were measured between the groups, hetEMs and 

PMs demonstrated significantly higher dose-adjusted plasma concentrations than homEMs, with a 



Chapter 4: Results   

123 
 

13% and 34% increase in the median values. Moreover, the two UMs had lower dose-adjusted plasma 

concentrations than the median value of homEMs. Although CYP2D6 genotypes have been shown to 

influence the plasma concentrations of many drugs,8,36 only one previous study, to our knowledge, 

examined the relationship between CYP2D6 genotypes and donepezil plasma concentrations.4 

Results showed a tendency toward lower plasma concentrations in homEMs compared to hetEMs, 

and in UMs compared to EMs,4 but the limited sample size (n=42) and statistical power precluded a 

formal conclusion. The current study broadens our knowledge in showing for the first time these 

significant relationships.  

Further accentuating the importance of CYP2D6 in donepezil metabolism, a 1.4-fold increase in 

plasma concentrations was measured in patients receiving strong inhibitors of CYP2D6. In the 

multivariate analysis, even moderate CYP2D6 inhibitors were significantly related to higher dose-

adjusted donepezil concentrations. The clinical significance of these interactions remains to be 

determined, but careful monitoring of these patients might be beneficial. 

In contrast to CYP2D6, genetic variations in CYP3A do not appear to play a significant role as our 

results showed no associations between CYP3A4/5/7 genetic polymorphisms and dose-adjusted 

donepezil concentrations. These results are consistent with a previous study analyzing polymorphisms 

in CYP3A4/5 and the fact that the current knowledge of genetic variations in CYP3A4/5/7 only 

marginally explains the large interindividual variability in CYP3A activity.37 

To our knowledge, the present study is the first to examine the relationship between POR, PXR, and 

donepezil pharmacokinetics. Interest in the electron transferring enzyme POR and the nuclear 

receptor PXR resulted from the search on polymorphisms of genes influencing CYP3A expression and 

activity. The most common studied POR polymorphism is the exonic SNP rs1057868C>T, defining the 

allele *28. Our group showed the influence of this polymorphism on CYP3A activity in two independent 

cohorts, with POR*28 TT carriers presenting a 1.6-fold higher CYP3A activity than carriers of the C 

allele.17 In line with these findings, the current study demonstrates that patients carrying at least one 

POR*28 allele have a tendency toward lower dose-adjusted donepezil plasma concentrations. In 

CYP2D6 EMs, the difference reached statistical significance, which suggests a confounding of the 

effect by CYP2D6 PMs and UMs when considering the whole cohort. Moreover, stratification of the 

sample by CYP2D6 genotype revealed a pronounced effect of the POR*28 in hetEMs. The decreased 

CYP2D6 activity in hetEMs, partly compensated by CYP3A, might explain the distinct impact of the 

POR*28 in these subjects.  

Recently, attention was drawn on three polymorphisms in the regulatory region of NR1I2, which were 

associated with PXR and CYP3A4 expression in vitro, namely rs1523130, rs2472677 and rs7643645. 
In this study, a significant association of the NR1I2 rs1523130 was found with dose-adjusted 

donepezil concentrations, with patients carrying at least one T allele having higher plasma 

concentrations compared to subjects carrying two C alleles. In vitro studies demonstrated decreased 

CYP3A4 mRNA concentrations in liver tissue with the NR1I2 rs1523130 CT/TT genotypes.19,20 

Therefore, the observation of higher donepezil concentrations in NR1I2 rs1523130 CT/TT carriers 
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could be due to a lower CYP3A4 activity. Because PXR mediates the induction of several phase I and 

II drug-metabolizing enzymes as well as transporters including P-pg, the influence of the NR1I2 

rs1523130 might also be mediated by other factors than CYP3A expression. 

Finally, the three common P-gp polymorphisms were investigated: ABCB1 3435C>T, 2677G>T and 

1236C>T. Although these SNPs were tested in many in vitro and in vivo studies, the literature bears 

no consensus on the phenotypic associations with these SNPs.16 A trend toward lower dose-adjusted 

plasma concentrations was found in T allele carriers of the ABCB1 2677G>T and 1236C>T SNPs, but 

was no more significant in the multivariate analysis. Interestingly, carriers of the haplotype ABCB1 
3435T/2677G/1236C showed higher plasma concentrations compared to non-carriers, however, the 

difference reached statistical significance in the multivariate analysis only if CYP2D6 EMs were taken 

into account. Results of a recent study showed a tendency toward lower donepezil plasma 

concentrations in patients carrying two alleles of the haplotype 3435T/2677T/1236T. However, the 

difference did not reach statistical significance,14 and could not be confirmed by the present results. It 

should be mentioned that P-gp polymorphisms might influence donepezil plasma concentrations 

through altered absorption, distribution and/or excretion. On the other hand, it has also been shown 

that individuals homozygous for the ABCB1 2677 T allele have enhanced constitutive CYP3A4 

expression in liver and intestine compared with those homozygous for the G allele.38 This difference in 

CYP3A activity might therefore explain the higher donepezil dose-adjusted plasma concentrations in 

carriers of the ABCB1 2677 G allele and of the haplotype ABCB1 3435T/2677G/1236C. 

Overall, 43% of the patients reported at least one AE when receiving 5 mg or 10 mg donepezil daily. 

This prevalence is lower than in other studies, where incidences of 65% (5 mg/day) and 83% (10 

mg/day) have been reported.2 This discrepancy might be due to the fact that most of the patients 

included in the present study had already been treated for several months with donepezil. Therefore, 

at inclusion the transient AEs were no more present and intolerant patients would already have 

discontinued the treatment and be ineligible. Because of the higher incidence of AEs in patients 

treated with 10 mg donepezil daily, a relationship between plasma concentrations and frequency of 

AEs has been suggested.2 In our study population, the frequency of subjects experiencing at least one 

AE was significantly higher in CYP2D6 PMs or patients taking comedications which are strong 

CYP2D6 inhibitors. This could be due to the higher trough concentrations measured in these subjects, 

even though the difference did not reach statistical significance. Furthermore, a similar trend toward a 

higher incidence of AEs was noticed in patients carrying the haplotype ABCB1 3435T/2677G/1236G, 

also displaying slightly higher trough concentrations. These results suggest that future prospective 

studies should be performed to determine whether therapeutic monitoring of donepezil could be useful 

to reduce AEs. 

This naturalistic cross-sectional study has several limitations. The patients included in the study are 

very heterogeneous thus confounding by different factors, such as comobidities or comedication, 

cannot be excluded. Blood sampling for plasma concentration determination was performed at any 

time of the day, thus, trough plasma concentrations had to be estimated in order to be able to 

compare the patients. Because of the long half-life of the drug (70 hours), resulting in small differences 
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between peak and trough concentrations, our estimation of the trough concentrations is considered to 

be suitable for the objectives of the study. Prevalent AEs were recorded at inclusion and, as previously 

mentioned, most patients were already receiving donepezil for several months. This might have 

complicated differentiating between donepezil related AEs and effects of concomitant diseases or 

medication. Considering these limitations, confirmation of the presented findings in other study cohorts 

is required.  

In summary, the present study shows a large interindividual variability in donepezil plasma 

concentrations. Functional alleles of CYP2D6 accounted for a major part of the genetically determined 

variability. However, genetic variations in POR, NR1I2 and ABCB1 were also related to donepezil 

pharmacokinetics. These findings are an important contribution to a better understanding of donepezil 

pharmacokinetics and, potentially, clinical effectiveness and tolerance. 
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Figure 1: Influence of the CYP2D6 genotype on dose-adjusted donepezil plasma concentrations. In 

the box plots median and interquartile ranges are shown. 
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Table 1: Characteristics of the study population (n=129) 

Characteristic Category    

Age (years)  (mean±SD; range) 84 ± 6 62-99 

     

Gender male (n; %) 37  28.6 

 female (n; %) 92 71.3 

Duration of treatment (years)a (mean±SD; range) 2 ± 1.7 0.1-8 

Smoking  (n; %) 9 7.0 

Alcoholb  (n; %) 3 2.3 

Renal impairment eGFRc ≥  60 (n; %) 59 45.7 

 eGFRc 30-59 (n; %) 67 51.9 

 eGFRc <30 (n; %) 3 2.3 

Dose per day  5 mg (n; %) 45 34.9 

 10 mg (n; %) 84 65.1 

Estimated C0
d (ng/ml) 5 mg (median (IQR); range) 23 (19-29) 8-72 

 10 mg (median (IQR); range) 52 (43-64) 13-105 

C0/De (ng/ml•mg)  (median (IQR); range) 5.0 (4.1-6.2) 1.3-14.4 

Comedication     

CYP2D6 inhibitors moderate (n; %) 65 50.4 

 strong (n; %) 6 f 4.7 

CYP3A inhibitors moderate (n; %) 37 28.7 

 strong (n; %) 2 1.6 

CYP3A inducers  (n; %) 4 3.1 

a)  n=120, in 9 subjects the duration of treatment is unknown 
b)   >40 g per day in men and >20 g per day in women 
c)   Estimated glomerular filtration reat with MDRD (Modification of Diet in Renal Disease) formula 

in ml/min/1.73m2 39 
d)  C0: trough plasma concentration 
e)  Co corrected by the daily dose 
f)  Includes one CYP2D6 PM who was not considered as receiving a CYP2D6 inhibitor in the 

statistical analyses. 
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Table 2: Univariate analyses of the influence of demographic factors and genotypes on dose-adjusted 

donepezil concentrations 

   all CYP2D6 genotypes  CYP2D6 EMs     
   n Dose-

adjusted 
plasma 
levela 

P 
valuesb 

 n Dose-
adjusted 
plasma 
levela 

P 
valuesb 

          
Demographic factors category        
          
Gender  male 37 4.4 (3.7-4.9) >0.001     
  female 92 5.3 (4.3-6.5)      
Strong CYP2D6 inhibitors yes 5 6.9 (5.8-7.6) 0.059     
  no 124 5.0 (4.0-6.1)      
Strong CYP3A inhibitors yes 2 5.8 (5.8-5.8) 0.391     
  no 127 5.0 (4.0-6.3)      
CYP3A inducers yes 4 3.8 (2.4-5.2) 0.150     
  no 125 5.0 (4.1-6.2)      
          
Genetic factors genotype        
          
CYP2D6   

UM 
 
2 

 
2.6 (2.1-3.2) 

 
0.030c 

    

  homEM 65 4.7 (4.0-5.8)      
  hetEM 55 5.3 (4.5-6.8) 0.031c     
  PM 7 6.3 (5.2-8.4)  0.026c     
CYP3A4  

allele *1B 
 
*1/*1 

 
123 

 
5.0 (4.1-6.2) 

 
0.878 

  
11
6 

 
5.0 (4.1-6.1) 

 
0.804 

  *1/*1B 6 4.6 (3.2-8.8)   4 4.6 (3.6-7.0)  
 rs4646437 CC 103 5.0 (4.1-6.3) 0.603  99 5.0 (4.1-6.2) 0.344 
  CT 26 4.7 (4.0-6.2)   21 3.6 (4.4-5.3)  
CYP3A5 
 

 
allele *3 

 
*1/*3 

 
16 

 
5.0 (4.2-6.3) 

 
0.803 

  
15 

 
5.0 (4.5-6.2) 

 
0.756 

  *3/*3 113 5.0 (4.1-6.2)   10
6 

5.0 (4.1-6.1)  

CYP3A7  
allele *1C 

 
*1/*1 

 
123 

 
5.0 (4.1-6.3) 

 
0.712 

  
11
4 

 
5.0 (4.1-6.1) 

 
0.756 

  *1/*1C 5 5.0 (4.4-6.2)   5 5.0 (4.4-6.2)  
  *1C/*1C 1 3.8   1 3.8  
POR  

allele *28 
 
CC 

 
74 

 
5.2 (4.2-6.6) 

 
0.105 

  
69 

 
5.2 (4.6-6.6) 

 
0.038 

  CT 46 4.8 (3.9-6.0)   42 4.7 (3.9-5.8)  
  TT 9 4.6 (3.5-5.8)   9 4.6 (3.5-5.8)  
NR1I2  

rs1523130 
 
CC 

 
47 

 
4.5 (3.7-5.8) 

 
0.021 

  
43 

 
4.5 (3.8-5.8) 

 
0.038 

  CT 56 5.2 (4.4-6.7)   52 5.0 (4.4-6.1)  
  TT 26 5.2 (4.2-6.4)   25 5.3 (4.5-6.4)  
 rs2472677 TT 50 5.0 (4.0-5.9) 0.691  47 5.0 (4.2-5.9) 0.996 
  TC 67 5.0 (4.1-6.4)   62 5.0 (4.1-6.2)  
  CC 12 5.0 (4.1-7.2)   11 5.0 (4.1-6.9)  
 rs7643645 AA 61 5.1 (4.2-6.3) 0.718  55 5.0 (4.2-6.3) 0.658 
  AG 56 5.0 (4.1-6.1)   54 5.0 (4.1-6.0)  
  GG 12 4.6 (3.7-7.2)   11 4.2 (3.7-6.9)  
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ABCB1  
3436C>T 

 
CC 

 
36 

 
5.2 (3.8-6.3) 

 
0.927 

  
35 

 
5.3 (4.0-6.3) 

 
0.603 

  CT 55 4.9 (3.9-6.1)   54 4.9 (3.9-6.1)  
  TT 38 5.2 (4.3-6.4)   31 4.8 (4.3-5.9)  
 2677G>T GG 45 5.6 (4.1-6.4) 0.141   44 5.7 (4.3-6.6) 0.046 
  GT 56 4.8 (3.9-5.7)   54 4.8 (4.0-5.7)  
  TT 28 5.0 (4.3-6.5)   26 4.7 (4.3-5.8)  
 1236C>T CC 45 5.6 (4.4-6.8) 0.084   44 5.7 (4.5-6.9) 0.024 
  CT 58 4.7 (3.9-5.5)   56 4.7 (3.9-5.5)  
  TT 26 5.3 (4.2-6.2)   20 5.0 (4.1-5.8)  
 3435T/2677G/ 

1236C carriers 29 5.2 (4.5-7.1) 0.084  92 4.9 (3.9-5.8) 0.021 

  non-
carriers 

100 5.0 (3.9-6.0)   28 5.4 (4.6-7.1)  

 

a) Dose-adjusted plasma levels are  expressed  as  median  (interquartile  range)  in  ng/ml•mg 

b) P values determined by Wilcoxon test; dominant model grouped by the presence of at least one 
variant allele versus wild type 

c) P value refers to homozygous extensive metabolizers (homEM) versus ultrarapid metabolizers 
(UM), heterozygous extensive metabolizers (hetEM) and poor metabolizers (PM), respectively. 
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Table 4: Multivariate analyses of the influence of genotypes on dose-adjusted donepezil concentrations 

in all CYP2D6 genotypes and in CYP2D6 EMs 

 

a) Coefficients and P values obtained from the linear multiple regression analysis using the log-

transformed dose-corrected donepezil trough concentrations as dependent variable and genotypes, age, 

gender, comedication with CYP2D6 inhibitors, CYP3A inhibitors and CYP3A inducers as independent 

variables.  

 all CYP2D6 genotypes  CYP2D6 EM 

 Coefficient (SE)a P valuea  Coefficient (SE)a P valuea 

Demographic factors      

Age 0.012 (0.005) 0.014  0.010 (0.005) 0.048 

Female Gender 0.197 (0.068) 0.005  0.258 (0.063) <0.001 

CYP2D6 inhibitors 0.178 (0.065) 0.007  0.157 (0.059) 0.009 

CYP3A inhibitors 0.071 (0.067) 0.287  0.092 (0.062) 0.138 

CYP3A inducers -0.330 (0.182) 0.072  0.231 (0.192) 0.231 

      
Genetic factors      

CYP2D6 homEM versus hetEM 0.130 (0.061) 0.037    

 homEM versus PM 0.417 (0.145) 0.005    

 hom EM versus UM -0.721 (0.252) 0.005    

CYP3A4 allele *1B 0.051 (0.178) 0.774  -0.026 (0.180) 0.887 

 rs4646437 0.018 (0.091) 0.846  -0.032 (0.090) 0.718 

CYP3A5 allele *3 -0.050 (0.124) 0.687  -0.098 (0.116) 0.400 

CYP3A7 allele *1C 0.014 (0.142) 0.919  -0.073 (0.130) 0.575 

POR allele *28 -0.050 (0.060) 0.401  -0.136 (0.056) 0.018 

NR1I2 rs1523130 0.185 (0.064) 0.005  0.234 (0.062) <0.001 

 rs2472677 -0.039 (0.107) 0.720  -0.033 (0.101) 0.749 

 rs7643645 -0.034 (0.062) 0.577  -0.002 (0.058) 0.979 

ABCB1 3436C>T 0.089 (0.101) 0.377  0.071 (0.093) 0.447 

 2677G>T -0.207 (0.160) 0.198  -0.156 (0.145) 0.285 

 1236C>T 0.059 (0.141) 0.676  0.064 (0.129) 0.619 

 Intercept 0.265 (0.462) 0.568  0.531 (0.450) 0.241 
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4.2 Article V: Population pharmacokinetic study of memantine: effects of clinical and genetic 
factors 
 

Summary 
In this article, the results of the pharmacogenetic study in patients treated with memantine are 

described. Memantine is mainly eliminated unchanged by the kidneys with implication of active renal 

secretion by cation transporters. Moreover, considerable inter-individual variability in plasma 

concentrations has been reported in previous studies. A population pharmacokinetic study, using 

NONMEM, was performed, which included clinical and genetic data from 108 patients. Common 

polymorphisms in renal cation transporters (SCL22A1/2/5, SLC47A1, ABCB1) and nuclear receptors 
(NR1I2, NR1I3, PPAR) involved in transporter expression were investigated. An average clearance of 

5.2 l/h with a 27% inter-individual variability (CV%) was found. In line with the primarily renal 

elimination, the glomerular filtration rate markedly influenced memantine clearance. Moreover, female 

patients showed a slower elimination with a 20% lower clearance. No significant relationship between 

genetic variations in cation transporter genes and memantine clearance was found. In contrast, the 

polymorphism NR1I2 rs1523130 was significantly associated with memantine clearance, with carriers 

of the NR1I2 rs1523130 CT/TT genotypes presenting a 16% slower memantine elimination than 

carriers of the CC genotype. To date, this is the first study that comprehensively evaluated the effect 

of polymorphisms in renal transporters and nuclear receptors on memantine pharmacokinetics. The 

better understanding of inter-individual variability in memantine pharmacokinetics might be beneficial 

in the context of individual dose optimization. 
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ABSTRACT 

Memantine, a frequently prescribed antidementia drug, is mainly eliminated unchanged by the 

kidneys, partly via tubular secretion. Considerable interindividual variability in plasma levels has been 

reported. To investigate clinical and genetic factors influencing memantine disposition, a population 

pharmacokinetic study was performed including data from 108 patients recruited in a naturalistic 

setting. Patients were genotyped for common polymorphisms in renal cation transporters 

(SCL22A1/2/5, SLC47A1, ABCB1) and nuclear receptors (NR1I2, NR1I3, PPAR) involved in 

transporter expression. The average clearance was 5.2 l/h with a 27% interindividual variability (CV%). 

Glomerular filtration rate (p=0.007) and gender (p=0.001) markedly influenced memantine clearance. 

NR1I2 rs1523130 was identified as the unique significant genetic covariate for memantine clearance 

(p=0.006), with carriers of the NR1I2 rs1523130 CT/TT genotypes presenting a 16% slower 

memantine elimination than carriers of the CC genotype. The better understanding of interindividual 

variability might be beneficial in the context of individual dose optimization. 

 

INTRODUCTION 

Memantine is a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, which is indicated 

for  the  treatment  of  moderate  to  severe  Alzheimer’s  disease.  Memantine  has  generally  been  shown  to  

be a well-tolerated drug,1 the most common adverse events (AE) include dizziness, somnolence, 

headache and constipation.1,2 The major part of an administered memantine dose is excreted 

unchanged by the kidneys (75-90%) with the remaining memantine converted to numerous 

metabolites.3 The total renal clearance (CL) substantially exceeds glomerular filtration rate, indicating 

that a significant part of memantine is eliminated via active tubular secretion by renal transporters.3 

Steady-state plasma levels of 70-150 ng/ml with large interindividual variations have been reported in 

patients receiving the recommended daily dose of 20 mg.2 Moreover, a relationship between clinical 

outcome and frequency of AEs with memantine plasma levels has been suggested.4  

There is growing evidence that, for some drugs, genetic variations in membrane transporters 

contribute to interpatient variability in disposition and/or response.5 Memantine is a known substrate of 

the human organic cation transporter 2 (OCT2).6 However, as an organic cation at physiological pH, 

memantine is probably also handled by other transporters of the renal organic cation transport system, 

including the organic cation transporters (OCT1-3), the carnitine transporters (OCTN1-3), the 

multidrug and toxin extrusion proteins (MATE1-2) and the P-glycoprotein (P-gp).7 Numerous 

polymorphisms have been described in their respective genes SLC22A1-3, SLC22A4-5, SLC47A1-2 
and ABCB1, some of them are known to alter protein function and expression.8-13 To our knowledge, 

no studies investigating the influence of genetic variants in cation transporters on memantine 

pharmacokinetics have been published. However, several single nucleotide polymorphisms (SNP) in 

SLC22A1/2 and SLC42A1 have been suggested to affect metformin CL.13,14 Similar effects might be 

anticipated for memantine, as metformin is an organic cation drug that is mainly eliminated unchanged 

by the kidneys with implication of active secretion by renal transporters. In addition, in vitro and in vivo 
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studies have demonstrated the involvement of the following nuclear receptors in gene expression 

regulation of cation transporters in different tissues: pregnane X receptor (PXR), constitutive 

androstane receptor (CAR) and peroxisome proliferator-activated receptor (PPAR).15-19 There is 

emerging evidence that polymorphisms in nuclear receptors influence the expression of cytochrome 

P450 (CYP) drug metabolizing enzymes,20,21 thus affecting pharmacokinetics of drugs. A similar effect 

of these polymorphisms on renal drug transporter expression might therefore be hypothesized, which 

could potentially lead to interindividual variability in drug elimination. Thus, the identification of clinical 

and genetic factors underlying the interindividual variability in memantine pharmacokinetics may help 

to improve the understanding of variation in drug response.  

The aim of the present study was to quantify the effects of genetic variations in genes of renal cation 

transporters and nuclear receptors, and of other clinical factors, on memantine plasma levels. In 

addition, simulations were performed to predict and compare the average steady-state plasma levels 

(Cav)   associated   with   20  mg,   15  mg   and   10  mg   once   daily   dosage   regimens   for   relevant   patients’  

characteristics. Finally, an analysis of the memantine concentration-toxicity relationship was 

conducted. 

 

RESULTS 

A total of 108 patients were included in the study, receiving a daily memantine dose of 5 mg (n=5), 10 

mg (n=24), 15 mg (n=4) or 20 mg (n=75). The average (±SD) duration of memantine treatment was 

1.8 (±1.7) years (range 1 month to 10 years). Memantine plasma levels measured at steady-state 

ranged from 11 to 314 ng/ml. The characteristics of the study population are presented in Table 1.  

 

Structural model 
A one-compartment model with first-order absorption from the gastro-intestinal tract fitted the data at 

best. Owing to few data at early time points after drug intake, rendering the estimation of the 

absorption rate constant ka imprecise, ka was fixed to the mean of the bootstrap resampling analysis 

(0.3 h-1 CI95:0.04-1.11-1). In addition to CL, interpatient variability on the volume of distribution of the 

central compartment (V) and ka did not further improve the description of the data (change in the 

objective function (ΔOF) ≤0.9;;   p>0.3).   The estimates and the variability (CV%) of the basic 

pharmacokinetic model were: CL 5.2 l/h (27%), V 172.8 L and ka 0.3 h-1. 

 
Influence of non-genetic covariates  

Table 2 summarizes the model-building steps performed for the covariate analysis. In univariate 

analyses, sex, age and creatinine CL (CLcreat) were identified as significant covariates on memantine 

CL (ΔOF)  ≤-7; p<0.01). Ethnicity, memantine formulation, smoking, grapefruit juice (P-gp inhibitor) or 

elevated alcohol consumption were not associated with memantine CL (ΔOF≥-12.7; p>0.1). Interacting 

medications were classified as drugs eliminated via tubular secretion, OCT inhibitors, PXR agonists, 

and P-gp inhibitors or inducers (Supplementary Table 1). Among those, P-gp inhibitors (ΔOF=-11; 
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p<0.01) and PXR agonists (ΔOF=-5; p<0.05) increased memantine CL by about 20%. Since the 

classification of drugs as P-gp inhibitors and PXR agonists was mainly based on in vitro data, the 

clinical significance for pharmacokinetic drug interactions at therapeutic concentrations is unknown. 

Therefore, the analyses on these covariates were considered to be exploratory and they were not kept 

in the reported final model to avoid bias. Nevertheless, similar results were found with and without 

these covariates (data not shown). The model incorporating all relevant non-genetic covariates was 

built up and further refined by setting them one by one to their null values. This step eliminated the 

influence of age on CL, but sex and CLcreat remained  statistically  significant  (ΔOF=-17.6; p<0.001) and 

explained altogether 7% of the interindividual variability on CL.  

 

Influence of genetic covariates 
A total of 27 polymorphisms in renal transporters and nuclear receptors were analyzed (Table 3). The 

minor allelic frequencies are in line with the reported frequencies for Caucasians in the SNP database 

of the National Center for Biotechnology Information.22 No deviation from Hardy-Weinberg equilibrium 

was observed (p>0.08), with the exception of CAR rs4073054 (p=0.04). 

No significant relationship was found between the investigated SNPs in the genes SLC22A1/2/5, 

SLC47A1 and ABCB1 of renal transporters and memantine CL. In contrast, univariate analyses testing 

the effects of polymorphisms in the nuclear receptors NR1I2, NR1I3, RXRA, PPARGC and PPARG 
revealed a significant association of the SNP NR1I2 rs1523130 with memantine CL (rich model Eq 2 

ΔOF=-6.3; p<0.05), explaining 9% of its interindividual variability. 

Several models were used to test the relationships between the NR1I2 rs1523130 genotypic groups 

and memantine CL (Table 2). Compared to the rich model, linear, power, square root or square 

models provided similar description of the data using an activity score (Eq 3, 4, 5 and 6 ΔOF<-4; 

p<0.05). Furthermore, no statistical significant difference in CL in NR1I2 rs1523130 CT and TT 

genotypic groups was observed compared to the other models (ΔOF=0.5;;  p=0.5). CL was 5.87 l/h in 

NR1I2 rs1523130 CC individuals and reduced to 4.96 l/h in carriers of the CT or TT alleles.  

The final model included sex, CLcreat and NR1I2 rs1523130 polymorphism on memantine CL (ΔOF=-

25; p<0.001). These covariates explained 17% of the overall variability in memantine CL. The final 

model  parameters’  estimates,  together  with  their  bootstrap  estimations,  are  given  in  Table  4.  Figure  1  

shows the dose-normalized concentration-time plots of memantine with their 95% prediction intervals. 

 

Simulations 
Model-based simulations were performed to evaluate the impact of genetic polymorphism and 

impaired renal function on memantine Cav and to compare these concentrations to the suggested 

therapeutic range of 90-150 ng/ml.23  

Individuals with normal renal function carrying the NR1I2 rs1523130 CT/TT genotypes had a modest 

19% increase in median Cav after daily doses of 20 mg, with a mean Cav increasing from 115 ng/ml 

(CI95% 55-174 ng/ml) to 137 ng/ml (CI95% 66-208 ng/ml). The model predicted an additional 28% 

increase in Cav in individuals with impaired renal function (CLcreat 30 ml/min) in combination with the 

genetic polymorphism, leading to a mean Cav of 169 ng/ml (CI95% 82-256 ng/ml). While considering 
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the interindividual variability in CL, it is expected that 13%, 32%, 36% and 63% of individuals would 

exceed the 150 ng/ml upper limit in NR1I2 rs1523130 CC individuals with normal renal function, 

CT/TT carriers with normal renal function, CC individuals with reduced renal function and CT/TT 

carriers with reduced renal function, respectively.  

Additionally, simulations were performed to evaluate which dose adjustment would be required in 

patients with a CLcreat of 30 ml/min under assumption of reference alleles for NR1I2. For daily doses of 

10 mg and 15 mg, the respective predicted mean Cav were 38% and 8% inferior to patients with 

normal renal function receiving 20 mg memantine per day (71 ng/ml and 106 ng/ml vs. 115 ng/ml). 

Moreover, while accounting for interindividual variability, the dose reductions would lead to Cav below 

the 90 ng/ml limit in 84% and 30% of the individuals after 10 mg and 15 mg daily, respectively. Figure 

2 shows the average and 95% predicted interval (PI) of Cav obtained for memantine 10 mg, 15 mg and 

20 mg daily regimens under various assumptions of NR1I2 rs1523130 genotypes and renal function. 

Concentration-side effect relationships 

A total of 54% (n=58) patients reported no AE while 46% (n=50) experienced at least one AE. 

Constipation was present in 25%, dizziness in 14%, headache in 13% and somnolence in 17% of the 

patients. Logistic regression analyses between Cav or area under the curve (AUC0-) and the 

presence/absence of AEs revealed no significant relationship. In contrast, chi-square analyses 

between dichotomized Cav values and the presence/absence of AEs showed that patients with Cav 

above 150 ng/ml had a significantly higher risk to experience at least one AE (38% (n=26) Cav<150 

ng/ml vs. 60% (n=24) Cav>150 ng/ml, p=0.028). Regarding specific AEs, constipation (16% vs. 40%, p 

= 0.006) and dizziness (7% vs. 25%, p=0.01) were significantly related to the 150 ng/ml cut-off value, 

whereas other AEs (headache p = 0.095) and somnolence (p=0.075) were non-significant.  

 

DISCUSSION 

Comorbidities, polypharmacy and non-compliance are particular problems in elderly patients with 

cognitive impairment. It would therefore be of special importance for this population to avoid multiple 

medication changes due to non-response or side effects. Thus, optimization of memantine treatment 

through an individual dose-adaption might be beneficial. In this naturalistic cross-sectional study, 108 

dementia patients were included receiving a treatment with memantine. A population pharmacokinetic 

model was developed, integrating genetic and non-genetic factors, to study the interindividual 

variability in memantine pharmacokinetics. To our knowledge, this is the first pharmacogenetic study 

on memantine. The CL estimate and its variability are in good accordance with a previous population 

pharmacokinetic study.24 As expected, renal function had a marked impact on memantine elimination. 

The dominant influence of the renal function is in agreement with the extensive renal elimination of 

memantine and has previously been shown in a single dose study in elderly volunteers.25 Age and sex 

were also correlated to memantine elimination, but their influence was integrated in the MDRD 

(Modification of Diet in Renal Disease) formula used to estimate CLcreat.26 However, the influence of 
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sex remained beyond correction, which could be related to a lower OCT expression in female, as 

observed in rats and mice.27,28 

It is suggested that comedication eliminated via renal tubular secretion or inhibiting organic cation 

transporters could lead to pharmacokinetic interactions with memantine.3 To date, only few clinical 

trials addressed this issue. On one hand, one study reported a decreased memantine CL in patients 

taking comedication eliminated via renal tubular secretion.24 On the other hand, no significant effect of 

a combination of glibenclamid/metformin on single-dose memantine pharmacokinetics was found in 

another study, even though metformin is a substrate of organic cation transporters.29 A large 

proportion of our study population received drugs eliminated via tubular secretion and/or OCT 

inhibitors, but no interactions were revealed. The classification of OCT inhibitors was mostly based on 

in vitro data, thus, the in vivo consequences are difficult to predict. Further studies are required to 

elucidate the interaction potential between OCT inhibitors and memantine. 

In the current study, PXR agonists and P-gp inhibitors showed a moderate increase on memantine 

CL. The enhancement by PXR agonists might be explained by an increased expression of OCTs, as it 

has been reported for rifampicin.19 The enhancement by P-gp inhibitors is somewhat counterintuitive, 

as a slower elimination would be expected from a diminished transport function. Since P-gp is involved 

in the drug distribution process, an altered distribution of memantine could be a possible explanation. 

However, as many P-gp inhibitors are also PXR agonists (e.g., simvastatin, omeprazole), the effects 

of these comedications could not be clearly distinguished. The involvement of P-gp in memantine CL 

must therefore be examined in further studies. A limitation of these covariate analyses is the 

classification of the drugs mainly based on in vitro data. 

It has become evident that membrane transporters are important determinants of drug disposition, and 

genetic variations altering the function or expression of transporters are interesting targets for 

pharmacogenetic investigations.30 In this study, we examined the relationship of polymorphisms in 

genes of renal cation transporters with memantine elimination. Although the selected SNPs were 

associated in vitro and/or in vivo with altered transport, pharmacokinetics or pharmacodynamics of 

OCT substrates,10,13,31-34 they did not affect memantine CL. Several explanations for the lack of 

association are conceivable. On one hand, the naturalistic approach of the study, including patients 

with comorbidities and several comedications, might have masked subtle effects of genetic variations. 

The in vivo impact of cation transporter polymorphisms has most extensively been studied with 

metformin. Supporting our hypothesis, the effect of genetic variants on metformin pharmacokinetics 

appears small and the subsequent effects on clinical response are also limited, above all in studies 

involving patients.13,14 On the other hand, it is likely that several redundant cation transporters are 

implicated in the renal elimination of memantine. A diminished activity of one transporter might 

therefore be compensated by the other ones. Finally, considerable intersubject differences in OCT 

expression have been reported suggesting that other mechanisms regulating the expression of renal 

transporters might be predominant.13  
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Recently, attention has been drawn on genetic variations in nuclear receptors, implicated in the control 

of drug metabolizing enzyme and transporter expression. In this study, we investigated several 

polymorphisms in the following nuclear receptors known to be involved in cation transporter 

expression:  PXR,  RXRα,  PPARγ  and  CAR.15-18 A significant relationship between memantine CL with 

the SNP NR1I2 rs1513023 was found, with a 16% decreased CL in patients carrying at least one T 

allele. In vitro, this SNP was associated with decreased hepatic CYP3A4 expression.20 Expecting the 

same effect, the reduced CL would be a result of lower transporter expression in the kidneys. For 

further insights into the mechanistic basis underlying the alteration in memantine pharmacokinetics, in 
vitro studies on renal transporter expression related to NR1I2 rs1513023 genotypes are required.  

To date, no prospective studies have been conducted to establish a therapeutic range of memantine 

for efficacy and tolerability optimization. However, in recently published consensus guidelines, a 

therapeutic range of 90-150 ng/ml was proposed.23 In patients, receiving the recommended dose of 20 

mg memantine daily and reference alleles for NR1I2, the predicted Cav levels were in good agreement 

with the therapeutic range. The proportion of patients exceeding the therapeutic range increased 

considerably in carriers of the NR1I2 rs1513023 T allele and/or in case of renal insufficiency with a 

CLcreat of 30 ml/min. According to the prescription information,2 half of the normal daily dose is 

recommended for patients with severe renal impairment. The simulations predicted a Cav inferior to the 

therapeutic range for the majority of patients with a Clcreat of 30 ml/min and NR1I2 reference alleles. 

On the other hand, a dose of 15 mg per day leaded to similar Cav than a 20 mg daily dose in patients 

with normal renal function and might thus be more appropriate. In accordance with the proposed 

therapeutic range, patients with memantine Cav levels above 150 ng/ml had a significant increased 

occurrence of AEs. Thus, a dose reduction might be useful if the threshold of 150 ng/ml is exceeded, 

especially in case of AEs that might limit adherence to the treatment. Due to the cross-sectional study 

design, AEs were recorded at inclusion when most participants were already receiving memantine for 

several months. Therefore, it was difficult to differentiate between memantine related AEs and effects 

of concomitant diseases or medication, and confirmation of the result in other study cohorts is 

required. With respect to a possible benefit of individual memantine dose-adaption, further studies on 

the concentration-effect relationship are necessary to establish an evidence-based therapeutic range. 

In conclusion, the pharmacokinetic parameters of memantine were adequately described by our 

population model, showing a predominant role of renal function and gender on memantine CL. To 

date, this is the first study that comprehensively evaluated the effect of polymorphisms in renal 

transporters and nuclear receptors on memantine pharmacokinetics. No significant relationship 

between genetic variations in renal cation transporter genes and memantine CL was found. In 

contrast, the polymorphism NR1I2 rs1523130, that potentially alter the expression of transporters in 

the kidney, was significantly related to slower memantine elimination. However, replication of these 

results in another group of patients is necessary. These findings are an important contribution to the 

understanding of interindividual variability in memantine pharmacokinetics and might be useful to 

improve clinical outcome and tolerability of the treatment. 
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MATERIALS AND METHODS 

Study Population 

A total of 108 subjects receiving memantine for at least one month at stable dose were included in this 

cross-sectional study. Patients were recruited at four hospitals in Switzerland (Lausanne, Geneva, 

Marsens, Aigle) and in affiliated nursing homes. The sample consisted of 94% inpatients and 6% 

outpatients. One blood sampling was performed to measure the memantine plasma level, to evaluate 

the renal function (standard laboratory tests of creatinine, urea), and to extract DNA for the genetic 

analyses. The presence of adverse events, reported by the patients, doctors and/or nurses, was 

registered. Additionally, concomitant diseases, comedication, consumption of grapefruit, alcohol and 

tobacco were recorded. 

The study was approved by the local ethics committees (Lausanne University Hospital, Geneva 

University Hospital, Cantonal Ethic Committee Fribourg) and conducted according to the Good Clinical 

Practices. Written informed consent, including consent for genetic analysis, was obtained from all 

patients or their legal representative. 

Drug concentration measurement  

Blood samples were collected on average 12 hours after medication intake (range: 1-25 hours) in 

EDTA blood tubes. After centrifugation, the plasma was stored at -20°C until analysis. Memantine 

plasma levels were determined by high performance liquid chromatography coupled with mass 

spectrometry, as previously described.35  

Genotyping 

Genomic DNA was extracted from EDTA blood samples with the FlexiGene DNA extraction kit or the 

QIAamp  DNA  Blood  Mini  Kit  (QIAGEN,  Hombrechtikon,  Switzerland)  according  to  the  manufacturer’s  

protocols. The following functional and tagging SNPs were selected for genotyping based on 

previously published in vitro or in vivo pharmacogenetic studies and on their frequency in the 

Caucasian population.10,13,20,21,31-34,36,37 Genotyping was performed by real-time polymerase chain 

reaction   with   5’-nuclease allelic discrimination assays (ABI PRISM 7000; Applied Biosystems, 

Rotkreuz,   Switzerland)   according   to   manufacturer’s   instructions   or   previous   studies:38 SLC22A1 
rs628031 (C__8709275_60), rs72552763 (C__34211613_10), rs622342 (C__928527_20), 

rs34130495 (Custom TaqMan SNP Genotyping Assay), rs34059508 (C__30634080_20), rs12208357 

(C__30634096_10), SLC22A2 rs2279463 (C__8703416), rs316003 (C__928498_30), rs316019 

(C__3111809_20), rs624249 (Custom TaqMan SNP Genotyping Assay); SLC22A5 rs2631367 

(C__26479161_30); SLC47A1 rs2289669 (C__15882280_10); ABCB1 rs2032582, ABCB1 rs1045642, 
ABCB1 rs1128503 (C__7586662_10), ABCB1 rs2229109 (C__15951365_20); NR1I2 rs1523130 

(C__9152783_20), rs2472677 (C__26079845_10), rs7643645, (C__1834250_10), NR1I3 rs2307424, 

rs4073054 (C__25741543_10), rs2502815, RXRA rs3132297 (C__9199894_10), rs3818740 
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(C__27521184_10), PPARGC1A rs8192678 (C__1643192_20), PPARG rs1801282 

(C__1129864_10), rs3856806 (C__11922961_30). 

Model-based pharmacokinetic analysis 

Structural model. The pharmacokinetic analysis was performed using NONMEM (version 7.1) 39 with 

the PsN-Toolkit (version 3.2.4).40  

A stepwise procedure was employed to identify the model that fitted the data the best, comparing one- 

vs. multi-compartment models with several absorption types. Memantine CL and V were estimated 

during the analysis, while ka was fixed to the mean of the bootstrap resampling analysis, because of 

the limited data collected during the absorption phase. Since memantine was only administered orally, 

the estimated pharmacokinetic parameters represent apparent values. 

Exponential errors following a log-normal distribution were used to describe interpatient variability of 

the pharmacokinetic parameters. Proportional, additive and mixed error models were compared to 

describe the intrapatient (residual) variability. 

Covariate model. Covariates potentially influencing the kinetic parameters were incorporated 

sequentially in the model. The typical value of a given parameter θ  was modeled to depend linearly on 

the non-genetic covariate X, as shown by the equation: 

θ=θ0∙  (1+θ1∙X) Eq 1 

where θ0 is the mean estimate and θ1 is the relative deviation of the mean due to the X covariate. Age 

and CLcreat were included in the model as relative deviation respectively from the population mean and 

the limit value of normal renal function in case of CLcreat, i.e., 80 ml/min and categorical variables were 

coded as 0 and 1. CLcreat was calculated based on the MDRD formula.26 In order to characterize the 

impact of genetic polymorphisms on memantine CL, patients were categorized into genotypic groups 

as well as according to the number of functional alleles. Activity scores of 2, 1 and 0 were assigned 

respectively to the fully functional reference (Hom-Ref), heterozygous (Het-LOF), and homozygous 

(Hom-LOF) diminished/loss of function alleles.41 CL values were then estimated for each genotype 

(rich model) and/or for further regrouped (reduced model) sub-populations using the equation: 

CL=෍CLiIi
i

 Eq 2 

where CLi is the typical value for the ith genetic group and Ii is an indicator variable taking the value of 

1 if an individual carries the ith genotype, 0 otherwise. Reduced models, in which the same genotyping 

group was assigned to Het-LOF and Hom-LOF, as well as those relating CL with the activity score, 

were tested and compared to the rich model. Competitive models evaluated in this study were linear, 

power, square root and square equations, as follows:  

CL=CL0+θ1∙n Eq 3 

CL=CL0∙θ1
n Eq 4 
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CL=CL0+θ1∙√n Eq 5 

CL=CL0+θ1∙n2 Eq 6 

where n = 0, 1 or 2 is the activity score and θ1 is the average contribution per allele above that of the 

Hom-Ref CL (CL0).  

At the end of the univariate analysis, all patient characteristics that showed an influence on the 

pharmacokinetic parameters were evaluated again by comparing a model containing all the significant 

covariates with a model from which each factor was deleted sequentially.   

Parameter estimation and model selection. The data were fitted by use of the first-order conditional 

method. As a goodness-of-fit statistics, NONMEM uses an objective function value (OF), which 

corresponds approximately to minus twice the maximum logarithm of the likelihood of the data. The 

ΔOF   between   two  models   approximates   a   χ2 distribution and, along with diagnostic goodness-of-fit 

plots, is used for models comparison. In the model-building step, a decrease of the OF is considered 

statistically significant (p<0.05) if it exceeds 3.8 for 1 additional parameter. An increase of 5.9 points in 

the OF (p<0.01) was used to test for covariate significance during the backward deletion procedure.   

Model validation and Simulation. The bootstrap method with replacement was used to assess the 

stability of the final model and to construct the confidence intervals (CIs) of the pharmacokinetic 

parameters using PsN-Toolkit (Version 3.2.4).40 Five hundred data sets were reconstructed by re-

sampling from the original data. The mean values of the parameters obtained were compared with 

those estimated from the original data. The 95% CIs were calculated for each parameter. In addition, 

simulations based on the final pharmacokinetic estimates were performed with NONMEM using 1,000 

individuals in order to calculate 95% prediction intervals and the Cav for individuals with different NR1I2 

rs1523130 genotypes and renal function (CLcreat 30 or 80 ml/min) after the administration of 10 mg, 15 

mg and 20 mg daily. The concentrations including the 5th and 95th percentiles at each time point were 

retrieved to construct the prediction intervals. The figures were generated with GraphPad Prism 

(Version 5.0 for Windows, GraphPad Software, San Diego California USA).  

Concentration-side effect analysis 
The relationship between log-transformed individual estimates of memantine Cav and AUC0-  and AEs 

(constipation, dizziness, headache, somnolence) was investigated by logistic regression analyses. 

AUC0-  was obtained using Dose/CL and Cav derived as AUC0- /, with  = 12 or 24 h. The 

association between different memantine Cav cut-off levels (100 ng/ml, 150 ng/ml, 200 ng/ml) and the 

occurrence of AEs was assessed with chi-square tests. The analyses were performed on STATA 

software (Version 11.2, StataCorp, College Station, Texas, USA) and a p-value  ≤0.05  was  considered  

statistically significant. 
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Figure 1: Memantine dose-normalized plasma level-time plots of male (black circles) and female 

(white circles) patients. Simulations were performed for male patients carrying the NR1I2 rs1523130 

CC genotype and receiving 20 mg of memantine per day (solid line represents average population 

prediction value; dashed lines, 95% prediction intervals).  
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Figure 2: Predicted average concentrations (bars) with 95% prediction interval for male patients with 

various NR1I2 rs1523130 genotypes and renal function (CLcreat = 80 or 30 ml/min) administered 20 

mg, 15 mg or 10 mg memantine per day. The suggested therapeutic range between 90 and 150 ng/ml 

is indicated.23 
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Table 1: Characteristics of 108 model-building patients evaluated in the 

population pharmacokinetic analysis of memantine. 

Baseline characteristic  

Model-building patients 

Value % or range 

Demographic characteristics   

Sex (men/women) (no.) 34/74 31/69 

Median age (yr) 83 59-100 

Ethnicity (no. of patients)   

Caucasian  106 98 

Asian  2 2 

Environmental characteristics   

Drug formulation (tablet/solution) 101/7 94/6 

Alcohol Consumption 

(normal/high/no information) 

 

104/2/2 

 

96/2/2 

Grapefruit consumption (yes/no) 1/107 1/99 

Smoking Status (yes/no) 3/105 3/97 

Physiologic characteristics   

CLcreat
 a (ml/min) 63 27-147 

Creatinine  (μmol/l) 90 37-168 

Urea (mmol/l) 7.8 3.3-45.8 

Concomitant medications (no/yes)    

OCT inhibitors 75/33 69/31 

Drug eliminated via tubular secretion 38/70 35/65 

PXR agonists 78/30 72/28 

P-gp inhibitors   49/59 45/55 

P-gp inductors 94/14 87/13 

a CLcreat, creatinine clearance estimated by glomerular filtration rate.26
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Table 2: Summary of the models used to examine the influence of patient covariates on memantine oral 
CL. 

Non-genetic covariates Model θ0 θ1 θ2 ΔOFc P 

Individual characteristics       
Does SEX influence CL?  
(male: SEX=1; female: SEX=2) 

θ0 (1+  θ1·(SEX-1)) 6.30 -0.22  -11.7 < 0.01 

Does AGE influence CL? θ0 (1+  θ1 ·AGEb) 5.34 -1.12  -9.3 < 0.01 
Does ethnicity influence CL? 
(Caucasian: q1=1; q2=0 
 Asian         : q1=0; q2=1) 

θ0 ·q1+  θ1·q2 5.21 7.15  -1.0 NS 

Does memantine formulation influence CL? 
(tablet: FORM=1; solution: FORM=2)          θ0 (1+  θ1 ·(FORM-1)) 

5.29 -0.12  -0.7 NS 

Does CLcreat
a
 influence CL?                              θ0 (1+  θ1 · CLcreat

b
 ) 5.65 -0.34  -7.3 < 0.01 

Does Urea influence CL? θ0 (1+  θ1 ·UREA) 5.43 -5·10-3  0.5 NS 
Does alcohol consumption influence CL? 
(Normal/no info: q1=1; q2=0 
 high                 : q1=0; q2=1) 

θ0 ·q1+  θ1·q2 5.24 6.02  -2.8 NS 

Does grapefruit consumption influence CL? 
(NO  : q1=1; q2=0 
 YES: q1=0; q2=1) 

θ0 ·q1+  θ1·q2 5.27 3.45  -2.2 NS 

Does smoking influence CL? 
(NO  : q1=1; q2=0 
 YES: q1=0; q2=1) 

θ0 ·q1+  θ1·q2 5.20 6.44  -0.9 NS 

Concomitant medications on CL  
(DRUG=1 if administered) 

θ0 (1+  θ1 ·DRUG)      

OCT Inhibitors  5.20 0.03  -0.1 NS 
Drug eliminated via tubular secretion  5.11 0.04  -0.3 NS 
PXR agonists  5.00 0.18  -5.0 0.02 
P-gp Inhibitors  4.67 0.23  -11.0 < 0.01 
P-gp Inductors  5.24 5·10-3  0.0 NS 
Genetic covariates Model θ0 θ1 θ2 ΔOFc P 
SLC22A2 rs316019  

Rich model  (Eq 2): I0: TT; I1: GT; I2: GG 
θ0I0+θ1I1+θ2I2  6.94 5.63 5.11 -2.0 NS 

SLC22A2 rs316003  
Rich model  (Eq 2): I0: CC; I1: TC; I2: TT 

θ0I0+θ1I1+θ2I2  6.55 5.17 5.12 -3.1 NS 

SLC22A2 rs2279463 
Rich model  (Eq 2): I0: GG; I1: AG; I2: AA  

θ0I0+θ1I1+θ2I2  6.20 5.30 5.21 -0.30 NS 

SLC22A2 rs624249 
Rich model  (Eq 2): I0: AA; I1: CA; I2: CC   

θ0I0+θ1I1+θ2I2 5.32 4.99 5.58 -2.4 NS 

SLC22A1 rs628031 
Rich model  (Eq 2): I0: AA; I1: GA; I2: GG   

θ0I0+θ1I1+θ2I2  5.64 5.30 5.03 -1.4 NS 

SLC22A1 rs72552763 
Rich model  (Eq 2): I0: deldel; I1:GATdel; 

I2:GATGAT 

θ0I0+θ1I1+θ2I2  4.60 5.29 5.22 -0.2 NS 

SLC22A1 rs622342 
Rich model  (Eq 2): I0: CC; I1: AC; I2: AA 

θ0I0+θ1I1+θ2I2 6.19 5.09 5.11 -3.6 NS 

SLC22A1 rs34059508 
Rich model  (Eq 2): I1:GA; I2: GG 

θ1I1+θ2I2  4.72 5.25 -0.3 NS 
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a CLcreat, creatinine clearance estimated by glomerular filtration rate,26 
b Age and CLcreat are expressed as the relative deviation of the individual age and CLcreat 
from the population mean and normal renal function limit value (80 ml/min). 
c Differences in the NONMEM objective function   (ΔOF)   compared   to   the   basic   structural  
model, without covariates and with parameters estimates of CL of 5.2 l/h, a V of 172.8 l and 
a ka of 0.3 h-1  
d n =0, 1 or 2, number of functional alleles respectively for the TT, CT and CC patients. 

SLC22A1 rs12208357 
Rich model  (Eq 2): I1: CT; I2: CC 

θ1I1+θ2I2  5.70 5.16 -1.0 NS 

SLC22A1 rs34130495 
Rich model  (Eq 2): I1:GA; I2: GG 

θ1I1+θ2I2  4.54 5.26 -0.6 NS 

SLC22A5 rs2631367 
Rich model  (Eq 2): I0:GG; I1:CG; I2: CC 

θ0I0+θ1I1+θ2I2 4.97 5.21 5.61 -2.0 NS 

SLC47A1 rs2289669 
Rich model  (Eq 2): I0:AA; I1: GA; I2: GG 

θ0I0+θ1I1+θ2I2 5.26 5.39 4.98 -1.2 NS 

ABCB1 3435CT 
Rich model  (Eq 2): I0:TT; I1: CT; I2: CC 

θ0I0+θ1I1+θ2I2 5.27 5.12 5.39 -0.4 NS 

ABCB1 2677GT 
Rich model  (Eq 2): I0: TT; I1:GT; I2: GG 

θ0I0+θ1I1+θ2I2 4.97 5.23 5.39 -0.8 NS 

ABCB1 1236CT 
Rich model  (Eq 2): I0:TT; I1: CT; I2: CC 

θ0I0+θ1I1+θ2I2 5.17 5.16 5.40 -0.4 NS 

ABCB1 1199GA 
Rich model  (Eq 2): I0: AA; I1: GA; I2: GG 

θ0I0+θ1I1+θ2I2 3.71 5.05 5.27 -1.0 NS 

NR1I2 rs1523130 
Rich model (Eq 2):  I0:TT; I1:CT, I2: CC 

θ0I0+θ1I1+θ2I2 4.74 5.04 5.87 -6.3 0.04 

Recessive model (Eq 2):  q1=0 for 
CT/TT,  q1=1 for CC 

θ0 (1+  θ1 · q1) 5.87  -0.16 -5.8 0.02 

Linear model d (Eq 3) θ0+θ1∙n 4.59 0.57  -5.6  0.02 
Power model d (Eq 4) θ0∙θ1

n 4.59 1.12  -5.7  0.02 
Square root model d (Eq 5) θ0+θ1∙√n 4.59 0.68  -4.0  0.04 
Square model  d (Eq 6) θ0+θ1∙n2 4.75 0.28  -6.3 0.01 

NR1I2 rs2472677 
Rich model  (Eq 2): I0: CC; I1 TC; I2: TT 

θ0I0+θ1I1+θ2I2  5.15 5.34 5.16 -0.3 NS 

NR1I2 rs7643645 
Rich model  (Eq 2): I0: GG; I1 AG; I2: AA 

θ0I0+θ1I1+θ2I2 5.77 5.32 5.03 -2.0 NS 

NR1I3 rs2307424 
Rich model  (Eq 2): I0: TT; I1 CT; I2: CC 

θ0I0+θ1I1+θ2I2  4.60 5.31 5.19 -1.6 NS 

NR1I3 rs4073054 
Rich model  (Eq 2): I0: GG; I1 TG; I2: TT 

θ0I0+θ1I1+θ2I2  4.82 5.41 5.10 -1.6 NS 

NR1I3 rs2502815 
Rich model  (Eq 2): I0: TT; I1 CT; I2: CC  

θ0I0+θ1I1+θ2I2 4.23 5.25 5.27 -1.0 NS 

RXRA rs3132297  
Rich model  (Eq 2): I0: TT; I1 CT; I2: CC 

θ0I0+θ1I1+θ2I2 5.46 4.70 5.41 -3.2 NS 

RXRA rs3818740 
Rich model  (Eq 2): I0: CC; I1 TC; I2: TT 

θ0I0+θ1I1+θ2I2 4.78 5.09 5.45 -1.8 NS 

PPARGC1B rs8192678  
Rich model  (Eq 2): I0: TT; I1 CT; I2: CC 

θ0I0+θ1I1+θ2I2 4.85 5.36 5.20 -0.9 NS 

PPARG rs1801282 
Rich model  (Eq 2): I0: GG; I1 CG; I2: CC 

θ0I0+θ1I1+θ2I2 6.25 5.39 5.20 -0.7 NS 

PPARG rs3856806 
Rich model  (Eq 2): I0:  TT; I1 CT; I2: CC 

θ0I0+θ1I1+θ2I2 5.32 5.31 5.22 -0.7 NS 
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Table 3: Genotype frequencies in the study population (n=108). 

Genetic Polymorphisms Model-building patients 

 Genotypes Value Frequency (%) 
 

    
SLC22A2  

rs316019 (A270S) 
 

GG/GT/TT 
 

88/18/2 
 

81/17/2 
 

rs316003  TT/TC/CC 66/35/7 61/32/6 
 

rs2279463  AA/AG/GG 84/23/1 78/21/1 
 

rs624249  CC/CA/AA 38/53/17 35/49/16 
SLC22A1  

rs628031 (M408V) GG/GA/AA 39/53/16 36/48/15 
 

rs72552763 (M420del) GATGAT/GATdel/deldel 72/35/1 67/32/1 
 

rs34059508 (G465R) GG/GA/AA 104/4/0 96/4/0 
 

rs12208357 (R61C) CC/CT/TT 95/13/0 88/12/0 
 

rs34130495 (G401S) GG/GA/AA 105/3/0 97/3/0 
 

rs622342 AA/AC/CC 46/48/14 43/44/13 
 

Number of active allelesa 2 active/1 active/0 active 58/49/1 54/45/1 
SLC22A5  

rs2631367 
 

CC/CG/GG 
 

31/48/29 
 

29/44/27 
SLC47A1  

rs2289669 
 

GG/GA/AA 
 

34/54/20 
 

31/50/19 
ABCB1 

rs2032582 (3435C>T) 
 

CC/CT/TT 
 

29/46/33 
 

27/43/30 
  

rs1045642 (2677G>T) GG/GT/TT 38/51/19 35/47/18 
 

rs1128503 (1236C>T) CC/CT/TT 38/47/23 35/44/21 
 

rs2229109 (1199G>A) GG/GA/AA 102/5/1 94/5/1 
NR1I2  

rs1523130 
 

CC/CT/TT 
 

36/54/18 
 

33/50/17 
 

rs2472677 TT/TC/CC 42/45/21 39/42/19 
 

rs7643645 AA/AG/GG 54/40/14 50/37/13 
NR1I3  

rs2307424 
 

CC/CT/TT 
 

42/54/12 
 

39/50/11 
 

rs4073054 TT/TG/GG 34/62/12 32/57/11 
 

rs2502815 CC/CT/TT 62/44/2 57/41/2 
RXRA  

rs3132297 
 

CC/CT/TT 
 

81/24/3 
 

75/22/3 
 

rs3818740 TT/TC/CC 53/45/10 49/42/9 
PPARGC1B  

rs8192678 
 

CC/CT/TT 
 

38/57/13 
 

35/53/12 
PPARG  

rs1801282 
 

CC/CG/GG 
 

84/22/2 
 

78/20/2 
 

rs3856806 CC/CT/TT 81/26/1 75/24/1 
a Active alleles were defined by the absence of one or more of the following amino acid substitutions in SLC22A1, 

according to literature:31 M408V, M420del, G465R, R61C, G401S. 
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Table 4: Final population pharmacokinetic parameter estimates of memantine and their bootstrap 

evaluations (CL/F, mean apparent clearance for male wild-type NR1I2 rs1523130 patients with 

normal renal function; V/F, mean apparent volume of distribution; ka, mean absorption rate 

constant). 

 

Parameter 
Population mean Bootstrap evaluation 

Estimate SEa 

(%) 
IIVb 
(%) 

SEc 

(%) 
Estimate SEa 

(%) 
IIVb 
(%) 

SEc 

(%) 

CL/F (l/h) 7.51 8 22 57 7.57 9 21 61 

θ
d
NR1I2 rs1523130  -0.16 30   -0.16 34   

θ
e
CLcreat

 -0.30 40   -0.29 43   

θfemale -0.20 26   -0.21 27   

V/F (l) 194 30   242 72   

ka (h-1) 0.30 --   0.30    

f 25 19   25 21   

a Standard errors of the estimates (SE) are defined as SE/estimate and are expressed as 

percentages. 
b Interindividual variability defined as CVs (%). 
c Standard errors of the coefficient of variations, calculated as (SE/estimate) ^ 0.5, are expressed 

as percentages.  
d Relative deviation of CL/F due to NR1I2 rs1523130 individuals carrying of at least one T allele 

(Eq 1). 
e Relative deviation of CL/F as a function of CLcreat,  estimated  using  CL/F  *  (1+  θCLcreat * (80-

CLcreat)/80)), where 80ml/min is the limit value of normal renal function  
f Residual additive error, expressed as standard deviation (ng/ml). 

 

 

  



Chapter 4: Results   

156 
 

Supplementary Table 1: Classification  of  patients’  comedication   

Classification Drugs Ref 

OCT inhibitors 

bisoprolol, carvedilol, diclofenac, fluoxetine, ibuprofen, metformin, 

metoprolol, O-desmethyl-tramadol, paroxetine, propanolol, quinine, 

ranitidine, spironolactone, trimethoprim 

1-6 

Drugs eliminated 

by tubular 

secretion 

acetyl salicylic acid, bisoprolol, candesartan, captopril, digoxine, 

furosemide, hydrochlorothiazide, ibuprofen, levetiracetam, lisinopril, 

morphine, metformine, methothrexate, quinine, trimethoprim 

7-12 

PXR agonists 

amoxicillin, atorvastatin, carbamazepine, fluvastatine, ginkgo biloba, 

isradipine, nifedipine, omeprazole, simvastatin, spironolactone, valproic 

acid 

13 

P-gp inhibitors 

atorvastatin, bisoprolol, candesartan, carvedilol, diltiazem, felodipine, 

fluoxetine, haloperidol, irbesartan, nifedipine, omeprazol, pantoprazol, 

paroxetine, propanolol, sertraline, simvastatin, spironolactone 

14-16 

P-gp inducers budenoside, morphine, trazodone, valproic acid, venlafaxine 14 
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3. Lee W, Kim RB. Transporters and renal drug elimination. Annu Rev Pharmacol Toxicol. 2004;44:137-66. 
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4.3 Article VI: Relationship of CYP2D6, CYP3A5, POR and ABCB1 genotypes with galantamine 
plasma concentrations 
 

Summary 
In this article, the results of the pharmacogenetic study in patients treated with galantamine are 

described. Galantamine is extensively metabolized by the enzymes CYP2D6 and CYP3A and is a 

substrate of the P-glycoprotein. The relationship of genetic variants influencing the activity of these 

enzymes and transporter with galantamine steady-state plasma concentrations was investigated in 27 

patients treated with a constant dose of galantamine. The patients were genotyped for common 

polymorphisms in CYP2D6, CYP3A4/5, POR and ABCB1. The CYP2D6 genotype appeared to be an 

important determinant of galantamine pharmacokinetics, with CYP2D6 poor metabolizers presenting 

60% higher galantamine plasma concentrations than CYP2D6 extensive metabolizers. Moreover, the 

results suggest a potential influence of the ABCB1 2677G>T polymorphism on galantamine 

pharmacokinetics. Genetic variations, primarily in CYP2D6, might therefore be interesting for further 

prospective studies, investigating inter-individual variability in clinical outcome and tolerability of 

galantamine treatment. 
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ABSTRACT 

Background: The frequently prescribed antidementia drug galantamine is extensively metabolized by 

the enzymes CYP2D6 and CYP3A and is a substrate of the P-glycoprotein. We aimed to study the 

relationship of genetic variants influencing the activity of these enzymes and transporter with 

galantamine steady-state plasma concentrations.  

Methods: In this naturalistic cross-sectional study, 27 older patients treated with a constant dose of 

galantamine were included. The patients were genotyped for common polymorphisms in CYP2D6, 

CYP3A4/5, POR and ABCB1, and galantamine steady state plasma concentrations were determined.  

Results: The CYP2D6 genotype appeared to be an important determinant of galantamine 

pharmacokinetics, with CYP2D6 poor metabolizers presenting 60% higher dose-adjusted galantamine 

plasma concentrations than CYP2D6 extensive metabolizers (median 2.9 versus 1.8 ng/ml·mg, 

p=0.004).  

Conclusion: The CYP2D6 genotype significantly influenced galantamine plasma concentrations and 

might therefore be interesting for further studies investigating interindividual variability in clinical 

outcome and tolerability of the treatment. 

 

INTRODUCTION 

Alzheimer’s  disease  is  the  most  common  form  of  dementia,  characterized by progressive deterioration 

of cognition and global functioning. It is recognized that a loss of cholinergic activity significantly 

contributes to the cognitive decline.1 Galantamine, indicated for the symptomatic treatment of mild to 

moderate   Alzheimer’s   disease,   enhances   the cholinergic function trough inhibition of the enzyme 

acetylcholinesterase and allosteric modulation of nicotinic receptors.2 

It is widely accepted that genetic variations in drug metabolizing enzymes and transporters contribute 

to therapeutic failure and adverse drug reactions.3,4 Galantamine is mainly metabolized by the liver 

enzymes cytochrome P450 (CYP) 2D6 and CYP3A, which stands for the group of isozymes CYP3A4, 

CYP3A5 and CYP3A7.5,6 In addtion, galantamine is presumably a substrate of the membrane 

transporter P-glycoprotein (P-gp), implicated in drug absorption, distribution and excretion.7 Thus, 

genetic variations in these enzymes and transporter might influence galantamine disposition and 

clinical outcome. Moreover, polymorphisms in the cytochrome P450 oxidoreductase (POR), a protein 

that transfers electrons to the CYP enzymes, have been shown to alter CYP3A activity and might, 

therefore, affect galantamine pharmacokinetics as well.8,9 Phenotypically, four types of CYP2D6 

metabolizers can be distinguished: poor (PM), intermediate (IM), extensive (EM) and ultrarapid 

metabolizers (UM). Underlying genetic variations defining the CYP2D6 phenotypes are well known.10 

In previous studies, a 25% decreased galantamine clearance and an altered metabolite profile has 

been shown in CYP2D6 PMs compared to EMs.6,11 To our knowledge, no studies investigated the 
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impact of polymorphisms in CYP3A, POR or ABCB1 (encoding P-gp) genes on galantamine 

pharmacokinetics. 

The aim of this work was to study the effect of genetic variations in CYP2D6, CYP3A4/5, POR and 

ABCB1 on galantamine steady-state plasma concentrations in a cohort of 27 dementia patients from a 

naturalistic therapeutic setting. Moreover, the relationship between galantamine plasma 

concentrations and recorded side effects was assessed. 

 

METHODS 

Study design and participants 

In this cross-sectional study, 27 patients (23 inpatients and 4 outpatients) receiving galantamine at a 

constant dose for at least one week were included. Patients were recruited at four hospitals 

(Lausanne, Geneva, Marsens, Aigle) and in affiliated nursing homes. One blood sampling was 

performed to measure galantamine plasma concentration, to evaluate renal and hepatic function 

(standard clinical laboratory tests), and to extract DNA for the genetic analyses. The presence of 

adverse events, reported by the patients, doctors and/or nurses, was registered. Additionally, 

concomitant diseases, comedication, consumption of grapefruit, alcohol and tobacco were recorded. 

The study was approved by the local ethics committees (Lausanne University Hospital, Geneva 

University Hospital, Cantonal Ethic Committee Fribourg) and conducted according to the Good Clinical 

Practices. Written informed consent, including consent for genetic analysis, was obtained from all 

patients or their legal representative. 

Drug concentration measurement and estimation of trough concentration 

Blood samples were collected in EDTA blood tubes. After centrifugation, the plasma was stored at -

20°C until analysis. Galantamine plasma concentrations were determined by high performance liquid 

chromatography coupled with mass spectrometry, as previously described.12 

In 16 patients trough concentrations were measured, whereas in 11 patients the blood samples were 

drawn 1-7 hours after drug intake. In these patients, trough concentrations were estimated with 

NONMEM (Version 7.1) using the equation of a previously published population pharmacokinetic 

analysis including age and creatinine clearance (CLcreat) as covariates.11 Thus, the influence of these 

two covariates in our study population was only tested in the subgroup of 16 patients with measured 

trough concentration. Since linear pharmacokinetics of galantamine has been demonstrated,13 the 

trough concentration was corrected for each patient by the daily dose. 

Genotyping 

Genomic DNA was extracted from EDTA blood samples with the FlexiGene DNA extraction kit 

(QIAGEN,  Hombrechtikon,  Switzerland)  according  to  the  manufacturer’s  protocol.  The  following  SNPs  

were detected by real-time  polymerase   chain   reaction  with   5’-nuclease allelic discrimination assays 
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(ABI  PRISM  7000;;  Applied  Biosystems,  Rotkreuz,  Switzerland)  according  to  manufacturer’s  protocols  

and previous studies:14 CYP2D6*3 (rs35742686), CYP2D6*4 (rs3892097), CYP2D6*6 (rs5030655), 
CYP3A4 rs4646437, CYP3A5*3 (rs776746), ABCB1 2677G>T (rs2032582), ABCB1 3435C>T 

(rs1045642). Gene deletion (CYP2D6*5) and duplication/multiplication (CYP2D6*xN) were analyzed 

by TaqMan copy number assay and long PCR, respectively, as previously described.14 Internal quality 

control samples of known genotype were included in all analyses. 

Statistical Analysis 

Group comparisons were performed with the non-parametric Wilcoxon rank sum test for continuous 

variables  and  with  the  Fisher’s  exact   test   for  categorical  variables.  Associations  between  continuous  

variables were tested with the Spearman rank-order correlation coefficients. All tests were two-sided 

and a p-value  ≤0.05  was  considered  statistically  significant.  Analyses  were  performed  using  STATA  

software (version 12.0; StataCorp, College Station, Texas, USA). 

 

RESULTS 

Study population and influence of non-genetic factors 

A total of 27 Caucasian patients were included in the study, receiving a galantamine dose of 8 mg 

(n=7), 16 mg (n=12) or 24 mg (n=8). The sample consisted of 13 men and 14 women with a mean 

(±SD) age of 82±7 (range 67-91) years with mean (±SD) duration of treatment of 3.5 (±2.3) years. No 

patient had hepatic impairment, whereas 6 patients had a moderate renal insufficiency (CLcreat 30-59 

ml/min). Two patients were smokers and one patient had elevated alcohol consumption. The subjects 

received on average (±SD) 6±3 concomitant drugs. One patient was treated with the strong CYP2D6 

inhibitor paroxetine and was further considered as CYP2D6 PM. Weak or moderate CYP2D6 and 

CYP3A inhibitors were prescribed to respectively 19 and 9 patients.15 

Steady-state median (IQR) trough concentrations were 19 (12-26) ng/ml, 33 (27-38) ng/ml and 41 (23-

61) ng/ml for patients receiving 8 mg, 16 mg and 24 mg galantamine per day, respectively, and the 

dose-adjusted concentrations ranged between 0.66 and 4.0 ng/ml·mg. Age, gender, smoking, 

impaired renal function and comedication with weak or moderate CYP2D6 and CYP3A inhibitors were 

not significantly associated with dose-adjusted galantamine concentrations (data not shown). 

Influence of genetic factors 

Allele and genotype frequencies are in agreement with previous reports in Caucasians (Table 1), with 

the exception of CYP2D6*3.14,16 For this null allele, a frequency (95% confidence interval) of 11% (2-

29) was observed, which is higher than the frequency of approximately 2% normally detected in the 

white population.14,16 Consequently, more CYP2D6 PMs than expected were identified in our study 

population. 
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The patients were classified according to their predicted CYP2D6 phenotype.17 Overall, 6 PMs, 9 

heterozygous EMs (hetEMs), 11 homozygous EMs (homEMs) and one UM were identified. The 

CYP2D6 phenotype was significantly related to galantamine dose-adjusted plasma concentrations, 

with PMs displaying 60% higher plasma concentrations compared to hetEMs and homEMs (median 

2.9 vs. 2.0 ng/mlmg, p=0.025, and 1.8 ng/mlmg, p=0.004, respectively) (Table 1, Figure 1). Contrary 

to expectations, the UM had a similar dose-adjusted plasma concentration than EMs. 

No significant relationship was found between CYP3A4 rs4646437, CYP3A5*3, POR*28 ABCB1 

3435C>T and 2677G>T polymorphisms and dose-adjusted galantamine concentrations. However, a 

tendency towards lower concentrations was observed in carriers of the ABCB1 2677TT genotype 

compared to the GG genotype (median TT 1.8 versus GG 2.3 ng/mlmg, p=0.086) (Figure 2). 

Influence of dose and concentration on side effects 

Overall, 11 patients reported no AE while 16 patients experienced at least 1 AE. Of these, 6 patients 

had gastrointestinal problems (nausea, vomiting, diarrhea, abdominal pain, dyspepsia, anorexia, 

weight loss) and 10 patients CNS symptoms (dizziness, confusion, insomnia, headache, depression). 

Neither galantamine doses nor trough concentrations nor genotypes were related to the presence of 

AEs.  

Although the difference is not statistical significant, only one (17%) of the CYP PMs received the 

maximum dose of 24 mg per day compared to 7 (35%) of the EMs. This finding might indicate an 

intolerance of the higher dosage in PMs and should be tested in larger cohorts. 

 

DISCUSSION 

The person-to-person variability in drug response is a major problem in clinical practice leading to 

therapeutic failure or adverse effects in individuals or subpopulation of patients.18 The source of the 

variability is likely to be manifold, but for many drugs evidence exists that genetic variations in drug-

metabolizing enzymes and transporters influence the pharmacokinetics and subsequently the clinical 

outcome.3,4 Up to now, only few clinical trials addressed the issue of inter-individual variability in 

galantamine pharmacokinetics. In this cross-sectional study, we investigated the relationship of 

genetic polymorphisms in CYP2D6, CYP3A4/5, POR and ABCB1 with galantamine concentrations in 

27 dementia patients. 

A significant influence of the predicted CYP2D6 phenotype on dose-adjusted galantamine plasma 

concentrations was observed. CYP2D6 PMs displayed 60% higher concentrations compared to 

CYP2D6 EMs, while homEMs and hetEMs had similar plasma levels. Even though the influence of the 

CYP2D6 PM status was more pronounced in our study population, these results are in agreement with 

a previously published population pharmacokinetic study including 356 patients of two phase III clinical 

trials genotyped for CYP2D6.11 Their model indicated a 25% reduced galantamine clearance in 

CYP2D6 PMs (n=20) and a similar clearance among homEMs and hetEMs.11 In contrast, in a single 
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low dose study with 4 mg galantamine, no apparent difference in plasma concentrations was seen 

between two CYP2D6 EMs and two PMs, but the metabolite profile was substantially different.6 In 

EMs, urinary metabolites resulting from O-demethylation by CYP2D6 represented 33% of the dose 

compared with 5% in PMs, which showed correspondingly higher urinary excretion of unchanged 

galantamine and its N-oxide, formed by CYP3A.6 In none of these studies CYP2D6 UMs were taken 

into account. Since only one UM was detected in our study, it was not possible to draw a conclusion 

either. According to the FDA drug label information, no dose-adjustment is necessary in PMs as the 

dose is individually titrated to tolerability.19 Nevertheless,   the   knowledge   of   a   patient’s   CYP2D6 

genotype might be useful to avoid concentration-related AEs in PMs. 

A tendency towards lower dose-adjusted galantamine concentrations was observed in carriers of the 

ABCB1 2677TT genotype compared to the GG genotype. It might be that the ABCB1 2677G>T 

polymorphism influence galantamine concentrations through altered absorption, distribution and/or 

excretion. On the other hand, it has also been shown that individuals homozygous for the ABCB1 
2677T allele have enhanced constitutive CYP3A4 expression in liver and intestine compared with 

those homozygous for the G allele.20 This difference in CYP3A activity might therefore explain the 

tendency towards lower galantamine concentrations in ABCB1 2677TT carriers. The lack of a 

significant relationship between polymorphisms in CYP3A4/5, POR and ABCB1 might be due to the 

predominant influence of the CYP2D6 phenotype and the small study population and should, 

therefore, be repeated in other cohorts. 

Recently, a therapeutic range of 30-60 ng/ml was proposed for galantamine.21 In the study population, 

the trough plasma concentrations corresponded well to the suggested range for the recommended 

maintenance doses of 16 mg and 24 mg daily. Although a dose related occurrence of AEs has been 

reported,22 no relationship between galantamine dose or plasma concentrations and the presence of 

AEs was found. This result might be a consequence of the cross-sectional study design. Prevalent 

AEs were recorded at inclusion when most patients were already receiving galantamine for several 

months. Therefore, it was complicated to differentiate between galantamine related AEs and effects of 

concomitant diseases or medication. Moreover, transient AEs were no more present and intolerant 

patients would already have reduced the dose or discontinued the treatment and be ineligible.  

In conclusion, the present study shows for the first time in a naturalistic setting the significant influence 

of the CYP2D6 phenotype on galantamine pharmacokinetics, with CYP2D6 PMs displaying 60% 

higher dose-adjusted plasma concentrations than CYP2D6 EMs. Moreover, the results suggest a 

potential influence of the ABCB1 2677G>T polymorphism. Since it is of special importance for elderly 

patients with cognitive impairment to avoid multiple medication changes due to non-response or side 

effects, an individual galantamine dose-adjustment might be useful. Therefore, prospective studies 

including a larger number of patients and investigating the clinical effectiveness and tolerability of 

galantamine with respect to plasma concentrations and genotypes are required. 
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Table 1: Genotype frequencies in the study population (n=27) and dose-adjusted 

plasma concentrations in genotypes. 

 Genotype 
 

Frequency  
 Dose-adjusted plasma levels 

(ng/ml•mg) 

  n (%) 95% CI 
(%)  Median Interquartile 

range p-value 

CYP2D6a         

homEM  11 41 22-61  1.8 1.5-2.3  

hetEM  9 33 17-54  2.0 1.0-2.4 0.676c 

PM  6 22 9-42  2.9 2.5-3.5 0.004c 

UM  1 3 0-19b  2.1   

         

CYP3A4  rs4646438       
CC  22 81 62-94  2.0 1.5-2.5 0.662 
CT  5 19 6-38  2.1 1.3-2.3  

         
CYP3A5 *3         

*1/*3  3 11 2-29  2.3 1.0-2.6 1.000 
*3/*3  24 89 71-98  2.0 1.5-2.5  

         
POR*28         

CC  13 48 29-68  1.6 1.3-2.4 0.356 
CT  12 45 25-65  2.0 1.9-2.4  
TT  2 7 1-24  2.5 1.8-3.2  

         
ABCB1 3435CT      

CC  6 22 9-42  2.3 1.5-3.0 0.600d 
CT  15 56 35-75  2.3 1.5-2.6  
TT  6 22 9-45  1.8 1.0-2.0  

         
ABCB1 2677GT       

GG  10 37 19-58  2.3 1.5-3.2 0.192d 
GT  12 44 25-65  2.1 1.5-2.5  
TT  5 19 6-38  1.8 1.0-2.0  

 

a) CYP2D6: PM, poor metabolizer: *4/*4 (n=1), *4/*5 (n=1), *3/*4 (n=3), medication with 
strong CYP2D6 inhibitor (n=1); hetEM, heterozygous extensive metabolizer: *1/*4 (n=7), 
*1/*5 (n=1); *1/*6 (n=4); homEM, homozygous extensive metabolizer: *1/*1 (n=11), 
*4/*xN (n=1); UM, ultrarapid metabolizer: *1/*XN or *XN/*XN, (n=1). 

b) One-sided, 97.5% confidence interval. 

c) P value refers to homozygous extensive metabolizers (homEM) versus heterozygous 
extensive metabolizers (hetEM) and poor metabolizers (PM), respectively. 

d) P values determined by Wilcoxon test; dominant model grouped by the presence of 
at least one variant allele versus wild type. 
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Figure 1: Influence of the predicted CYP2D6 phenotype on dose-adjusted galantamine trough 

concentrations. 

 

 

 

Figure 2: Influence of the ABCB1 2677G>T genotype on dose-adjusted galantamine trough 

concentrations.
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4.4 Rivastigmine 
 

A total of 44 patients treated with rivastigmine were included in the pharmacogenetic study. Patients 

were administered several different rivastigmine dosages with patch or capsule formulation (Table 1), 

which resulted in a very heterogeneous dataset.  

 

 
  Table 1: Study participants treated with rivastigmine 

 Daily dose Number of 
patients 

Percentage 
(%) 

    
Capsule 3 mg 4 9 

 4.5 mg 2 5 

 6 mg 8 18 

 9 mg 3 7 

 12 mg 1 2 

 Total 18 41 

    

Patch 4.6 mg 11 25 

 9.5 mg 15 34 

 Total 26 59 

 
 

 

Rivastigmine plasma concentrations were determined and the previously reported high inter-individual 

variability was confirmed (Figure 1).66,67 Despite this observation, no genotyping was performed for 

pharmacogenetic analyses given that statistical power was lacking for several reasons. First, a 

comparison of the plasma concentrations by means of normalization by the daily dose was 

circumvented by the non-linear pharmacokinetics of rivastigmine.68,69 Therefore, analyses would only 

be possible in subgroups of patients with the same dosage, which were size limited in our study 

population. Furthermore, rivastigmine has a short half-life of approximately 1.5 h after capsule 

administration leading to high fluctuations between peak and trough concentrations.69 Consequently, 

estimations of trough plasma concentrations using a general pharmacokinetic equation 

(Ctrough=Cmeasured*e-((ln2/t1/2)*dt), t1/2=half-life, dt=time between medication intake and blood sampling) with 

half-life reported in the literature are not accurate enough for the purpose of the study. Finally, a larger 

study sample would be necessary for population pharmacokinetic investigations.  
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Figure 1: Measured rivastigmine plasma concentrations for patients treated with the following dosages: patch 4.6 

mg/24 h (green triangles, n=11), capsules 3 mg b.i.d. (red squares, n=8) and patch 9.5 mg/24 h (blue squares, 

n=15). 

 

In 57% (n=25) of the patients at least one adverse event, including gastrointestinal problems, 

dizziness and fatigue, was reported. No significant relationships were found between the occurrence 

of adverse events and the daily rivastigmine doses. Moreover, analyses were performed in subgroups 

of patients in which peak or trough concentrations were measured. No associations were revealed 

between the frequency of adverse events and peak or trough concentrations. In contrast to previous 

studies, the patch formulation was not related to a lower occurrence of adverse events in our study 

population. This might be due to the cross-sectional study design, as adverse events were recorded at 

inclusion, when most patients were already receiving the treatment for several months. Therefore, 

transient adverse events were no more present and intolerant patients would have already reduced 

the dose or discontinued the treatment and be ineligible. However, an indication of a better tolerability 

of the patch might be that only one patient (5.5%) was treated with the highest therapeutic dose of 

rivastigmine in the capsule group (6 mg b.i.d.) versus 15 patients (58%) in the patch group (9.5 

mg/24h). In previous clinical trials, the 9.5 mg/24h patch has been shown to provide comparable 

rivastigmine exposure to the 6 mg b.i.d capsule administration, with similar efficacy but three times 

fewer adverse events reports due to the favorable pharmacokinetic profile.70 Thus, significantly more 

patients reached the highest dose in the patch group compared to the capsule group, which is in 

agreement with our finding.70 

 

In conclusion, no pharmacogenetic analyses have been performed in the study population receiving 

rivastigmine due to the heterogeneity of the dataset. However, a large interindividual variability in 

plasma concentrations was observed. Thus, pharmacogenetic studies in larger study populations with 

uniform dosage regimens would be of interest. In the present study, preliminary analyses revealed no 

significant relationships between the occurrence of adverse events and rivastigmine dose, plasma 

concentrations or formulation.
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In this last chapter the results of this work are discussed and some perspectives for future research on 

the subjects are given. 

 

5.1 Analytical methods 
 
A prerequisite for any pharmacokinetic study and for TDM is a suitable bioanalytical procedure for the 

measurements of the plasma concentrations of the drugs. 

The HPLC-MS method, that was developed and validated for the determination of antidementia drugs 

in the plasma of the participants of the pharmacogenetic study, is described in Article II. It is the first 

method published that allows the simultaneous determination of all four antidementia drugs, namely 

donepezil, galantamine, rivastigmine (and its metabolite NAP 226-90) and memantine. The sample 

pre-treatment was performed by mixed-mode SPE and the separation of the compounds was 

achieved by reverse phase chromatography. The method was validated according to the 

recommendations of international guidelines with satisfactory results. Moreover, the procedure was 

successfully applied to the 300 study participants, showing to be reliable and robust over the 

concentration range normally measured in patients. 

Since it was planned to introduce the concentration measurements of antidementia drugs in the 

routine TDM-service of our laboratory, the HPLC-MS procedure was transferred to the newly acquired 

UPLC-MS/MS system in order to benefit from the numerous advantages of this new technology. The 

procedure transfer is described in Article III. In the HPLC-MS procedure, the drugs were isolated from 

500  μL  plasma by SPE, which is a powerful procedure to obtain clean extracts. However, the higher 

specificity of the UPLC-MS/MS compared to HPLC-MS allows the analysis of less clean extracts with 

satisfactory results. Therefore, the extraction procedure was simplified and a protein precipitation was 

used with the advantages of a faster sample preparation and lower costs. In addition, the higher 

sensitivity  of  the  MS/MS  allowed  to  reduce  the  amount  of  required  plasma  to  250  μL  and  to  decrease  

the LLOQ of rivastigmine and its metabolite to better correspond to the low concentrations measured 

in patients. Moreover, the run time was shortened from 15 min to 4.5 min. The UPLC-MS/MS method 

was fully validated and a method comparison between HPLC-MS and UPLC-MS/MS was performed, 

showing similar results between the two procedures. During routine use of the method, the reliability 

will be monitored by internal and external quality control samples. Moreover, attention has to be paid 

to analytical interferences with comedication, since the elderly population taking antidementia drugs is 

often polymedicated. However, by the use of the highly specific UPLC-MS/MS technology and of 

isotope-labeled internal standards compensating for potential signal suppression, the risk of analytical 

inferences has been minimized. 

For  a  considerable  number  of  psychopharmacologic  compounds,  the  quantification  of  the  medications’  

plasma concentration has become clinical routine for dose adjustment.32 Clear evidence of the 

benefits of TDM has been given for tricyclic antidepressants, numerous antipsychotic drugs and for 

conventional mood stabilizing drugs.32 Presently, TDM is rarely used for antidementia drugs, though 
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there is some evidence that it can be useful since a relationship between plasma concentrations and 

response to treatment and/or tolerability has been reported.71-73 The following aspects support the use 

of TDM for antidementia drugs. First, a large inter-individual variability in plasma concentrations was 

observed in pervious clinical trials, and could be confirmed by the results of our pharmacogenetic 

study. As substrates of CYP2D6 and CYP3A metabolic enzymes, donepezil and galantamine 

pharmacokinetics is affected by environmental and genetic factors influencing the activity of these 

enzymes. TDM might be beneficial to reveal genetically determined abnormalities in the metabolism, 

but also to monitor the plasma concentrations when administered in combination with comedication 

inhibiting or inducing CYP2D6 or CYP3A. Moreover, age-related changes in physiologic functions and 

comorbidities might affect the pharmacokinetics of antidementia drugs. In particular, a decreased renal 

function could lead to increased plasma concentrations of memantine. Finally, there is some evidence 

supporting the utility of antidementia drugs as a chronic treatment that reduces the progression and 

associated burden of the disease rather than purely to relieve the symptoms.15 Thus, the detection of 

non-adherence to therapy through TDM might be beneficial, especially because non-adherence is a 

particular problem in patients with cognitive deficits.58 

 

In  the  recently  published  “AGNP Consensus Guidelines for Therapeutic Drug Monitoring in Psychiatry: 

Update   2011”,   therapeutic   ranges   for   antidementia   drugs   are   proposed,   which   are   based   on  

pharmacokinetic studies with therapeutically relevant doses.32 Only for donepezil, the therapeutic 

range was based on a concentration-response study.32,71 To recommend a regular monitoring with the 

available data is not possible, but it can be suggested in special cases such as an insufficient clinical 

improvement, adverse events, comedication that are inhibitors or inducers of drug metabolizing 

enzymes or suspected non-adherence. 

The data, which will be collected in future in our TDM service, might contribute to evaluate whether a 

TDM of antidementia drugs could help to minimize the risk of adverse events and to increase the 

probability of clinical effectiveness. However, prospective concentration-response studies to improve 

the quality of data on therapeutic reference ranges are required. 

 

5.2 Pharmacogenetics of Donepezil 
 
A total of 129 patients treated with a constant dose of donepezil were included in the pharmacogenetic 

study on antidementia drugs. The patients were genotyped for polymorphisms in CYP2D6, CYP3A, 

POR, NR1I2 and ABCB1 to investigate their influence on donepezil steady-state concentrations as 

well as on the occurrence of side effects. The results are reported in Article IV. 

The CYP2D6 genotype appeared to be the major genetic factor influencing donepezil plasma 

concentrations. Heterozygous extensive metabolizers and poor metabolizers demonstrated 

significantly higher plasma concentrations than homozygous extensive metabolizers. Moreover, the 

ultrarapid metabolizers had lower donepezil concentrations than homozygous extensive metabolizers 

and might, therefore, be prone to non-response to donepezil treatment. Only one previous study 

examined the relationship between CYP2D6 genotypes and donepezil plasma concentrations.55 In 
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contrast to our results, no significant relationship was revealed, which might be due to the limited 

sample size (n=42) and the lack of poor metabolizers. Nevertheless, their findings showed a tendency 

towards lower plasma concentrations in homozygous extensive metabolizers compared to 

heterozygous extensive metabolizers, and in ultrarapid metabolizers compared to extensive 

metabolizers, which is in line with our results.55 Further accentuating the importance of CYP2D6 in 

donepezil metabolism, we measured significantly higher plasma concentrations in patients receiving 

CYP2D6 inhibitors compared to patients without CYP2D6 inhibiting comedication. In addition, the 

frequency of subjects experiencing at least one side effect related to donepezil treatment was 

significantly higher in CYP2D6 poor metabolizers and patients taking strong CYP2D6 inhibitors. This 

could be due to the higher trough concentrations observed in these subjects, even though the 

difference did not reach statistical significance. Overall, these findings indicate that a dose-adaption 

through monitoring of donepezil plasma concentrations could be beneficial to avoid side effects in 

CYP2D6 poor metabolizers and in patients taking CYP2D6 inhibitors as comedication. However, the 

confirmation of our results in prospective studies is required. 

Interest in the electron transferring enzyme POR and the nuclear receptor PXR resulted from the 

search on variations in genes influencing CYP3A expression and activity. In this study, a significant 

association of the NR1I2 rs1523130 SNP with donepezil concentrations was found. Since in vitro 

studies in liver tissues demonstrated different levels of CYP3A4 expression among NR1I2 rs1523130 

genotypes, this observation could be explained by differences in CYP3A4 activity.45,47 Because PXR is 

implicated in the expression of several phase I and phase II drug-metabolizing enzymes as well as 

transporters including P-pg, the influence of the NR1I2 rs1523130 might also be mediated by other 

factors than CYP3A expression. The most common studied POR polymorphism is the SNP 

rs1057868C>T, defining the allele *28. In a previous study, our group showed an influence of the 

POR*28 polymorphism on CYP3A activity in two independent cohorts, with POR*28 TT carriers 

presenting a 1.6-fold higher CYP3A activity than carriers of the C allele.31 In line with these findings, 

we observed lower donepezil plasma concentrations in patients carrying at least one POR*28 T allele. 

However, the difference reached statistical significance only in CYP2D6 extensive metabolizers, which 

suggests a confounding of the effect by the other CYP2D6 genotypes when considering the whole 

study population.  

The thoughtful assessment of genetic factors that could affect donepezil pharmacokinetics extended 

the current knowledge on donepezil pharmacogenetics. The data used for the present investigations 

were obtained from a larger study population than in previous pharmacogenetic trials. Furthermore, 

this is the first study to examine the relationship of SNPs in POR and NR1I2 with donepezil plasma 

concentrations. The findings on donepezil presented in this work are based on trough plasma 

concentrations calculated by means of a pharmacokinetic equation depending on the average half-life 

observed in patients in previous studies and on the time between medication intake and blood 

sampling. Because of the long half-life of the drug (70 hours),74-77 resulting in small differences 

between peak and trough concentrations, our estimation of the trough concentrations is considered to 

be suitable for the objectives of the study. However, the influence of genetic and clinical factors on 
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donepezil pharmacokinetics is presently investigated with a more sophisticated approach. In 

collaboration with the department of clinical pharmacology at the CHUV (Prof Chantal Csajka, Dr 

Monia Guidi), a population pharmacokinetic model for donepezil has been established, using the 

NONMEM software. A manuscript reporting the results of the population pharmacokinetic analysis will 

be prepared shortly.  

Recently, attention was drawn on the SNP rs35599367 in intron 6 of the CYP3A4 gene, defining the 

allele *22. In vitro this SNP markedly affected the CYP3A4 expression and in vivo it modified dose 

requirements and/or plasma concentrations of CYP3A4-metabolized drugs.78-80 In view of these 

findings, we are presently analyzing this polymorphism in our study population to investigate its effect 

on donepezil pharmacokinetics. Further investigations could include SNPs in other nuclear receptors, 

such as CAR, influencing the expression of drug metabolizing enzymes and transporters. 

 

5.3 Pharmacogenetics of Memantine 
 

In the pharmacogenetic study, 108 patients receiving memantine at steady-state conditions were 

included. The patients were genotyped for SNPs in genes of renal cation transporters and nuclear 

receptors that are involved in transporter expression, and their effect on memantine clearance was 

assessed. The results of these investigations are described in Article V. 

In collaboration with the department of clinical pharmacology at the CHUV, a population 

pharmacokinetic model was developed, integrating clinical and genetic factors. A dominant influence 

of the renal function was observed, which is in agreement with the extensive renal elimination of 

memantine and has previously been shown in a single dose study in elderly volunteers.81 Moreover, 

the model demonstrated slower memantine elimination in female patients. In contrary to expectations, 

no significant relationship was found between genetic variations in renal cation transporters, namely 

OCTs, OCTN, MATE and P-gp, and memantine pharmacokinetics, although the selected variants 

were associated in vitro and/or in vivo with altered transport activity.82-87 Several explanations are 

conceivable for the lack of association, including the naturalistic study design that might have masked 

subtle effects of the genetic variations or the implication of several redundant cation transporters in the 

renal elimination of memantine compensating for a diminished activity of one of the transporters. 

Furthermore, since considerable intersubject differences in OCT expression have been reported, 

mechanisms regulating the expression of renal transporters might be predominant in determining 

memantine elimination.85 Thus, we investigated several polymorphisms in genes of the nuclear 

receptors PXR, CAR,   RXRα   and PPARγ, which are known to be involved in cation transporter 

expression.88-91 The SNP NR1I2 rs1513023 was significantly related to memantine clearance. As 

mentioned above, in vitro this SNP was associated with differential hepatic CYP3A4 expression 

among genotypes.45 A similar effect may be hypothesized for transporter expression in the kidneys, 

influencing memantine elimination.  

The presence of side effects in our study population was analyzed with respect to the proposed 

therapeutic range for memantine of 90-150 ng/ml.32 In good agreement, in patients with average 
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concentrations superior to 150 ng/ml, a significantly increased occurrence of side effects was 

observed. Thus, a dose reduction might be useful if the threshold of 150 ng/ml is exceeded, especially 

in case of AEs that might limit adherence to the treatment. Moreover, simulations were performed to 

predict and compare average plasma concentrations in patients receiving 10 mg, 15mg or 20 mg 

memantine per day with different NR1I2 rs1513023 genotypes and normal or impaired renal function. 

According to the prescription information,35 half of the normal daily dose, i.e. 10 mg, is recommended 

for patients with severe renal impairment (creatinine clearance<30 ml/min). Interestingly, the 

simulations predicted for patients with a creatinine clearance of 30 ml/min and NR1I2 reference alleles 

lower average concentrations than observed in patients with normal renal function. Thus, a dose of 15 

mg per day might be more adequate, as it leads to similar steady-state plasma concentrations as in 

patients without renal impairment taking 20 mg memantine per day. It will be interesting to pay 

attention to this issue in the routine TDM analyses in patients with known renal function. 

To our knowledge, this is the first pharmacogenetic study on memantine. Our findings improved the 

understanding of inter-individual variability in memantine pharmacokinetics and might be useful in the 

context of individual dose-adaption for a better efficacy and safety of the treatment. However, the 

replication of the results in other groups of patients is necessary. The domain of transporter 

pharmacogenetics is presently emerging and, therefore, it is likely that new genetic variants will be 

described that could be examined regarding memantine pharmacokinetics. Moreover, a better 

characterization of the spectrum of transporters for which memantine is a substrate would be 

advantageous for further pharmacogenetic studies. Our analyses on polymorphisms in nuclear 

receptors were exploratory. In vitro studies on renal transporter expression related to genetic 

variations in nuclear receptors, in particular related to NR1I2 rs1513023 genotypes, would be required 

for a profound understanding of the results and for further investigations. 

 

5.4 Pharmacogenetics of Galantamine 
 

In the pharmacogenetic study, 27 patients were included receiving a treatment with galantamine. We 

investigated the relationship of polymorphisms in CYP2D6, CYP3A, POR and ABCB1 genes with 

galantamine concentrations. The results are reported in a short communication (Article VI). 

We demonstrated 60% higher galantamine trough concentrations in CYP2D6 poor metabolizers 

compared to CYP2D6 extensive metabolizers, while homozygous and heterozygous extensive 

metabolizers had similar plasma levels. Interestingly, more CYP2D6 poor metabolizers than expected 

were identified in our study population, which allowed to find a statistical significant influence of the 

CYP2D6 genotypes. Our findings confirmed the results of a population pharmacokinetic study, 

showing a 25% reduced galantamine clearance in CYP2D6 poor metabolizers and a similar clearance 

among homozygous and heterozygous extensive metabolizers.92 Only one ultrarapid metabolizer was 

detected in our study population, thus, it was not possible to draw a conclusion for this genotype. 

According to the FDA drug label information, no dose-adjustment is necessary in poor metabolizers as 
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the dose is individually titrated to tolerability.93 Nevertheless,   the   knowledge   of   a   patient’s  CYP2D6 

genotype might be useful to avoid concentration-related side effects in poor metabolizers. No 

significant relationship was found between polymorphisms in CYP3A, POR and ABCB1 genes and 

galantamine concentrations, which might be due to the predominant influence of the CYP2D6 

genotype and the small study population. Therefore, the genetic analyses on CYP3A, POR and 

ABCB1 should be repeated in larger cohorts for sound conclusions. 

In the present study, we showed for the first time in a naturalistic setting the significant influence of the 

CYP2D6 genotype on galantamine pharmacokinetics. However, the sample size limited the analyses 

of SNPs potentially influencing galantamine concentrations as well as the investigations on side 

effects. For further pharmacogenetic studies, a larger cohort is necessary, for which it will also be 

possible to perform population pharmacokinetic analyses. 

 

5.5 General remarks and perspectives on the pharmacogenetic study on antidementia drugs 
 

The aim of a pharmacological treatment is to administer effective and well tolerated drugs to patients. 

For most drugs, substantial differences in treatment response exist among patients, which is partly 

due to inter-individual variabilities in plasma concentrations of the drugs. Accordingly, a standard dose 

of a drug might not be suitable for every patient. An individual dose adjustment, taking several factors 

into account that influence the pharmacokinetics of a drug, has been shown to improve efficacy and 

safety of treatments. 

Through the pharmacogenetic study presented in this work, we improved the current understanding of 

clinical and genetic factors leading to an inter-individual variability in plasma levels of antidementia 

drugs. Therefore, these findings could contribute, together with the work of other research groups, to a 

more personalized therapy approach in AD patients treated with acetylcholinesterase inhibitors or 

memantine, with individual dose adaption according to drug plasma concentrations and/or genotypes. 

Thanks to the cross-sectional design of the study and large inclusion criteria, the protocol was simple 

and the participation minimally invasive for the patients. However, the heterogeneity of the population 

and the different durations of treatment at inclusion limited the assessment of efficacy and safety. 

Though, our results could be taken into account for the design of prospective studies investigating the 

clinical impact of the genetic variations, and of other clinical factors influencing the pharmacokinetics 

of the drugs, on the efficacy and tolerability of the treatment with antidementia drugs. In addition, 

concentration-response studies are requested to establish evidence based therapeutic ranges of 

antidementia drugs and to evaluate the usefulness of TDM in these drugs.  

Hopefully, increasing the knowledge of pharmacogenetics and of other factors influencing drug 

response, together with more advanced technologies and decreased laboratory costs for genotyping 

and drug concentration measurements, will enable us to establish a more personalized therapy 

approach for AD patients. Through an individual selection of drug regimen and dose, the tolerability of 

the treatment might be improved and higher therapy success rates might be achieved. 
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5.6 General Conclusions 
 
Currently, the three acetylcholinesterase inhibitors donepezil, galantamine and rivastigmine and the 

NMDA-antagonist memantine are licensed for the treatment of AD. Meta-analyses report consistent 

benefits of these drugs regarding cognition and global assessment, but with small treatment effects.94-

96 Furthermore, it has been shown that discontinuation rates are around 40% and 80% after 12 and 24 

months of acetylcholinesterase inhibitor treatment, respectively, with ineffectiveness, intolerance or 

inconvenient dosing schedule as leading reasons for the discontinuation.97 At present, no cure for AD 

is available. Thus, even if an initial improvement is observed in the first months of treatment, the 

cognitive and behavioral decline cannot be prevented. However, an optimization of the current 

treatment to maximize the effectiveness and tolerability should be intended, for example through TDM 

and/or genotyping. The issue of inter-individual variability in pharmacokinetics and pharmacodynamics 

of antidementia drugs has not been extensively addressed up to now. The pharmacogenetic study 

presented in this work might, therefore, contribute to a better tailored pharmacotherapy for AD 

patients, as we demonstrated that genetic factors account for a part of the intersubject variability in 

pharmacokinetics of donepezil, galantamine and memantine in patients recruited from a naturalistic 

therapeutic setting. Due to the cross-sectional study design, prevalent side effects were recorded at 

inclusion when most patients were already receiving the medication for several months. Therefore, it 

was complicated to differentiate between therapy related side effects and effects of concomitant 

diseases or medication. Moreover, transient side effects were no more present and intolerant patients 

would already have reduced the dose or discontinued the treatment and be ineligible. Despite these 

limitations, significant associations between the predicted CYP2D6 phenotype and side effects related 

to donepezil treatment, and between the 150 ng/mL plasma concentration threshold and side effects 

related to memantine treatment were found. 

Taken together, these findings suggest a usefulness of TDM and genotyping in the treatment of AD. 

However, prospective studies investigating the clinical effectiveness and tolerability of antidementia 

drugs with respect to plasma concentrations and genotypes are required. Moreover, 

pharmacoeconomic aspects have to be taken into account. 
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Quantification of nicotine, cotinine, trans-3-hydroxycotinine and varenicline inhuman plasma 
by a sensitive and specific UPLC–tandem mass-spectrometry procedure for a clinical study on 
smoking cessation 
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