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ABSTRACT 

 

 

 

The morphological and functional diversity of astrocytes, and their essential contribution in physiological and 

pathological conditions, are starting to emerge. However, experimental systems to investigate neuron-glia 

interactions and develop innovative approaches for the treatment of CNS disorders are still very limited. 

Fluorescent reporter genes have been used to visualize populations of astrocytes and produce an atlas of gene 

expression in the brain. Knock-down or knock-out of astrocytic proteins using transgenesis have also been 

developed, but these techniques remain complex and time-consuming. Viral vectors have been developed to 

overexpress or silence genes of interest as they can be used for both in vitro and in vivo studies in adult 

mammalian species. In most cases, high transduction efficiency and long-term transgene expression can be 

observed in neurons but there is limited expression in astrocytes. Several strategies have been developed to shift 

the tropism of lentiviral vectors (LV) and allow local and controlled gene expression in glial cells. In this review, 

we describe how modifications of the interactions between the LV envelope glycoprotein and the surface 

receptor molecules on target cells, or the integration of cell-specific promoters and miRNA post-transcriptional 

regulatory elements have been used to selectively express transgenes in astrocytes. 
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Experimental approaches to target astrocytes 
Experimental systems aiming to decipher the role of astrocytes in physiological and pathophysiological 

conditions are still in their infancy due to limited understanding of astrocytic biology. There are also limited 

resources devoted to the characterization of cell-type-specific expression patterns and the identification of 

proximal and distal regulatory elements leading to astrocyte-specific expression at the genome level. The first 

strategy to target astrocytes was based on transgenic mouse expressing reporter genes [1-2]. Transgenic mice 

expressing the LacZ reporter gene under the control of the glial fibrillary acidic protein (GFAP) promoter were 

used to study the kinetics of astroglial activation after brain trauma [3]. This revealed prominent LacZ expression 

in hippocampal formation and selected white matter tracts. Heterogeneous GFAP activity was reported in 

various brain areas, potentially reflecting functional differences. As a complementary approach, knockout mice 

such as vimentin -/- mice have been used [4]. These mice revealed the contribution of vimentin in the 

organization of the GFAP network after injury. Reactive astrocytes, which normally express both GFAP and 

vimentin cytoskeletal proteins, failed to do so in vimentin-null mice. Following these initial studies, numerous 

transgenic mice expressing selected transgenes have been produced to study signaling pathways during 

development, disease states or to identify therapeutic genes [5-9]. A cell-type specific conditional gene 

expression method has been developed by fusing the Cre protein with the mutant ligand-binding domain of the 

human estrogen receptor (CreER). This enables spatial regulation of gene expression via the CreER/loxP system 

[10-11] and, temporally, by using a mutated version of Cre recombinase activated by tamoxifen (Cre-ERT2) [12-

13]. 

Synthetic vectors or viral gene transfer technologies have been proposed as complementary approaches to study 

the biology of astrocytes or to help identify therapeutic candidates for CNS pathologies. Somatic gene transfer 

approaches are more flexible and less time consuming than transgenesis. Non-viral delivery systems (RNA and 

DNA oligonucleotides/plasmids) are safe, easy to manufacture and are suitable for large DNA sequences. 

Limitations to in vivo applications in the CNS include low transfection rate, short timeframe for transgene 

expression and restricted diffusion [14-15]. In contrast, viral vectors including lentiviral vectors (LVs) and 

adeno-associated viral vectors (AAVs) have high transduction efficiencies in the CNS and lead to long-term 

transgene expression [16-20]. The choice of the vector will depend on each specific application and parameters 

such as packaging capacity, host range, tissue-specific targeting, genome integration, duration of transgene 

expression and diffusion in the brain [21]. Initial studies in the CNS demonstrate a strong neuronal tropism for 

VSV-G pseudotyped LVs [22] and AAV2 serotypes [23-25] when the transgenes were under the control of 

ubiquitous promoters (cytomegalovirus (CMV) and phosphoglycerate kinase 1 (PGK) promoters). These viral 

vectors confer high level of transduction without affecting cell viability or inducing an immune response [26-

27]. 

This tropism in the CNS can be influenced by i) the envelopes/serotypes of viral vectors, ii) the transcriptional 

and post-transcriptional elements used to control transgene expression, iii) the developmental stage, iv) the species 

considered, v) the brain areas targeted ,vi) the purity of the vectors and vii) the intracerebral delivery protocol 

[28-31]. A VSV-G-pseudotyped LV-CMV-GFP, microdelivered into the rat dorsal spinal cord, leads to a 

preferential expression of the fluorescent reporter gene in astrocytes and microglial cells [32]; whereas in 

striatum, it is associated with neuronal expression [22]. Interestingly, AAV9 vectors have a unique ability to 

cross the blood-brain barrier (BBB) but the tropisms following peripheral injection are contrasted. Tail vein 

injection of self-complementary (sc) AAV9-CBA-GFP (chicken-β actin promoter) in adult mice led to a robust 

transduction of astrocytes throughout the entire CNS whereas neuronal transduction was observed in neonatal 
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mice [33]. In contrast, Barkats and coworkers showed that AAV9sc-CMV-GFP (cytomegalovirus promoter) can 

efficiently transduce motoneurons in both newborn and adult animals [34]. Hence, additional studies are 

warranted to further define the relevance of use AAV9 for targeting. AAVs represent a powerful system for CNS 

applications but have one main limitation: the size of the expression cassette (4.5kb) precludes the integration of 

complex transcriptional and post-transcriptional regulatory elements. Similarly to AAVs, LVs are extensively 

used in laboratories [35] and are particularly useful for CNS studies due to their high transduction efficiency, 

sustained transgene expression and relatively large cloning capacity [22, 36]. Both AAVs and LVs are used in 

clinical practice and ongoing studies use these methods to explore new treatments of CNS pathologies [37-40]. 

In this review, we focus on LV gene transfer in the CNS. We discuss three strategies, which take advantage of 

the entry mechanism, transcription and post-transcriptional regulatory elements, to specifically target astrocytes. 

 

 

Lentiviral gene transfer 

Lentiviruses are part of the retroviridae family. Five groups of lentiviruses are indexed, reflecting the vertebrate 

hosts with which they are associated: human or siman immunodeficiency virus (HIV-1 and 2, simian foamy 

virus), equine infectious anemia virus (EIAV), feline immunodeficiency virus (FIV), bovine immunodeficiency 

virus (BIV) and Visna-Maedi virus (ovine lentivirus). Viral vectors have been developed from most of these 

viruses [22, 41-46]. Vectors are designed to eliminate the natural pathogenicity of the virus and delete all 

information necessary for its replication. Third generation, multiply-attenuated and replication-deficient LVs are 

produced in biosafety level 2-3 (BSL2-3) laboratories depending on the transgene and specific national 

regulations [47]. These vectors can overexpress or block target gene expression to dissect neurobiological 

functions and are used to develop pertinent animal models of human pathologies [48]. 

Lentiviral vectors have been shown to efficiently deliver genes to post-mitotic cells and, in particular, to 

neuronal cells [22]. The heterologous envelope (Env) of the vesicular stomatitis virus glycoprotein (VSV-G 

protein, is often used to replace the natural virus envelope (a strategy called pseudotyping), due to its high 

stability and broad tropism [22, 49-50]. The stereotaxic injection of LVs in the CNS leads to a local, efficient 

and sustained transgene expression [48]. However, additional methods have been developed to further increase 

the diffusion of molecules in the CNS and reach the global gene delivery needed to treat pathologies affecting 

large brain areas. Strategies considered include those that take advantage of neuronal circuitry to facilitate the 

transfer of LVs or proteins (retrograde or anterograde transport) and the expression of secreted molecules [19, 

49, 51]. 

Three regulatory steps of viral vector biology have been targeted to modify the neuronal tropism of LV: the entry 

of the vector in target cells, the use of cell-type specific promoters, and the integration of microRNA regulatory 

elements [52]. Combining one or all these elements shifts the tropism of LVs toward astrocytic fates whilst 

maintaining high transduction efficiency and a transgene expression level compatible with in vivo studies (Figure 

1). 

 

 

Modification of viral entry mechanisms to target astrocytes 

LV tropism is first determined by the interaction of viral-surface proteins with receptor molecules expressed on 

target cells. Receptors of several retroviruses have been identified and their role in mediating virus entry has 

been demonstrated by functional studies. CD4 was the first component identified as an essential component of 

the HIV cell surface receptor [53]. Receptors of human and simian immunodeficiency retroviruses (HIV and 
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SIV) are unique in that the receptor has multiple components with a principal binding domain and fusion 

partners (CCR5 or CXCR4 co-receptors) [54]. 

Targeting specific cellular populations can potentially be achieved through natural viral tropism or by replacing 

the original Env protein with other viral glycoproteins (a mechanism/strategy known as pseudotyping). The 

formation of mixed phenotypic particles is a process that naturally occurs during viral particle assembly in cells 

infected by different viruses [55]. Page and collaborators were the first to design and test HIV-1-based vector 

particles harboring heterologous glycoproteins [56]. Pseudotyped particles may also acquire interesting 

properties. For example, LVs pseudotyped with a rabbies envelope are retrogradely transported [49]. HIV-1 can 

be pseudotyped by multiples envelopes but this is not the case for all retroviruses. The unusual particle 

morphogenesis of the foamy virus (FV), requiring capsid and glycoprotein for viral budding [57-58], has 

prevented any pseudotyping until recently [59]. 

The most commonly used envelope for LVs is the vesicular stomatitis virus G protein (VSV-G). Naldini and 

coworkers shown high transduction in the CNS without detectable pathological consequences due to the vector 

[22]. The VSV-G envelope confers several novel features to LV particles: i) it dramatically broadens vector 

tropism by facilitating transduction of various cell types in different species in vitro and in vivo, ii) it stabilizes 

the vector particles from shear forces during centrifugation, retaining vector concentration and iii) it directs the 

lentiviral vector entry via an endocytic pathway which reduces the need for viral accessory proteins for target 

cell transduction [60]. Extensive neuronal tropism can be seen in vivo when LVs are pseudotyped using VSV-G 

and carrying ubiquitous promoters (Figure 2) [19, 50, 61-63]. However, it is important to note that specific 

targeting of a viral vector in vitro does not necessarily imply that the same tropism will be observed in adult and 

neonatal brains [64]. There is currently no method to predict the tropism of viral vectors in vivo and all available 

data are based on empirical assessments. Bloor and collaborators reported that cells without the chaperone gp96 

(localized in the endoplasmic reticulum), or with catalytically inactive gp96, do not bind VSV-G and are 

resistant to VSV-G-pseudotyped LV infection [65]. The ubiquitous expression of gp96 might therefore explain 

the broad tropism of VSV-G. Additional parameters such as the targeted brain structure, the animal model used 

(physiological or disease state), the viral load, the LV mode of production and administration or cell-type 

specific signaling pathways could influence the level of transgene expression. For example, recent studies 

suggest that JNK is required for lentivirus entry into target cells [66]. It was thought that phosphatidylserine (PS) 

was the cell surface receptor for the VSV-G, but recent studies suggest that there is no correlation between cell 

surface PS levels and VSV-G infection or binding [67]. PS may be involved in a post-binding step of the VSV-

G-LV [68]. 

 

Numerous studies have evaluated LV tropism in the CNS. LVs pseudotyped with the Mokola envelope (MOK-

G, Rhabdoviridae family) preferentially target astrocytes over other cell populations (Figure 2) [50, 69]. Using 

such a vector, it has been shown that glial cell line-derived neurotrophic factor (GDNF) delivery in astrocytes 

improves cognitive performances in aged rats [70]. However, there are inconsistent reports of astrocytic 

targeting with MOK-G-pseudotyped LV: a glial tropism has been observed in mice and rats injected with a 

MOK-G LV-CMV-GFP vector but preferential neuronal tropism was observed in other studies (in rats and in 

human cells) [71-73]. LV pseudotyping using lymphocytic choriomeningitis virus glycoprotein (LCMV) is 

associated with astrocytic transgene expression, but with limited transduction efficiency (few infected cells) [71]. 

The parent LCM virus, from which the envelope glycoprotein is derived, enters cells by binding to a 

gylcosylated and O-mannosylated form of α-dystroglycan [74-75]. No correlation were observed between the 

pattern of receptor expression and the tropism of the viral vector [71]. The LCMV and Mokola pseudotypes offer 
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an advantage over VSV-G as they are significantly less cytotoxic when expressed in packaging cells, and may 

therefore be useful to generate stable packaging cell lines [76]. Although these different envelopes partially shift 

LV tropism, residual expression in neurons is still observed in most cases.  

 

Transcriptional regulation to restrict transgene expression in astrocytes 

Specific transcriptional elements may be sued to drive transgene expression and overcome the lack of LV 

specificity. However, tissue-specific and cell type-specific promoters are poorly characterized and the packaging 

size of lentiviral vector restrains the size of promoters that can be inserted. Current regulatory element databases 

are supported by limited experimental data or information about putative binding sites. Recent results from 

chromatin immunoprecipitation and sequencing (ChIP-seq) studies enables genome-wide localization of 

transcription factors (TFs) and should greatly contribute to decoding cell-type-specific gene expression 

programs. The ENCODE project aims to establish a catalog of all regulatory elements in the human genome [77-

79]. Preliminary data indicate that, if cell-type-specific DNA binding profile and TF complexes control cell-

type-specific expression, histone modifications, DNA methylation and accessibility also contribute to cell-type-

specific TF binding [80]. There are approximately 1,400 characterized and sequence-specific TFs, which bind to 

proximal regulatory elements close to the transcription start site (TSS) but also to enhancers, silencers, insulators 

and locus control regions which are sometimes located far away from the TSSs [80-83]. New methodologies are 

currently being developed to better predict cell-type-specific gene expression based on cis-regulatory sequences 

and to investigate the relationship between TF binding and gene expression in a systematic and quantitative 

manner [84-85]. In parallel, transcriptomic databases and information regarding miRNA distribution have been 

established for astrocytes, neurons and oligodendrocytes [86-88]. These high-throughput methods, and use of 

BAC-EGFP reporter and BAC-Cre recombinase driver mouse lines (GENSAT, the Gene Expression Nervous 

System Atlas project) [89-91], will greatly facilitate the development of controlled temporal and tissue-specific 

cassettes for CNS applications. They are also of use in experimental gene function manipulations with cellular 

resolution, particularly in astrocytes [86, 92]. One consortium is already using such data to develop mini-

promoters that are suitable for viral-mediated gene expression (Pleiades promoter project) [93-95]. 

Most of the published data are based on a very limited set of astrocyte-specific promoters. The GFAP promoter 

is the most documented astrocytic promoter [1, 96] and fragments of the GFAP promoter responsible for the 

cell-type expression were identified in the early 1990s [97]. Dr Brenner and coworkers identified the minimal 

region sufficient for an astrocyte-specific expression (GFA-ABC1D promoter, 681 bp) [98]. Cloning of a gfa2 

fragment (2.2 kb) into adenovirus 5 (Ad5) and AAVrh43 vectors restricts transgene expression in rat astrocytes 

[99-102]. Combining AAV5, AAV8, AAVrh43 and the human gfa2 promoter resulted in an efficient astrocytic 

transgene expression in the striatum of adult rats [1, 29, 101]. 

An eight fold increase in transgene expression in the striatum of adult rats can result from upregulated GFAP 

expression in reactive astrocytes after a brain lesion [103]. Therefore, this promoter is wells suited to provide 

strong transgene expression in conditions of astrocyte reactivity. Similarly, OASIS, (originally identified as a 

gene that is specifically induced in cultured astrocytes) is also upregulated in reactive astrocytes after kainic acid 

treatment and the number of glial fibrillary acidic protein (GFAP)-positive astrocytes is low in OASIS knockout 

mice. OASIS transcription is induced during endoplasmic reticulum stress in astrocytes, but not in other cell 

types. This basic leucine zipper transcription factor of the CREB/ATF family represents a potential candidate for 

controlled transgene regulation in normal and pathophysiological conditions [104-105]. 

Additional astrocytic promoters are emerging and appear to be promising candidates for cell-type specific 

expression. These include the aldehyde dehydrogenase 1 family member L1 (Aldh1L1), apolipoprotein E, 
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aquaporin-4, glutamine synthetase, excitatory amino acid transporters 1 and 2 (EAAT1 and EAAT2) and 

connexin 30 promoters but some of them have weak transcriptional activities [86, 106-112]. Mechanisms 

controlling the transcription of astrocyte markers are emerging and recent data demonstrate that nuclear factor-I 

(NFI) is involved in cell-type specific transcription of GFAP and α1-antichymotrypsin. The binding of 

stimulating proteins (SPs) 1 and 3 to a GC-box near the TSS in the excitatory amino acid transporter 1 (EAAT1 

or GLAST) contributes to transcription regulation in astrocytes, however in that case, NFI is not implicated [108, 

113]. First generation promoters, including GFAP and Aldh1L1, are based on widely expressed homogeneous 

astrocyte-specific markers. New promoters are needed to further characterize subsets of astrocytes in different 

brain regions and take into account the substantial differences in gene expression between cortical cells, 

cerebellar astrocytes, Bergman glia, Müller cells, radial glial cells, resting or reactive astrocytes. Their 

heterogeneous response to injury and disease also reflect considerable functional diversity [114-115]. 

Meanwhile, post-transcriptional regulation represents an interesting alternative strategy to restrict transgene 

expression in astrocytes. 

 

 

Post-transcriptional regulation with miRNA  

Post-transcriptional regulation or detargeting strategy takes advantage of microRNA (miRNA) biology to 

prevent transgene expression in non-desired cell types. MicroRNAs (miRNAs) are non-coding RNAs (~22 nt 

long), which bind to the 3’-untranslated region (3’-UTR) of a large number of target mRNAs. They repress their 

expression by various mechanisms including translational inhibition and mRNA degradation [116-118]. Recent 

data suggest that miRNA regulation might be far more complex than initially reported and has a role in the  

activatation of gene expression as well as repression [119]. A large proportion of all identified miRNAs 

(approximately 1,000 human miRNAs) are expressed in the mammalian brain. A group of miRNAs are 

particularly enriched in subcellular compartments such as synapses or dendrites, suggesting a role in local 

protein expression [117, 120]. Numerous functional pathways are targeted by miRNAs and some of these are 

linked to human diseases [121-126]. The negative regulation of gene expression is mediated through base-

pairing with complementary regions within the 3’-UTR of their target mRNAs; this interaction is mainly 

mediated by the seed region (2nd to 7th/8th nucleotides) [118, 127-130]. Simultaneous ribosome profiling and 

mRNA measurement suggest that miRNA predominantly act by lowering mRNA levels [131]. The “detargeting 

strategy” was suggested [52, 132-133] to suppress transgene expression in hematopoietic cells and therefore 

prevent the appearance of an immune response following systemic LV administration. The hematopoietic-

specific miR223 was shown to recognize its target sequence within the transgene and prevent its expression in 

antigen-presenting cells [134]. Naldini and collaborators demonstrated a synergistic effect by concatemerizing 

miR-targets (miRT), with higher repression when several miRT sequences (up to four) are juxtaposed [52, 132, 

135]. In subsequent studies, they then showed that tissue-specific miRNAs from a broad array of cell types 

successfully restrict transgene expression. There is a relationship between miRNA abundance within a cell and 

the extent to which that miRNA suppress gene expression [52]. When a miRT sequence with partial 

complementarity to its miRNA (a bulged miRT) is present in the 3’-UTR of a gene of interest, both post-

transcriptional repression (mRNA degradation) and translational repression occurs [132, 135-136]. In contrast, 

mRNA degradation is the main mechanism of action for synthetic miRT, which is fully complementary to its 

miRNA [52, 132, 137-138]. Synthetic miRT with multiple copies of a perfectly complementary miRNA target 

sequence optimizes transgene repression [52, 134, 137]. However, the multimeric complex RISC (RNA-induced 

silencing complex), containing argonaute (Ago) subunits that bind to miRNA, significantly differs in its capacity 
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to direct translational repression or mRNA degradation. The abundance of catalytic (Ago2) and noncatalytic 

proteins (Ago1, Ago 3 and Ago 4) is cell-type specific [137]. Ago2 endonuclease acts with fully homologous 

miRT and cleaves mRNA molecules whereas Ago1, Ago3 and Ago4 can act with partially homologous miRT 

sequences. These parameters will have important implications for the efficacy and specificity of detargeting 

strategies. The ability to blocking expression in unwanted cells can be dependent on the species, the brain 

structure and the subpopulation of cells considered. Further studies are warranted to determine the expression 

profile of Ago proteins in various CNS cells [137]. 

 

Neuronal miRNAs to targets astrocytes 

The detargeting strategy has been used to restrict transgene expression in astrocytes in the context of LV gene 

transfer. The first step is to select a miRNA that is expressed in cells, which are not of interest but is not 

expressed in astrocytes. A natural target sequence (with partial homology) or a sequence fully complementary to 

the mature miRNA (miRT) is cloned in the 3’ untranslated region (3’ UTR) of the LV transfer vector (Figure 3). 

When LV-Transgene-miRT enters a non-targeted cell, the endogenous miRNA recognizes the miRT present on 

the mRNA encoding the transgene and blocks its expression [139-140]. However, when LVs enter astrocytes, 

which do not express the miRNA, the transgene is expressed (Figure 3). 

 

The expression profiles of miRNAs in the adult mouse CNS and throughout development are available [141-

143] but have very limited information concerning cell-type-specific expression. Expression profiling in mouse 

embryonic stem cells show that several miRNA are expressed during neuronal differentiation, particularly the 

miR124 and miR9 molecules, which control neural lineage [144]. MiR124 plays an important role in neuronal 

development and differentiation through its interaction with mRNAs that code for proteins implicated in 

neurogenesis such as neuroD1, Notch, PTBP1, PTBP2 (polypyrimidine tract-binding protein) and SCP1 (small 

C-terminal domain phosphatase 1) [145-150]. It has been found that miR124 is expressed in neurons but not in 

astrocytes whereas miR9 is expressed in neural progenitors and some neurons [124, 151]. Based on these data, 

we identified a natural miR124 target sequence (mir124T) in the mouse integrin-β1 gene (partial homology) and 

integrated four copies in the 3’-UTR of a LV [152] (Figure 4). The rat and mouse integrin-β1 sequences differ 

by one nucleotide, which may explain the difference in detargeting between mice and rats (Figure 4C). In 

contrast, the synthetic sequence has similar effects in both species. Experiments in primary striatal neurons and 

astrocyte co-cultures indicated that the presence of a miR124T in LV reduced transgene expression exclusively 

in NeuN-positive neurons. RT-PCR analysis revealed that the silencing of the transgene was mainly due to 

mRNA cleavage and not due to inhibition of translation (in agreement with Guo et al., 2010). Expression of 

integrin-β1 mRNA was unaltered, indicating that the miRNA regulatory pathway was not saturated or 

dysfunctional, which could be deleterious to astrocytes. To eliminate the limited residual expression in neurons 

and further improve cell-type specificity, we could consider including additional miRT sequences as previously 

proposed for targeting liver endothelial cells [52]. Based on the limited information available miR9T [153-154], 

miR10T [125] or miR128T [124] may be integrated to LV genome to restrict transgene expression to astrocytes. 

It would be important to first establish the cell-type specific expression profile of these miRNAs both in vitro 

[87] and in vivo. However, studies of the striatum and hippocampus of adult mice demonstrated that combining 

LV pseudotyping with Mokola envelope and a miR124T detargeting strategy can efficiently restrict transgene 

expression to astrocytes [152].  
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Using this astrocyte-specific LV, Quesseveur and collaborators selectively overexpress brain-derived 

neurotrophic factor (BDNF) in the hippocampus to investigate the contribution of astrocytic BDNF in the 

activity of the antidepressant drug, fluoxetine [155]. The results demonstrate that BDNF can act through 

neurogenesis-dependent and independent mechanisms to regulate different aspects of anxiolytic-/antidepressant-

like responses. BDNF expression elicited anxiolytic-/antidepressant-like effects in the novelty suppressed 

feeding test, an effect, which was neurogenesis-dependent. Furthermore, BDNF potentiated the anxiolytic-like 

activity of fluoxetine in the elevated plus maze test, a phenomenon, which was independent of neurogenesis. 

Remarkably, at presynaptic level, BDNF decreased 5-HT neurotransmission through a functional desensitization 

of the 5-HT1A autoreceptor. 

In a second study with this astrocyte-specific LV, mutant huntingtin fragments were overexpressed in striatal 

astrocytes to assess the contribution of these cells to Huntington’s disease pathogenesis [156]. A progressive 

increase of GFAP immunostaining, morphological changes, associated with a decreased expression of glutamate 

transporters, and glutamate uptake was observed in infected astrocytes. This astrocytic phenotype was associated 

with neuronal dysfunction further supporting the importance of neuron-astrocyte cross-talk in neurodegenerative 

disorders. 

 

Perspectives 

Although a first generation LV and AAV serotypes are available to target astrocytes in vivo [1, 26, 29, 98, 101, 

157], new viral engineering developments are still required to take into account the heterogeneity of astrocytes 

and better understand the functionality of these cells in pathophysiological conditions. It is necessary to combine 

strategies to achieve high expression levels (cis-regulatory elements for spatial, temporal and cell-type specific 

transgene expression, specific silencer and enhancer sequences) and bioinformatic tools (to generate synthetic 

regulatory elements and mini-promoters adapted to viral vector backbones) to advance our understanding and 

ability to treat CNS pathologies [94, 158]. These new vectors will be essential to allow the investigation of the 

functional diversity of astrocyte subsets and go beyond the ‘pan-astrocyte’ markers currently used. Increasing 

evidence demonstrates that astrocytes may play a prominent role in neurodevelopment, neurodegenerative and 

neuropsychiatric diseases [159-160]. Functional alteration and protein aggregation have been reported in 

Alzheimer’s, Huntington’s and Alexander’s diseases. Aβ aggregation and internalization in astrocytes 

profoundly alter their metabolic phenotype with deleterious consequences for neuronal viability in vitro [161]. A 

reduction of astrocytic arborization and shrinkage of the astroglial domain occurred at early stages in a mouse 

model of Alzheimer’s disease [162] and astrocyte networks is perturbed and might contribute to cortical 

dysfunction [163]. 

In addition, signaling cascades are being investigated to develop new astrocyte-specific therapies, and astrocytes 

are being considered as potential host for the delivery of therapeutic candidates promoting neuron survival and 

recovery [29]. Targeting astrocytes could be a potent strategy for many brain diseases in which neurons would 

benefit from the supportive functions of astrocytes [164]. For example, interfering with the NFAT-calcineurin 

pathway in astrocytes using gene transfer reduces glial activation and lead to an improvement of cognitive and 

synaptic functions, and lower amyloid levels in APP/PS1 mice [157, 165]. Similarly, GDNF delivery to 

astrocytes of mice with Parkinson’s disease induces neurogenesis, enhances neuronal function, protects nigral 

dopaminergic neurons and improves cognitive functions [29, 70, 166]. Rett’s syndrome is an X-chromosome-

linked autism; the restoration of MeCP2 (methyl CpG-binding protein 2) in astrocytes of deficient mice has been 

shown to significantly improve locomotion and anxiety levels, restore respiratory abnormalities and prolong 
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lifespan [167]. Finally, the overexpression of a glutamate transporter (GLT-1) partly rescues the astrocyte 

phenotype in cases of Huntington’s disease [156]. 

New generation viral vectors could contribute to a better understanding of the mechanisms underlying astrocyte 

signaling and reactive astrogliosis. Related studies should provide new opportunities to identify and administer 

candidates that might delay or block injury or disease outcomes in various CNS pathologies. 
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Figures 

 
 
Figure 1: Strategies to modify the tropism of LVs. 1) use of heterologous envelope to pseudotype LVs and 
modify the entry of the vector into cells, 2) integrate tissue-specific promoter to restrict transgene expression and 
3) integrate post-transcriptional regulatory elements (tissue-specific microRNA target sequences) in the 3’ 
untranslated region (3'-UTR) of the transgene to block transgene expression in unwanted cells. 
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Figure 2: LV pseudotyping and tropism in the CNS. VSV-G pseudotyped LVs mainly transduce neurons 
whereas MOK-G pseudotyped LVs have an astrocytic tropism. 
 
 

 
 
Figure 3: The microRNA target sequences (miRT, usually 4 copies to maximize the detargeting effect) 
integrated in the 3’-untranslated region (3'UTR) of LV are recognized by a tissue-specific miRNA and prevent 
transgene expression in unwanted cells. 
The expression of  the miRNA in non-targeted cells (left panel) and recognition of miRT sequence in the 3'-UTR 
of the transgene leads either to an inhibition of translation or degradation of mRNA (depending whether a natural 
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miRT sequence with a partial homology or a synthetic miRT with a full homology with the miRNA has been 
cloned in the LV). 
A contrario, in targeted cells, which do not express the miRNA (right panel), the transgene is expressed. 
 
 

 
 
Figure 4: Potency of the neuron-specific miR124 for LV detargeting in the CNS. A) Sequence of the human 
miR124 with the seed region represented in red. B) To develop an astrocyte-specific LV, two types of miR124 
target sequences were integrated in the LVs. As a first strategy, a natural miR124 target (miR124T), here from 
the integrin β1 (ITGB1) gene, which is partially complementary to miR124 was used. As a second strategy, a 
synthetic target fully homologous with miR124 was used. C) In vivo data in the striatum of adult mice and rats 
injected with an MOK-LV-PGK-GFP-miR124T showing the astrocytic tropism. The difference in detargeting 
between mice and rats is probably due to the presence of one nucleotide mismatch between the rat/mouse ITGB1 
sequence (natural miR124T). In contrast, the synthetic miR124T is highly efficient in both species. 
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