
Vol:.(1234567890)

Journal of Neurology (2024) 271:5944–5957
https://doi.org/10.1007/s00415-024-12568-x

ORIGINAL COMMUNICATION

Microstructural characterization of multiple sclerosis lesion 
phenotypes using multiparametric longitudinal analysis

Veronica Ravano1,2,3  · Michaela Andelova6  · Gian Franco Piredda1  · Stefan Sommer1,4  · 
Samuele Caneschi1,2,3 · Lucia Roccaro1,2,3 · Jan Krasensky5  · Matej Kudrna5 · Tomas Uher6  · 
Ricardo A. Corredor‑Jerez1,2,3  · Jonathan A. Disselhorst1,2,3  · Bénédicte Maréchal1,2,3  · Tom Hilbert1,2,3  · 
Jean‑Philippe Thiran3  · Jonas Richiardi2  · Dana Horakova6  · Manuela Vaneckova5  · Tobias Kober1,2,3 

Received: 6 February 2024 / Revised: 1 July 2024 / Accepted: 5 July 2024 / Published online: 13 July 2024 
© The Author(s) 2024

Abstract
Background and objectives In multiple sclerosis (MS), slowly expanding lesions were shown to be associated with worse 
disability and prognosis. Their timely detection from cross-sectional data at early disease stages could be clinically relevant 
to inform treatment planning. Here, we propose to use multiparametric, quantitative MRI to allow a better cross-sectional 
characterization of lesions with different longitudinal phenotypes.
Methods We analysed T1 and T2 relaxometry maps from a longitudinal cohort of MS patients. Lesions were classified 
as enlarging, shrinking, new or stable based on their longitudinal volumetric change using a newly developed automated 
technique. Voxelwise deviations were computed as z-scores by comparing individual patient data to T1, T2 and T2/T1 
normative values from healthy subjects. We studied the distribution of microstructural properties inside lesions and within 
perilesional tissue.
Results and conclusions Stable lesions exhibited the highest T1 and T2 z-scores in lesion tissue, while the lowest values 
were observed for new lesions. Shrinking lesions presented the highest T1 z-scores in the first perilesional ring while enlarg-
ing lesions showed the highest T2 z-scores in the same region. Finally, a classification model was trained to predict the 
longitudinal lesion type based on microstructural metrics and feature importance was assessed. Z-scores estimated in lesion 
and perilesional tissue from T1, T2 and T2/T1 quantitative maps carry discriminative and complementary information to 
classify longitudinal lesion phenotypes, hence suggesting that multiparametric MRI approaches are essential for a better 
understanding of the pathophysiological mechanisms underlying disease activity in MS lesions.
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Introduction

The development of quantitative MRI (qMRI) techniques 
has enabled the characterization of microstructural tissue 
properties in neuroinflammatory and neurodegenerative Manuela Vaneckova and Tobias Kober have contributed equally to 

this work.
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diseases such as multiple sclerosis [1–3] (MS), where con-
ventional imaging techniques often fail to explain patients’ 
clinical status (“clinico-radiological paradox” [4]) and to 
provide sensitive biomarkers for disease monitoring. In this 
context, increasing interest is being given to the characteri-
zation of lesion subtypes using quantitative imaging [5, 6]. 
In particular, the presence of so-called chronic active lesions 
has been suggested as a hallmark of disease progression, 
and particularly progression independent of relapse activity 
[7–9]. These particularly destructive lesions are described 
as presenting a higher concentration of macrophages/micro-
glia and increased iron content at their border (paramagnetic 
rim lesions, PRLs) and/or as having a higher probability of 
enlargement over time (slowly expanding lesions [10, 11], 
SELs).

An early, accurate and robust detection of these lesion 
types in MS patients could contribute to the identification 
of patients with higher risk of progression and thus inform 
treatment planning. To this end, imaging techniques that 
could inform on the microstructural properties of differ-
ent lesion subtypes are being investigated.Recent work has 
focused on the microstructural characterization of differ-
ent MS lesion subtypes based on quantitative susceptibil-
ity mapping (QSM), where quantitative measures such as 
myelin water fraction and neurite density index were shown 
to differentiate lesion classes [12]. Another study using 
diffusion imaging showed that kurtosis fractional anisot-
ropy evaluated in lesioned and perilesional tissue differed 
between, rim-positive and rim-negative contrast-enhancing 
lesions [13]. In this context, the microstructural characteri-
zation of normal-appearing perilesional tissue was shown 
to relate to the presence of rim lesions [14]. However, the 
automated detection of PRLs and SELs typically suffers 
from technical shortcomings, such as the need of advanced 
imaging protocols and complex image processing analyses, 
thus limiting their use in clinical frameworks. Recent work 
has also reported a limited overlap between these two lesion 
categories [15, 16], hence highlighting the need for more 
detailed microstructural lesion phenotyping.

In this work, we investigate the use multiparametric 
relaxometry data for the cross-sectional characterization of 
lesions with distinct longitudinal phenotypes. Specifically, 
we use quantitative T1 and T2 mapping to characterize the 
microstructural properties of shrinking, enlarging, stable and 
new lesions in a large longitudinal MS cohort. First, lesion 
classes are identified using a novel fully automated repeata-
bility-informed model for longitudinal assessment (RIMLA) 
that accounts for the variation of the underlying segmenta-
tion technique in repeated measures, thus providing a robust 
estimation of longitudinal change. Then, microstructural 
characteristics are extracted from voxelwise deviation maps 
obtained from the comparison of individual patient data to 
normative values. In addition to T1 and T2 mapping, we 

propose the T2/T1 ratio as a novel quantitative map that con-
tains complementary information with respect to the T1 and 
T2 maps alone. The distribution of microstructural metrics, 
extracted both inside the lesions and in perilesional tissue, 
is compared between lesion types. Finally, the complemen-
tarity and specificity of the extracted metrics is analysed in 
a classification task aiming at differentiating lesion types 
based on microstructural characteristics.

Participants

The study was conducted according to the Declaration of 
Helsinki and the local Ethics Committee provided approval 
for the examination of both MS patients and healthy indi-
viduals. All participants gave their written informed consent. 
Demographic details of the different cohorts included in this 
study are provided in Table 1.

Healthy cohort

A cohort of 68 healthy subjects (mean age 37.3 ± 10.6 
years) was recruited from the General University Hospital 
in Prague, Czech Republic, to assess the normal evolution 
with age of relaxation values in healthy brain tissue. The 
subjects underwent an MRI examination at 3T (MAG-
NETOM Skyra, Siemens Healthineers, Erlangen, Germany) 
using MP2RAGE [17, 18] and GRAPPATINI [19] research 
application sequences for T1 and T2 mapping, respectively. 
Relevant MR parameters for the used sequences are reported 
in Table 2.

Scan–rescan multiple sclerosis cohort

Twenty-five MS patients were recruited at two different 
institutions in a scan–rescan experimental setup [20], where 
they underwent four MRI examinations in two different days 
(maximum 9 days apart, mean 4.2 ± 3.3 days), in 3T scan-
ners (any pair among a MAGNETOM Skyra,  Prismafit and 
Verio, Siemens Healthineers, Erlangen, Germany), always 
acquiring brain images with a harmonized T1-weighted MP-
RAGE and 3D FLAIR protocols (see Table 2).

Longitudinal multiple sclerosis cohort

A longitudinal cohort of 283 MS patients from a third insti-
tution, the General University Hospital in Prague, Czech 
Republic (251 relapsing–remitting, 32 secondary progres-
sive, mean age 44.1 ± 8.7 years; detailed demographics 
reported in Table 1) were scanned on the same MR sys-
tem as the healthy cohort with follow-ups every 6 months 
(average 6.58 ± 4.94 months) for up to 4 years (average 
2.95 ± 0.7 years) using T1-weighted MP-RAGE and 3D 
FLAIR sequences (see Table  2). At their most recent 
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MR examination, each patient was also scanned using 
MP2RAGE and GRAPPATINI sequences for quantitative 
mapping, using the same sequence parameters as for the 
healthy cohort.

Methods

In this section, we describe the methodology used to 
extract the lesion microstructural and longitudinal prop-
erties, as well as the statistical experiments performed 

to study the relation between the two. In the first sub-
section, we introduce the methodology used to segment 
lesions and their perilesional rings. Then, we describe 
the extraction of T1, T2 and T2/T1 voxelwise deviations 
for the microstructural characterization of lesions. In the 
third subsection, we introduce the methodology used for 
the identification of different longitudinal lesion pheno-
types. Finally, the last subsection describes the statisti-
cal experiments performed to study the relation between 
cross-sectional microstructural properties and longitudi-
nal enlargement.

Table 1  Demographics and disease characteristics of healthy individuals and MS cohorts

Values are provided as average ± standard deviation for continuous variables and as median [interquartile range] for ordinal values.
Abbreviations: RR relapsing–remitting, SP secondary progressive, EDSS Expanded Disease Disability Scale, ΔEDSS EDSS change in 2 years, Δt 
time elapsed between MRI examinations, TLV Total Lesion Volume, TLC Total Lesion Count, W Wilcoxon’s Statistics, χ2 Pearson’s chi-squared 
test, NA not available
*Two scans per day

Parameter Healthy cohort Scan–rescan MS Longitudinal MS Healthy vs. scan–
rescan

Scan–rescan vs. 
longitudinal

Healthy vs. longi-
tudinal

N (Nfemale, % female) 68 (45, 63%) 25 (17, 48%) 283 (204, 72%) χ2 = 1.8, p = 0.17 χ2 = 5.12, p = 0.02 χ2 = 0.59, p = 0.44
RR/SP – NA 251/32 – – –
Age [years] 42.6 ± 10.4 40.7 ± 10.0 44.1 ± 8.7 W = 926, p = 0.51 W = 4126, p = 0.18 W = 8679, p = 0.19
EDSS – NA 2.5 [2] – – –
Disease duration 

[years]
NA 16.7 ± 6.5 – – –

# scans – 4* 4 [1] – – –
Δt [days] – 4.2 ± 3.3 197 ± 148 – – –
TLV [mL] – 17.2 ± 9.0 11.6 ± 9.0 – W = 170,258, 

p < 1e−16
–

TLC [# of lesions] – 37 [26] 25 [21] – W = 176,360, 
p < 1e−16

–

Table 2  MRI protocol acquisition parameters

Abbreviations: MP-RAGE magnetization-prepared rapid gradient echo, FLAIR fluid-attenuated inversion recovery, MP2RAGE magnetization-
prepared 2 rapid gradient echo, TA acquisition time, TI inversion time, TE echo time, GRAPPA generalized auto-calibrating partially parallel 
acquisitions, CS compressed sensing, MARTINI model-based accelerated relaxometry by iterative non-linear inversion
*392 ms for the scan–rescan data set
**GRAPPA × 2 for the scan–rescan data set

Parameter 3D MP-RAGE 3D FLAIR 3D MP2RAGE 2D GRAPPATINI

Resolution 1.0 × 1.0 × 1.0  mm3 1.0 × 1.0 × 1.0  mm3 1.0 × 1.0 × 1.0  mm3 0.7 × 0.7 × 3.0  mm3

Field of view 256 × 256  × 176  mm3 256 × 256 × 176  mm3 240 × 256 × 224  mm3 210 × 256 × 224  mm3

TI1/TI2 900 ms/– 1800 ms/– 700 ms/2500 ms –
TE (# echoes) 2.96 ms 397* ms 2.9 ms 80 ms (16)
Flip angles 9° – 4°/5° –
TR 2.3 s 5 s 5 s 4s
Undersampling GRAPPA × 2 GRAPPA × 3** CS × 4 GRAPPA × 2 MARTINI × 5
Bandwidth 240 Hz/Px 781 Hz/Px 240 Hz/Px 220 Hz/Px
TA 5:30 min 3:17 min 4:35 min 7:49 min
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Segmentation of lesions and perilesional rings

MS lesions in patients included in the scan–rescan and lon-
gitudinal cohorts were segmented with a fully automated 
white matter hyperintensities segmentation [21, 22] research 
application using MP-RAGE and FLAIR sequences. To seg-
ment rings of normal-appearing perilesional WM tissue, the 
Euclidean distance map between normal-appearing voxels 
surrounding the lesion and its border was extracted for every 
lesion. After discretizing the distance map, the first and sec-
ond rings included voxels at a distance below 2 mm and 3.5 
mm from the lesion border, respectively, as shown in Fig. 1. 
To ensure that the observed quantitative changes in perile-
sional regions were specific to each lesion, we discarded 
all voxels that were simultaneously located in the neigh-
bourhood of multiple lesions. In the longitudinal cohort, the 
lesion and perilesional ring masks were spatially registered 
to the MP2RAGE space using Elastix [23]. Lesions whose 
volume was found to be smaller than 3 μL or larger than 150 
μL were discarded to restrict the analysis to small, isolated 
lesions while reducing false positive findings.

Microstructural lesion characterization

T2/T1 ratio maps

To quantify the coupling of T1 and T2 changes in the brain, 
T2/T1 ratio maps were computed for all individuals in both 
the healthy and longitudinal MS cohorts. To this end, the 

T2 map of each subject was first resampled and spatially 
registered to the MP2RAGE image volume using Elastix 
[23], and both maps were then skull-stripped using the mask 
derived from the MP2RAGE uniform image by the Mor-
phoBox [24] research application. Then, T2/T1 maps were 
generated by computing a voxelwise T2/T1 ratio.

Voxelwise deviation maps

Normative T1, T2 and T2/T1 voxelwise atlases were gener-
ated from the healthy cohort scans following the methodol-
ogy described by Piredda et al. [25]. Briefly, quantitative 
maps of healthy subjects were registered to a common study 
specific template (SST) and voxelwise regression models 
including sex, age and squared age were computed for each 
quantitative modality:

with X being T1, T2 or T2/T1 values, sex being binary (1 
for male), and the age being centred at the mean age of our 
healthy cohort (37.3 years).

Then, T1, T2 and T2/T1 skull-stripped data from indi-
vidual patients was non-linearly registered to the SST using 
Elastix [23]. The registration quality was evaluated using 
the mutual information from the joint histogram of the reg-
istered anatomical uniform image obtained from MP2RAGE 
and the SST. To discard poorly registered images, a thresh-
old was set to the fifth percentile of the mutual information 

E{X} = �X
0
+ �X

sex
∗ sex + �X

age
∗ age + �X

age2
∗ age2,

Fig. 1  Segmentation of lesions and perilesional rings. A Lesion seg-
mentation mask overlayed onto a T1-weighted MP-RAGE anatomi-
cal scan. B Map showing the Euclidean distance of each voxel to the 

closest lesion border. C Delineation of perilesional rings by discretiz-
ing the distance map with cutoffs at 2 and 3.5 mm
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metric estimated on the whole longitudinal MS cohort. 
Detected data sets below the threshold were discarded and 
visually inspected to understand cause of low registration 
quality. Finally, z-score maps showing deviations from nor-
mative values, while accounting for sex and age, were com-
puted for each modality by comparing the measured T1, T2 
and T2/T1 values and the expected normative values [25]. 
Importantly, the analysis of microstructural deviations was 
restricted to white matter and subcortical gray matter due 
to the large inter-subject anatomical variability observed in 
the cortical gyrifications, causing challenges in the map-
ping of cortical locations, and resulting in higher root mean 
squared error values in the estimation of normative values. 
Therefore, only lesions fully included in white matter and 
subcortical gray matter regions, and at a distance further 
than 1 voxel from the gray matter/white matter boundary 
were included in the analysis.

Microstructural properties were characterized using T1, 
T2 and T2/T1 z-score maps. To this end, average z-score and 
the standard deviation of z-scores inside the lesion as well 
as in both perilesional rings were estimated, hence resulting 
in 18 extracted z-score metrics per lesion.

Longitudinal lesion subtypes

Lesion enlargement over time is difficult to measure robustly 
as multiple sources of variation influence the analysis. To this 
end, we propose a fully automated algorithm dubbed “Repeat-
ability-Informed Method for Longitudinal Assessment” 

(RIMLA). RIMLA allows to estimate longitudinal volumetric 
changes while accounting for the repeatability of the underly-
ing segmentation algorithm, hence providing a more robust 
estimation of longitudinal changes.

The repeatability of the lesion segmentation algorithm was 
assessed on the individual lesion level using the scan–rescan 
MS data set. To this end, individual lesions were first identi-
fied across scans by registering them to the same space. Then, 
we estimated individual lesion volumes across scans in their 
respective original spaces, and we computed the coefficient of 
variation (COV) between these measurements for each lesion 
that was detected across the four scans and with a volume 
between 3 and 150 uL. The average COV ( COV ) was retained 
as proxy for the repeatability of the segmentation algorithm.

To model the variability due to changes in the volumetric 
estimation of each lesion i in the longitudinal cohort, 100 syn-
thetic volume values v

i
�(t) were generated following a normal 

distribution with mean and standard deviation given by each 
cross-sectional volume measurement v

i
(t) , and COV ∗ v

i
(t) , 

respectively.
Then, for each lesion, the coefficients of a linear regression 

model were estimated 100 times using bootstrapping, by ran-
domly sampling one observation from the generated synthetic 
data at each timepoint (illustrated in Fig. 2A), such that:

with �1
i
 the estimated lesion enlargement over time, �0

i
 the 

intercept and � the residual error.

v̂
i
(t) = �0

i
+ �1

i
∗ t + �,

Fig. 2  Repeatability-informed method for longitudinal assessment 
(RIMLA) pipeline. A Synthetic data is generated following a nor-
mal distribution centred around the measured lesion volume, with a 
standard deviation derived from repeatability error of the automated 

algorithm. Regression lines are repeatedly fitted to randomly sampled 
datapoints within these distributions using bootstrapping. B Distribu-
tion of slopes across bootstrapping samples
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A robust measure of lesion enlargement over time was 
provided by the median �1

i
 value across bootstrapping sam-

ples. To identify statistically significant enlargement and 
shrinkage over time, an associated bootstrap p value was 
also extracted against the null hypothesis:

as illustrated in Fig. 2B. Only lesions whose slope was esti-
mated as being positive (respectively negative) in at least 
95% of the bootstrapping samples were defined to be signifi-
cantly enlarging (respectively shrinking), while the others 
were labelled as stable. Finally, lesions were characterized 
as new when they were only detected in the last timepoint, 
and lesions that were otherwise not detected in all available 
timepoints were discarded from the analysis.

Association between microstructural 
and longitudinal properties

All statistical analyses were performed using R (v4.3.1).

Univariate analysis

The prevalence of each lesion class (i.e., enlarging, shrink-
ing, stable, or new) was computed for each patient in the 
longitudinal MS cohort and compared between relaps-
ing–remitting and progressive subgroups using the Wilcoxon 
rank-sum test.

The distribution of the different z-score metrics was com-
pared between enlarging, shrinking, stable and new lesions 
using a non-parametric aligned-rank transform multifacto-
rial analysis of variance (ANOVA) method (ARTool [26] R 
package v0.11.1), while considering fixed effects for patients 
and disease courses (relapsing–remitting and progressive 
patients). The effect size (η2) was also computed for each 
metric and post-hoc comparisons were performed between 
all pairs of lesion classes. All p values were corrected for 
multiple comparisons using the Holm method.

For each lesion group, we also compared the distribution 
of the extracted z-score metrics between relapsing–remit-
ting (RR) and secondary progressive (SP) patient subgroups 
using the Wilcoxon test with p value correction for multiple 
comparisons.

Collinearity and variable importance

The contribution of each microstructural metric to the clas-
sification task predicting the lesion class (i.e., enlarging, 
shrinking, stable and new) was studied using a random for-
est model (randomForest [27] R package v4.7–1.1). To this 
end, 3000 lesions were randomly selected as training set, 
and the remaining 264 constituted the testing set. During 

H0 ∶ �1
i
= 0,

the training of each tree, 1000 lesions were drawn from the 
training set, with balanced prevalence (25% for each lesion 
class). The variable importance was estimated and averaged 
across 50 permutations (vip [28] R package v0.3.2) and the 
performance of the classification model was estimated on the 
unseen testing data using balanced accuracy, multiclass area 
under the receiver operating characteristic (ROC) curve, and 
Krippendorff’s alpha.

Finally, to study the complementarity of different imag-
ing modalities and statistical measures, the collinearity 
between the different microstructural metrics was assessed 
by computing the variance inflation factor (VIF) (car [29] 
R package v3.1–2) using a linear regression model trained 
on predicting the lesion volumetric rate of change over time, 
using the same training set.

Data availability

Anonymized data not published in this article will be 
made available upon reasonable request from a qualified 
investigator.

Results

Longitudinal lesion subtypes

The repeatability analysis of the volumetric assessment was 
performed on 551 lesions detected in the scan–rescan cohort, 
and the average COV was found to be 0.17 (median = 0.12, 
IQR = 0.16).

Fifteen patients were excluded from the longitudinal 
MS cohort due to insufficient registration quality caused by 
extended brain atrophy, 1928 lesions had a volume outside 
the predefined ranges, 1308 were not fully included in the 
white matter or subcortical tissue and 27 were not present in 
all available timepoints. This resulted in 268 patients for the 
analysis with 3264 lesions, out of which 2042 were identi-
fied as stable, 454 as shrinking, 450 as enlarging and 318 
as new. As an example, Fig. 3 shows 3 years longitudinal 
evolution of enlarging, shrinking and new lesions in an MS 
example.

The prevalence of each lesion class did not differ 
between relapsing–remitting and progressive patients (new: 
W = 3206, enlarging: W = 3316, shrinking: W = 3662, stable: 
W = 4546, all with p > 0.05) (see Supplementary Fig. S1). 
On average, stable lesions were the most prevalent in MS 
patients (62.4 ± 24.2%) and lesions classified as new were 
the least frequent (10.9 ± 16.6%). Enlarging (12.1 ± 17.7%) 
and shrinking (14.6 ± 16.8%) lesions showed a comparable 
prevalence.
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Microstructural lesion characterization

The voxelwise normative atlases established from the 
healthy cohort data are reported in Supplementary Figure 
S2 for T1, T2 and T2/T1, alongside with the voxelwise maps 
of the estimated regression coefficients.

As an example, data from an MS patient is shown in 
Fig. 4, where T1, T2 and T2/T1 z-score maps are over-
layed onto an anatomical, skull-stripped image. Two differ-
ent lesions are highlighted, showing that while lesions can 
have a similar microstructural profile when considering T1 
and T2z-score values only (white arrow), they are shown 
to sometimes differ when also considering T2/T1 changes 
(grey arrow).

Association between microstructural 
and longitudinal properties

Univariate analysis

In Table 3, we present the median and interquartile range 
(IQR) for each lesion class, along with the results of the 
aligned-rank transform ANOVA and effect size (η2). This 
information is reported separately for each quantitative 

measure (T1, T2, and T2/T1), each region of interest (inside 
the lesion, the first and the second perilesional ring), and 
each descriptive statistic extracted from z-score maps 
(average and standard deviation). Supplementary Fig. S3 
reports the pairwise comparisons that resulted in a signifi-
cant difference for each metric after correction for multiple 
comparisons.

Overall, all metrics showed at least one significant dif-
ference between the lesion classes, except for some met-
rics evaluated in the second perilesional ring and despite a 
limited effect size. Furthermore, when considering post-hoc 
comparisons, metrics estimated in the second perilesional 
ring resulted in fewer significant differences. The metrics 
with the highest discriminative power, estimated from the 
effect size reported in Table 3, were the standard deviation 
of z-scores estimated in lesioned tissue using all modalities 
(T1: η2 = 0.12, T2: η2 = 0.11, T2/T1: η2 = 0.07), as well as 
lesion volume (η2 = 0.14).

When comparing the median computed across lesions 
within the same group, stable lesions were found to exhibit 
the highest average T1 and T2 z-score values in the lesioned 
tissue (T1: median = 4.33, IQR = 2.31, T2: median = 3.1, 
IQR = 2.03), with significant post-hoc comparisons 
to all other lesion classes. The same held for standard 

Fig. 3  Longitudinal evolution of one lesion classified as enlarging (top), one shrinking (middle) and one new (bottom) over a period of 3 years in 
an MS patient from the longitudinal cohort (F, 62 years, EDSS = 2. 5)
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deviation of T1, T2 and T2/T1 z-scores in lesions (T1: 
median = 1.92, IQR = 1.42, T2: median = 1.1, IQR = 0.89, 
T2/T1: median = 0.91, IQR = 0.47). Conversely, lesions 
identified as new had the lowest T1 and T2 z-score values 
both in terms of average (T1: median = 2.77, IQR = 2.53, 
T2: median = 2.12, IQR = 1.85) and standard deviation (T1: 
median = 0.98, IQR = 0.92, T2: median = 0.6, IQR = 0.54).

In the first perilesional ring, shrinking lesions presented 
the highest T1 average (median = 1.41, IQR = 1.12) and 
standard deviation of z-scores (median = 1.28, IQR = 0.47), 
and were significantly different from all other lesion classes. 
On the other hand, when considering T2 z-scores, the high-
est average values in the first perilesional ring were observed 
for enlarging lesions (median = 1.67, IQR = 1.03).

The results of the comparison of the metric distribu-
tions when evaluated in the two patient subgroups (RR and 
SP) are reported in Supplementary Table T1. Significant, 
albeit mild, differences were mostly observed in stable 
lesions, where greater average z-scores were found for SP 
patients, when considering average T1 z-scores estimated 

in the lesion core, T1 and T2 z-scores in both perilesional 
rings. The standard deviation of z-scores was also found 
to be larger for SP patients for T1, T2 and T2/T1 z-scores 
in both perilesional rings, but not inside the lesion core. 
In enlarging and new lesions, the quantitative metrics 
extracted from z-scores did not exhibit any statistically 
difference between the two MS phenotypes. For shrinking 
lesions, only estimating the standard deviation of T2/T1 
z-scores in the two perilesional rings resulted in signifi-
cantly lower values for secondary progressive patients.

An intuitive visual representation of lesion class medi-
ans in a T1 vs. T2 vs. T2/T1 z-score space is provided 
in Fig. 5, and in Supplementary Figure S4 for relaps-
ing–remitting and secondary progressive patients sepa-
rately. Qualitatively, by examining the error bars, rep-
resenting the IQR, a large overlap is observed between 
the different lesion classes. When considering only two 
quantitative measures, lesion classes are more segregated 
compared to a single one.

Fig. 4  Multiparametric quantitative mapping using T1 (top row), 
T2 (middle row) and T2/T1 ratio (bottom row) for an example MS 
patient. Both the original quantitative maps and the z-score devia-

tion maps with respect to age- and sex-matched reference values are 
shown, with closeups depicting two MS lesions (highlighted with 
arrows), showing opposite trends of T2/T1 z-scores
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Collinearity and variable importance

The discriminative importance of each variable, extracted 
from the random forest model, is shown in Fig. 6 alongside 
the variance inflation factor (VIF), estimated from a linear 
regression model to quantify metric collinearity. When 
evaluated on the unseen testing set (N = 264 lesions), our 
random forest classifier achieved an overall accuracy of 73%, 
estimated using the multiclass area under the curve. The 
Krippendorf’s alpha was found to be significant (α = 0.18, p 
value = 1.3 ×  10–5), suggesting that the classification accu-
racy exceeded chance level. The balanced accuracy was 
estimated at 62%, 55%, 66% and 68% for enlarging, shrink-
ing, stable and new lesions, respectively, and the multiclass 
confusion matrix is reported in Supplementary Fig. S5.

In terms of discriminative importance, reported here as 
mean ± standard deviation across 50 permutations, the met-
rics that contribute the most to the classification task are 
the standard deviation of T1 and T2 z-scores evaluated in 
lesion tissue (T1: 0.13 ± 0.005, T2: 0.10 ± 0.004), in the first 
perilesional ring for T1 (0.043 ± 0.003), in lesion tissue in 
terms of T2/T1 (0.036 ± 0.003) and the average T1 z-score 
estimated in the lesion (0.038 ± 0.004). Those metrics also 
exhibited a low variance inflation factor (VIF < 9), hence 
showing low collinearity to other metrics, except for the 

average T1 z-score in lesions (VIF = 25.6). The importance 
of the other variables was comparatively lower and compa-
rable between each other (between 0.001 and 0.028), and the 
metrics that displayed the highest collinearity were the aver-
age z-score when estimated in all modalities (VIF > 18). The 
disease phenotype displayed the lowest variable importance 
and collinearity.

Discussion

We propose a multiparametric approach for the microstruc-
tural characterization of multiple sclerosis lesions in a large 
longitudinal cohort using deviation maps from normative 
atlases of relaxometry measures. In addition, we introduce 
RIMLA, a fully automated repeatability-informed longitu-
dinal framework that allows to quantify the uncertainty of 
measures given by an image processing method. Specifically 
for this study, we used RIMLA to compute lesion growth 
rates while accounting for the variability of the volumetric 
assessment that is inherent to the underlying segmentation 
algorithm. This resulted in a classification of the lesions into 
four distinct groups (new, enlarging, shrinking and stable 
over time) based on their volume change over time; RIMLA 
thereby allows to estimate the variance within these groups. 

Table 3  Microstructural differences observed between lesion classes estimated with RIMLA

Values are reported as median and interquartile range across lesions in each group. This information is reported separately for each quantitative 
measure (T1, T2, and T2/T1), each region of interest (inside the lesion, the first and the second perilesional ring), and each descriptive statistic 
biomarker extracted from z-score maps (voxelwise average and standard deviation). For each row, cells are coloured by the reported median 
value, where a darker shade corresponds to a higher median. The results of the aligned-rank transform (ART) ANOVA as F-ratio and the associ-
ated corrected p values are reported, as well as the effect size (η2). Significance level: ***p < 1e − 6, **p < 0.01, *p < 0.05

Stable Enlarging Shrinking New ART-ANOVA (padj) η2

T1 z Lesion Average 4.33 [2.31] 3.84 [1.98] 3.97 [2.23] 2.77 [2.53] 73 (< 1e − 16)*** 0.06
Standard deviation 1.92 [1.42] 1.51 [0.93] 1.33 [1.04] 0.98 [0.92] 148 (< 1e − 16)*** 0.12

Ring1 Average 1.14 [1.02] 1.3 [1.03] 1.41 [1.12] 0.97 [1.13] 20 (5.9e − 12)*** 0.02
Standard deviation 1.24 [0.43] 1.16 [0.39] 1.28 [0.47] 1.07 [0.47] 28 (< 1e − 16)*** 0.03

Ring2 Average 0.39 [0.78] 0.56 [0.82] 0.56 [0.8] 0.37 [0.78] 6 (0.0018)* 0.01
Standard deviation 0.82 [0.28] 0.84 [0.29] 0.86 [0.28] 0.81 [0.3] 2 (0.39) 0

T2 z Lesion Average 3.1 [2.03] 3.01 [1.74] 2.48 [1.72] 2.12 [1.85] 61 (< 1e − 16)*** 0.05
Standard deviation 1.1 [0.89] 0.93 [0.7] 0.72 [0.55] 0.6 [0.54] 132 (< 1e − 16)*** 0.11

Ring1 Average 1.61 [1.12] 1.67 [1.03] 1.59 [1.25] 1.32 [1.42] 14 (1.7e − 08)*** 0.01
Standard deviation 1.13 [0.52] 1.13 [0.52] 0.97 [0.43] 0.92 [0.44] 41 (< 1e − 16)*** 0.04

Ring2 Average 0.9 [0.94] 0.94 [0.92] 1 [0.98] 0.76 [1.08] 5 (0.0040)* 0.01
Standard deviation 0.95 [0.33] 1.01 [0.39] 0.95 [0.33] 0.91 [0.38] 3 (0.18) 0

T2/T1 z Lesion Average − 0.41 [1.21] − 0.27 [1.2] − 0.62 [1.23] − 0.3 [1.27] 11 (1.2e − 06)*** 0.01
Standard deviation 0.91 [0.47] 0.82 [0.44] 0.72 [0.42] 0.62 [0.5] 82 (< 1e − 16)*** 0.07

Ring1 Average 0.45 [0.83] 0.43 [0.85] 0.21 [0.79] 0.35 [0.92] 20 (2.5e − 12)*** 0.02
Standard deviation 0.95 [0.31] 0.91 [0.3] 0.92 [0.29] 0.83 [0.29] 24 (1.6e − 14)*** 0.02

Ring2 Average 0.4 [0.72] 0.35 [0.75] 0.31 [0.75] 0.35 [0.72] 4 (0.027)** 0
Standard deviation 0.88 [0.26] 0.87 [0.27] 0.86 [0.28] 0.84 [0.28] 5 (0.0058)* 0

Lesion volume [µL] 27 [10] 16 [21.75] 11 [17] 9 [12] 172 (< 1e − 16)*** 0.14
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Notably, RIMLA and the underlying bootstrapping is a gen-
eral framework which could be used for various other image-
based biomarker assessments.

We then characterized the amplitude and the varia-
tion of quantitative changes compared to normative val-
ues (expressed as z-scores) in the different lesion classes 
and normal-appearing perilesional tissue with respect to 
quantitative T1 and T2 values. We also introduced a com-
posite T2/T1 quantitative map and explored its usefulness 
for microstructural analysis of the different tissues. While 
various groups have proposed a T1-weighted/T2-weighted 
ratio image as a semi-quantitative map informing on myelin 
content [30, 31], the ratio between quantitative T1 and T2 
relaxometry measures and their potential applications have 
not been explored so far.

Following the main motivation of this work to micro-
structurally characterise lesions showing different evolutions 

over time, we used a multivariate approach to test the dis-
criminative power of the different microstructural properties 
we extracted; thereby, our model achieved good accuracy 
despite class imbalance. When studying the importance 
and complementarity of the properties, we found that the 
standard deviation of z-scores (which can be interpreted as 
heterogeneity of the tissue) was more predictive of the lesion 
class compared to the amplitude of the deviations. The high 
importance related to some T2/T1-based metrics indicates 
the relevance of such composite maps when analysed in con-
junction with T1 and T2 relaxometry deviations. The low 
importance associated to the patient subgroup suggests that 
our microstructural characterization of lesion subtypes is 
independent from the disease phenotype.

While the quantitative properties of lesions were assessed 
cross-sectionally, changes in their microstructural properties 
over time must be considered multifactorial, depending on 

Fig. 5  Distribution of standard deviation (top) and average (bottom) 
of z-scores estimated inside the lesion in terms of T1, T2 and T2/T1, 
across 268 patients and 3264 lesions. New lesions are shown in red, 
stable in grey, enlarging in orange and shrinking in cyan. Values are 

represented in the three two-dimensional planes. Filled circles repre-
sent the median metric computed across the lesion group, and error 
bars show the interquartile range
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the stage of the lesion, its localization, the integrity of the 
blood brain barrier, but also ongoing treatment as well as the 
age and comorbidities of the patient, in addition to various 
concurrent processes that may influence qMRI properties. 
These simultaneous processes could manifest themselves 
in higher standard deviations of z-scores. Previous work 
has shown that „possible SELs“ demonstrated a significant 
T1 intensity reduction over time in early MS, and might 
be characterized by structural variability (possibly due to a 
mixture of demyelination and remyelination), reflected by 
higher degree and variability of T1 intensities [7]. In the 
present study, we found that the standard deviation for new 
lesions, where one would expect the highest dynamics of 
pathological processes, is comparatively low. This might 
reflect partially contradictory processes that occur during 
and shortly after lesion formation (i.e., demyelination and 
remyelination, oedema), which might have opposing effects 
on relaxometry measures; in addition, the generally lower 
volume of new lesions might lead to higher standard devia-
tions. Moreover, the standard deviation in both lesions and 
perilesional tissue might be affected by uneven enlargement 
and/or shrinkage of the lesions: although the definition of 
SELs includes a constant and persistent volume increase 

over time, as well as a concentric expansion with a prefer-
ential direction towards external boundaries of a lesion [32], 
the actual growth patterns might be more complex. A recent 
study measuring lesion displacement directions has shown 
that enlarging lesions demonstrated expansion preferentially 
towards the cortex, while shrinking lesions moved towards 
the centre of the brain in MS patients [33]. Considering that 
the lesion volume changes are not symmetrical might also 
explain the high variability of quantitative values in our per-
ilesional analysis.

Enlarging and shrinking lesions exhibited different 
microstructural properties in perilesional tissue. Specifi-
cally, enlarging lesions showed higher T2 z-scores in per-
ilesional tissue, which could potentially reflect the presence 
of oedema that characterizes demyelination in the active 
inflammatory phase. A subset of enlarging lesions in our 
study may fall into the category PRLs. In a study with simi-
lar follow-up time as in our study, the authors showed that 
after 3.5 years, PRLs volumes showed significant expansion 
over time compared with non-rim lesions that shrank on 
average [34]. Pathologically, the edge of slowly expanding 
lesions is characterized by a rim of activated microglia/mac-
rophages harbouring occasional myelin degradation products 

Fig. 6  Multivariate association between longitudinal lesion subtypes 
and microstructural profile. Left. Variance Inflation factor (VIF) 
estimated from a linear regression model predicting the longitudinal 
volumetric change of lesions. Higher values represent stronger collin-
earity between the considered metric and all the others. Right. Vari-

able importance estimated with 50 permutations from a random forest 
model trained on the classification of lesion classes (enlarging, new, 
shrinking, and stable), with error bars representing the standard devi-
ation across permutations
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[35]. Moreover, the iron accumulates at the edge of SELs in 
microglia/macrophages [34]. Lesions with iron rims show 
a complete myelin loss within the rim and absence of remy-
elination. Whereas this profound demyelination would lead 
to a prolongation in T1 and T2 relaxation times, increased 
iron would be expected to cause a shortening of both T1 
and T2. In remyelinated lesions, iron rims have been rarely 
observed. These counteracting mechanisms need to be con-
sidered when interpreting z-scores. They might lead to lower 
median T1 and T2 z-scores and SDs compared to stable 
lesions.

We found that shrinking lesions showed higher T1 
z-scores in perilesional tissue. Previous work suggests that 
lesion shrinkage in MS is not only caused by oedema reab-
sorption, but also by lesion atrophy [36]. Therefore, the 
observation of pronounced perilesional T1 abnormalities 
might reflect a similar mechanism as „atrophied lesions“ 
that have been described by Zivadinov et al. [37]. In perive-
ntricular areas and at the gyri borders where lesional tissue 
destroyed by atrophy subsume into CSF [36]. It is conceiva-
ble that similar mechanisms take place in lesions that are not 
in contact with ventricular CSF or CSF within the cortical 
sulci and the perilesional T1 increase reflects this atrophy-
ing of lesions. We can only speculate about the changes in 
the periventricular areas, but increased water content could 
be one contributing factor: it has been shown that besides 
demyelination, T1-relaxation times are affected by the con-
tent of free water [38]. Lastly, the impact of brain volume 
changes on the acquired metrics is unknown and might also 
contribute.

The “longitudinally stable” lesion phenotype might 
not reflect a homogeneous group of lesions with the same 
microstructural characteristics. Part of these lesions might 
be so-called black holes, which are known to be split into 
two major categories: acute oedematous contrast-enhancing 
lesions, or lesions with profound axonal loss [39]. Besides 
demyelination and axonal loss, axonal swelling increases 
free water and is a prominent and underappreciated effect 
on quantitative MRI metrics (T1, MTR) in cerebral white 
matter in patients with multiple sclerosis [38]. While the 
majority of oedematous lesions usually resolve with time, 
only ca. 30% become persistent black holes. Those black 
holes demonstrate pronounced axonal swelling, axonal loss 
and intracellularly located serum proteins [40], which could 
explain the higher z-scores observed in stable lesions and 
the higher degree of T1 alterations observed in SP patients 
compared to RR patients. Moreover, longitudinally stable 
lesions might include some PRLs, as they were also found 
in a subset of inactive lesions [34]. A recent study showed 
that both count and volume of SELs positively correlated 
with persistent black holes and 52–61% out of the total black 
holes coincided with SELs [7]. Recently, a novel subtype 
of MS pathology called „myelocortical MS“ [41] has been 

proposed, where MS-typical WM lesions visible on MRI 
did not show demyelination signs in post-mortem analyses. 
This supports the hypothesis of a wide variety of MS lesion 
phenotypes.

This work has limitations, such as the stringent inclusion 
criteria applied to the lesions’ preselection. While this cri-
terion was necessary to discard lesions in voxels associated 
with high inter-subject variations in the normative atlas (i.e., 
cortical regions), it restricts its applicability to group-level 
clinical research as opposed to patient-level analysis. Future 
work should focus on broadening the lesion preselection to 
overcome this limitation and enable a clinical validation, 
including the correlation to clinical scores and prediction of 
disability worsening. Furthermore, the difference in resolu-
tion between T1 and T2 mapping sequences might result in 
mild location discordance due to registration and interpo-
lation. Moreover, our lesion classes were solely based on 
longitudinal changes. Hence, future work should focus on 
including lesion phenotyping from iron-sensitive techniques 
(i.e., positive rim lesions detected). Another limitation is 
partial volumes at the lesion border, which might impact 
the lesion and perilesional segmentation, including the volu-
metric estimation. Finally, quantitative imaging was only 
available in the most recent timepoint, hence limiting the 
evaluation of the predictive power of relaxometry data on 
longitudinal lesion evolution.

In conclusion, we show that multiparametric approaches 
aids to better understand lesion heterogeneity in multiple 
sclerosis and underlying pathophysiological mechanisms. In 
the future, these findings could contribute to a more exhaus-
tive characterization of MS patients within clinically accept-
able scan times. As the presence of certain lesion types is 
known to be related to disease progression [6, 8, 10], the 
proposed techniques could inform the personalized treat-
ment planning by identifying patients with a higher risk.
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