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Purpose: To develop a reliable algorithm for the automated identification, localiza-
tion, and volume measurement of exudative manifestations in neovascular age-related
macular degeneration (nAMD), including intraretinal (IRF), subretinal fluid (SRF), and
pigment epithelium detachment (PED), using a deep-learning approach.

Methods: One hundred seven spectral domain optical coherence tomography (OCT)
cube volumes were extracted from nAMD eyes. Manual annotation of IRF, SRF, and PED
was performed. Ninety-two OCT volumes served as training and validation set, and 15
OCT volumes from different patients as test set. The performance of our fluid segmen-
tation method was quantified by means of pixel-wise metrics and volume correlations
and compared to other methods. Repeatability was tested on 42 other eyes with five
OCT volume scans acquired on the same day.

Results: The fully automated algorithm achieved good performance for the detection
of IRF, SRF, and PED. The area under the curve for detection, sensitivity, and specificity
was 0.97, 0.95, and 0.99, respectively. The correlation coefficients for the fluid volumes
were 0.99, 0.99, and 0.91, respectively. The Dice score was 0.73, 0.67, and 0.82, respec-
tively. For the largest volumequartiles theDice scoreswere>0.90. Including retinal layer
segmentation contributed positively to the performance. The repeatability of volume
prediction showed a standard deviations of 4.0 nL, 3.5 nL, and 20.0 nL for IRF, SRF, and
PED, respectively.

Conclusions: The deep-learning algorithm can simultaneously acquire a high level of
performance for the identification and volume measurements of IRF, SRF, and PED in
nAMD, providing accurate and repeatable predictions. Including layer segmentation
during training and squeeze-excite block in the network architecture were shown to
boost the performance.

Translational Relevance: Potential applications includemeasurements of specific fluid
compartments with high reproducibility, assistance in treatment decisions, and the
diagnostic or scientific evaluation of relevant subgroups.

Introduction

Age-related macular degeneration (AMD) is a
disorder with a high prevalence of around 170
million people affected globally.1 Its neovascular form
(nAMD) is characterized by pathological fluid exuda-
tion from neovascularization. Current treatment relies

on repetitive intravitreal injections of antivascular
endothelial growth factor (anti-VEGF). However, the
key to achieving the best possible visual outcome is
the early discovery of nAMD, prompt treatment initi-
ation, and adequate retreatment strategy. A patholog-
ical fluid discovery on spectral domain optical coher-
ence tomography (SD-OCT) is currently considered the
most sensitive noninvasive imaging technique for both
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screening and as a retreatment criterion.2 However,
because of a high number of patients at risk and those
requiring long-term repetitive retreatment, health care
systems are overwhelmed by the medical need. In clini-
cal practice, the evaluation of the presence or absence
of pathological fluid biomarkers in OCT volumes is a
crucial requirement. Volumemeasurements of the fluid
would be just as interesting and helpful; however, these
measures are not available in the OCT device software,
andmanual quantification is too time consuming. Thus
objective quantification relies on central retinal thick-
ness measures, both in clinical patient care and in clini-
cal research.

Computer-based automated image interpretation
is a valuable clinical and research tool, and it has
the potential to simplify patient care in terms of
screening and follow-up. Several studies have shown
the feasibility of deep-learning methods in ophthal-
mology3–7 and in particular, for fluid detection.4,8–11
Deep learning represents a data-driven approach,
where features useful for describing the problem at
hand are automatically discovered by processing a
large amount of annotated data. This contrasts with
previous heuristic-based approaches, which relied on
subjective hand-designed features. Fully convolutional
neural network (FCNN)—a type of deep-learning
approach—is particularly suited for the segmentation
task as it can classify every image pixel (for example the
fluid class) considering the surrounding visual context.

The challenges for automated image evaluation are
not only the determination of the presence or absence
of pathological lesions and the precision, sensitivity,
and specificity of the segmentation, but also the classi-
fication of fluid and the localization in the three dimen-
sions with respect to the retinal layers and central foveal
area. Thus far, important advances have been made
without integrating all of these challenges.4,8–10,12 In
addition, one of the known issues of deep learn-
ing methods is its instability and dependence on the
input distribution.13,14 However, to the best of our
knowledge, the reproducibility of volumetric algorithm
results has not been tested so far.

The goal of this study was to develop a fully
automated segmentation algorithm based on super-
vised deep-learning to detect, quantify, and localize
the amount of pathological fluid in the SD-OCT
in nAMD. In addition, the reproducibility of the
volumetric fluid measurements was to be tested. Our
approach integrated all three typical fluid compart-
ments simultaneously, including intraretinal, subreti-
nal, and subretinal pigment epithelium spaces, aiming
not only to detect these fluid types, but also to predict
its localization and quantity. Our additional aim was

to compare our segmentation approach to other state-
of-the-art techniques and to evaluate the influence of
retinal layer segmentation, as well as parts of neural
network architecture on the overall performance. Thus
this study contributes to the development of the high-
performing algorithm for volumetric measurements of
pathological retinal fluid, including for the first time
repeatability measures.

Methods

Patient Selection

For algorithm training and testing, the SD-OCT
data set 1 was extracted from a consecutive series
of two prospective study data. The studies were
designed to test the safety and efficacy of an observe-
and-plan regimen using aflibercept and ranibizumab
respectively for the treatment of naïve nAMD.1 At
baseline, a full ophthalmic assessment with best
corrected visual acuity, slit lamp examination, intraoc-
ular pressure, dilated fundus examination, SD-OCT
examination, fluorescein angiography, and indocya-
nine green angiography was performed. An experi-
enced retinal specialist (I.M.) confirmed the diagno-
sis of nAMD and its exudative activity before inclu-
sion into the study. Patients were allowed into the origi-
nal study with image quality sufficient for determining
the presence of pathological fluid. However, no high-
quality imaging was required.

The OCT data set 1 consisted of 107 SD-OCT
volumes (49 b-scans, 6 × 6 mm cube examina-
tion), extracted from the Heidelberg Spectralis device
(Heidelberg Engineering, Heidelberg, Germany).
Forty-nine SD-OCT volumes (46%) corresponded to a
treatment naïve situation from baseline of the observe-
and-plan study (aflibercept study). An additional 58
SD-OCT volumes (54%) were selected from a follow-
up visit.

The observe-and-plan study and the present post-
hoc image evaluation adhered to the tenets of the
Declaration of Helsinki, and the protocols were
approved by the regional ethics committee (Swissethics
Vaud 22/13, and 2017/00493). Patients had given
written informed consent.

A second data set (data set 2) was acquired from
a prospective study (protocol number CER-VD 2017-
02175), aiming to document the reproducibility of
the algorithm volumetric measures on repeated OCT
acquisition from the same eye on the same day. Data
were acquired from 42 eyes of 40 patients (none of
whom was treatment-naïve), recruited from routine
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AMD clinic if intraretinal or subretinal fluid was
present and who gave informed consent for five succes-
sive OCT volume acquisitions (49 lines, 6× 6mm cube)
from the same eye, centered on the fovea, on theHeidel-
berg Spectralis machine.

Image Export and Preprocessing

Complete SD-OCT volumes were extracted from
the Heidelberg Spectralis device. Images were encoded,
and all patient identifiers were removed from data
packages. EachOCT volume captured the area of 6× 6
× 2 mm3 centered on the fovea, including at least 49 B-
scans (standard B-scan density in the observe-and-plan
study). The complete set of B-scans was exported as an
E2E file. The E2E files were exported into OmniViewer
(http://omniviewer.io)—a dedicated software applica-
tion enabling the annotation of structures in three-
dimensional (3D) medical images.

Manual Annotation

Of the 107 OCT volumes of data set 1, 92 (49
patients, 49 eyes) were selected for algorithm training
and validation, and 15 OCT volumes (15 patients, 15
eyes) were kept aside for testing. These two subsets had
no overlap because they included different patients.

To ensure a large variability in the training data
and simultaneously reduce the annotation effort, some
of the selected OCT volumes were subsampled, and
only a subset of 10 B-scans per volume (every fifth
B-scan) was annotated. The manual annotation was
performed by three experienced clinicians (I.M., J.G.,
M.S.P.), delineating the area of IRF, SRF, and PED
in each selected B-scan. The following definitions were
applied for manual segmentation:

Intraretinal fluid was defined as cystoid spaces
within the neuroretina, hyporeflective in compari-
son with the surrounding retinal tissue. A minimum
diameter of 25 μm was required. In case these cystic
spaces contained some reflective material, they were
segmented if a clear limit to the normal retinal tissue
could be identified. Excluded were optically empty
triangular spaces adjacent to the internal limiting
membrane and outer retinal tubulations identified by
their hyperreflective border around the cystoid forma-
tion located in the outer nuclear layer.

Subretinal fluid was defined as hyporeflective
separation of the photoreceptor layer from the retinal
pigment epithelium. Small reflective dots within the
SRF could be included (<25 μm); however, larger areas
of reflective material were not included. This aimed
to avoid inclusion of neovascular tissue, hemorrhage,

fibrosis, or pseudovitelliform material, or undefined
deposits.

Pigment epithelium detachment was identified as
dehiscence of the pigment epithelium from Bruch
membrane. The entire area was segmented indepen-
dently of its internal reflectivity. However, small eleva-
tions of less than 25 μm were not segmented (small and
middle-size drusen).

Examples of fluid segmentation ground-truth are
shown in Figure 1. In cases of uncertainty, an experi-
enced retinal specialist (I.M.) decided on the segmenta-
tion with the best clinical relevance. This decision was
based on the complete set of acquired OCT B-scans,
using the continuity of the subsequent B-scans for layer
definitions.

After the first 20 manually segmented OCT, the
algorithm was pretrained with the B-scan and segmen-
tation information. The next series first underwent
an automated segmentation analysis, corrected by the
human reader, and then it was fed back into the
algorithm. Several loops of refined algorithm learning
were performed.

Algorithm Development

Training Dataset
Our training dataset consisted of 2680 manually

segmented B-scans (originating from 92OCT volumes)
of size 496 × 512 pixels each. Of these, 90% were
used for training and 10% for validation (monitoring
the learning process and selecting the best model). To
add more variation to our data, we applied a standard
set of image augmentations to the training procedure.
Those included horizontal and vertical shifts, left-right
flipping, rotations up to ±20°, scaling, Gaussian blur,
contrast changes, and additive noise. The B-scans were
resized to size 256 × 256 pixels, and the image intensity
was normalized to the range 0.0 to 1.0.

Network
To obtain the segmentations, we trained an

encoder/decoder style FCNN.15 The input to the
network was a B-scan, and the output was a corre-
sponding probability map with C channels where C
is the number of classes. Our network consists of
a downsampling path that extracts image features
at different levels of abstraction and an upsampling
branch that synthesizes information from the feature
maps to compute the final predictions. The network
depth was set to 5, corresponding to four downsam-
pling steps. The residual block used in our network
comprised two convolutional layers with ReLu activa-
tions in between, with each layer having 22, 33, 44, 88,
and 176 filters respective to increasing depth. On the

http://omniviewer.io
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Figure 1. Examples of intraretinal exudation (red), subretinal fluid (green), andpigment epitheliumdetachment (blue) segmentedmanually
by clinicians. Fluids present a large variability of appearances and scale, even within the same class, which makes automatic segmentation
a particularly challenging task.

first level the convolutional kernel size was set to 7 ×
7 to increase the context and on the subsequent levels
it had size 3 × 3. Additionally, the two convolutional
layers in the base block used atrous convolutions
with a dilation factor of 1 in the first layer (standard
convolutions) and 4 in the second layer to increase the
receptive field. Finally, we combined the base block
with a squeeze-excite block16 at its end, which learns
the importance of each feature channel. The schematic
illustration of the network building block is shown
in Figure 2.

All three fluids were predicted together, and we
additionally used the presegmented retinal layer infor-
mation to facilitate the learning process—we predicted
six retinal layers jointly with the fluids and computed
the loss on all nine classes; it was shown that adding
this form of prior information helps with the segmen-
tation,8,11,17,18 and we hypothesize that it helps the
method to keep the context. Layer presegmenta-
tion was obtained using the pretrained model of
Apostolopoulos et al.15 It was then combined with
fluid manual segmentation, with fluid taking prece-
dence. The final prediction was obtained by taking the
softmax activation of the network output and assign-
ing the class with highest probability to each pixel. We
trained the network using our custom pipeline based
onPytorch, by optimizing the categorical cross-entropy
for 120 epochs using the Adam optimizer19 with an
initial learning rate of 10−3. We monitored the loss on
the validation set and decreased the learning rate by
50% every time there was no improvement for seven
epochs. The model with the lowest validation loss was
saved for the final testing.

Testing Datasets
(1) Fluid Detection and Quantification. To assess the
viability of our algorithm, we tested it on the held-out

Figure 2. A schematic illustration of the building block of our
network. Conv1×1 and conv3×3 refer to N-out channels convo-
lutions with filter size 1×1 and 3×3, respectively, and SE block to
squeeze-excite block.
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dataset. It consisted of 831B-scans from15 patients (15
OCT volumes), whose data was not used for training or
validation. This setup allowed us to test the generaliz-
ability properties of our model. The algorithm perfor-
mance was confronted with the manual segmentation
of the test set. To evaluate the false-positive results in
the detection task, we further included five scans of
healthy patients.

(2) Reproducibility of Measurements. Dataset 2 (42 eyes
with 5 OCT volumes each, same day, same OCT
machine Spectralis) was processed with the fully devel-
oped algorithm, calculating the fluid volume for each
of the three compartments. This was to ensure that
the amount of fluid was the same, but each acquisi-
tion varied in terms of image quality, overall brightness,
contrast, and alignment.

Evaluation Metrics
We evaluated our method in terms of fluid quantifi-

cation and detection performance. To assess the former,
we predicted fluid classes for each pixel in the test
OCT volumes. We then computed classical segmen-
tation metrics such as sensitivity, precision, and Dice
score for scans that contained fluid. However, those
metrics are usually biased by volumes that contain
very little fluid; even small absolute errors have a
considerable effect on the score. This makes the pixel-
wise metrics difficult to compare between different
methods and testing datasets. Therefore we estimated
the fluid volumes for each testing case and compared
them to the precise manually annotated volumes using
two measures: Pearson’s correlation coefficient and
determination coefficient (R2). The former measures
the linear correlation between two variables (in our
case, the true and predicted fluid volumes) and ranges
between −1 to 1. The latter indicates the proportion
of predicted fluid variation that can be explained by
the annotated fluid volume and ranges between 0 to
1. The coefficients were computed in linear scale per
whole volume and at different regions of the Early
Treatment Diabetic Retinopathy Study (ETDRS) grid
shown in Figure 1 of the supplementary material. The
rationale behind it is that the fluids in the subfoveal
region are particularly detrimental for visual acuity,20
and thus mistakes in this zone should have higher
penalties. We additionally used Bland-Altman plots to
study bias in fluid volume prediction.

To compare our approach to other state-of-
the-art segmentation methods (Unet, ReLayNet,18
and RefNet21), we reimplemented them and trained
and tested on our datasets. The utility of the
proposed architecture improvements (dilated convolu-
tions and squeeze-excite block), as well as the effect

of layer information, was evaluated in an ablation
study.

In addition, the fluid segmentation predictions and
estimated volumes were used to classify the presence
or absence of fluid in test OCT volumes and test B-
scans. This served to investigate the performance of our
model for pathology detection. The predicted segmen-
tations were used to estimate the amount of fluid in
every B-scan/OCT volume. This quantity was then
thresholded to the presence or absence of each fluid
type. The receiver operating characteristic curve, which
depicts sensitivity plotted versus specificity for different
thresholds of fluid volumes, was then computed along
with area under the curve (AUC).

Finally, we performed a reproducibility study with
data set 2 by predicting IRF, SRF, and PED and
calculating total volumes for each fluid type. We then
computed mean predicted fluid volume and standard
deviation across 5 acquisitions, individually for each
patient.

Results

Our model training took two days on a single
GeForce GTX 1080 GPU (Nvidia, Santa Clara, CA,
USA).

Evaluation of Fluid Quantification

The distribution of fluids in dataset 1 used for
training the algorithm is presented in Table 1 and
for evaluation of fluid quantification and detection in
Table 2. In Table 4, we present pixel-wise segmenta-
tion metrics: sensitivity, precision, and Dice score. The
latter represents a combination of sensitivity and preci-
sion, and thus it cumulates the impact of any error,
whether false-positive or false-negative. The results
showed the highest performance for PED (Dice score
0.819), middle for IRF (Dice score 0.728), and the
lowest for SRF (Dice score 0.674). All of these outcome
measures are in relation to the total lesion size, because
the error is given as a percentage of the total. Further-
more, we evaluated the Dice scores for each quartile
of lesion sizes, for IRF, SRF, and PED correspond-
ingly; the results are shown in Figure 3. The highest
quartile achieved a median Dice score per B-scan of
0.93, 0.93, and 0.90 for IRF, SRF, and PED, respec-
tively. However, in the smallest lesions, the Dice scores
were low.

The comparison with previously reported artifi-
cial intelligence methods—Unet, ReLayNet18 and
RefNet21 is summarized in Table 4. On our dataset,
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Table 1. Training Dataset 1 Statistics According to Expert Segmentation

IRF SRF PED

Number of OCT volumes
containing fluid

40 (43%) 40 (43%) 86 (93%)

Number of B-scans
containing the fluid

472 407 1369

Median fluid volume [nL] per
OCT volume (Standard
deviation/range)

0.0 (259.8/0.0–1795.2) 0.0 (263.6/0.0–1903.1) 71.0 (414.3/0.0–2151.5)

IRF, intraretinal fluid; SRF, subretinal fluid; PED, pigment epithelium detachment; OCT, optical coherence tomography.

Table 2. Test Dataset 1 Statistics According to Expert Segmentation

IRF SRF PED

Number of OCT volumes
containing fluid

10 (67%) 11 (73%) 15 (100%)

Number of B-scans
containing fluid

209 210 649

Median fluid volume [nL] per
OCT volume (standard
deviation/range)

20.4 (394.7/0.0–1546.9) 4.71 (154.3/0.0–538.3) 537.4 (272.3/64.9–1192.3)

IRF, intraretinal fluid; SRF, subretinal fluid; PED, pigment epithelium detachment; OCT, optical coherence tomography.

Figure3. Dice scoredistributionover the total amountof fluidsper B-scan (A)/optical coherence tomography (OCT) volume (B). Q1,Q2, and
Q3 are quartiles of the data. Dice score measures the ratio of the overlap between the automatic segmentation and themanual annotation.
B-scans/OCT volumes with a small amount of fluid tend to have lower scores, because even small mistakes of a few pixels may have a big
effect on the metric. Note that the bin ranges of pigment epithelium detachment (PED) are bigger than that for intraretinal fluid (IRF) and
subretinal fluid (SRF), because the test cases contain significantly more PED (see Table 2).

our method outperformed these reported methods
for all types of fluids in terms of Dice scores.
ReLayNet scored higher for precision of IRF and SRF,
but its sensitivity was significantly worse than ours.
RefNet achieved the highest precision for IRF, whereas
IRF sensitivity dropped. Altogether, RefNet achieved
comparable SRF and PED Dice scores to our method
and lower for IRF.

Furthermore, we performed an ablation study to
investigate the influence of squeeze-excite blocks and
atrous convolutions, including layer information. The
quantitative results are shown in Table 4.

As can be seen, adding squeeze-excite blocks
improves the Dice scores for all fluids. A similar obser-
vation was made for addition of layer segmentation.
Adding additional atrous convolutions (with dilation
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Figure 4. (A) Correlation of predicted and true fluid volumes in test optical coherence tomography volumes. The ideal correlation is shown
by the red line. The predicted fluid volumes show very good correlation with volumes provided by the clinicians irrespective of the amount
of fluid with Pearson’s correlation coefficients of over 0.98 for every fluid type. (B) Bland-Altman plot shows agreement between predicted
and annotated fluid volumes.

rate 4) improved the overall Dice scores for IRF and
PED but decreased the performance for SRF.

Correlation analysis of fluid quantities detected by
our model compared with that detected via expert
annotation is shown in Figure 4A. The ideal correla-
tion is represented by the red line and the measure-
ments corresponding to each test OCT volume by
blue dots. The Pearson correlation coefficient for IRF,
SRF, and PED was 0.999, 0.996 and 0.976, respec-
tively. Figure 4B presents Bland-Altman plot for full
fluid volume prediction. We can deduce from it that
the mean volume error for SRF and IRF is close to 0
and around 50nL for PED, which our method tends to
oversegment.

The predicted fluid volume correlated well with
the manually annotated quantity in all regions of
ETDRS grid (Table 5). The distribution of ground-
truth volumes matched the predicted distribution, as
shown in Figure 5. Several examples of our predictions
and comparison to the ground-truth are presented
in Figure 6.

Evaluation of Fluid Detection

The prediction performance of fluid presence or
absence is shown in Figure 7. The AUC for fluid detec-
tion receiver operating characteristic curve per B-scan
(Fig. 7) was 0.97, 0.95, and 0.99 for IRF, SRF, and
PED, respectively. The false-negative and false-positive
results were mostly in the smallest volume quartile.
The AUC for fluid detection per OCT volume was
1.0 for all three fluids, meaning that it was possi-
ble to find a fluid volume threshold in the prediction
that can ideally separate healthy from nAMD volume
scans.

Evaluation of Reproducibility

The distribution of fluids in the reproducibility
dataset is presented in Table 3. The mean standard
deviation for IRF, SRF, and PED was 4.0 nL, 3.5 nL,
and 20.0 nL, which amounts to 6.9%, 3.6%, and
2.4% of the mean fluid volume, respectively. Figure 8
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Figure 5. Distribution of ground-truth and predicted fluid volumes in the different regions of the Early Treatment Diabetic Retinopathy
Study grid. Distributions obtained from the annotated and predicted volumes are very close, including outliers (see for example intraretinal
fluid [IRF] and subretinal fluid [SRF] for D = 1 mm).

Table 3. Reproducibility Dataset 2 Statistics According To Automated Prediction

IRF SRF PED

Number of OCT volumes
containing fluid

182 179 (85%) 210 (100%)

Number of B-scans
containing fluid

2781 (19%) 3943 (26%) 10182 (68%)

Median fluid volume [nL] per
OCT volume (standard
deviation/range)

5.6 (127.9/0.0-664.5) 16.6 (157.5/0.0-802.7) 478.0 (931.8/84.6-4424.4)

IRF, intraretinal fluid; SRF, subretinal fluid; PED, pigment epithelium detachment; OCT, optical coherence tomography.

presents a distribution of predicted fluid volumes for
each eye in the reproducibility dataset. An example
of a reproducibility measurement for one of the
patients is presented in Supplementary Figure S2.
The distribution of standard deviations of predicted
volumes across 42 eyes is shown in Supplementary
Figure S3.

Discussion

The presence of pathological fluid in nAMD is clini-
cally directly relevant for the evaluation of its exudative
activity and indirectly for its risk of further progres-
sion and visual loss. It is a treatment guiding biomarker,
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Figure6. Examples ofmanual and automatic segmentations. From left to right: B-scan, ground-truth, and automatic prediction. Intraretinal
fluid (red), subretinal fluid (green), and pigment epithelium detachment (blue).

and it is important for screening as well. Owing to
the increasing ubiquity of OCT devices, more frequent
and detailed examinations are now possible. However,
despite major advances in image acquisition, image
analysis requires manual interpretation. In a clinical
setting, this is a bottleneck and requires major human
resources. Therefore there is an interest in developing
automated analysis methods that have a potential to
significantly speed up the decision-making process. In
addition, machine-integrated software does not allow
for the quantification of pathological fluid. However,
this would be of interest, particularly to quantify
the exudation and measure the degree of treatment
response where incomplete.

Along with other recent publications,9–12 the
present study confirmed the feasibility of the fully
automated evaluation of pathological IRF, SRF, and
PED in nAMD using a deep-learning algorithm. The
developed algorithm showed a satisfying performance
in terms of Dice score, volume correlation, and discov-

ery rate, for all three fluid categories. In addition to
the evaluation of the presence or absence of the three
fluid categories, our study evaluated fluid volume, its
localization and reproducibility. Fluid volumes have so
far been reported for IRF and SRF only.10 Our finding
confirmed the excellent prediction of fluid volumes
for all three categories; further, this was the case for
all regions of the ETDRS grid. Additionally, fluid
predictions were highly reproducible.

The current clinical practice for treatment guidance
and screening relies on the simple discovery of the
presence or absence of IRF and SRF. Therefore this
parameter has vital importance for any automated
OCT reading. The performance of our algorithms
in terms of discovery rate was excellent (1.0 for all
fluids per OCT volume). The performance per OCT
volume, which is per eye and per time point, is
the clinically relevant decision maker parameter. A
reliable automated reading of the SD-OCT volumes
could be of great significance for efficient image
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Figure 7. Fluid detection receiver operating characteristic in the optical coherence tomography (OCT) test volumes (A) and B-scans (B). It
is obtained by classifying fluid presence/absence in every test OCT volume/B-scan by setting a threshold at different fluid volumes. Vertical
axis presents sensitivity and horizontal 1-specificity.

Figure 8. Boxplot results of reproducibility test for all eyes. Eyes are sorted according to fluid volume.

interpretation, allowing for the early discovery of
nAMD, as well as the determination of the need for
retreatment with anti-VEGF injections. The corre-
sponding performance per B-scan (0.97, 0.95, and
0.99 for IRF, SRF, and PED) allows for appreciat-
ing the high discovery rate of fluid also per OCT
slice. It has been shown that the presence of PED
has a prognostic value, particularly in combination
with IRF.22 However, despite the high performance
of the algorithm, important questions about liability

remain if algorithms should indeed take over relevant
decisions from clinicians. In this context, it might be
interesting to consider that recent discussions suggest
a lower importance for the presence or absence of
SRF, at least in comparison to IRF and in low quanti-
ties.20,23 Thus false-negative results in terms of subreti-
nal fluid, more likely in small fluid quantities, may not
be clinically relevant. In addition, it could be relevant
to consider its location within or outside the central
foveal area as it was done in the recent FLUID study.23
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However, this is a more delicate approach, because
the underlying neovascular disorder is a chronically
progressive disease, and even extrafoveal activity may
become visually threatening if progression is caused by
insufficient treatment. Finally, the false-negative and -
positive results in the discovery rate, leading to poten-
tial undertreatment or overtreatment if used for treat-
ment decisions, are cases of small fluid volumes only.
Thus deep-learning algorithms have become very close
to being used for practical applications in clinics.

The volume metrics of fluid compartments are of
increasing interest in clinical research about nAMD.
Thus far, all large-scale studies used the readily
available central retinal thickness and central retinal
volume measures, which are inbuilt into the SD-OCT
machines. However, these measures include normal
tissue and pathological fluid, as well as any patholog-
ical mass such as the neovascular tissue, hemorrhage,
or deposits. However, information about the differ-
ent fluid compartments is lacking and requires time-
consuming manual work. Measurements and changes
in these compartments have several advantages: they
represent only the exudative component and they are
independent of the mass of retinal tissue or any
pathological tissue. Such measurement would allow us
to quantify the degree of response and recurrence.
Therefore, the evaluation of the fluid compartments
would be useful for clinical research, subgroup descrip-
tions and potentially for patient care in the future.
As mentioned above, it has recently been recognized
that different fluid compartment may have a differ-
ent relevance for treatment and prognosis: residual
SRF may not have a negative influence on the visual
acuity,24,25 whereas IRF appears to be characterized
by poorer visual outcomes yielding more intense treat-
ment.20,24 Moreover, PED tends to respond poorly
to treatment, although an increase in volume predicts
exudative activity into the retina.26

Our algorithm was able to provide highly precise
volume metrics for each compartment of pathologi-
cal fluid: correlation coefficients were above 0.90 for
all three fluids. Such good correlation will allow for
application in follow-up studies as well as to better
quantify the effect of any intervention, according
to the different fluid compartments. However, the
described minor degree of measurement error will
have to be integrated into the subsequent analy-
sis. Dice score is a frequently used parameter to
evaluate the performance of segmentation algorithms.
It contains information about the overall similarity
of the automated segmentation compared with the
manual segmentation, confronting the true-positive
area with both false-negative and false-positive areas.
Our algorithm achieved comparable performance for

all fluid classes—a mean volume Dice score of 0.728,
0.674, and 0.819, for IRF, SRF, and PED, respectively.
Although the Dice score is the most commonly used
measure to describe the performance of a segmentation
algorithm, comparisons across different studies using
different OCT material is difficult. In fact, the value
of the Dice score depends on the size of the fluid: a
few misclassified pixels in OCT volumes that contain
little fluid tend to bias the Dice score toward lower
values, even though the absolute error is very small. We
computed the Dice scores for volume quartiles of each
fluid. Not surprisingly, the larger fluid compartments
(fourth volume quartile) performed much better, with
the Dice score reaching 0.9 and higher for each type of
fluid. Thus it is difficult to compare the performance
of different algorithms using Dice scores, because the
testing sets may contain very different quantities of
fluid.We argue that using an additional, more clinically
relevant metric—the correlation between the predicted
and manually annotated fluid volumes—allows for
better comparison between different methods.

To further examine the performance of our model,
we evaluated the correlationmetrics in different regions
of the ETDRS grid, because it was shown that
the subfoveal regions are particularly important for
determining visual acuity.20 Therefore we were most
concerned with the mistakes in this area. Our approach
achieved high values of both Pearson coefficient andR2

in this region, as listed in Table 5.
The IRF showed the largest volume error relative to

the total volume. This may be explained by the multiple
small cystoid spaces with poorly defined borders and
the B-scan images sometimes suggesting confluence.
Another source of error is the instances of pockets
created by the internal limiting membrane or epireti-
nal membranes, which are erroneously detected as
IRF. This could be overcome by additional training
including such scenarios. The PED volumes depend
on the accurate detection of the Bruch membrane,
which is sometimes challenging for the algorithm.More
importantly, the RPE may sometimes be hidden in the
neovascular mass, thus allowingmis-segmentation. For
the SRF, the main challenge was found in the cases
with reflective material, which is sometimes ill defined,
particularly in treatment naïve cases. The examples
of several failure cases are shown in Supplementary
Figure S4. Bland-Altman plots (Fig. 4B) revealed that
PED predictions showed the biggest bias leading to
oversegmentation. According to our observations, this
was mostly caused by PED predictions extending over
Bruch’s membrane in cases where it was not clearly
visible or choroid presented high hypertransmission.
In rare cases, parts of fibrosis and subretinal hyper-
reflectivematerial were segmented as PED. Introducing
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Table 4. Average Segmentation Metrics Per Test Volume in Dataset 1

Sensitivity Precision Dice Score

Method IRF SRF PED IRF SRF PED IRF SRF PED

Unet 0.726 0.668 0.837 0.716 0.588 0.718 0.696 0.602 0.763
ReLayNet18 0.734 0.566 0.810 0.723 0.829 0.780 0.710 0.624 0.786
RefNet21 0.636 0.650 0.875 0.796 0.797 0.770 0.642 0.660 0.816
Ours without layer
information

0.741 0.675 0.833 0.694 0.713 0.753 0.695 0.678 0.785

Ours without
squeeze-excite

0.781 0.631 0.853 0.678 0.773 0.774 0.709 0.653 0.809

Ours without dilated
convolutions

0.838 0.704 0.856 0.663 0.770 0.771 0.726 0.720 0.805

Ours (with layer
information,
squeeze-excite,
and dilated
convolutions)

0.778 0.647 0.860 0.721 0.732 0.787 0.728 0.675 0.819

IRF, intraretinal fluid; SRF, subretinal fluid; PED, pigment epithelium detachment.

Table 5. Correlation Coefficients of Predicted and Ground-Truth Test OCT Fluid Volumes in Different Regions of
ETDRS Grid

Correlation Coefficient ETDRS Grid Region IRF SRF PED

R2

1 mm 0.997 0.994 0.873
1–3 mm 0.995 0.969 0.924
3–6 mm 0.978 0.996 0.936

Full OCT volume 0.997 0.989 0.909
Pearson’s coefficient

1 mm 0.999 0.998 0.954
1–3 mm 0.999 0.995 0.987
3–6 mm 0.990 0.998 0.976

Full OCT volume 0.999 0.996 0.976

ETDRS, Early Treatment Diabetic Retinopathy Study; IRF, intraretinal fluid; SRF, subretinal fluid; PED, pigment epithelium
detachment; R2, determination coefficient; OCT, optical coherence tomography.

additional classes that correspond to those pathologies
could reduce this inconsistency and as a result also the
bias.

Apart from computing the performance of our
method, we investigated the effect of adding retinal
layers information during training, as well as squeeze-
excite block and dilated convolutions in the network
architecture. Segmenting retinal layers along with
fluids boosted the model performance. The additional
classes corresponding to layers can be regarded as
a loss regularizer and additionally help to infer
fluid’s anatomic location, which is especially important
for distinguishing between fluid types. Squeeze-excite
block further improved the performance.

However, atrous convolutions had a mixed effect
on the segmentation. They improved the overall Dice
scores for IRF and PED but decreased the perfor-
mance for SRF. We hypothesize that dilated convo-
lutions improve recall of larger objects and precision
in noisy and ambiguous image regions at the expense
of smaller objects recall, as they increase the effec-
tive receptive field. As shown in Table 4, the network
trained with dilated convolutions reduced recall of IRF
and SRF and increased recall of PED. In our test
dataset both IRF and SRF generally manifested as
smaller pockets than PED. At the same time dilated
convolutions significantly increased the precision of
IRF, which tends to be falsely detected in the noisy
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image regions. As a result, the addition of dilated
convolutions can be regarded as a trade-off between
decreasing recall of small features and increasing recall
of bigger features, as well as increasing precision in
noisy image parts.

Our approach compared favorably to the baseline
algorithms—Unet andReLayNet. RefNet achieved the
highest IRF precision among the compared methods
and similar performance to our method for SRF and
PED, but the Dice score of IRF was lower.

The reproducibility evaluation indicated that our
algorithm produces stable predictions with respect to
changes in the input images related to imaging varia-
tions that are often present in clinical practice. The
mean standard deviation of IRF and SRF were within
4 nL. Higher mean standard deviation of PED (20.0
nL) can be explained by higher mean PED volume
in the reproducibility set compared to SRF and IRF.
To the best of our knowledge, this is the first repro-
ducibility report of automated fluid volume measure-
ment methods in the literature.

Our approach is based on processing two-
dimensional (2D) B-scans. Although it is possible
to extend it to process OCT volumes in 3D by replac-
ing 2D convolutions by 3D version, we see two major
benefits of the proposed 2D processing. First, our
method is agnostic of the resolution between slices,
which may differ significantly depending on the scan
pattern. In some cases acquisitions also rely on a single
B-scan or cross scans, in which case 3D processing
would not be feasible. Second, given current limita-
tions in training speed and performance, we selected
a method that enabled capturing larger intersubject
variability per training batch and allowed for process-
ing larger B-scans. Finally, by constraining the model
to a single B-scan, we also reduce the need for B-scans
alignment before processing and achieve results that
can be reliably compared in follow-up studies.

Deep-learning methods significantly outperform
traditional machine learning methods based on hand-
crafted features; however, an increase in performance
comes at a price. The success of data-driven approaches
is highly dependent on the abundance of high-quality
data, which is often a constraint. In addition, untreated
nAMD shows a mixture of OCT signs, including not
only pathological fluid but also hyperreflective materi-
als in different layers, and severely disturbed retinal
anatomy. Thus the detection and delineation of the
pathological fluid may be particularly challenging.
Moreover, accumulated fluid usually negatively influ-
ences the image quality, making this task even more
challenging. This was a relevant challenge to our study,
which included a high number of treatment naïve eyes
(46%).

Previous studies focused on detecting one type
of pathological fluid, mostly IRF causing macular
edema.9,11,12,17 Lee et al.12 used a U-Net architecture
to detect IRF with an average Dice score of 0.73.
Contrary to our approach, the network operated on
image patches instead of the entire B-scans, and the
total prediction time was over 13 seconds per B-scan
compared to 0.04 second in our case. Venhuizen et al.11
showed that adding retinal segmentation prior helped
with detecting intraretinal cystoid fluid, achieving an
overall Dice score of 0.75. Roy et al.18 and Asgari
et al.17 also showed that adding additional prior infor-
mation in the form of retinal layers helped segmenting
fluids in drusen and diabetic retinopathy. This corre-
sponds well with our observation, and it is indeed not
surprising because fluid definitions are closely related
to the retinal layers. The detection of IRF and SRF
in different retinal diseases was investigated by Schlegl
et al.,10 where the model obtained a precision of 0.78
and 0.81, and a sensitivity of 0.63 and 0.71, for IRF
and SRF, respectively. Furthermore, they compared the
distributions of predicted and annotated fluid volumes
achieving an R2 of 0.68 and 0.65 for IRF and SRF in
Spectralis scans, and Pearson coefficients of 0.86 and
0.85, respectively. The multiclass fluid detector intro-
duced by Lu et al.8 and Lee et al.9 are the closest
to our method, because they distinguished simultane-
ously between IRF, SRF, and PED, obtaining Dice
scores between 0.74 to 0.85 and 0.75 to 0.86, respec-
tively. However, the method of Lu et al.8 consisted of
several refining steps, which increased the computa-
tional burden and required more parameter tuning. On
the contrary, our method is trained in a single step, and
it greatly reduces the processing time and complexity.
In addition, these publications did not contain infor-
mation about fluid volumes and their correlations.

Fluid segmentation is one of the well-studied
problems in retinal image analysis. Despite this fact,
several important points have not been considered so
far (or discussed only partially) in the previous litera-
ture, which we discuss in this article. Those include the
following:

• Integrating a reproducibility study, which enables
assessment of reliability and stability of the
automated prediction
• Joint prediction of all three types of fluids, while
most of the published work tackles only one or two
types of fluid
• Discussion of Dice score bias depending on the
distribution of fluid volumes in the test set and
adding an additional performance metric (corre-
lation of the predicted and manually annotated
fluid volumes) in different retinal regions, which
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is more clinically relevant for fluid monitoring
and patient progression tracking than standard
computer vision metrics. To the best of our knowl-
edge, fluid size bias has not been studied in depth
in the literature for OCT fluid segmentation.
• Ablation study highlighting the importance and
effect of squeeze-excite blocks and dilated convo-
lutions

We believe that those contributions are important
for assessing feasibility of automatic fluid segmenta-
tion in everyday clinical practice.

The limitations of the present study include the
relatively limited number of included OCT volumes,
and the restriction to our own center. In addition, our
method was tested only on OCT scans acquired with
the Heidelberg Spectralis machine. A potential follow-
up study should include data from other devices to
investigate the generalizability to other vendors. Images
with very poor quality were excluded before this study.
We did not perform any post hoc selection of images
based on their quality; therefore we can assume that the
included cases are relatively representative for clinical
situations. A larger validation dataset originating from
multiple centers would allow for a large-scale evalua-
tion.

The potential of the automated detection of patho-
logical fluid and its attribution to the different compart-
ments of the retina is large. The detection of early
disorder and individualized retreatment guidance are
the most evident benefits. The precise localization of
the fluid, as well as its configuration in three dimen-
sions can further help differential diagnosis, evalua-
tion of individual treatment response, and identifi-
cation of associated factors. The quantification of
the fluid in its compartment would allow for more-
precise follow-up with patients and for more relevant
measurement of change to the pathological compart-
ment, which contrasts with the overall measure of
central retinal thickness often used in clinical trials. In
conclusion, the precision of deep-learning algorithms
for the identification and segmentation of pathologi-
cal IRF and SRF, as well as PED, has reached a very
promising level of performance, allowing for appli-
cations in research and clinical activities in the near
future.
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